2009年兰州市中考数学试题及答案

合集下载

盘点出现在中考数学填空_选择_题_省略_照射下利用影长求物体高度问题为例_徐骏

盘点出现在中考数学填空_选择_题_省略_照射下利用影长求物体高度问题为例_徐骏

18), 则
EF=DE+DF =4.4
+0.2
=4.6,

AF EF
=01.4,

AB-0.3 4.6
=01.4, 可得
AB=11.8(米 ).
作者简介 徐骏 , 男 , 1978年 12月生 , 浙江上虞人 , 中学 一级教师 , 主要从事 课堂有效 教学研究和 解题教 学研究 .有 多篇论文 (案例 )获市一 等奖 , 在省 级以上 专业 期刊 发表论 文 30余篇 .
量树的高度 .在阳光下 , 一名同学测得一根长为 1米的竹
竿的影长为 0.4米 , 同时另一名同学测量树的高度时 , 发
现树的影子不全落在地面上 , 有一部分落在教学楼的第一
图 17 图 18
分析 影子既有在地上部分 , 又有在台阶踢面上的 ,
还有在台阶踏面上的 .过点 D作 DF⊥ AB于点 F(如图
华站在沿 DE方向的坡脚下 , 影子在平地上 , 两人的影长
分别为 4m与 2m,那么 , 塔高 AB =
m.
杆的影长为 2米 ,则电线杆的高度为
米.
图 5 图 6 图 7
分析 可用两种方法解答此题 : 法 1 过点 D作 DF⊥ CD交 AE于点 F, 过点 F作 FG
⊥ AB于点
初看此题 , 貌似平凡 , 甚至平庸 , 然细细品味 , 才
觉它有深藏不露的 “精彩 ”.首先 , 一道看似平凡的
题目 , 却考查了 “直径所对的圆周角是直角 ” 、“同弧
上的圆周角相等 ”、“圆的切线及其性质 ” 等等几乎
课标要求的所有与圆相关的知识点 ;第二 , 在考查圆
的基础上 , 巧妙地与勾股定理 、三角形中位线 、相似

2009年部分省市中考数学试题分类汇编 选择题(含答案).doc

2009年部分省市中考数学试题分类汇编 选择题(含答案).doc

2009年部分省市中考数学试题(选择题部分)2009年襄樊1.A 为数轴上表示1-的点,将A 点沿数轴向左移动2个单位长度到B 点,则B 点所表示的数为( ) A .3- B .3 C .1 D .1或3-2.如图1是由四个相同的小正方体组成的立体图形,它的俯视图为( )3.通过世界各国卫生组织的协作和努力,甲型H1N1流感疫情得到了有效的控制,到目前为止,全球感染人数约为20000人左右,占全球人口的百分比约为0.0000031,将数字0.0000031用科学记数法表示为( ) A .53.110-⨯ B .63.110-⨯ C .73.110-⨯D .83.110-⨯4.如图2,已知直线110AB CD DCF =︒∥,∠,且AE AF =,则A ∠等于( ) A .30︒ B .40︒ C .50︒ D .70︒ 5.下列计算正确的是( )A .236a a a =gB .842a a a ÷= C .325a a a += D .()32628aa =6.函数y =x 的取值范围是( ) A .0x > B .2x -≥ C .2x >- D .2x ≠-7.分式方程131x x x x +=--的解为( ) A .1 B .-1 C .-2 D .-38.如图3,在边长为1的正方形网格中,将ABC △向右平移两个单位长度得到A B C '''△,则与点B '关于x 轴对称的点的坐标是( )A .()01-,B .()11,C .()21-,D .()11-, 9.若一次函数y kx b =+的函数值y 随x 的增大而减小,且图象与y 轴的正半轴相交,那AF BCDE 图2图3图1 A . B . C . D .么对k 和b 的符号判断正确的是( )A .00k b >>,B .00k b ><,C .00k b <>,D .00k b <<, 10.如图4,AB 是O e 的直径,点D 在AB 的延长线上,DC 切O e 于C ,若25A =o∠.则D ∠等于( ) A .40︒ B .50︒ C .60︒ D .70︒11.为了改善居民住房条件,我市计划用未来两年的时间,将城镇居民的住房面积由现在的人均约为210m 提高到212.1m ,若每年的年增长率相同,则年增长率为( ) A .9% B .10% C .11% D .12%12.如图5,在ABCD Y中,AE BC ⊥于E ,AE EB EC a ===,且a 是一元二次方程2230x x +-=的根,则ABCD Y 的周长为( )A.4+ B.12+C.2+ D.212++2009年山东省日照市1.某市2009年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高(A)-10℃(B)-6℃ (C)6℃(D)10℃2.计算()4323b a --的结果是(A)12881b a(B )7612b a (C )7612b a -(D )12881b a -3.如图所示,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠EFB =65°,则∠AED ′等于 (A ) 70°(B ) 65°(D ) 25° (C ) 50° 4.已知点M (-2,3 )在双曲线xky =上,则下列各点一定在该双曲线上的是 (A )(3,-2 )(B )(-2,-3 )图4AA DC EB EDB C′FCD ′A(第3题图)(C )(2,3 )(D )(3,2)5.如图,在□ABCD 中,已知AD =8㎝, AB =6㎝, DE 平分∠ADC 交BC 边于点E ,则BE 等于 (A )2cm (B )4cm(C )6cm(D )8cm 6.如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是(A )①② (B )②③ (C ) ②④ (D ) ③④7.不等式组⎪⎩⎪⎨⎧≥--+2321123x ,x x >的解集在数轴上表示正确的是8.在下图4×4的正方形网格中,△MNP 绕某点旋转一定的角度,得到△M 1N 1P 1,则其旋转中心可能是(A )点A(B )点B (C )点C (D )点D9.若关于x ,y 的二元一次方程组⎩⎨⎧=-=+k y x ,k y x 95的解也是二元一次方程632=+y x 的解,则(A )(B)30 (C )(D )M11(第7题图)①正方体②圆柱③圆锥④球(第5题图)ABCD(第5题图)Ek 的值为 (A )43- (B )43(C )34(D )34-10.将直径为60cm 的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为 (A )10cm (B )30cm (C )40cm(D )300cm11.若n (0n ≠)是关于x 的方程220x mx n ++=的根,则m +n 的值为(A )1 (B )2(C )-1 (D )-212.如图,点A 的坐标为(-1,0),点B 在直线y =x 上运动,当线段AB 最短时,点B 的坐标为(A )(0,0) (B )(22,22-) (C )(-21,-21)(D )(-22,-22) 题号 123 4 5 6 7 8 9 10 11 12 答案 D D CAABAB BADC2009年潍坊市1.下列运算正确的是( )A .236·a a a =B .1122-⎛⎫=- ⎪⎝⎭C4=±D .|6|6-=2.一个自然数的算术平方根为a ,则和这个自然数相邻的下一个自然数是( ) A .1a +B .21a +CD13.太阳内部高温核聚变反应释放的辐射能功率为33.8102⨯千瓦,到达地球的仅占20亿分之一,到达地球的辅射能功率为( )千瓦.(用科学计数法表示,保留2个有效数字)(第12题图)A .141.910⨯B .142.010⨯C .157.610⨯D .151.910⨯4.已知关于x 的一元二次方程2610x x k -++=的两个实数根是12x x ,,且2212x x +=24,则k 的值是( ) A .8 B .7- C .6 D .55.某班50名同学分别站在公路的A 、B 两点处,A 、B 两点相距1000米,A 处有30人,B 处有20人,要让两处的同学走到一起,并且使所有同学走的路程总和最小,那么集合地点应选在( ) A .A 点处 B .线段AB 的中点处 C .线段AB 上,距A 点10003米处D .线段AB 上,距A 点400米处6.关于x 的方程2(6)860a x x --+=有实数根,则整数a 的最大值是( )A .6B .7C .8D .97.甲、乙两盒中分别放入编号为1、2、3、4的形状相同的4个小球,从甲盒中任意摸出一球,再从乙盒中任意摸出一球,将两球编号数相加得到一个数,则得到数( )的概率最大.A .3B .4C .5D .68.如图,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得30BAD ∠=°,在C 点测得60BCD ∠=°,又测得50AC =米,则小岛B 到公路l 的距离为( )米. A .25B.C.3D.25+9.已知圆O 的半径为R ,AB 是圆O 的直径,D 是AB 延长线上一点,DC 是圆O 的切线,C 是切点,连结AC ,若30CAB ∠=°,则BD 的长为( ) A .2RBC .RDR 10.如图,已知Rt ABC △中,9030ABC BAC AB ∠=∠==°,°,,将ABC △绕顶点C 顺时针旋转至A B C '''△的位置,且A C B '、、三点在同一条直线上,则点A 经过的最短路线的长度是( )cm . A .8B.C .32π3D .8π311.如图,在Rt ABC △中,908cm 6cm ABC AB BC ∠===°,,,分别以A C 、为圆BC A Dl D'心,以2AC的长为半径作圆,将Rt ABC△截去两个扇形,则剩余(阴影)部分的面积为()cm2.A.2524π4-B.25π4C.524π4-D.2524π6-12.在同一平面直角坐标系中,反比例函数8yx=-与一次函数2y x=-+交于A B、两点,O为坐标原点,则AOB△的面积为()A.2 B.6 C.10 D.8题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 D B A D A C C B C D A B2009年湖北省黄石市1、-2的倒数是()A、2B、-2C、21D、-212、函数y=12-x的自变量x的取值范围是()A、x=1B、x≠1C、x>1D、x<13、不等式3-2x≤7的解集是()A、x≥-2B、x≤-2C、x≤-5D、x≥-54、如图1,是由4个大小相同的正方体搭成的几何体,其主视图是()5、如图2,已知直线AB//CD,∠C=115°,∠A=25°,∠E=()A、70°B、80°C、90°D、100°6、从0—9这10个自然数中任取一个,是2的倍数或是3的倍数的概率是()A、21B、52C、109D、1077、已知点A(m2-5,2m+3)在第三象限角平分线上,则m=()A、4B、-2C、4或-2D、-18、已知二次函数y=ax2+bx+c(a≠0)的图象如图3所示,下列结论:①abc>0 ②2a+b<0 ③4a-2b+c<0 ④a+c>0,其中正确结论的个数为()A、4个B、3个C、2个D、1个9、将正整数按如图4所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)ACBxyO图3表示9,则表示58的有序数对是( )A 、(11,3)B 、(3,11)C 、(11,9)D 、(9,11)10、如图5,AB 是⊙O 的直径,且AB=10,弦MN 的长为8,若弦MN 的两端在圆上滑动时,始终与AB 相交,记点A 、B 到MN 的距离分别为h 1,h 2,则|h 1-h 2| 等于( ) A 、5 B 、6 C 、7 D 、8题号 1 2 3 4 5 6 7 8 9 10 答案DBAACDBCAB2009年河北省1.3(1)-等于( )A .-1B .1C .-3D .32.在实数范围内,x 有意义,则x 的取值范围是( )A .x ≥0B .x ≤0C .x >0D .x <03.如图1,在菱形ABCD 中,AB = 5,∠BCD = 120°,则对 角线AC 等于( ) A .20 B .15C .10D .54.下列运算中,正确的是( )A .34=-m mB .()m n m n --=+C .236m m =()D .m m m =÷225.如图2,四个边长为1的小正方形拼成一个大正方形,A 、B 、O 是小正方形顶点,⊙O 的半径为1,P 是⊙O 上的点, 且位于右上方的小正方形内,则∠APB 等于( ) A .30° B .45°C .60°D .90°6.反比例函数1y x =(x >0)的图象如图3所示,随着x 值的增大,y 值( ) A .增大 B .减小C .不变D .先减小后增大7.下列事件中,属于不可能事件的是( )A .某个数的绝对值小于0B .某个数的相反数等于它本身C .某两个数的和小于0D 8.图4是某商场一楼与二楼之间的手扶电梯示意图.其中AB 、CD 分别表示一楼、二楼地面的水平线, ∠ABC =150°,BC 的长是8 m ,则乘电梯从点B 到点 C 上升的高度h 是( )A .833 mB .4 mC .43 mD .8 mBACD图1PO BA图2ABC D150° 图4h4=1+3 9=3+6 16=6+10图7 …9.某车的刹车距离y (m )与开始刹车时的速度x (m/s )之间满足二次函数2120y x (x >0),若该车某次的刹车距离为5 m ,则开始刹车时的速度为( ) A .40 m/s B .20 m/s C .10 m/sD .5 m/s10.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图5所示的零件,则这个零件的表面积是( ) A .20 B .22 C .24D .2611.如图6所示的计算程序中,y 与x 之间的函数关系所对应的图象应为( )12.古希腊著名的毕达哥拉斯学派把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正方形数”. 从图7中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻 “三角形数”之和.下列等式中,符 合这一规律的是( ) A .13 = 3+10 B .25 = 9+16 C .36 = 15+21 D .49 = 18+31 题 号 1 2 3 4 5 6 7 8 9 10 11 12 答 案AADCBBABCCDC2009年湖北省孝感市1.-32的值是 A .6 B .-6 C .9 D .-92.小华拿着一块正方形木板在阳光下做投影实验,这块正方形 木板在地面上形成的投影不可能是3.如图,⊙O 是△ABC 的外接圆,已知∠B =60°,则∠CAO 的度数是 A .15° B .30° C .45° D .60° 4.一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒, 黄灯亮5秒.当你抬头看信号灯时,是绿灯的概率是xO yx-2- 4A DC B O 42y O2 - 4yx O4- 2 y x取相反数 ×2 +4图6输入x输出y 图5A .112B .13C .512D .125.如图,将放置于平面直角坐标系中的三角板AOB 绕O 点 顺时针旋转90°得△A′OB′.已知∠AOB =30°,∠B =90°, AB =1,则B′点的坐标为A .33()22, B .33()22, C .13()22, D .31(,)226.日期 一 二 三 四 五方差平均气温 最低气温1℃-1℃2℃0℃■■1℃被遮盖的两个数据依次是 A .3℃,2B .3℃,65C .2℃,2D .2℃,857.如图,正方形ABCD 内有两条相交线段MN 、EF ,M 、N 、E 、F 分 别在边AB 、CD 、AD 、BC 上.小明认为:若MN = EF ,则MN ⊥EF ; 小亮认为: 若MN ⊥EF ,则MN = EF .你认为A .仅小明对B .仅小亮对C .两人都对D .两人都不对8.关于x 的方程211x ax +=-的解是正数,则a 的取值范围是A .a >-1B .a >-1且a ≠0C .a <-1D .a <-1且a ≠-29.美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给 人一种美感.如图,某女士身高165cm ,下半身长x 与身高l 的比值 是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为 A .4cmB .6cmC .8cmD .10cm10.将函数2y x x =+的图象向右平移a (0)a >个单位,得到函数B232y x x =-+的图象,则a 的值为A .1B .2C .3D .411.如图,把一个棱长为3的正方体的每个面等分成9个小正方形,然后沿每个面正中心的一个正方形向里挖空(相当于挖 去了7个小正方体),所得到的几何体的表面积是 A .78B .72C .54D .4812.对于每个非零自然数n ,抛物线2211(1)(1)n n n n n y x x +++=-+与x 轴交于A n 、B n 两点,以n n A B 表示这两点间的距离,则112220092009A B A B A B +++L 的值是A .20092008B .20082009 C .20102009D .20092010题号 123 456789101112答案D A BCA A C D CB B D2009年武汉市1.有理数12的相反数是( ) A .12- B .12C .2-D .22.函数21y x =-中自变量x 的取值范围是( )A .12x -≥ B .12x ≥ C .12x -≤D .12x ≤3.不等式2x ≥的解集在数轴上表示为( )4.二次根式2(3)-的值是( ) A .3-B .3或3-C .9D .35.已知2x =是一元二次方程220x mx ++=的一个解,则m 的值是( )A .3-B .3C .0D .0或36.今年某市约有102000名应届初中毕业生参加中考.102000用科学记数法表示为( ) A .60.10210⨯B .51.0210⨯C .410.210⨯D .310210⨯ 7.小明记录了今年元月份某五天的最低温度(单位:℃):1,2,0,1-,2-,这五天的最低温度的平均值是( ) A .1 B .2 C .0 D .1- 8.如图所示,一个斜插吸管的盒装饮料从正面看的图形是( )9.如图,已知O 是四边形ABCD 内一点,OA OB OC ==,70ABC ADC ∠=∠=°,则DAO DCO ∠+∠的大小是( )A .B .C .D .正面 A . B . C . D .B COADA .70°B .110°C .140°D .150°10.如图,已知O ⊙的半径为1,锐角ABC △内接于O ⊙,BD AC ⊥于点D ,OM AB ⊥于点M ,则sin CBD ∠ 的值等于( ) A .OM 的长 B .2OM 的长 C .CD 的长 D .2CD 的长11.近几年来,国民经济和社会发展取得了新的成就,农村经济快速发展,农民收入不断提高.下图统计的是某地区2004年—2008年农村居民人均年纯收入.根据图中信息,下列判断:①与上一年相比,2006年的人均年纯收入增加的数量高于2005年人均年纯收入增加的数量;②与上一年相比,2007年人均年纯收入的增长率为35873255100%3255-⨯;③若按2008年人均年纯收入的增长率计算,2009年人均年纯收入将达到41403587414013587-⎛⎫⨯+ ⎪⎝⎭元.其中正确的是( )A .只有①②B .只有②③C .只有①③D .①②③12.在直角梯形ABCD 中,AD BC ∥,90ABC AB BC E ∠==°,,为AB 边上一点,15BCE ∠=°,且AE AD =.连接DE 交对角线AC 于H ,连接BH .下列结论: ①ACD ACE △≌△;②CDE △为等边三角形; ③2EHBE=; ④EDC EHC S AH S CH =△△. 其中结论正确的是( )A .只有①②B .只有①②④C .只有③④D .①②③④2009年湖北省荆门市1.|-9|的平方根是( )(A)81. (B)±3. (C)3. (D)-3.2.计算22()ab a b-的结果是( )(A)a . (B)b . (C)1. (D)-b . 3.如图,Rt △ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上A ′处,折痕OC BAD MD CBE A H为CD ,则∠A ′DB =( ) (A)40°. (B)30°. (C)20°. (D)10°.4.从只装有4个红球的袋中随机摸出一球,若摸到白球的概率是p 1,摸到红球的概率是p 2,则( )(A)p 1=1,p 2=1. (B)p 1=0,p 2=1. (C)p 1=0,p 2=14. (D)p 1=p 2=14. 5x +y )2,则x -y 的值为( )(A)-1. (B)1. (C)2. (D)3.6.等腰梯形ABCD 中,E 、F 、G 、H 分别是各边的中点,则四边形EFGH 的形状是( ) (A)平行四边形. (B)矩形. (C)菱形. (D)正方形.7.关于x 的方程ax 2-(a +2)x +2=0只有一解(相同解算一解),则a 的值为( ) (A)a =0. (B)a =2. (C)a =1. (D)a =0或a =2. 8.函数y =ax +1与y =ax 2+bx +1(a ≠0)的图象可能是( )9.长方体的主视图与左视图如图所示(单位:cm),则其俯视图的面积是( ) (A)12cm 2. (B)8cm 2. (C)6cm 2. (D)4cm 2.10.若不等式组0,122x a x x +⎧⎨->-⎩≥有解,则a 的取值范围是( )(A)a >-1.2009年宁德市1.-3的绝对值是( )第3题图A 'B DAC 第9题图左视图主视图(A) (B) (C) (D)OAB第9题图A.3B .-3C .13D .13-2.未来三年,国家将投入8500亿元用于缓解群众“看病难,看病贵”问题.将8500亿元用科学记数法表示为( )A .0.85×104亿元B .8.5×103亿元C .8.5×104亿元D .85×102亿元 3.在如图所示的四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( )A .B .C .D . 4.下列运算正确的是( )A .651a a -=B .235()a a = C .632a a a ÷= D .532a a a =⋅5.如图所示几何体的左视图是( )A. B. C. D. 6.不等式组1024x x ->⎧⎨<⎩的解集是( )A .x >1B .x <2C .1<x <2D .无解 7.如图,已知直线AB 、CD 相交于点O ,OE 平分∠COB , 若∠EOB =55º,则∠BOD 的度数是( ) A .35ºB .55ºC .70ºD .110º8.为配合世界地质公园申报,闽东某景区管理部门随机调查了1000名游客,其中有800人对景区表示满意.对于这次调查以下说法正确的是( )A .若随机访问一位游客,则该游客表示满意的概率约为0.8B .到景区的所有游客中,只有800名游客表示满意C .若随机访问10位游客,则一定有8位游客表示满意D .本次调查采用的方式是普查BECO DA第7题图第5题图正面9.如图,直线AB 与⊙O 相切于点A ,⊙O 的半径为2,若∠OBA = 30°,则OB 的长为( ) A. B .4C. D .210.图(1)表示一个正五棱柱形状的高大建筑物,图(2)是它的俯视图.小健站在地面观察该建筑物,当他在图(2)中的阴影部分所表示的区域活动时,能同时看到建筑物的三个侧面,图中∠MPN 的度数为( ) A .30ºB .36ºC .45ºD .72º1.A ;2.B ; 3.D ; 4.D ; 5.C ; 6.C 7.C 8.A 9.B 10.B2009年广东省中山市1.4的算术平方根是( ) A .2±B .2C.D2.计算32()a 结果是( ) A .6aB .9aC .5aD .8a3.如图所示几何体的主(正)视图是( )A .B .C .D .4.《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是( ) A .107.2610⨯元 B .972.610⨯元 C .110.72610⨯元 D .117.2610⨯元 5.方程组223010x y x y +=⎧⎨+=⎩的解是( )A .1113x y =⎧⎨=⎩2213x y =-⎧⎨=-⎩ B .12123311x x y y ==-⎧⎧⎨⎨=-=⎩⎩ C . 12123311x x y y ==-⎧⎧⎨⎨==-⎩⎩ D.12121133x x y y ==-⎧⎧⎨⎨=-=⎩⎩ 答案:1.B 2.A 3.B 4.A 5.D图第10题图(2)2009年济南市1.3-的相反数是( ) A .3 B .3- C .13D .13-2.图中几何体的主视图是( )3.如图,AB CD ∥,直线EF 与AB 、CD 分别相交于G 、 H .60AGE =︒∠,则EHD ∠的度数是( ) A .30︒ B .60︒ C .120︒ D .150︒4.估计20的算术平方根的大小在( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间5.2009年10月11日,第十一届全运会将在美丽的泉城济南召开.奥体中心由体育场,体育馆、游泳馆、网球馆,综合服务楼三组建筑组成,呈“三足鼎立”、“东荷西柳”布局.建筑面积约为359800平方米,请用科学记数法表示建筑面积是(保留三个有效数字)( ) A .535.910⨯平方米 B .53.6010⨯平方米 C .53.5910⨯平方米 D .435.910⨯平方米6.若12x x ,是一元二次方程2560x x -+=的两个根,则12x x +的值是( ) A .1 B .5 C .5- D .67.“只要人人都献出一点爱,世界将变成美好的人间”.在今年的慈善一日捐活动中,济南市某中学八年级三班50名学生自发组织献爱心捐款活动.班长将捐款情况进行了统计,并绘制成了统计图.根据右图提供的信息,捐款金额..的众数和中位数分别是( ) A .20、20 B .30、20 C .30、30 D .20、30AC EB FD HG (第3题图)A .B .C .D . 捐款人数 金额(元)1015 20 6132083203050100(第7题图)10 正面(第2题图)8.不等式组213351x x +>⎧⎨-⎩≤的解集在数轴上表示正确的是( )9.在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型.如图所示,它的底面半径6cm OB =,高8cm OC =.则这个圆锥漏斗的侧面积是( ) A .230cm B .230cm π C .260cm πD .2120cm10.如图,矩形ABCD 中,35AB BC ==,.过对角线交点O 作OE AC⊥交AD 于E ,则AE 的长是() A .1.6 B .2.5C .3D .3.411.如图,点G 、D 、C 在直线a 上,点E 、F 、A 、B 在直线b 上,若a b Rt GEF ∥,△从如图所示的位置出发,沿直线b 向右匀速运动,直到EG 与BC 重合.运动过程中GEF △与矩形ABCD 重合部分....的面积(S )随时间(t )变化的图象大致是( )1 2 0 A . B . 1 2 0 C . 1 2 0 D . 1 2 0 (第9题图) B A C OA B C D O E(第10题图)GDC E F AB ba(第11题A .B .C .D .12.在平面直角坐标系中,对于平面内任一点()a b ,,若规定以下三种变换:()()()()1313;f a b a b f -=-如①,=,.,,, ()()()()1331;g a b b a g =如②,=,.,,,()()()()1313h a b a b h --=--如③,=,.,,,. 按照以上变换有:(())()()233232f g f -=-=,,,,那么()()53f h -,等于( )A .()53--,B .()53,C .()53-,D .()53-, 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ABCCBBCCCDBB2009年娄底市1.(-3)2的相反数是 ( ) A. 6 B. -6 C. 9 D. -92.下列计算正确的是( )A.(a-b )2=a 2-b 2B.a 2·a 3=a 5C. 2a+3b=5abD. 33-22=13.如图1,已知AC ∥ED ,∠C =26°,∠CBE =37°,则∠BED 的度数是( ) A.63° B.83° C.73° D.53°4.下列哪个不等式组的解集在数轴上表示如图2所示 ( )x ≥2 x <-1x ≤2 x >-1x >2 x ≤-1x <2 x ≥-1A B C D5.我市统计局发布的统计公报显示,2004年到2008年,我市GDP增长率分别为9.6%、10.2%、10.4%、10.6%、10.3%. 经济学家评论说,这5年的年度GDP增长率相当平稳,从统计学的角度看,“增长率相当平稳”说明这组数据的比较小.A.中位数B.平均数C.众数D.方差6.下列命题,正确的是( )A.如果|a|=|b|,那么a=bB.等腰梯形的对角线互相垂直C.顺次连结四边形各边中点所得到的四边形是平行四边形D.相等的圆周角所对的弧相等7.市一小数学课外兴趣小组的同学每人制作一个面积为200cm2的矩形学具进行展示. 设矩形的宽为x cm,长为y cm,那么这些同学所制作的矩形长y(cm)与宽x(cm)之间的函数关系的图象大致是 ( )8.如图3,AB是⊙O的弦,OD⊥AB于D交⊙O于E,则下列说法错误..的是( ) A. AD=BD B.∠ACB=∠AOEC. »»AE BED.OD=DE9.小明在一次军事夏令营活动中,进行打靶训练,在用枪瞄准目标点B时,要使眼睛O、准星A、目标B在同一条直线上,如图4所示,在射击时,小明有轻微的抖动,致使准星A偏离到A′,若OA=0.2米,OB=40米,AA′=0.0015米,则小明射击到的点B′偏离目标点B的长度BB′为( )A.3米B.0.3米C.0.03米D.0.2米10.一次函数y=kx+b与反比例函数y=kx的图象如图5所示,则下列说法正确的是( )A.它们的函数值y随着x的增大而增大B.它们的函数值y随着x的增大而减小C.k<0D.它们的自变量x的取值为全体实数题号 1 2 3 4 5 6 7 8 9 10 答案 D B A B D C A D B C2009年江苏省1.2-的相反数是( ) A .2B .2-C .12D .12-2.计算23()a 的结果是( ) A .5aB .6aC .8aD .23a3.如图,数轴上A B 、两点分别对应实数a b 、,则下列结论正确的是( ) A .0a b +>B .0ab >C .0a b ->D .||||0a b ->4.下面四个几何体中,左视图是四边形的几何体共有( )A .1个B .2个C .3个D .4个5.如图,在55⨯方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个矩形,那么,下面的平移方法中,正确的是( )A .先向下平移3格,再向右平移1格B .先向下平移2格,再向右平移1格C .先向下平移2格,再向右平移2格D .先向下平移3格,再向右平移2格 6商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( ) A .平均数 B .众数 C .中位数 D .方差 7.如图,给出下列四组条件:①AB DE BC EF AC DF ===,,; ②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,;④AB DE AC DF B E ==∠=∠,,.其中,能使ABCDEF △≌△的条件共有( )A .1组B .2组C .3组D .4组 8.下面是按一定规律排列的一列数: 第1个数:11122-⎛⎫-+ ⎪⎝⎭;(第3题)圆柱 圆锥 球 正方体(第5题) 图②图① A C B DF E (第7题)第2个数:2311(1)(1)1113234⎛⎫⎛⎫---⎛⎫-+++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭; 第3个数:234511(1)(1)(1)(1)11111423456⎛⎫⎛⎫⎛⎫⎛⎫-----⎛⎫-+++++ ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭; ……第n 个数:232111(1)(1)(1)111112342n n n -⎛⎫⎛⎫⎛⎫----⎛⎫-++++ ⎪⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭L.那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是( )A .第10个数B .第11个数C .第12个数D .第13个数2009年江西省1.2-的绝对值是( ) A .2-B .2C .12D .12-2.化简()221a a -+-的结果是( ) A .41a -- B .41a - C .1D .1-3.如图,直线m n ∥,︒∠1=55,︒∠2=45, 则∠3的度数为( ) A .80︒ B .90︒ C .100︒ D .110︒4.方程组233x y x y -=⎧⎨+=⎩,的解是( )A .12x y =⎧⎨=⎩,.B .21x y =⎧⎨=⎩,. C .11x y =⎧⎨=⎩,.D .23x y =⎧⎨=⎩5.在下列四种图形变换中,本题图案不包含的变换是( ) A .位似 B .旋转 C .轴对称 D .平移 6则这个队队员年龄的众数和中位数分别是( ) A .1516, B .1515, C .1515.5, D .1615, 7.如图,已知AB AD =,那么添加下列一个条件后, 仍无法判定ABC ADC △≌△的是( )3mn21(第3题) (第5题)A .CB CD = B .BAC DAC =∠∠ C .BCA DCA =∠∠D .90B D ==︒∠∠8.在数轴上,点A 所表示的实数为3,点B 所表示的实数为a ,A e 的半径 为2.下列说法中不正确...的是( ) A .当5a <时,点B 在A e 内B .当15a <<时,点B 在A e 内C .当1a <时,点B 在A e 外D .当5a >时,点B 在A e 外9.如图,分别是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,则组成这个几何体的小正方体的个数是( )A .2个或3个B .3个或4个C .4个或5个D .5个或6个10.为了让江西的山更绿、水更清,2008年省委、省政府提出了确保到2010年实现全省森林覆盖率达到63%的目标,已知2008年我省森林覆盖率为60.05%,设从2008年起我省森林覆盖率的年平均增长率为x ,则可列方程( ) A .()60.051263%x += B .()60.051263x += C .()260.05163%x +=D .()260.05163x +=2009年浙江省宁波市1.下列四个数中,比0小的数是 ( )A .23B C .π D .1- 2.等腰直角三角形的一个底角的度数是 ( ) A .030 B .045 C .060 D .0903.一个不透明的布袋装有4个只有颜色的球,其中2个红色,1个白色,1个黑色,搅匀后从布袋里摸出1个球,摸到红球的概率是 ( ) A .12 B .13 C .14 D .164.据《宁波市休闲基地和商务会议基地建设五年行动计划》,预计到2012年,宁波市接待游客容量将达到4640万人,其中4640万用科学记数法可表示为 ()A .90.46410⨯ B .84.6410⨯ C .74.6410⨯ D .746.410⨯ 5x 的取值范围是 ( )A .2x ≠B .2x >C .2x ≤D .2x ≥6.如图是由4来个立方块组成的立体图形,它的俯视图是 ( )AB CD (第7主视图 俯视图(第9题)7.下列调查适合作普查的是 ( ) A .了解在校大学生的主要娱乐方式. B .了解宁波市居民对废电池的处理情况. C .日光灯管厂要检测一批灯管的使用寿命.D .对甲型H1N1流感患者的同一车厢乘客进行医学检查. 8.以方程组21y x y x =-+⎧⎨=-⎩的解为坐标的点(,)x y 在平面直角坐标系中的位置是( )A .第一象限B .第二象限C .第三象限D .第四象限9.如图,1∠、2∠、3∠、4∠是五边形ABCD 的外角,且0123470∠=∠=∠=∠=, 则AED ∠的度数是 ( )A .0110 B .0108 C .0105 D .010010、反比例函数ky x=在第一象限的图象如图所示,则k 的值可能是( ) A .1 B .2 C .3 D .411.如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,M 、N 分别是边AB 、AD 的中点,连结OM 、ON 、MN ,则下列叙述正确的是 ( ) A .△AOM 和△AON 都是等边三角形B .四边形MBON 和四边形MODN 都是菱形C .四边形AMON 和四边形ABCD 都是位似图形 D .四边形MBCO 和四边形NDCO 都是等腰梯形 12.如图,点A 、B 、C 、D 在一次函数2y x m =-+的图象上,它们的横坐标依次为-1、1、2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积这和是 ( ) A .1 B .3 C .3(1)m - D .3(2)2m - 题号 1234 56 7 8 91011 12 答案D B A C DBDAD CCB。

2009年甘肃省白银等市中考数学试题及答案(纯word版)

2009年甘肃省白银等市中考数学试题及答案(纯word版)

2009年定西市中考数学试卷友情提示:1.抛物线2y ax bx c =++的顶点坐标是2424b ac b aa ⎛⎫-- ⎪⎝⎭,.2.弧长公式:π180n Rl =弧长;其中,n 为弧所对圆心角的度数,R 为圆的半径. 本试卷满分为150分,考试时间为120分钟.一、选择题:本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的代号填入题后的括号内. 1.4的相反数是( ) A .4B .4-C .14D .14-2.图1所示的物体的左视图(从左面看得到的视图)是( )图1 A . B . C . D .3.计算:a b a bb a a -⎛⎫-÷= ⎪⎝⎭( )A .a bb+B .a bb-C .a b a-D .a b a+4.在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有( ) A .4个 B .6个 C .34个 D .36个5.下列图形中,既是轴对称图形,又是中心对称图形的是( ) A .等腰梯形 B .平行四边形 C .正三角形 D .矩形6.有19位同学参加歌咏比赛,所得的分数互不相同,取得分前10位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学成绩的( ) A .平均数 B .中位数 C .众数 D .方差7.某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为( ) A .8米B.CD8.如图2,⊙O 的弦AB =6,M 是AB 上任意一点,且OM 最小值为4,则⊙O 的半径为( )A .5B .4C .3D .29.如图3,小东用长为3.2m 的竹竿做测量工具测量学校旗杆的高度,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距8m 、与旗杆相距22m ,则旗杆的高为( ) A .12m B .10m C .8m D .7m图2 图3 图410.如图4,四边形ABCD 中,AB =BC ,∠ABC =∠CDA =90°,BE ⊥AD 于点E ,且四边形ABCD 的面积为8,则BE =( ) A .2B .3C.D.二、填空题:本大题共8小题,每小题4分,共32分.把答案写在题中的横线上. 11.当31x y ==、时,代数式2()()x y x y y +-+的值是 . 12.方程组25211x y x y -=-⎧⎨+=⎩,的解是 .13.如图5,Rt △ACB 中,∠ACB =90°,DE ∥AB ,若∠BCE =30°,则∠A = . 14.反比例函数的图象经过点P (2-,1),则这个函数的图象位于第 象限.15.不等式组103x x +>⎧⎨>-⎩,的解集是 .16.如图6,四边形ABCD 是平行四边形,使它为矩形的条件可以是 .图6 图7 图817.如图7,在△ABC 中,5cm AB AC ==,cos B 35=.如果⊙O,且经过点B 、C ,那么线段AO = cm .18.抛物线2y x bx c =-++的部分图象如图8所示,请写出与其关系式、图象相关的2个正确结论: , .(对称轴方程,图象与x 正半轴、y 轴交点坐标例外)三、解答题(一):本大题共5小题,共38分.解答时,应写出必要的文字说明、证明过程或演算步骤. 19.(6分)若20072008a =,20082009b =,试不用..将分数化小数的方法比较a 、b 的大小.20.(6分)在实数范围内定义运算“⊕”,其法则为:22a b a b ⊕=-,求方程(4⊕3)⊕24x =的解.21.(8分)如图9,随机闭合开关S 1、S 2、S 3中的两个,求能让灯泡⊗发光的概率.22.(8分)图10(1)是一扇半开着的办公室门的照片,门框镶嵌在墙体中间,门是向室内开的.图10(2)画的是它的一个横断面.虚线表示门完全关好和开到最大限度(由于受到墙角的阻碍,再也开不动了)时的两种情形,这时二者的夹角为120°,从室内看门框露在外面部分的宽为4cm ,求室内露出的墙的厚度a 的值.(假设该门无论开到什么角度,门和门框之间基本都是无缝的.精确到0.1cm1.73)23.(10分)鞋子的“鞋码”和鞋长(cm )存在一种换算关系,下表是几组“鞋码”与鞋长换算(1 (2)求x (3四、解答题(二):本大题共5小题,共50分(不含附加4分).解答时,应写出必要的文字说明、证明过程或演算步骤. 24.(8分)为响应国家要求中小学生每天锻炼1小时的号召,某校开展了形式多样的体育运动活动,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的统计图11(1)和图11(2). (1)请在图11(1)中将表示“乒乓球”项目的图形补充完整; (2)求扇形统计图11(2)中表示“足球”项目扇形圆心角的度数.25.(10分)去年5月12日,四川省汶川县发生了里氏8.0级大地震,兰州某中学师生自愿捐款,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?人均捐款多少元?图9 图10(1) 图10(2)图11(1) 图11(2)26.(10分)图12中的粗线CD 表示某条公路的一段,其中AmB 是一段圆弧,AC 、BD 是线段,且AC 、BD 分别与圆弧 AmB 相切于点A 、B ,线段AB =180m ,∠ABD =150°. (1)画出圆弧 AmB 的圆心O ;(2)求A 到B 这段弧形公路的长. 27.(10分)如图13,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,D 为AB 边上一点,求证:(1)ACE BCD △≌△;(2)222AD DB DE +=.28.[12分+附加4分]如图14(1),抛物线22y x x k =-+与x点C (0,3-).[图14(2)、图14(3)为解答备用图](1)k = ,点A 的坐标为 ,点B (2)设抛物线22y x x k =-+的顶点为M ,求四边形ABMC (3)在x 轴下方的抛物线上是否存在一点D ,使四边形ABDC 的坐标;若不存在,请说明理由;(4)在抛物线22y x x k =-+上求点Q ,使△BCQ 是以BC附加题:如果你的全卷得分不足150分,则本题与28题附加的4分的得分将记入总分,但记入总分后全卷得分不得超过150分,超过按150分算.29.(7分)本试卷第19题为:若20072008a =,20082009b =,试不用..将分数化小数的方法比较a 、b 的大小.观察本题中数a 、b 的特征,以及你比较大小的过程,直接写出你发现的一个一般结论.11.9 12. 4y ⎨=⎩ 13.60o 14.二、四15.1->x 16.答案不唯一,如AC =BD ,∠BAD =90o ,等 17. 5 18.答案不唯一.如:①c =3;②b +c =1;③c -3b =9;④b =-2;⑤抛物线的顶点为(-1,4),或二次函数的最大值为4;⑥方程-x 2+bx +c =0的两个根为-3,1;⑦y >0时,-3<x <1;或y <0时,x <-3或x >1;⑧当x >-1时,y 随x 的增大而减小;或当x <-1时,y 随x 的增大而增大.等等 三、解答题(一):本大题共5小题,共38分. 19. 本小题满分6分解:∵ a =2007200920082009⨯⨯(20081)(20081)20082009-⨯+=⨯222008120082009-=⨯, ··································· 3分b 2200820082009=⨯, ···································································································· 4分222200812008-<,······························································································· 5分图12 图14(1) 图14(2) 图14(3)∴ a <b . ···························································································································· 6分 说明:求差通分作,参考此标准给分.若只写结论a <b ,给1分. 20. 本小题满分6分解:∵ 22a b a b ⊕=- , ∴ 2222(43)(43)77x x x x ⊕⊕=-⊕=⊕=-. ·············· 3分 ∴ 22724x -=. ∴ 225x =. ·················································································· 4分∴ 5x =±. ···················································································································· 6分 21. 本小题满分8分 解:∵ 随机闭合开关1S 、2S 、3S 中的两个,共有3种情况:12S S ,13S S ,23S S . 能让灯泡发光的有13S S 、23S S 两种情况. ······················································································ 4分 ∴ 能让灯泡发光的概率为23. ······················································································ 8分 22. 本小题满分8分解:从图中可以看出,在室内厚为a cm 的墙面、宽为4cm 的门框及开成120°的门之间构成了一 个直角三角形,且其中有一个角为60°. ·········· 3分 从而 a =4×tan60° ················································· 6分.9(cm). ····································· 8分即室内露出的墙的厚度约为6.9cm . 23. 本小题满分10分 解:(1)一次函数. ··························································································(2)设y kx b =+. ···················································································由题意,得22162819k b k b =+⎧⎨=+⎩,. ········································································解得210k b =⎧⎨=-⎩,. ·························································································∴210y x =-.(x 是一些不连续的值.一般情况下,x 取16、16.5、17、27等) ····································································································说明:只要求对k 、b 的值,不写最后一步不扣分. (3)44y =时,27x =. 答:此人的鞋长为27cm . ···························································································· 10分 说明:只要求对x =27cm ,不答不扣分. 四、解答题(二):本大题共5小题,共50分 (不含附加4分) . 24.本小题满分8分 解:(1)如图:························· 4分(2)∵ 参加足球运动项目的学生占所有运动项目学生的比例为15=1050, ··············· 6分 ∴ 扇形统计图中表示“足球”项目扇形圆心角的度数为1360725⨯=. ···················· 8分 25. 本小题满分10分解法1 ··················································· 1分由题意列方程······················································· 5分 解得 x =200.······················································· 7分 检验:当x ∴ x =200······················································· 8分 两天捐款人数x =24(元). ·················································· 10分 450, 人均捐款为24元,不答不扣分. ··································································································· 1分4800x=50 . ········································································ 5分 ···································································································· 7分 AC ,过B 作BO ⊥BD ,AO 与BO 相·····························································3分AmB 的半径,O 是其圆心, -90°=60°. ···········································5分 AO =BO =AB =180. ······················7分60π= (m). ∴ A 到B 这段弧形公路的长为60πm . ········································································· 10分27. 本小题满分10分 证明:(1) ∵ ACB ECD ∠=∠,∴ ACE ACD BCD ACD ∠+∠=∠+∠.即 ACE BCD ∠=∠.·················································· 2分∵ EC DC AC BC ==,, ∴ △ACE ≌△BCD . ························································· 4分 (2)∵ ACB ∆是等腰直角三角形,∴ ︒=∠=∠45BAC B . ················································ 5分 ∵ △ACE ≌△BCD , ∴ ︒=∠=∠45CAE B . ············ 6分 ∴ ︒=︒+︒=∠+∠=∠904545BAC CAE DAE . ················································ 7分∴ 222DE AE AD =+. ·························································································· 9分 由(1)知AE =DB ,∴ 222AD DB DE +=. ························································································ 10分OA DB E28.本小题满分16分(含附加4分) 解:(1)3k =-, ········································································ 1分A (-1,0), ·································································· 2分B (3,0). ···································································· 3分 (2)如图14(1),抛物线的顶点为M (1,-4),连结OM . ············································································ 4分则 △AOC 的面积=23,△MOC 的面积=23, △MOB 的面积=6, ························································· 5分∴ 四边形 ABMC 的面积=△AOC 的面积+△MOC 的面积+△MOB 的面积=9. ············································· 6分 说明:也可过点M 作抛物线的对称轴,将四边形ABMC 的面积转化为求1个梯形与2个直角三角形面积的和. (3)如图14(2),设D (m ,322--m m ),连结OD . 则 0<m <3,322--m m <0. 且 △AOC 的面积=23,△DOC 的面积=m 23, △DOB 的面积=-23(322--m m ), ·············································∴ 四边形 ABDC 的面积=△AOC 的面积+△DOC 的面积+△DOB 的面积=629232++-m m =875)23(232+--m . ········································································∴ 存在点D 315()24-,,使四边形ABDC 的面积最大为875. ··············(4)有两种情况:如图14(3),过点B 作BQ 1⊥BC ,交抛物线于点Q 1、交y 轴于点E ,连接Q 1C .∵ ∠CBO =45°,∴∠EBO =45°,BO =OE =3. ∴ 点E 的坐标为(0,3). ∴ 直线BE 的解析式为3y x =-+. ··········································································· 12分 由2323y x y x x =-+⎧⎨=--⎩,解得1125x y ,;ì=-ïïíï=ïî 2230.x y ,ì=ïïíï=ïî∴ 点Q 1的坐标为(-2,5). ······················································································· 13分如图14(4),过点C 作CF ⊥CB ,交抛物线于点Q 2、交x 轴于点F ,连接BQ 2. ∵ ∠CBO =45°,∴∠CFB =45°,OF =OC =3. ∴ 点F 的坐标为(-3,0). ∴ 直线CF 的解析式为3y x =--. ·········································································· 14分 由2323y x y x x =--⎧⎨=--⎩,解得1103x y ,;ì=ïïíï=-ïî 2214x y ,.ì=ïïíï=-ïî ∴点Q 2的坐标为(1,-4). ························································································· 15分 综上,在抛物线上存在点Q 1(-2,5)、Q 2(1,-4),使△BCQ 1、△BCQ 2是以BC 为直角边的直角三角形. ············································································································· 16分 说明:如图14(4),点Q 2即抛物线顶点M ,直接证明△BCM 为直角三角形同样得2分. 附加题:如果你的全卷得分不足150分,则本题与28题附加的4分的得分将记入总分,但记入总分后全卷得分不得超过150分,超过按150分算. 解:学生可能写出不同程度的一般的结论,由一般化程度不同得不同分.m >n ,则11n n m m +<+. ····················································· 4分 m >n ,则11n n m m +<+. ····················································· 5分且m >n ;或m 、n 是任意正整数,r 是任意正实数,且m >n ,则n n rm m r+<+.r 是任意正整数,且m >n ;或m 、n 、r 是任意正实数,且m >n ,则········································································································· 7分 图14(1) 图14(3) 图14(4)。

2009年中考答案中考数学试卷真题(附答案解析)

2009年中考答案中考数学试卷真题(附答案解析)

G (第23题图(1))
∴CD=20-x …………………………………5 分
A
∵ tan ACD AD ,即 tan 30 x
…6 分
M
DC
20 x
B
D
C

x
20 1
tan tan
30 30
20 10 3 1
3 1 7.3 (米) …7 分
N G
(第23题图(2))
答:路灯 A 离地面的高度 AD 约是 7.3 米.
∴∠OCD=90° ………………………3 分
∴∠OCB+∠DCF=90°
∵∠D+∠DCF=90°
∴∠OCB=∠D ………………………4 分
∵OB=OC
D
∴∠OCB=∠B
∵∠B=∠AEC
∴∠D=∠AEC ………………………5 分
(3)在 Rt△OCF 中,OC=5,CF=4
A C
O F E
B (第25题图 )
…………………………2 分
所以,抛物线的关系式为 y=(x-2)2-1=x2-4 x+3 ……3 分
(2)∵点 M(x,y1),N(x+1,y2)都在该抛物线上 ∴y1-y2=(x2-4 x+3)-[(x+1)2-4(x+1)+3]=3-2 x …………4 分

3-2
x>0,即
x
3 2
时,y1>y2
F
E (第22题图 )
C B
23.解:(1)见参考图 ……………………………3 分
A
(不用尺规作图,一律不给分。对图(1)画出弧 EF 给 1 分,
画出交点 G 给 1 分,连 AG 给 1 分;对图(2),画出弧 AMG
D
给 1 分,画出弧 ANG 给 1 分,连 AG 给 1 分)

2009年甘肃省兰州市中考数学试题(含答案)

2009年甘肃省兰州市中考数学试题(含答案)

兰州市2009年初中毕业生学业考试试卷数 学(A )注意事项:1.全卷共150分,考试时间120分钟。

2.考生必须将报考学校、姓名、准考证号、考场、座位号等个人信息填(涂)写在答题卡的 相应位置上。

3.考生务必将答案直接填写(涂)在答题卡的相应位置上。

一、选择题(本题15小题,每小题4分,共60分.在每小题给出的4个选项中,只有一项是符合题目要求的)1. 下列图形中,是轴对称图形但不是中心对称图形的是A B C D2. 已知两圆的半径分别为3cm 和2cm ,圆心距为5cm ,则两圆的位置关系是A .外离B .外切C .相交D .内切3. 如图1所示的几何体的俯视图是4.下列说法正确的是A .一个游戏的中奖概率是110,则做10次这样的游戏一定会中奖B .为了解全国中学生的心理健康情况,应该采用普查的方式C .一组数据6,8,7,8,8,9,10的众数和中位数都是8D .若甲组数据的方差20.01S =甲,乙组数据的方差20.1S =乙,则乙组数据比甲组数据稳定5. 函数y =x -2+31-x 中自变量x 的取值范围是A .x ≤2B .x =3C . x <2且x ≠3D .x ≤2且x ≠3 6. 如图2,在直角坐标系中,点A 是x 轴正半轴上的一个定点,点B 是 双曲线3y x=(0x >)上的一个动点,当点B 的横坐标逐渐增大时,O A B △的面积将会A .逐渐增大B .不变C .逐渐减小D .先增大后减小图2A. B .CD .图17. 2008年爆发的世界金融危机,是自上世纪三十年代以来世界最严重的一场金融危机。

受金融危机的影响,某商品原价为200元,连续两次降价%a 后售价为148元,下面所列方程正确的是 A .2200(1%)148a +=B .2200(1%)148a -=C .200(12%)148a -=D .2200(1%)148a -=8. 如图3,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为 A .5米 B .8米 C .7米 D .53米9. 在同一直角坐标系中,函数y m x m =+和函数222y m x x =-++(m 是常数,且0m ≠)的图象可能..是10. 如图4,丁轩同学在晚上由路灯A C 走向路灯B D ,当他走到点P 时,发现身后他影子的顶部刚好接触到路灯A C 的底部,当他向前再步行20m 到达Q 点时,发现身前他影子的顶部刚好接触到路灯B D 的底部,已知丁轩同学的身高是1.5m ,两个路灯的高度都是9m ,则两路灯之间的距离是A .24mB .25mC .28mD .30m11. 把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为A .2(1)3y x =---B .2(1)3y x =-+- C .2(1)3y x =--+D .2(1)3y x =-++12. 如图5,在平地上种植树木时,要求株距(相邻两树间 的水平距离)为4m .如果在坡度为0.75的山坡上种树,也要求株距为4m ,那么相邻两树间的坡面距离为 A .5m B .6m C .7m D .8m13. 二次函数c bx ax y ++=2的图象如图6所示,则下列关系式不正确的是 A .a <0 B.abc >0C.c b a ++>0D.ac b 42->014. 如图7所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是15. 如图8,点A 、B 、C 、D 为圆O 的四等分点,动点P 从圆心O 出发,沿O-C-D-O 的路线作匀速运动.设运动时间为t 秒, ∠APB 的度数为y 度,则下列图象中表示y 与t 之间函数关系最恰当的是二、填空题(本题5小题,每小题4分,共20分)16. 如图9所示,边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,则∠AED 的正切值等于 . 17. 兰州市某中学的铅球场如图10所示,已知扇形AOB 的面积是36米2,弧AB 的长度为9米,那么半径OA = 米.18. 如图11,若正方形OABC 的顶点B 和正方形ADEF 的顶点E 都在函数 1y x=(0x >)的图象上,则点E 的坐标是( , ).A .图7B .C .D .图9BA C图13C BA19. 阅读材料:设一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则两根与方程系数之间有如下关系:x1+x2=-ba,x1·x2=ca.根据该材料填空:已知x1、x2是方程x2+6x+3=0的两实数根,则21xx+12xx的值为.20. 二次函数223y x=的图象如图12所示,点A位于坐标原点,点1A,2A,3A,…,2008A在y轴的正半轴上,点1B,2B,3B,…,2008B在二次函数223y x=位于第一象限的图象上,若△011A B A,△122A B A,△233A B A,…,△200720082008A B A都为等边三角形,则△200720082008A B A的边长= .三、解答题(本题9小题,共70分.解答时写出必要的文字说明、证明过程或演算步骤)21.(本题满分10分)(1)(本小题满分5分)计算:11245 1.41)3-⎛⎫--++⎪⎝⎭(2)(本小题满分5分)用配方法解一元二次方程:2213x x+=22.(本题满分5分)如图13,要在一块形状为直角三角形(∠C为直角)的铁皮上裁出一个半圆形的铁皮,需先在这块铁皮上画出一个半圆,使它的圆心在线段AC上,且与AB、BC都相切.请你用直尺和圆规画出来(要求用尺规作图,保留作图痕迹,不要求写作法).23.(本题满分7分)今年兰州市在全市中小学中开展以感恩和生命为主题的教育活动,各中小学结合学生实际,开展了形式多样的感恩教育活动.下面图①,图②分别是某校调查部分学生是否知道母亲生日情况的扇形统计图和条形统计图.根据图上信息,解答下列问题:(1)求本次被调查学生的人数,并补全条形统计图;(2)若全校共有2700名学生,你估计这所学校有多少名学生知道母亲的生日?(3)通过对以上数据的分析,你有何感想?(用一句话回答)24.(本题满分7分) 端午节吃粽子是中华民族的传统习俗.五月初五早晨,妈妈为洋洋准备了四只粽子:一只香肠馅,一只红枣馅,两只什锦馅,四只粽子除内部馅料不同外,其他 均一切相同.洋洋喜欢吃什锦馅的粽子.(1)请你用树状图或列表法为洋洋预测一下吃两只粽子刚好都是什锦馅的概率;(2)在吃粽子之前,洋洋准备用如图所示的转盘进行吃粽子的模拟试验(此转盘被等分成 四个扇形区域,指针的位置是固定的,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置.若指针指向两个扇形的交线时,重新转动转盘),规定:连续转动 两次转盘表示随机吃两只粽子,从而估计吃两只粽子刚好都是什锦馅的概率.你认为这种模拟试验的方法正确吗?试说明理由.25.(本题满分7分) 如图14,已知(4)A n -,,(24)B -,是一次函数y kx b =+的图象和反比例函数m y x=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线A B 与x 轴的交点C 的坐标及△AO B 的面积; (3)求方程0=-+xm b kx 的解(请直接写出答案); (4)求不等式0<-+xm b kx 的解集(请直接写出答案).26.(本题满分7分)如图15,在四边形ABCD 中,E 为AB 上一点,△ADE 和△BCE 都是等边三角形,AB 、BC 、CD 、DA 的中点分别为P 、Q 、M 、N ,试判断四边形PQMN 为怎样的四边形,并证明你的结论.27.(本题满分9分)如图16,在以O为圆心的两个同心圆中,AB经过圆心O,且与小圆相交于点A、与大圆相交于点B.小圆的切线AC与大圆相交于点D,且CO平分∠ACB.(1)试判断BC所在直线与小圆的位置关系,并说明理由;(2)试判断线段AC、AD、BC之间的数量关系,并说明理由;(3)若8cm10cm,,求大圆与小圆围成的圆环的A B B C==面积.(结果保留π)28.(本题满分9分)如图17,某公路隧道横截面为抛物线,其最大高度为6米,底部宽度OM为12米. 现以O点为原点,OM所在直线为x轴建立直角坐标系.(1)直接写出点M及抛物线顶点P的坐标;(2)求这条抛物线的解析式;(3)若要搭建一个矩形“支撑架”AD- DC- CB,使C、D点在抛物线上,A、B点在地面OM上,则这个“支撑架”总长的最大值是多少?29.(本题满分9分)如图①,正方形ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A→B→C→D匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,设运动的时间为t秒.(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;(2)求正方形边长及顶点C的坐标;(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标;(4)如果点P、Q保持原速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由.兰州市2009年初中毕业生学业考试试卷数学(A )参考答案及评分标准二、填空题(本大题5小题,每小题4分,共20分) 16.1217.8 18.(215+,215-)19. 10 20. 2008三、解答题(本大题9小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤) 21.(本题满分10分) (1)(本题满分5分) 解:原式=1323++-- ····························································································3分=1)32(3+-- ···························································································4分 =32+····································································································5分(第一步计算中,每算对一个给1分) (2)(本题满分5分) 解:移项,得2231x x -=- ·············································································································1分二次项系数化为1,得23122x x -=-·············································································································2分配方22233132424x x ⎛⎫⎛⎫-+=-+ ⎪ ⎪⎝⎭⎝⎭231416x ⎛⎫-= ⎪⎝⎭ ············································································································4分 由此可得3144x -=±11x =,212x =···········································································································5分22.(本题满分5分)作出角平分线得2分,作出半圆再得2分,小结1分,共5分。

2009年兰州市中考数学试题及答案

2009年兰州市中考数学试题及答案

1兰州市2009年初中毕业生学业考试试卷数 学注意事项:1.全卷共150分,考试时间120分钟。

2.考生必须将报考学校、姓名、准考证号、考场、座位号等个人信息填(涂)写在答题卡的 相应位置上。

3.考生务必将答案直接填写(涂)在答题卡的相应位置上。

一、选择题(本题15小题,每小题4分,共60分.在每小题给出的4个选项中,只有一项是符合题目要求的)1. 下列图形中,是轴对称图形但不是中心对称图形的是A B C D2. 已知两圆的半径分别为3cm和2cm ,圆心距为5cm ,则两圆的位置关系是 A .外离B .外切C .相交D .内切3. 如图1所示的几何体的俯视图是4. 下列说法正确的是 A .一个游戏的中奖概率是110,则做10次这样的游戏一定会中奖 B .为了解全国中学生的心理健康情况,应该采用普查的方式 C .一组数据6,8,7,8,8,9,10的众数和中位数都是8D .若甲组数据的方差20.01S =甲,乙组数据的方差20.1S =乙,则乙组数据比甲组数据稳定 5. 函数y =x -2+31-x 中自变量x 的取值范围是 A .x ≤2 B .x =3 C . x <2且x ≠3 D .x ≤2且x ≠3 6. 如图2,在直角坐标系中,点A 是x 轴正半轴上的一个定点,点B 是双曲线3y x=(0x >)上的一个动点,当点B 的横坐标逐渐增大时,OAB △的面积将会A .逐渐增大B .不变C .逐渐减小D .先增大后减小 7. 2008年爆发的世界金融危机,影响,某商品原价为200元,连续两次降价%a 后售价为148元,下面所列方程正确的是A .2200(1%)148a +=B .2200(1%)148a -=C .200(12%)148a -=D .2200(1%)148a -=8. 如图3,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米, 拱的半径为13米,则拱高为 A .5米 B .8米 C .7米 D .53米9. 在同一直角坐标系中,函数y mx m =+和函数222y mx x =-++(m 是常数,且0m ≠)的图象可能..是10. 如图4,丁轩同学在晚上由路灯AC 走向路灯BD ,当他走到点P 时,发现身后他影子的顶部刚好接触到路灯AC 的底部,当他向前再步行20m 到达Q 点时,发现身前他影子的顶部刚好接触到路灯BD 的底部,已知丁轩同学的身高是1.5m ,两个路灯的高度都是9m ,则两路灯之间的距离是A .24mB .25mC .28mD .30m11. 把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为A .2(1)3y x =---B .2(1)3y x =-+- C .2(1)3y x =--+D .2(1)3y x =-++12. 如图5,在平地上种植树木时,要求株距(相邻两树间的水平距离)为4m .如果在坡度为0.75的山坡上种树, 也要求株距为4m ,那么相邻两树间的坡面距离为 A .5m B .6m C .7m D .8m13. 二次函数c bx ax y ++=2的图象如图6所示,则下列关系式不正确的是 A .a <0 B.abc >0图2 A.B . CD . 图12图13CBAC.c b a ++>0D.ac b 42->014. 如图7所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是15. 如图8,点A 、B 、C 、D 为圆O 的四等分点,动点P 从圆心O 出发, 沿O-C-D-O 的路线作匀速运动.设运动时间为t 秒, ∠APB 的度数 为y 度,则下列图象中表示y 与t 之间函数关系最恰当的是二、填空题(本题5小题,每小题4分,共20分)16. 如图9所示,边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,则∠AED的正切值等于 .17. 兰州市某中学的铅球场如图10所示,已知扇形AOB 的面积是36米2,弧AB 的长度为9米,那么半径OA = 米. 18. 如图11,若正方形OABC 的顶点B 和正方形ADEF 的顶点E 都在函数 1y x=(0x >)的 图象上,则点E 的坐标是( , ). 阅读19.材料:设一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1,x 2,则两根与方程系数之间有如下关系:x 1+x 2=-b a ,x 1·x 2=ca.根据该材料填空:已知x 1、x 2是方程 x 2+6x +3=0的两实数根,则21x x +12x x 的值为 . 20. 二次函数223y x =的图象如图12所示,点0A 位于坐标原点, 点1A ,2A ,3A ,…, 2008A 在y 轴的正半轴上,点1B ,2B ,3B ,…, 2008B 在二次函数223y x =位于第一象限的图象上, 若△011A B A ,△122A B A ,△233A B A ,…,△200720082008A B A 都为等边三角形,则△200720082008A B A 的边长= .三、解答题(本题9小题,共70分.解答时写出必要的文字说明、证明过程或演 算步骤)21.(本题满分10分)(1)(本小题满分5分)计算:101245(2 1.41)3-⎛⎫--+ ⎪⎝⎭(2)(本小题满分5分)用配方法解一元二次方程:2213x x += 22.(本题满分5分)如图13,要在一块形状为直角三角形 (∠C 为直角)的铁皮上裁出一个半圆形的铁皮,需先 在这块铁皮上画出一个半圆,使它的圆心在线段AC 上, 且与AB 、BC 都相切.请你用直尺和圆规画出来(要求用尺规作图,保留作图痕迹,不要求写作法).23.(本题满分7分)今年兰州市在全市中小学中开展以感恩和生命为主题的教育活动,各中小学结合学生实际,开展了形式多样的感恩教育活动.下面图①,图②分别是某校调查部分学生是否知道母亲生日情况的扇形统计图和条形统计图.根据图上信息,解答下列问题:(1)求本次被调查学生的人数,并补全条形统计图;(2)若全校共有2700名学生,你估计这所学校有多少名学生知道母亲的生日? (3)通过对以上数据的分析,你有何感想?(用一句话回答)24.(本题满分7分) 端午节吃粽子是中华民族的传统习俗.五月初五早晨,妈妈为洋洋准备 了四只粽子:一只香肠馅,一只红枣馅,两只什锦馅,四只粽子除内部馅料不同外,其他 均一切相同.洋洋喜欢吃什锦馅的粽子.(1)请你用树状图或列表法为洋洋预测一下吃两只粽子刚好都是什锦馅的概率;(2)在吃粽子之前,洋洋准备用如图所示的转盘进行吃粽子的模拟试验(此转盘被等分成 四个扇形区域,指针的位置是固定的,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置.若指针指向两个扇形的交线时,重新转动转盘),规定:连续转动A . 图7B .C .D . 图9BA C3两次转盘表示随机吃两只粽子,从而估计吃两只粽子刚好都是什锦馅的概率.你认为这种模拟试验的方法正确吗?试说明理由.25.(本题满分7分) 如图14,已知(4)A n -,,(24)B -,是一次函数y kx b =+的图象和 反比例函数my x=的图象的两个交点. (1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积; (3)求方程0=-+xmb kx 的解(请直接写出答案); (4)求不等式0<-+xmb kx 的解集(请直接写出答案).26.(本题满分7分)如图15,在四边形ABCD 中,E 为AB 上一点,△ADE 和△BCE 都是等边三角形,AB 、BC 、CD 、DA 的中点分别为P 、Q 、M 、N ,试判断四边形PQMN 为怎样的四边形,并证明你的结论.27.(本题满分9分) 如图16,在以O 为圆心的两个同心圆中,AB 经过圆心O ,且与小圆相交于点A 、与大圆相交于点B .小圆的切线AC 与大圆相交于 点D ,且CO 平分∠ACB .(1)试判断BC 所在直线与小圆的位置关系,并说明理由; (2)试判断线段AC 、AD 、BC 之间的数量关系,并说明理由; (3)若8cm 10cm AB BC ==,,求大圆与小圆围成的圆环的 面积.(结果保留π)28.(本题满分9分)如图17,某公路隧道横截面为抛物线,其最大高度为6米,底部宽度OM 为12米. 现以O 点为原点,OM 所在直线为x 轴建立 直角坐标系.(1)直接写出点M 及抛物线顶点P 的坐标; (2)求这条抛物线的解析式;(3)若要搭建一个矩形“支撑架”AD- DC- CB , 使C 、D 点在抛物线上,A 、B 点在地面OM 上, 则这个“支撑架”总长的最大值是多少?29.(本题满分9分)如图①,正方形 ABCD 中,点A 、B 的坐标分别为(0,10),(8,4),点C 在第一象限.动点P 在正方形 ABCD 的边上,从点A 出发沿A →B →C →D 匀速运动, 同时动点Q 以相同速度在x 轴正半轴上运动,当P 点到达D 点时,两点同时停止运动, 设运动的时间为t 秒.(1)当P 点在边AB 上运动时,点Q 的横坐标x (长度单位)关于运动时间t (秒)的函数图象如图②所示,请写出点Q 开始运动时的坐标及点P 运动速度; (2)求正方形边长及顶点C 的坐标;(3)在(1)中当t 为何值时,△OPQ 的面积最大,并求此时P 点的坐标;(4)如果点P 、Q 保持原速度不变,当点P 沿A →B →C →D 匀速运动时,OP 与PQ 能否相等,若能,写出所有符合条件的t 的值;若不能,请说明理由.4兰州市2009年初中毕业生学业考试试卷数学(A )参考答案及评分标准一、选择题(本大题15小题,每小题4分,共60分)16.1217.8 18.(215+,215-) 19. 10 20. 2008三、解答题(本大题9小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)21.(本题满分10分) (1)(本题满分5分) 解:原式=1323++-- ·············································································· 3分 =1)32(3+-- ············································································· 4分=32+····················································································· 5分(第一步计算中,每算对一个给1分)(2)(本题满分5分) 解:移项,得2231x x -=- ····························································································· 1分二次项系数化为1,得23122x x -=- ····························································································· 2分 配方22233132424x x ⎛⎫⎛⎫-+=-+ ⎪ ⎪⎝⎭⎝⎭231416x ⎛⎫-= ⎪⎝⎭····························································································· 4分 由此可得3144x -=± 11x =,212x =···························································································· 5分22.(本题满分5分)作出角平分线得2分,作出半圆再得2分,小结1分,共5分。

甘肃省兰州市中考数学(A卷)试题(含答案)

甘肃省兰州市中考数学(A卷)试题(含答案)

2 2 x 1) 3 的图象的顶点坐标是 3.二次函数 y (
A. (1,3) B. ( 1 ,3) C. (1, 3 ) D. ( 1 , 3 ) 4.⊙O1 的半径为 1cm,⊙O2 的半径为 4cm,圆心距 O1O2=3cm,这两圆的位置关系是 A.相交 B.内切 C.外切 D.内含 5.当 x 0 时,函数 y A.第四象限 C.第二象限 6.下列命题中是假命题的是 A.平行四边形的对边相等 C.矩形的对边平行且相等 B.菱形的四条边相等 D.等腰梯形的对边相等
第 13y
x
14.圆锥底面圆的半径为 3cm,其侧面展开图是半圆,则圆锥母线长为 A.3cm B.6cm C.9cm D.12cm 15.如图 ,动点 P 从点 A 出发,沿线段 AB 运动至点 B 后,立即按原路返回,点 P 在运动 过程中速度不变, 则以点 B 为圆心, 线段 BP 长为半径的圆的面积 S 与点 P 的运动时间 t S A P
8.用配方法解方程 x 2 2 x 1 0 时,配方后所得的方程为
2 A. (x 1) 0 2 B. (x 1) 0 2 C. (x 1) 2 2 D. (x 1) 2
9.△ABC 中, a 、 b 、 c 分别是∠A、∠B、∠C 的对边,如果 a 2 b 2 c 2 ,那么下列结论正确 的是 A. c sinA= a B. b cosB= c C. a tanA= b D. c tanB= b 10.据调查,2011 年 5 月兰州市的房价均价为 7600 元/m2,2013 年同期将达到 8200 元/m2, 假设这两年兰州市房价的平均增长率为 x ,根据题意,所列方程为 A. 7600(1 x%) 2 8200 C. 7600(1 x) 2 8200 B. 7600(1 x%) 2 8200

2009年中考数学试题参考答案

2009年中考数学试题参考答案

2009年中考数学试题参考答案一、 选择题(每题3分,共30分)ADCBA BADCD二、 填空题(每题3分,共18分)11、1 12、A B ⊥CD 或AD=BD 或AC =CB 等 13、y=2x 14、20 15、10+33 16、19 三、解答题(每小题8分,共16分)17、解:由(1)得 x >-2 ………………………… 2分 由(2)得3x -1《2x -2 得x ≤-1 ………………………… 4分 所以,不等式组的解集为-2〈x ≤-1……6分在数轴上表示为 ……………………… 8分 18.解:原式=()()2111x x x x x -+÷+ ……………………………… 2分 =()()1112-+∙+x x xxx …………………………… 4分=1-x x ………………………………………………… 6分当x=2时,1-x x =2122=- …………………………… 8分四、解答题(每小题9分,共18分)19、解:(1)作业完成时间在1.5 ~2小时时间段内的学生有6人 …… 2分 (2)该班共有学生:40%4518=名 ………… 4分(3)(略) ………………………………………………… 6分 (4)作业完成时间在0.5~1小时的部分对应的扇形圆心角的度数是: 360°×30% = 108° ………………………………………9分20、解:(1)用列表法或数状图表示为: 列表法…………………………5分树状图法(2)P(恰好选中女生甲和男生A)=61 ………………………………………………8分∴恰好选中女生甲和男生A 的概率为61……………………………………… 9分21、证明:(1)在□ABCD 中,AD=CB,AB=CD,∠D=∠B …………………………… 1分 ∵EF 分别是AB 、CD 的中点 ∴DF=21CD,BE=21AB , DF=BE ………………………………………3分∴△AFD ≌△CEB ………………………………………………4分 (2)在□ABCD 中,AB=CD,AB ∥CD ……………………………………6分 由(1)得BE=DF ,∴AE=CF ………………………………………………7分 ∴四边形AECF 是平行四边形 ………………………………………8分22、解:∵点A(-3,1),B(2,n)是一次函和反比例函数的交点 ∴把x=-3,y=1代入y=xm ,得:m=-3∴反比例函数的解析式是y=- x3 …………………………………………3分把x=-3,y=n 代入y=-x3 得:n=-23把x=-3,y=1,x=2,y=-23分别代入y=kx+b得:⎪⎩⎪⎨⎧-=+=+-23213b k b k ,解得 ⎪⎩⎪⎨⎧-=-=2121b k ……………………………………4分 ∴一次函数的解析式为y=- 2121-x ……………………………………5分(3)过点A 作AE ⊥x 轴于点E ∴A 点的纵坐标为1,∴AE=1 由一次函数的解析式为y=- 2121-x得C 点的坐标为(0,-21), ……………………………………6分∴OC=21在Rt △OCD 和Rt △EAD 中,∠COD=∠AED=90°,∠CDO=∠ADE∴Rt △OCD ∽Rt △EAD ……………………………………7分 ∴==COAE CDAD 2 ……………………………………8分23、(1)证明:连接OD, ∵OD=OA, ∴∠ODA=OAD ………………………………1分又∵DE 是⊙O 的切线,∴∠ODE=90°,OD ⊥DE ……………………………2分 又∵DE ⊥EF, ∴OD ∥EF ……………………………………3分 ∴∠ODA=∠DAE, ∠DAE=∠OAD, ∴AD 平分∠CAE …………………………5分 (2)解:∵AC 是⊙O 的直径,∴∠ADC=90°………………………………6分 由(1)知:∠ODA=∠DAE, ∠AED=∠ADC, ∴△ADC ∽△AED, ∴ADAC AEAD = ………………………………7分在Rt △ADE 中,DE=4,AE=2, ∴AD=25 ………………………………7分∴52252AC =,∴AC=10 ……………………………………8分∴⊙O 的半径为5 ……………………………………9分 24、解(1)∵抛物线与x 轴交于A(1,0),B(70)∴y=a (x-1)(x-7) ……………………………………1分 又∴抛物线与y 轴交于C,且OA=7,则C 点的坐标为(7,0) ∴7=a (0-1)(0-7),7a=7, a=1 ……………2分∴抛物线的解析式为y=(x-1)(x-7)=782+-x x …………………………3分 (2)∵E 点在抛物线上∴m=25-40+7,m=-8 …………4分 ∵直线y=kx+b 经过点C(0,7),E(5,-8)∴⎩⎨⎧-===8757k b 解得:k=-3,b=7 …………………………5分∴直线CE 的表达式是y=-3x+7 ……………………………………6分 (3)设直线CE 于x 轴的交点为D 当y=0时,-3x+7=0,x=37∴D 点的坐标为(37,0) ……………………………………7分∴S=3531008)377(217)377(21==⨯-⨯+⨯-⨯=+∆∆BDE BDC S S …………8分(4)在抛物线上存在点P 使得△ABP 为等腰三角形 ………………………9分 ∵抛物线的顶点是满足条件的一个点除此之外,还有六个点理由如下: ∵AP=BP=103909322==+>6分别以A 、B 为圆心,半径长为6画圆,分别与抛物线交于点B 、1P 、2P 、A 、3P 、4P 、5P 、6P ,除去A 、B 两点外,其余六个点为满足条件的点,…………11分∴一共有七个满足条件的点P ……………………………………12分。

2009中考数学题及答案

2009中考数学题及答案

2009年大连市中考数学试题与参考答案注意事项:1.请将答案写在答题卡上,写在试卷上无效. 2.本试卷满分150分,考试时间120分钟.一、选择题(在每小题给出的四个选项中,只有一个正确答案.本大题共有8小题,每小题3分,共24分) 1.|-3|等于 ( )A .3B .-3C .31D .-31 2.下列运算正确的是 ( )A .523x x x =+ B .x x x =-23C .623x x x =⋅ D .x x x =÷233.函数2-=x y 中,自变量x 的取值范围是 ( )A .x < 2B .x ≤2C .x > 2D .x ≥24.将一张等边三角形纸片按图1-①所示的方式对折,再按图1-②所示 的虚线剪去一个小三角形,将余下纸片展开得到的图案是 ( )5.下列的调查中,选取的样本具有代表性的有 ( )A .为了解某地区居民的防火意识,对该地区的初中生进行调查B .为了解某校1200名学生的视力情况,随机抽取该校120名学生进行调查C .为了解某商场的平均晶营业额,选在周末进行调查D .为了解全校学生课外小组的活动情况,对该校的男生进行调查6.如图,等腰梯形ABCD 中,AD ∥BC ,AE ∥DC ,∠AEB =60°, AB = AD = 2cm ,则梯形ABCD 的周长为 ( ) A .6cm B .8cm C .10cm D .12cm 7.下列四个点中,有三个点在同一反比例函数xky =的图象上,则不在这个函数图象上的点是 ( ) A .(5,1) B .(-1,5) C .(35,3) D .(-3,35-)8.图3是一个几何体的三视图,其中主视图、左视图都是腰为13cm ,底为10cm 的等腰三角形,则这个几何的侧面积是 ( )A .60πcm 2B .65πcm 2C .70πcm 2D .75πcm 2图1②①DCBA 图2俯视图左视图主视图图3DC BA二、填空题(本题共有9小题,每小题3分,共27分)9.某天最低气温是-5℃,最高气温比最低气温高8℃,则这天的最高气温是_________℃. 10.计算)13)(13(-+=___________.11.如图4,直线a ∥b ,∠1 = 70°,则∠2 = __________.12.如图5,某游乐场内滑梯的滑板与地面所成的角∠A = 35°,滑梯的高度BC = 2米,则滑板AB 的长约为_________米(精确到0.1).13.在某智力竞赛中,小明对一道四选一的选择题所涉及的知识完全不懂,只能靠猜测得出结果,则他答对这道题的概率是_______________.14.若⊙O 1和⊙O 2外切,O 1O 2 = 10cm ,⊙O 1半径为3cm ,则⊙O 2半径为___________cm .15.图6是某班为贫困地区捐书情况的条形统计图,则这个班平均每名学生捐书_____________册. 16.图7是一次函数b kx y +=的图象,则关于x 的不等式0>+b kx 的解集为_________________.17.如图8,原点O 是△ABC 和△A ′B ′C ′的位似中心,点A (1,0)与点A ′(-2,0)是对应点,△ABC 的面积是23,则△A ′B ′C ′的面积是________________. 三、解答题(本题共有3小题,18题、19题、20题各12分,共36分) 18.如图9,在△ABC 和△DEF 中,AB = DE ,BE = CF ,∠B =∠1. 求证:AC = DF (要求:写出证明过程中的重要依据)21c b a 图 4CBA 图 5 491017201510554320人数册数图 6 O y x -24图 7 A C B A′123-1-2-3-4-3-2-14321O y x 图 8 1F E DCBA19.某地区林业局要考察一种树苗移植的成活率,对该地区这种树苗移植成活情况进行调查统计,并绘制了如图10所示的统计表,根据统计图提供的信息解决下列问题:⑴这种树苗成活的频率稳定在_________,成活的概率估计值为_______________. ⑵该地区已经移植这种树苗5万棵. ①估计这种树苗成活___________万棵;②如果该地区计划成活18万棵这种树苗,那么还需移植这种树苗约多少万棵?20.甲、乙两车间生产同一种零件,乙车间比甲车间平均每小时多生产30个,甲车间生产600个零件与乙车间生产900个零件所用时间相等,设甲车间平均每小时生产x 个零件,请按要求解决下列问题: ⑴根据题意,填写下表: 车间 零件总个数平均每小时生产零件个数所用时间甲车间 600xx600乙车间900________⑵甲、乙两车间平均每小时各生产多少个零件?四、解答题(本题3小题,其中21、22题各9分,23题10分,共28分) 21.如图11,在⊙O 中,AB 是直径,AD 是弦,∠ADE = 60°, ∠C = 30°.⑴判断直线CD 是否是⊙O 的切线,并说明理由; ⑵若CD = 33 ,求BC 的长.图 10 0成活的概率移植数量/千棵10.90.8108642E DCBA O图 1122.如图12,直线2--=x y 交x 轴于点A ,交y 轴于点B ,抛物线c bx ax y ++=2的顶点为A ,且经过点B . ⑴求该抛物线的解析式; ⑵若点C(m ,29-)在抛物线上,求m 的值.23.A 、B 两地的路程为16千米,往返于两地的公交车单程运行40分钟.某日甲车比乙车早20分钟从A 地出发,到达B 地后立即返回,乙车出发20分钟后因故停车10分钟,随后按原速继续行驶,并与返回途中的甲车相遇.图13是乙车距A 地的路程y (千米)与所用时间x (分)的函数图象的一部分(假设两车都匀速行驶). ⑴请在图13中画出甲车在这次往返中,距A 地的路程y (千米)与时间x (分)的函数图象; ⑵乙车出发多长时间两车相遇?五、解答题(本题共有3小题,其中24题11分,25、26题各12分,共25分)24.如图14,矩形ABCD 中,AB = 6cm ,AD = 3cm ,点E 在边DC 上,且DE = 4cm .动点P 从点A 开始沿着A →B →C →E 的路线以2cm/s 的速度移动,动点Q 从点A 开始沿着AE 以1cm/s 的速度移动,当点Q 移动到点E 时,点P 停止移动.若点P 、Q 同时从点A 同时出发,设点Q 移动时间为t (s),P 、Q 两点运动路线与线段PQ 围成的图形面积为S (cm2),求S 与t 的函数关系式.25.如图15,在△ABC 和△PQD 中,AC = k BC ,DP = k DQ ,∠C =∠PDQ ,D 、E 分别是AB 、AC 的中点,点P 在直线BC 上,连结EQ 交PC 于点H .PQE D CB A 图 14 y/千米16O -2080604020x/分图 13 yx O B A 图 12猜想线段EH 与AC 的数量关系,并证明你的猜想.26.如图18,抛物线F :c bx ax y ++=2的顶点为P ,抛物线:与y 轴交于点A ,与直线OP 交于点B .过点P 作PD ⊥x 轴于点D ,平移抛物线F 使其经过点A 、D 得到抛物线F ′:'+'+'=c x b x a y 2,抛物线F ′与x 轴的另一个交点为C .⑴当a = 1,b =-2,c = 3时,求点C 的坐标(直接写出答案); ⑵若a 、b 、c 满足了ac b 22=①求b :b ′的值;②探究四边形OABC 的形状,并说明理由.Q(H)EDCQAB CDEPH H Q P ED CB A B(P)A图 15 图 16图 17yxO P DC BA图 18大连市2009年初中升学考试评分标准与参考答案一、选择题1. A 2.D 3.D 4.A 5.B 6.C 7.B 8.B 二、填空题9.3 10.2 11.110° 12.3.5 13.4114.7 15.3 16.2->x 17.6 三、解答题18.证明:∵BE=CF , ∴BE+EC=CF+EC ,即 B C =E F . ………………………………………………………………………………2分 在△ABC 和△DEF 中,314AB DE B BC EF =⎧⎪∠=∠⎨⎪=⎩,分,分. ∴△A B C ≌△D E F …………………………………………………………………………6分 (S A S ) . ……………………………………………………………………………………8分 ∴A C =D F …………………………………………………………………………………10分 (全等三角形对应边相等) . ……………………………………………………………12分 19.解:(1)0.9,……………………………………………………………………………2分 0.9; ………………………………………………………………………………………5分 (2) ①4.5;…………………………………………………………………………………8分 ②方法1:18÷0.9-5 …………………………………………………………………………………10分 =15.…………………………………………………………………………………………11分方法2:设还需移植这种树苗x 万棵.根据题意,得189.0)5(=⨯+x ,…………………………………………………………10分 解得15=x . ………………………………………………………………………………11分 答:该地区需移植这种树苗约15万棵. ………………………………………………12分 20. 解:(1) 30+x , ……………………………………………………………………2分 3900+x ;………………………………………………………………………………………4分 (2)根据题意,得30900600+=x x ,..................................................................7分 解得 60=x . (9)分 9030=+x . …………………………………………………………………10分 经检验60=x 是原方程的解,且都符合题意.………………………………………11分 答:甲车间每小时生产60个零件,乙车间每小时生产90个零件.…………………12分 21.(1)C D 是⊙O 的切线. …………………………………………………………………1分 证明:连接OD .∵∠A D E =60°,∠C =30°,∴∠A =30°. ............................................................2分 ∵O A =O D ,∴∠O D A =∠A =30°. (3)分∴∠O D E =∠O D A +∠A D E =30°+60°=90°,∴O D ⊥C D .…………………………………4分 ∴C D 是⊙O 的切线. ……………………………………………………………………5分 (2)解:在Rt △ODC 中,∠ODC =90°, ∠C =30°, CD =33.∵t a n C =CDOD, …………………………………………………………………………6分 ∴O D =C D ·t a n C =33×33=3. (7)分 ∴O C =2O D =6.…………………………………………………………………………8分 ∵O B =O D =3,∴B C =O C -O B =6-3=3.………………………………………………9分22. 解:(1)直线2--=x y .令2,0-==y x 则,∴点B 坐标为(0,-2).………………………………………………1分 令2,0-==x y 则 ∴点A 坐标为(-2,0). ………………………………………………2分 设抛物线解析式为k h x a y +-=2)(. ∵抛物线顶点为A ,且经过点B ,∴2)2(+=x a y ,………………………………………………………………………4分∴-2=4a ,∴21-=a .…………………………………………………………………5分 ∴抛物线解析式为2)2(21+-=x y ,…………………………………………………5分∴22212---=x x y .………………………………………………………………6分(2)方法1:∵点C (m ,29-)在抛物线2)2(21+-=x y 上,∴29)2(212-=+-m ,9)2(2=+m ,………………………………………………7分解得11=m ,52-=m .……………………………………………………………9分 方法2:∵点C (m ,29-)在抛物线22212---=x x y 上,∴22212---m m 29-=,∴,0542=-+m m (7)分解得11=m ,52-=m .……………………………………………………………9分 23.解:(1)画出点P 、M 、N (每点得1分)……………………………………3分 (2)方法1.设直线EF 的解析式为11b x k y +=. 根据题意知,E (30,8),F (50,16),⎪⎩⎪⎨⎧+=+=分分5.1150164,11308 b k b k 解得⎪⎩⎪⎨⎧-==.4,5211b k ∴452-=x y .①……………………………………………………………6分设直线MN 的解析式为22b x k y +=. 根据题意知,M (20,16),N (60,0),∴⎩⎨⎧+=+=分分8.6007,20162222 b k b k 解得⎪⎩⎪⎨⎧=-=.24,5222b k ∴2452+-=x y .②………………………………………………………9分由①、②得方程452-x 2452+-=x ,解得x =35. ……………………………………(10分) 答:乙车出发35分钟两车相遇. ………………………………………………………10分 方法2.公交车的速度为16÷40=52(千米/分). …………………………………………………4分设乙车出发x 分钟两车相遇. ……………………………………………………………5分根据题意,得32)20(52)10(52=++-x x ,………………………………………………8分解得x =35. …………………………………………………………………………………9分 答:乙车出发35分钟两车相遇. ………………………………………………………10分 方法3.公交车的速度为16÷40=52(千米/分). …………………………………………………4分设乙车出发x 分钟两车相遇. ……………………………………………………………5分根据题意,得16)20(52)10(52=-+-x x ,………………………………………………8分解得x =35. …………………………………………………………………………………9分 答:乙车出发35分钟两车相遇. ………………………………………………………10分 方法4.由题意知:M (20,16),F (50,16),C (10,0),∵△DMF ∽△DNC ,∴DHDICN MF =∴DHDH -=165030,∴DH =10; ∵△CDH ∽△CFG ,∴CGCH FG DH =,∴25164010=⨯=CH ; ∴OH =OC +CH =10+25=35.答:乙车出发35分钟两车相遇. …………………………………………………………10分24.解:在R t △A D E 中,.5432222=+=+=DE AD AE …………………………1分当0<t ≤3时,如图1. ……………………………………………………………………2分过点Q 作QM ⊥AB 于M ,连接QP . ∵AB ∥CD , ∴∠QAM =∠DEA ,又∵∠AMQ =∠D =90°, ∴△AQM ∽△EAD .∴AEAQAD QM =,∴t AE AQ AD QM 53=⋅=.……………………………………………………3分 .5353221212t t t QM AP S =⨯⨯=⋅= (4)分 当3<t ≤29时,如图2. (5)分方法1 :在Rt △ADE 中,.5432222=+=+=DE AD AE过点Q 作QM ⊥AB 于M , QN ⊥BC 于N , 连接QB . ∵AB ∥CD , ∴∠QAM =∠DEA , 又∵∠AMQ =∠ADE =90°, ∴△AQM ∽△EAD . ∴AE AQ AD QM =, AEAQ DE AM =, ∴t AE AQ AD QM 53=⋅=.………………………………………………………………………6分t AE AQ DE AM 54=⋅=,∴Q N =t AM BM 5466-=-=.…………………………………7分∴QAB S ∆,595362121t t QM AB =⨯⨯=⋅=QBP S ∆.1854254)546)(62(21212-+-=--=⋅=t t t t QN BP∴QBP QAB S S S ∆∆+=t 59=+(18542542-+-t t ).18551542-+-=t t ……………………8分方法2 :过点Q 作QM ⊥AB 于M , QN ⊥BC 于N ,连接QB . ∵AB ∥BC , ∴∠QAM =∠DEA , 又∵∠AMQ =∠ADE =90°,∴△AQM ∽△EAD . ∴AE AQ AD QM =, AEAQ DE AM =, ∴t AE AQ AD QM 53=⋅=.………………………………………………………………………6分t AE AQ DE AM 54=⋅=,∴Q N =t AM BM 5466-=-=.…………………………………7分∴.256535421212t t t QM AM S AMQ =⨯⨯=⋅=∆.185512526)546)(5362(21)(212-+-=-+-=⋅+=t t t t t BM QM BP S BPQM 梯∴BPQM AMQ S S S 梯+=∆2256t =+(1855125262-+-t t ).18551542-+-=t t ……………8分 当29<t ≤5时. 方法1 :过点Q 作QH ⊥CD 于H . 如图3.由题意得QH ∥AD ,∴△EHQ ∽△EDA ,∴,AEQEAD QH = ∴).5(53t AE QE AD QH -=⋅=…………………………………………………………………10分 ∴,123)62(21)(21=⨯+=⋅+=BC AB EC S ABCE 梯,233106353)5(53)211(21212+-=-⨯-=⋅=∆t t t t QH EP S EQP∴EQP ABCE S S S ∆-=梯12=2331063532-+-t t .291063532-+-=t t ………………………11分方法2:连接QB 、QC ,过点Q 分别作QH ⊥DC 于H ,QM ⊥AB 于M ,QN ⊥BC 于N . 如图4.由题意得QH ∥AD ,∴△EHQ ∽△EDA ,∴,AEQEAD QH =∴).5(53t AE QE AD QH -=⋅=…………………………………………………………………10分∴.595362121t t QN AB S QAB =⨯⨯=⋅=∆.569)546(32121t t QN BC S QBC -=-⨯=⋅=∆.227105753)533)(92(21212-+-=--=⋅=∆t t t t QH PC S QCP∴QCP QBC QAB S S S S ∆∆∆++=t 59=)569(t -+)227105753(2-+-+t t .291063532-+-=t t ………………………………11分 25.结论:E H =21A C . (1)分 证明:取B C 边中点F ,连接D E 、D F . ……………………………………………………2分∵D 、E 、F 分别是边AB 、AC 、BC 的中点.∴DE ∥BC 且DE =21BC ,D F ∥A C 且D F =21A C , (4)分EC =21AC ∴四边形DFCE 是平行四边形.∴∠EDF=∠C .∵∠C =∠P D Q ,∴∠P D Q =∠E D F , ∴∠P D F =∠Q D E .…………………………6分又∵AC=kBC ,∴DF=kDE . ∵D P =k D Q ,∴k DEDFDQ DP ==.……………………………………………………………7分 ∴△PDF ∽△QDE . …………………………………………………………………………8分∴∠D E Q =∠D F P . ……………………………………………………………………………9分 又∵DE ∥BC ,DF ∥AC , ∴∠DEQ=∠EHC ,∠DFP=∠C .∴∠C =∠E H C . ……………………………………………………………………………10分∴E H =E C . (11)分 ∴E H =21A C . (12)分 选图16.结论:E H =21A C . (1)分 证明:取B C 边中点F ,连接D E 、D F . ……………………………………………2分∵D 、E 、F 分别是边AB 、AC 、BC 的中点,∴D E ∥B C 且D E =21B C , D F ∥A C 且D F =21A C , (4)分EC=21AC ,∴四边形DFCE 是平行四边形.∴∠EDF=∠C .∵∠C =∠P D Q ,∴∠P D Q =∠E D F , ∴∠P D F =∠Q D E . ……………………………6分 又∵A C =B C , ∴D E =D F ,∵P D =Q D ,∴△P D F ≌△Q D E . ……………………………7分∴∠DEQ=∠DFP .∵DE ∥BC ,DF ∥AC , ∴∠DEQ=∠EHC ,∠DFP=∠C .∴∠C =∠E H C .............................................................................................8分 ∴E H =E C . (9)分 ∴E H =21A C . (10)分 选图17. 结论: E H =21A C . (1)分证明:连接A H . ………………………………………………………………………………2分 ∵D 是AB 中点,∴DA=DB .又∵DB=DQ ,∴DQ=DP=AD .∴∠DBQ=∠DQB ,.∵∠DBQ+∠DQB+∠DQA+∠DAQ ,=180°,∴∠AQB=90°,∴AH ⊥BC .……………………………………………………………………………………4分又∵E 是A C 中点,∴H E =21A C . ……………………………………………………6分 26.解:(1) C (3,0);……………………………………………………………………3分(2)①抛物线c bx ax y ++=2,令x =0,则y =c , ∴A 点坐标(0,c ).∵ac b 22=,∴ 242424442ca ac a ac ac ab ac ==-=-,∴点P 的坐标为(2,2ca b -). ……………………………………………………4分∵P D ⊥x 轴于D ,∴点D 的坐标为(0,2ab-). ……………………………………5分根据题意,得a=a ′,c= c ′,∴抛物线F ′的解析式为c x b ax y ++='2.又∵抛物线F ′经过点D (0,2a b-),∴c a b b ab a +-+⨯=)2('4022.……………6分∴ac bb b 4'202+-=.又∵ac b 22=,∴'2302bb b -=.∴b :b ′=32.…………………………………………………………………………………7分 ②由①得,抛物线F ′为c bx ax y ++=232.令y =0,则0232=++c bx ax .………………………………………………………………8分∴abx a b x -=-=21,2.∵点D 的横坐标为,2a b -∴点C 的坐标为(0,ab-). ……………………………………9分设直线OP 的解析式为kx y =.∵点P 的坐标为(2,2ca b -), ∴k a b c 22-=,∴22222b b b b ac b ac k -=-=-=-=,∴x b y 2-=.………………………10分 ∵点B 是抛物线F 与直线OP 的交点,∴x bc bx ax 22-=++.∴abx a b x -=-=21,2.∵点P 的横坐标为a b 2-,∴点B 的横坐标为ab-.把a b x -=代入x b y 2-=,得c a aca b a b b y ===--=222)(22.∴点B 的坐标为),(c ab-.…………………………………………………………………11分∴BC ∥OA ,AB ∥OC .(或BC ∥OA ,BC =OA ), ∴四边形OABC 是平行四边形. 又∵∠AOC =90°,∴四边形OABC 是矩形. ………………………………………………12分。

2009年甘肃省武威、金昌、定西、白银、酒泉、嘉峪关市中考试卷答案

2009年甘肃省武威、金昌、定西、白银、酒泉、嘉峪关市中考试卷答案

2009年甘肃省武威、金昌、定西、白银、酒泉、嘉峪关市中考试卷数学参考答案与评分标准一、选择题:本大题共10小题,每小题3分,共30分.题号1 2 3 4 5 6 7 8 9 10 答案 B D A B D B C A A C二、填空题:本大题共8小题,每小题4分,共32分.11.9 12.34x y =⎧⎨=⎩, 13.60o 14.二、四 15.1->x 16.答案不唯一,如AC =BD ,∠BAD =90o ,等 17.518.答案不唯一.如:①c =3;②b +c =1;③c -3b =9;④b =-2;⑤抛物线的顶点为(-1,4),或二次函数的最大值为4;⑥方程-x 2+bx +c =0的两个根为-3,1;⑦y >0时,-3<x <1;或y <0时,x <-3或x >1;⑧当x >-1时,y 随x 的增大而减小;或当x <-1时,y 随x 的增大而增大等等三、解答题(一):本大题共5小题,共38分.19.本小题满分6分解:∵a =2007200920082009⨯⨯(20081)(20081)20082009-⨯+=⨯222008120082009-=⨯, ··································· 3分 b 2200820082009=⨯, ···································································································· 4分 222200812008-<, ······························································································· 5分 ∴ a <b . ··························································································································· 6分 说明:求差通分作,参考此标准给分.若只写结论a <b ,给1分.20.本小题满分6分解:∵22a b a b ⊕=-,∴2222(43)(43)77x x x x ⊕⊕=-⊕=⊕=-. ···················· 3分∴22724x -=.∴225x =. ······················································································ 4分 ∴5x =±. ····················································································································· 6分21.本小题满分8分解:∵随机闭合开关1S 、2S 、3S 中的两个,共有3种情况:12S S ,13S S ,23S S .能让灯泡发光的有13S S 、23S S 两种情况. ·············································································· 4分 ∴ 能让灯泡发光的概率为23. ····················································································· 8分 22.本小题满分8分解:从图中可以看出,在室内厚为a cm 的墙面、宽为4cm 的门框及开成120°的门之间构成了一个直角三角形,且其中有一个角为60°. ···································································· 3分从而 a =4×tan60° ················································· 6分. ····································· 8分即室内露出的墙的厚度约为6.9cm .23.本小题满分10分解:(1)一次函数. ··············································································································· 2分(2)设y kx b =+. ········································································································ 3分由题意,得22162819k b k b =+⎧⎨=+⎩,. ····························································································· 5分 解得210k b =⎧⎨=-⎩,. ·············································································································· 7分 ∴210y x =-.(x 是一些不连续的值.一般情况下,x 取16、16.5、17、17.5、…、26、26.5、27等) ··············································································································· 8分 说明:只要求对k 、b 的值,不写最后一步不扣分.(3)44y =时,27x =.答:此人的鞋长为27cm . ···························································································· 10分 说明:只要求对x =27cm ,不答不扣分.四、解答题(二):本大题共5小题,共50分 (不含附加4分) .24.本小题满分8分解:(1)如图:············································································ 4分(2)∵参加足球运动项目的学生占所有运动项目学生的比例为15=1050, ······················· 6分 ∴扇形统计图中表示“足球”项目扇形圆心角的度数为1360725⨯= . ····················· 8分25.本小题满分10分解法1:设第一天捐款x 人,则第二天捐款(x +50)人, ··················································· 1分 由题意列方程:x4800=506000+x . ··············································································· 5分 解得 x =200.·················································································································· 7分 检验:当x =200时,x (x +50)≠0,∴ x =200是原方程的解.······························································································· 8分 两天捐款人数x +(x +50)=450,人均捐款x4800=24(元). 答:两天共参加捐款的有450人,人均捐款24元. ·················································· 10分 说明:只要求对两天捐款人数为450, 人均捐款为24元,不答不扣分.解法2:设人均捐款x 元, ···································································································· 1分 由题意列方程:6000x -4800x=50 . ········································································ 5分 解得x =24. ······················································································································ 7分 以下略.26.本小题满分10分解:(1)如图,过A 作AO ⊥AC ,过B 作BO ⊥BD ,AO 与BO 相交于O ,O 即圆心. ············ 3分说明:若不写作法,必须保留作图痕迹.其它作法略.(2)∵ AO 、BO 都是圆弧AmB 的半径,O 是其圆心,∴ ∠OBA =∠OAB =150°-90°=60°. ········································ 5分∴ △AOB 为等边三角形.∴ AO =BO =AB =180. ·················· 7分∴ 弧)(6018018060m AB ππ=⨯⨯=∴ A 到B 这段弧形公路的长为60πm . ········································································· 10分27.本小题满分10分b证明:(1)∵ACB ECD ∠=∠,∴ ACE ACD BCD ACD ∠+∠=∠+∠.即 ACE BCD ∠=∠. ·················································· 2分∵ EC DC AC BC ==,,∴ △ACE ≌△BCD . ······················································ 4分(2)∵ ACB ∆是等腰直角三角形,∴ ︒=∠=∠45BAC B . ··············································· 5分∵ △ACE ≌△BCD , ∴ ︒=∠=∠45CAE B . ········ 6分∴ ︒=︒+︒=∠+∠=∠904545BAC CAE DAE . ················································ 7分 ∴ 222DE AE AD =+. ························································································· 9分 由(1)知AE =DB ,∴ 222AD DB DE +=. ························································································ 10分28.本小题满分16分(含附加4分)解:(1)3k =-, ········································································ 1分A (-1,0), ··································································· 2分B (3,0). ···································································· 3分(2)如图,抛物线的顶点为M (1,-4),连结OM . 4分则 △AOC 的面积=23,△MOC 的面积=23, △MOB 的面积=6, ························································· 5分∴ 四边形 ABMC 的面积=△AOC 的面积+△MOC 的面积+△MOB 的面积=9. ············································· 6分 说明:也可过点M 作抛物线的对称轴,将四边形ABMC 的面积转化为求1个梯形与2个直角三角形面积的和.(3)如图,设D (m ,322--m m ),连结OD .则 0<m <3,322--m m <0.且 △AOC 的面积=23,△DOC 的面积=m 23, △DOB 的面积=-23(322--m m ), ·································································· 8分 ∴ 四边形 ABDC 的面积=△AOC 的面积+△DOC 的面积+△DOB 的面积 =629232++-m m =875)23(232+--m . ··························································································· 9分 ∴ 存在点D 315()24-,,使四边形ABDC 的面积最大为875. ································ 10分 (4)有两种情况:如图,过点B 作BQ 1⊥BC ,交抛物线于点Q 1、交y 轴于点E ,连接Q 1C .∵ ∠CBO =45°,∴∠EBO =45°,BO =OE =3.∴ 点E 的坐标为(0,3).∴ 直线BE 的解析式为3y x =-+. ·········································································· 12分由2323y x y x x =-+⎧⎨=--⎩, 解得1125x y ,;ì=-ïïíï=ïî 2230.x y ,ì=ïïíï=ïî ∴ 点Q 1的坐标为(-2,5). ······················································································· 13分 如图,过点C 作CF ⊥CB ,交抛物线于点Q 2、交x 轴于点F ,连接BQ 2.∵ ∠CBO =45°,∴∠CFB =45°,OF =OC =3.∴ 点F 的坐标为(-3,0).∴ 直线CF 的解析式为3y x =--. ·········································································· 14分 由2323y x y x x =--⎧⎨=--⎩,解得⎩⎨⎧-==3011y x ;⎩⎨⎧-==4122y x ∴点Q 2的坐标为(1,-4).························································································· 15分 综上,在抛物线上存在点Q 1(-2,5)、Q 2(1,-4),使△BCQ 1、△BCQ 2是以BC 为直角边的直角三角形. ····································································································· 16分 说明:如图(4),点Q 2即抛物线顶点M ,直接证明△BCM 为直角三角形同样得2分. 附加题:如果你的全卷得分不足150分,则本题与28题附加的4分的得分将记入总分,但记入总分后全卷得分不得超过150分,超过按150分算.29.本小题满分7分解:学生可能写出不同程度的一般的结论,由一般化程度不同得不同分.若m 、n 是任意正整数,且m >n ,则11n n m m +<+. ······················································ 4分 若m 、n 是任意正实数,且m >n ,则11n n m m +<+. ······················································ 5分 若m 、n 、r 是任意正整数,且m >n ;或m 、n 是任意正整数,r 是任意正实数,且m >n ,则n n r m m r+<+. ··············································································································· 6分 若m 、n 是任意正实数,r 是任意正整数,且m >n ;或m 、n 、r 是任意正实数,且m >n ,则n n r m m r +<+. ······································································································· 7分。

中考真题 2009 一元二次方程部分

中考真题 2009  一元二次方程部分

LYR(2010-10-03)中考真题 2009 一元二次方程部分填空题1.(重庆綦江)一元二次方程x 2=16的解是 .2.(2009威海)若关于x 的一元二次方程2(3)0x k x k +++=的一个根是2-,则另一个根是______.3.(2009山西省太原市)某种品牌的手机经过四、五月份连续两次降价,每部售价由3200元降到了2500元.设平均每月降价的百分率为x ,根据题意列出的方程是 .4.(2009年江苏省)某县2008年农民人均年收入为7 800元,计划到2010年,农民人均年收入达到9 100元.设人均年收入的平均增长率为x ,则可列方程 .5.(2009年甘肃庆阳)若关于x 的方程2210x x k ++-=的一个根是0,则k = .6.某果农2006年的年收入为5万元,由于党的惠农政策的落实,2008年年收入增加到7.2万元,则平均每年的增长率是__________.7.(2009年包头)将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是 cm 2.8.(2009年莆田)已知1O ⊙和2O ⊙的半径分别是一元二次方程()()120x x --=的两根,且122OO =,则1O ⊙和2O ⊙的位置关系是 .9.(2009年莆田)出售某种文具盒,若每个获利x 元,一天可售出()6x -个,则当x = 元时,一天出售该种文具盒的总利润y10.(2009年本溪)11.由于甲型H1N1流感(起初叫猪流感)的影响,在一个月内猪肉价格两次大幅下降.由原来每斤16元下调到每斤9元,求平均每次下调的百分率是多少?设平均每次下调的百分率为x ,则根据题意可列方程为 .B图②11.(2009年温州)方程(x-1)2=4的解是12.(2009临沂)某制药厂两年前生产1吨某种药品的成本是100万元,随着生产技术的进步,现在生产1吨这种药品的成本为81万元,.则这种药品的成本的年平均下降率为______________.13.(2009年哈尔滨)如果2是一元二次方程x 2+bx +2=0的一个根,那么常数b 的值为 .14、(2009年兰州)阅读材料:设一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1,x 2,则两根与方程系数之间有如下关系:x 1+x 2=-b a ,x 1·x 2=ca .根据该材料填空:已知x 1、x 2是方程x 2+6x +3=0的两实数根,则21x x +12xx 的值为 .15.(2009年宁德市)方程042=-x x 的解是______________.16.(2009年赤峰市)已知关于x 的方程x 2-3x+2k=0的一个根是1,则k=17、(2009年崇左)分解因式:2242x x -+= .18.(2009年崇左)一元二次方程230x mx ++=的一个根为1-,则另一个根为 .19.(2009年湖北十堰市)方程(x +2)(x -1)=0的解为 .20.(2009年山东青岛市)某公司2006年的产值为500万元,2008年的产值为720万元,则该公司产值的年平均增长率为 .21.(2009年山西省)请你写出一个有一根为1的一元二次方程: .22.(2009年山西省)请你写出一个有一根为1的一元二次方程: . 选择题23.(2009年黄石市)三角形两边的长是3和4,第三边的长是方程212350x x -+=的根,则该三角形的周长为( )A .14B .12C .12或14D .以上都不对24.(2009年铁岭市)为了美化环境,某市加大对绿化的投资.2007年用于绿化投资20万元,2009年用于绿化投资25万元,求这两年绿化投资的年平均增长率.设这两年绿化投资的年平均增长率为x ,根据题意所列方程为( )A .22025x =B .20(1)25x +=C .220(1)25x +=D .220(1)20(1)25x x +++=25.(2009年安徽)某市2008年国内生产总值(GDP )比2007年增长了12%,由于受到国际金融危机的影响,预计今年比2008年增长7%,若这两年GDP 年平均增长率为x %,则x %满足的关系是…………………………【 】A .12%7%%x +=B .(112%)(17%)2(1%)x ++=+C .12%7%2%x +=D .2(112%)(17%)(1%)x ++=+26.(2009武汉)5.已知2x =是一元二次方程220x mx ++=的一个解,则m 的值是( )A .3-B .3C .0D .0或327.(2009成都)若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是( )(A)1k >- (B) 1k >-且0k ≠ (c)1k < (D) 1k <且0k ≠28.(2009年湖南长沙)已知关于x 的方程260x kx --=的一个根为3x =,则实数k 的值为( )A .1B .1-C .2D .2-29.(2009山西省太原市)用配方法解方程2250x x --=时,原方程应变形为( ) A .()216x += B .()216x -=C .()229x +=D .()229x -=30. (2009襄樊市)为了改善居民住房条件,我市计划用未来两年的时间,将城镇居民的住房面积由现在的人均约为210m 提高到212.1m ,若每年的年增长率相同,则年增长率为( )A .9%B .10%C .11%D .12%31(2009呼和浩特)用配方法解方程23610x x -+=,则方程可变形为( )A .21(3)3x -=B .213(1)3x -=C .2(31)1x -=D .22(1)3x -=32(2009青海)方程29180x x -+=的两个根是等腰三角形的底和腰,则这个三角形的周长为( ) A .12 B .12或15 C .15 D .不能确定33(2009青海)在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图5所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是( )A .213014000x x +-=B .2653500x x +-=C .213014000x x --=D .2653500x x --=34. (2009襄樊市)如图5,在ABCD 中,AE BC ⊥于E ,AE EB EC a ===,且a 是一元二次方程2230x x +-=的根,则ABCD 的周长为( )A.4+ B.12+ C.2+ D.212+35.(2009年台州市)用配方法解一元二次方程542=-x x 的过程中,配方正确的是( )A .(1)22=+xB .1)2(2=-xC .9)2(2=+xD .9)2(2=-x36.(2009年甘肃庆阳)如图3,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为( )A .1米B .1.5米C .2米D .2.5米37.(2009年甘肃庆阳)方程240x -=的根是( )A .2x =B .2x =-C .1222x x ==-,D .4x =ADCEB图538.(2009年河南)方程2x =x 的解是 【 】(A )x =1 (B )x =0 (C) x 1=1 x 2=0 (D) x 1=﹣1 x 2=039.(2009年鄂州)10、某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x ,那么x 满足的方程是( ) A 、182)1(502=+x B .182)1(50)1(50502=++++x x C 、50(1+2x)=182 D .182)21(50)1(5050=++++x x40.(2009江西)为了让江西的山更绿、水更清,2008年省委、省政府提出了确保到2010年实现全省森林覆盖率达到63%的目标,已知2008年我省森林覆盖率为60.05%,设从2008年起我省森林覆盖率的年平均增长率为x ,则可列方程( )A .()60.051263%x +=B .()60.051263x +=C .()260.05163%x +=D .()260.05163x +=41. (2009年烟台市)设a b ,是方程220090x x +-=的两个实数根,则22a a b ++的值为( ) A .2006 B .2007 C .2008 D .200942.(2009年清远)方程216x =的解是( )A .4x =±B .4x =C .4x =-D .16x =43.(2009年衡阳市)两圆的圆心距为3,两圆的半径分别是方程0342=+-x x 的两个根,则两圆的位置关系是 ( ) A .相交 B .外离 C .内含 D .外切44.(2009年日照)若n (0n ≠)是关于x 的方程220x mx n ++=的根,则m +n 的值为A.1B.2C.-1D.-245.(2009年长沙)已知关于x 的方程260x kx --=的一个根为,则实数k 的值为( )A .1B .1-C .2D .2-46.(2009年包头)关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12x x 、,且22127x x +=,则212()x x -的值是( )A .1B .12C .13D .2547.(2009宁夏)2.某旅游景点三月份共接待游客25万人次,五月份共接待游客64万人次,设每月的平均增长率为x ,则可列方程为( )AA .225(1)64x +=B .225(1)64x -=C .264(1)25x +=D .264(1)25x -=48.(2009眉山)若方程2310x x --=的两根为1x 、2x ,则1211x x +的值为( )A .3B .-3C .13D .13-49.(2009东营)若n (0n ≠)是关于x 的方程220x mx n ++=的根,则m +n 的值为( )(A )1 (B )2(C )-1 (D )-250.(2009年南充)方程(3)(1)3x x x -+=-的解是( )A .0x =B .3x =C .3x =或1x =-D .3x =或0x =51.(2009年兰州)2008年爆发的世界金融危机,是自上世纪三十年代以来世界最严重的一场金融危机。

兰州市中考数学 有理数解答题(附答案)

兰州市中考数学 有理数解答题(附答案)

兰州市中考数学有理数解答题(附答案)一、解答题1.阅读材料,回答下列问题:数轴是学习有理数的一种重要工具,任何有理数都可以用数轴上的点表示,这样能够运用数形结合的方法解决一些问题。

例如,两个有理数在数轴上对应的点之间的距离可以用这两个数的差的绝对值表示;在数轴上,有理数3与1对应的两点之间的距离为|3−1|=2;在数轴上,有理数5与−2对应的两点之间的距离为|5−(−2)|=7;在数轴上,有理数−2与3对应的两点之间的距离为|−2−3|=5;在数轴上,有理数−8与−5对应的两点之间的距离为|−8−(−5)|=3;……如图1,在数轴上有理数a对应的点为点A,有理数b对应的点为点B,A,B两点之间的距离表示为|a−b|或|b−a|,记为|AB|=|a−b|=|b−a|.(1)数轴上有理数−10与−5对应的两点之间的距离等于________;数轴上有理数x与−5对应的两点之间的距离用含x的式子表示为________;若数轴上有理数x与−1对应的两点A,B之间的距离|AB|=2,则x等于________;(2)如图2,点M,N,P是数轴上的三点,点M表示的数为4,点N表示的数为−2,动点P表示的数为x.①若点P在点M,N之间,则|x+2|+|x−4|=________;若|x+2|+|x−4|═10,则x=________;②根据阅读材料及上述各题的解答方法,|x+2|+|x|+|x−2|+|x−4|的最小值等于________ . 2.点A在数轴上对应的数为3,点B对应的数为b,其中A、B两点之间的距离为5 (1)求b的值(2)当B在A左侧时,一点D从原点O出发以每秒2个单位的速度向左运动,请问D运动多少时间,可以使得D到A、B两点的距离之和为8?(3)当B在A的左侧时,一点D从O出发以每秒2个单位的速度向左运动,同时点M从B出发,以每秒1个单位的速度向左运动,点N从A出发,以每秒4个单位的速度向右运动;在运动过程中,MN的中点为P,OD的中点为Q,请问MN-2PQ的值是否会发生变化?若发生变化,请说明理由;如果没有变化,请求出这个值.3.已知表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离请试着探索:(1)找出所有符合条件的整数,使,这样的整数是________;(2)利用数轴找出,当时,的值是________;(3)利用数轴找出,当取最小值时,的范围是________.4.在数轴上,点A,B分别表示数a,b,则线段AB的长表示为|a-b|,例如:在数轴上,点A表示5.点B表示2,则线段AB的长表示为|5-2|=3:回答下列问题:(1)数轴上表示1和-3的两点之间的距离是________:(2)若AB=8,|b|=3|a|,求a,b的值.(3)若数轴上的任意一点P表示的数是x,且|x−a|+|x−b|的最小值为4,若a=3,求b的值5.已知数轴上有A.B. C三点,分别表示有理数−26,−10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒。

2009年甘肃兰州市初中毕业生学业考试试卷

2009年甘肃兰州市初中毕业生学业考试试卷

兰州市2009年初中毕业生学业考试试卷物理(A)注意事项:1.全卷共120分,考试时间100分钟。

2.考生必须将报考学校、姓名、准考证号、考场、座位号等个人信息填(涂)写在答题卡的相应位置上。

3.考生务必将答案直接填写(涂)在答题卡的相应位置上。

一、选择题(本题16小题,每小题3分,共48分。

在每小题给出的四个选项中只有一项是正确的。

)1. 下列现象中不能说明分子在做无规则运动的是A.春暖花开时,能闻到花的香味B.打开酒瓶盖能闻到酒的气味C.空气中飘动的浮尘D.在盛有热水的杯子中放几片茶叶,过一会整杯水都变成茶水2. 发现有人触电后,应采取的正确措施是A.赶快把触电人拉离电源B.赶快去叫医护人员来处理C.赶快切断电源或用干燥的木棒将电线挑开D.赶快用剪刀剪断电源线3. 如图1所示,将一块砖平放、立放、侧放时,它对地面的压强A.平放时最大B.立放时最大C.侧放时最大D.平放、立放、侧放时,一样大4. 如图2所示,当开关S闭合时,两只小灯泡能同时发光的正确电路是5.在图3所示的电路中,闭合开关S,能用电压表测量L1两端电压的正确电路是6.关于温度、热量、内能,以下说法正确的是A.物体的温度越高,所含的热量越多B.0℃的冰没有内能C.一个物体吸收热量时,温度不一定升高D.对物体做功,物体的温度一定升高7. 由于水的比热容比沙石或干泥土的比热容大,所以在沿海地区陆地表面的气温比海面的气温昼夜变化显著。

因此A.白天的海风多是从陆地吹向海面,夜晚的海风多是从海面吹向陆地B.白天的海风多是从海面吹向陆地,夜晚的海风多是从陆地吹向海面C.白天和夜晚的海风多是从陆地吹向海面D.白天和夜晚的海风多是从海面吹向陆地8. 下列说法正确的是A.核能是指原子核发生变化时所释放的能量B.煤炭、石油、天然气、太阳能都是不可再生能源C.原子弹和氢弹都是利用核裂变D.目前核电站获得核能的途径是核聚变9. 在图4所示的电路中,电源电压保持不变,闭合开关S ,将变阻器的滑片向右移动,则A.灯泡亮度变暗,安培表示数变小B.灯泡亮度变亮,安培表示数不变C.灯泡亮度不变,安培表示数变小D.灯泡亮度不变,安培表示数变大10. 下列实例中,力对物体没有做功的是A.起重机吊起重物B.马拉车,车未动C.跳水运动员从跳台跳下D.举重运动员,将杠铃举起11. 某物体在平衡力的作用下,做匀速直线运动。

2009年 全国 117个地区中考试卷及答案

2009年 全国 117个地区中考试卷及答案

2009年全国各地中考试题及答案112份下载地址(截止到7月11日)(7月7日前的为红色)2009年安徽省初中毕业学业考试数学试题及答案2009年安徽省芜湖市初中毕业学业考试题及答案2009年北京高级中学中等学校招生考试数学试题及答案2009年福建省福州市课改实验区中考试卷及参考答案2009年福建省龙岩市初中毕业、升学考试试题及答案2009年福建省宁德市初中毕业、升学考试试题及答案2009年福建省莆田市初中毕业、升学考试试卷及答案2009年福建省泉州市初中毕业、升学考试试题及答案2009年福建省漳州市初中毕业暨高中阶段招生题及答案2009年甘肃省定西市中考数学试卷及答案2009年甘肃省兰州市初中毕业生学业考试试卷及答案2009年甘肃省庆阳市高中阶段学校招生考试题及答案2009年广东省佛山市高中阶段学校招生考试题及答案2009年广东省茂名市高中阶段招生考试试题及答案2009年广东省梅州市初中毕业生学业考试试题及答案2009年广东省清远市初中毕业生学业考试试题及答案2009年广东省深圳市初中毕业生学业考试试卷及答案2009年广东省肇庆市初中毕业生学业考试试题及答案2009年广西省崇左市初中毕业升学考试数学试题及答案2009年广西省桂林市百色市初中毕业暨升学试卷及答案2009年广西省河池市初中毕业暨升学统一考试卷及答案2009年广西省贺州市初中毕业升学考试试卷及答案2009年广西省柳州市初中毕业升学考试数学试卷及答案2009年广西省南宁市中等学校招生考试题及答案2009年广西省钦州市初中毕业升学考试试题卷及答案2009年广西省梧州市初中毕业升学考试卷及答案2009年贵州省安顺市初中毕业、升学招生考试题及答案2009年贵州省黔东南州初中毕业升学统一考试题及答案2009年河北省初中毕业生升学文化课考试试卷及答案2009年河南省初中学业水平暨高级中等学校招生卷及答2009年黑龙江省哈尔滨市初中升学考试题及答案2009年黑龙江省牡丹江市初中毕业学业考试题及答案2009年黑龙江省齐齐哈尔市初中毕业学业考试题及答案2009年黑龙江省绥化市初中毕业学业考试卷及答案(答案为扫描版)2009年湖北省鄂州市初中毕业及高中阶段招生题及答案2009年湖北省恩施自治州初中毕业生学业考试题及答案2009年湖北省黄冈市初中毕业生升学考试试卷及答案2009年湖北省黄石市初中毕业生学业考试联考卷及答案2009年湖北省黄石市初中毕业生学业考试试题及答案2009年湖北省十堰市初中毕业生学业考试试题及答案2009年湖北省武汉市初中毕业生学业考试试题及答案2009年湖北省襄樊市初中毕业、升学统一考试题及答案2009年湖北省孝感市初中毕业生学业考试试题及答案2009年湖北省宜昌市初中毕业生学业考试试题及答案2009年湖南省长沙市初中毕业学业考试试卷及答案2009年湖南省常德市初中毕业学业考试试题及答案2009年湖南省郴州市初中毕业考试数学试题及答案2009年湖南省衡阳市初中毕业学业考试试卷及参考答案2009年湖南省怀化市初中毕业学业考试卷及答案2009年湖南省娄底市初中毕业学业考试试题及答案2009年湖南省邵阳市初中毕业学业水平考试卷及答案2009年湖南省湘西自治州初中毕业学业考试卷及答案2009年湖南省益阳市普通初中毕业学业考试试卷及答2009年湖南省株洲市初中毕业学业考试数学试题及答案2009年吉林省长春市初中毕业生学业考试试题及答案2009年吉林省初中毕业生学业考试数学试题及答案2009年江苏省苏州市中考数学试题及答案(答案为扫描版)2009年江苏省中考数学试卷及参考答案2009年江西省中等学校招生考试数学试题及参考答案2009年辽宁省本溪市初中毕业生学业考试试题及答案2009年辽宁省朝阳市初中升学考试数学试题及答案2009年辽宁省抚顺市初中毕业生学业考试试卷及答案2009年辽宁省锦州市中考数学试题及答案2009年辽宁省铁岭市初中毕业生学业考试试题及答案2009年内蒙古赤峰市初中毕业、升学统一考试题及答案(答案为扫描版)2009年内蒙古自治区包头市高中招生考试试卷及答案2009年宁夏回族自治区初中毕业暨高中阶段招生题及答案2009年山东省德州市中等学校招生考试数学试题及答案2009年山东省东营市中等学校招生考试试题及答案2009年山东省济南市高中阶段学校招生考试试题及答案2009年山东省济宁市高中阶段学校招生考试试题及答案2009年山东省临沂市中考数学试题及参考答案2009年山东省日照市中等学校招生考试试题及参考答案2009年山东省泰安市高中段学校招生考试试题及答案2009年山东省威海市初中升学考试数学试卷及参考答案2009年山东省潍坊市初中学业水平考试数学试题及答案2009年山东省烟台市初中学生学业考试试题及答案2009年山东省枣庄市中等学校招生考试数学试题及答案2009年山东省中等学校招生考试数学试题及参考答案2009年山东省淄博市中等学校招生考试试题及答案2009年山西省初中毕业学业考试数学试卷及答案2009年山西省太原市初中毕业学业考试试卷及答案2009年陕西省初中毕业学业考试数学试题及答案2009年上海市初中毕业统一学业考试数学试卷及答案2009年四川省成都市高中学校统一招生考试试卷及答案2009年四川省达州市高中招生统一考试题及答案2009年四川省高中阶段教育学校招生统一考试题及答案2009年四川省泸州市高中阶段学校招生统一考试题及答(答案为扫描版)2009年四川省眉山市高中阶段教育学校招生试题及答案2009年四川省南充市高中阶段学校招生统一考试卷及答2009年四川省遂宁市初中毕业生学业考试试题及答案2009年台湾第一次中考数学科试题及答案2009年天津市初中毕业生学业考试数学试题及答案2009年新疆维吾尔自治区初中毕业生学业考试题及答案2009年云南省高中(中专)招生统一考试试题及答案2009年浙江省杭州市各类高中招生文化考试试题与答案2009年浙江省湖州市初中毕业生学业考试试题及答案2009年浙江省嘉兴市初中毕业生学业考试试卷及答案2009年浙江省金华市初中毕业生学业考试试卷及答案2009年浙江省丽水市初中毕业生学业考试试卷及答案2009年浙江省丽水市初中毕业生学业考试试题及答案2009年浙江省宁波市初中毕业生学业考试试题及答案2009年浙江省衢州市初中毕业生学业考试数学卷及答案2009年浙江省台州市初中学业考试数学试题及参考答案2009年浙江省温州市初中毕业生学业考试试题及答案(答案为扫描版)2009年浙江省义乌市初中毕业生学业考试题及参考答案2009年浙江省舟山市初中毕业生学业考试数学卷及答案2009年重庆市初中毕业暨高中招生考试数学试题及答案2009年重庆市江津市初中毕业学业暨高中招生试题及答2009年重庆市綦江县初中毕业暨高中招生考试题及答案。

2009兰州中考卷

2009兰州中考卷

兰州市2009年初中毕业生学业考试试卷英 语(A )注意事项:1.全卷共150分,考试时间120分钟。

2.考生必须将报考学校、姓名、准考证号、考场、座位号等个人信息填(涂)写在答题卡的相应位置上。

3.考生务必将答案直接填写(涂)在答题卡的相应位置上。

第Ⅰ卷 (选择题 共80分)一、听力理解(分四小节,20小题,每小题1分,共20分)第一节:生活小常识,听下面5个关于生活小常识的问题,从A 、B 、C 、D 四个选项中选择一个能准确回答这个问题的选项,每个问题读两遍。

1. A.119B.120C.110D.112 2. 2.4.5.第二节:文明小常识,听下列五个小对话和对话后面的问题,从A 、B 、C 、D 四个选项中选出一个能准确回答这个问题的选项,每个对话和问题读两遍。

6. A.Honest B.Friendly C.Beautiful D.Shy7. A.Confident B.Slow C.Handsome D.AngryA B C D D BA CA B C D8. A.Copying answers from others. B.Listening to their teachersC.Asking the teachers questionsD.Finishing the paper without any help9. A.Playing computer games B.Smoking C.Watching TVD.Swimming10. A.Tall B.Easy-going C.Thin D.Great第三节:听下面五段小对话,每段对话后有一个问题,根据对话内容及问题,选择正确的答案,每段对话读两遍。

11. A.Plastic. B.Paper. C.Glass. D.Wood12. A.Because the plant is small. B.Because the plant needs sunshine.C.Because Tony has watered the plant.D.Because it is under the tree.13. A.Listening to music. B.Reading books.C.Listening to pop songs.D.Doing nothing.14. A.64 B.74 C.66 D.7115. A.1 B.4 C.7 D.8第四节:听下面两段较长的对话或短文,根据对话或短文内容及所给问题选择正确答案,每段对话或短文读两遍。

数学

数学

兰州市2009年初中毕业生学业考试试卷数学(A )参考答案及评分标准一、选择题(本大题15小题,每小题4分,共60分)二、填空题(本大题5小题,每小题4分,共20分) 16.1217.8 18.(215+,215-) 19. 10 20. 2008三、解答题(本大题9小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤) 21.(本题满分10分) (1)(本题满分5分) 解:原式=1323++--·················································································· 3分=1)32(3+-- ················································································· 4分=32+·························································································· 5分(第一步计算中,每算对一个给1分) (2)(本题满分5分) 解:移项,得2231x x -=- ································································································· 1分二次项系数化为1,得23122x x -=- ································································································· 2分配方231416x ⎛⎫-= ⎪⎝⎭································································································ 4分 由此可得11x =,212x =······························································································· 5分22.(本题满分5分)作出角平分线得2分,作出半圆再得2分,小结1分,共5分。

2009兰州中考数学试题及答案

2009兰州中考数学试题及答案

中考数学一.填空题:(每小题3分,共30分)1.___________21=+-; 2.2003年6月1日,世界最大的水利枢纽——三峡工程正式下闸蓄水.三峡水库的库容可达393 000 000 000立方米,用科学计数法表示该水库库容为 立方米; 3.分解因式:=-x x 3; 4.函数51-=x y 中,自变量x 的取值范围是 ; 5.在某次数学测验中,随机抽取了10份试卷,其成绩如下 85,81,89,81,72,82,77,81,79,83。

则这组数据的众数、平均数与中位数分别 为 , , ;6.二次函数562-+-=x x y ,当x 时,0<y ;且y 随x 的增大而减小;7.正方形的面积是144,则阴影部分面积的小正方形边长是 8其中≤50时,空气质量为优;50<≤100时,空气质量为良;100<≤150时,空气质量为轻为污染。

估计该城市一年(以365天计)中空气质量达到良以上的有 天。

9.如图:AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,如果AB =12cm ,CD =8cm ,那么AE 的长为 cm ;10.党的十六大提出全面建设小康社会,加快推进社会主义现代化, 力争国民生产总值到2020年比2000年翻两番。

在本世纪的头二十年 (2001年~2020年),要实现这一目标,以十年为单位计算,设每个十年的国民生产总值的增长率都是x ,那么x 满足的方程为 ; 二.选择题(每小题4分,共24分) 在每个小题给出的四个备选答案中,只有一个是符合题目要求的,请把所选答案前的字母填11.下列各式中正确的是 A. 242-=- B. ()33325= C.12121-=+ D. x x x 842÷=12.如果圆柱的母线长为5cm ,底面半径为2cm ,那么这个圆柱的侧面积是(A ) 102cm (B ) 102πcm (C ) 202cm (D ) 202πcm13.10名学生的平均成绩是x ,如果另外5名学生每人得84分,那么整个组的平均成绩是7题图(A )284+x (B ) 542010+x (C ) 158410+x (D ) 1542010+ 14.为了判断甲、乙两个小组学生英语口语测验成绩哪一组比较整齐,通常需要知道两组成绩的(A ) 平均数 (B ) 方差 (C ) 众数 (D ) 频率分布15.某游客为爬上3千米高的山顶看日出,先用1小时爬了2千米,休息0.5小时后,用1小时爬上山顶。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

兰州市2009年初中毕业生学业考试试卷数 学(A )注意事项:1.全卷共150分,考试时间120分钟。

2.考生必须将报考学校、姓名、准考证号、考场、座位号等个人信息填(涂)写在答题卡的 相应位置上。

3.考生务必将答案直接填写(涂)在答题卡的相应位置上。

一、选择题(本题15小题,每小题4分,共60分.在每小题给出的4个选项中,只有一项是符合题目要求的)1. 下列图形中,是轴对称图形但不是中心对称图形的是A B C D2. 已知两圆的半径分别为3cm 和2cm ,圆心距为5cm ,则两圆的位置关系是A .外离B .外切C .相交D .内切3. 如图1所示的几何体的俯视图是4.下列说法正确的是A .一个游戏的中奖概率是110,则做10次这样的游戏一定会中奖B .为了解全国中学生的心理健康情况,应该采用普查的方式C .一组数据6,8,7,8,8,9,10的众数和中位数都是8D .若甲组数据的方差20.01S =甲,乙组数据的方差20.1S =乙,则乙组数据比甲组数据稳定5. 函数y =x -2+31-x 中自变量x 的取值范围是A .x ≤2B .x =3C . x <2且x ≠3D .x ≤2且x ≠3 6. 如图2,在直角坐标系中,点A 是x 轴正半轴上的一个定点,点B 是 双曲线3y x=(0x >)上的一个动点,当点B 的横坐标逐渐增大时,O A B △的面积将会A .逐渐增大B .不变C .逐渐减小D .先增大后减小图2A. B .CD .图17. 2008年爆发的世界金融危机,是自上世纪三十年代以来世界最严重的一场金融危机。

受金融危机的影响,某商品原价为200元,连续两次降价%a 后售价为148元,下面所列方程正确的是 A .2200(1%)148a +=B .2200(1%)148a -=C .200(12%)148a -=D .2200(1%)148a -=8. 如图3,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为 A .5米 B .8米 C .7米 D .53米9. 在同一直角坐标系中,函数y m x m =+和函数222y m x x =-++(m 是常数,且0m ≠)的图象可能..是10. 如图4,丁轩同学在晚上由路灯A C 走向路灯B D ,当他走到点P 时,发现身后他影子的顶部刚好接触到路灯A C 的底部,当他向前再步行20m 到达Q 点时,发现身前他影子的顶部刚好接触到路灯B D 的底部,已知丁轩同学的身高是1.5m ,两个路灯的高度都是9m ,则两路灯之间的距离是A .24mB .25mC .28mD .30m11. 把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为A .2(1)3y x =---B .2(1)3y x =-+- C .2(1)3y x =--+D .2(1)3y x =-++12. 如图5,在平地上种植树木时,要求株距(相邻两树间 的水平距离)为4m .如果在坡度为0.75的山坡上种树,也要求株距为4m ,那么相邻两树间的坡面距离为 A .5m B .6m C .7m D .8m13. 二次函数c bx ax y ++=2的图象如图6所示,则下列关系式不正确的是 A .a <0 B.abc >0C.c b a ++>0D.ac b 42->014. 如图7所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是15. 如图8,点A 、B 、C 、D 为圆O 的四等分点,动点P 从圆心O 出发,沿O-C-D-O 的路线作匀速运动.设运动时间为t 秒, ∠APB 的度数为y 度,则下列图象中表示y 与t 之间函数关系最恰当的是二、填空题(本题5小题,每小题4分,共20分)16. 如图9所示,边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,则∠AED 的正切值等于 . 17. 兰州市某中学的铅球场如图10所示,已知扇形AOB 的面积是36米2,弧AB 的长度为9米,那么半径OA = 米.18. 如图11,若正方形OABC 的顶点B 和正方形ADEF 的顶点E 都在函数 1y x=(0x >)的图象上,则点E 的坐标是( , ).A .图7B .C .D .图9BA C图13C BA19. 阅读材料:设一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则两根与方程系数之间有如下关系:x1+x2=-ba,x1·x2=ca.根据该材料填空:已知x1、x2是方程x2+6x+3=0的两实数根,则21xx+12xx的值为.20. 二次函数223y x=的图象如图12所示,点A位于坐标原点,点1A,2A,3A,…,2008A在y轴的正半轴上,点1B,2B,3B,…,2008B在二次函数223y x=位于第一象限的图象上,若△011A B A,△122A B A,△233A B A,…,△200720082008A B A都为等边三角形,则△200720082008A B A的边长= .三、解答题(本题9小题,共70分.解答时写出必要的文字说明、证明过程或演算步骤)21.(本题满分10分)(1)(本小题满分5分)计算:11245 1.41)3-⎛⎫--++⎪⎝⎭(2)(本小题满分5分)用配方法解一元二次方程:2213x x+=22.(本题满分5分)如图13,要在一块形状为直角三角形(∠C为直角)的铁皮上裁出一个半圆形的铁皮,需先在这块铁皮上画出一个半圆,使它的圆心在线段AC上,且与AB、BC都相切.请你用直尺和圆规画出来(要求用尺规作图,保留作图痕迹,不要求写作法).23.(本题满分7分)今年兰州市在全市中小学中开展以感恩和生命为主题的教育活动,各中小学结合学生实际,开展了形式多样的感恩教育活动.下面图①,图②分别是某校调查部分学生是否知道母亲生日情况的扇形统计图和条形统计图.根据图上信息,解答下列问题:(1)求本次被调查学生的人数,并补全条形统计图;(2)若全校共有2700名学生,你估计这所学校有多少名学生知道母亲的生日?(3)通过对以上数据的分析,你有何感想?(用一句话回答)24.(本题满分7分) 端午节吃粽子是中华民族的传统习俗.五月初五早晨,妈妈为洋洋准备了四只粽子:一只香肠馅,一只红枣馅,两只什锦馅,四只粽子除内部馅料不同外,其他 均一切相同.洋洋喜欢吃什锦馅的粽子.(1)请你用树状图或列表法为洋洋预测一下吃两只粽子刚好都是什锦馅的概率;(2)在吃粽子之前,洋洋准备用如图所示的转盘进行吃粽子的模拟试验(此转盘被等分成 四个扇形区域,指针的位置是固定的,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置.若指针指向两个扇形的交线时,重新转动转盘),规定:连续转动 两次转盘表示随机吃两只粽子,从而估计吃两只粽子刚好都是什锦馅的概率.你认为这种模拟试验的方法正确吗?试说明理由.25.(本题满分7分) 如图14,已知(4)A n -,,(24)B -,是一次函数y kx b =+的图象和反比例函数m y x=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线A B 与x 轴的交点C 的坐标及△AO B 的面积; (3)求方程0=-+xm b kx 的解(请直接写出答案); (4)求不等式0<-+xm b kx 的解集(请直接写出答案).26.(本题满分7分)如图15,在四边形ABCD 中,E 为AB 上一点,△ADE 和△BCE 都是等边三角形,AB 、BC 、CD 、DA 的中点分别为P 、Q 、M 、N ,试判断四边形PQMN 为怎样的四边形,并证明你的结论.27.(本题满分9分)如图16,在以O为圆心的两个同心圆中,AB经过圆心O,且与小圆相交于点A、与大圆相交于点B.小圆的切线AC与大圆相交于点D,且CO平分∠ACB.(1)试判断BC所在直线与小圆的位置关系,并说明理由;(2)试判断线段AC、AD、BC之间的数量关系,并说明理由;(3)若8cm10cm,,求大圆与小圆围成的圆环的A B B C==面积.(结果保留π)28.(本题满分9分)如图17,某公路隧道横截面为抛物线,其最大高度为6米,底部宽度OM为12米. 现以O点为原点,OM所在直线为x轴建立直角坐标系.(1)直接写出点M及抛物线顶点P的坐标;(2)求这条抛物线的解析式;(3)若要搭建一个矩形“支撑架”AD- DC- CB,使C、D点在抛物线上,A、B点在地面OM上,则这个“支撑架”总长的最大值是多少?29.(本题满分9分)如图①,正方形ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A→B→C→D匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,设运动的时间为t秒.(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;(2)求正方形边长及顶点C的坐标;(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标;(4)如果点P、Q保持原速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由.兰州市2009年初中毕业生学业考试试卷数学(A )参考答案及评分标准二、填空题(本大题5小题,每小题4分,共20分) 16.1217.8 18.(215+,215-)19. 10 20. 2008三、解答题(本大题9小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤) 21.(本题满分10分) (1)(本题满分5分) 解:原式=1323++-- ····························································································3分=1)32(3+-- ···························································································4分 =32+····································································································5分(第一步计算中,每算对一个给1分) (2)(本题满分5分) 解:移项,得2231x x -=- ·············································································································1分二次项系数化为1,得23122x x -=-·············································································································2分配方22233132424x x ⎛⎫⎛⎫-+=-+ ⎪ ⎪⎝⎭⎝⎭231416x ⎛⎫-= ⎪⎝⎭ ············································································································4分 由此可得3144x -=±11x =,212x =···········································································································5分22.(本题满分5分)作出角平分线得2分,作出半圆再得2分,小结1分,共5分。

相关文档
最新文档