一次函数与四边形存在性问题

合集下载

一次函数之平行四边形存在性问题

一次函数之平行四边形存在性问题

一次函数与平行四边形1.线段中点公式平面直角坐标系中,点A 坐标为(x 1,y 1),点B 坐标为(x 2,y 2),则线段AB 的中点P 的坐标为 (2,22121y y x x ++) 例:如图,已知点A (-2,1),B (4,3),则线段AB 的中点P 的坐标是________.2.线段的平移平面内,线段AB 平移得到线段A'B' ,则①AB ∥A'B' ,AB =A'B' ;②AA'∥BB',AA'= BB'. 如图,线段AB 平移得到线段A'B' ,已知点A (-2,2),B (-3,-1), B' (3,1),则点A'的坐标是________.%例:如图,在平面直角坐标系中,□ABCD 的顶点坐标分别为A (x 1,y 1)、B (x 2,y 2)、C (x 3,y 3)、D (x 4,y 4),已知其中3个顶点的坐标,如何确定第4个顶点的坐标"例:如图,已知□ABCD 中A (-2,2),B (-3,-1), C (3,1),则点D 的坐标是________. 方法一:利用线段平移总结:x 1-x 2= x 4-x 3,y 1-y 2= y 4-y 3 或者 x 4-x 1= x 3-x 2,y 4-y 1= y 3-y 2 等方法二:利用中点公式总结:x 1+x 3= x 2+x 4,y 1+y 3= y 2+y 4类型一:三定一动例1 、如图,平面直角坐标中,已知中A(-1,0),B(1,-2),C (3,1),点D是平面内一动点,若以点A、B、C、D为顶点的四边形是平行四边形,则点D的坐标是_________________________________.*总结:三定一动问题,可以通过构造中点三角形得以解决.说明:若题中四边形ABCD是平行四边形,则点D的坐标只有一个结果________【例1】.一次函数y =x +3与y =﹣x +q 的图象都过点A (m ,0),且与y 轴分别交于点B 、C .(1)试求△ABC 的面积;(2)点D 是平面直角坐标系内的一点,且以点A 、C 、B 、D 为顶点的四边形是平行四边形,请直接写出点D 的坐标;(3)过△ABC 的顶点能否画一条直线,使它能平分△ABC 的面积若能,求出直线的函数关系式,若不能,说明理由.【解答】解:(1)将点A (m ,0)代入y =x +3中,得$m +3=0,解得m =﹣3,即点A (﹣3,0),将点A (﹣3,0)代入y =﹣x +q 中,得q =﹣3,∴点B (0,3)、C (0,﹣3),故S =12×BC ×AO =9;(2)满足条件的D 点坐标为D (﹣3,6)、D (﹣3,﹣6)、D (3,0);(3)若过点A ,则得直线l :y =0;若过点C ,则得直线l :y =﹣3x ﹣3;@若过点B ,则得直线l :y =3x +3.例2.如图,在平面直角坐标系xOy 中,已知直线PA 是一次函数y =x +m (m >0)的图象,直线PB 是一次函数y =﹣3x +n (n >m )的图象,点P 是两直线的交点,点A 、B 、C 、Q 分别是两条直线与坐标轴的交点.(1)用m 、n 分别表示点A 、B 、P 的坐标及∠PAB 的度数;(2)若四边形PQOB 的面积是112,且CQ :AO =1:2,试求点P 的坐标,并求出直线PA 与PB的函数表达式;(3)在(2)的条件下,是否存在一点D ,使以A 、B 、P 、D 为顶点的四边形是平行四边形若存在,求出点D 的坐标;若不存在,请说明理由.【解答】解:(1)在直线y =x +m 中,令y =0,得x =﹣m .∴点A (﹣m ,0).…在直线y =﹣3x +n 中,令y =0,得x =x 3. ∴点B (x 3,0). 由{x =x +x x =−3x +x ,得{x =x −x 4x =x +3x 4,∴点P (x −x 4,x +3x 4). 在直线y =x +m 中,令x =0,得y =m ,∴|﹣m |=|m |,即有AO =QO .又∵∠AOQ =90°,∴△AOQ 是等腰直角三角形,∴∠PAB =45°.(2)∵CQ :AO =1:2,,∴(n ﹣m ):m =1:2,整理得3m =2n ,∴n =32m , ∴x +3x 4=32x +3x 4=98m , 而S 四边形PQOB =S △PAB ﹣S △AOQ =12(x 3+m )×(98m )−12×m ×m =1132m 2=112, 解得m =±4,∵m >0,∴m =4,∴n =32m =6,∴P (12,92). !∴PA 的函数表达式为y =x +4,PB 的函数表达式为y =﹣3x +6.(3)存在.过点P 作直线PM 平行于x 轴,过点B 作AP 的平行线交PM 于点D 1,过点A 作BP 的平行线交PM 于点D 2,过点A 、B 分别作BP 、AP 的平行线交于点D 3.①∵PD 1∥AB 且BD 1∥AP ,∴PABD 1是平行四边形.此时PD 1=AB ,易得x 1(132,92); ②∵PD 2∥AB 且AD 2∥BP ,∴PBAD 2是平行四边形.此时PD 2=AB ,易得x 2(−112,92);③∵BD 3∥AP 且AD 3∥BP ,此时BPAD 3是平行四边形.】∵BD 3∥AP 且B (2,0),∴y BD 3=x ﹣2.同理可得y AD 3=﹣3x ﹣12{x =x −2x =−3x −12, 得{x =−52x =−92,∴x 3(−52,−92).3.如图,在等边△ABC 中,BC =8cm ,射线AG ∥BC ,点E 从点A 出发沿射线AG 以1cm /s 的速度运动,同时点F 从点B 出发沿射线BC 以2cm /s 的速度运动,设运动时间为t (s ).(1)连接EF ,当EF 经过AC 边的中点D 时,求证:△ADE ≌△CDF ;(2)填空:#①当t 为 s 时,以A 、F 、C 、E 为顶点的四边形是平行四边形;②当t 为 s 时,四边形ACFE 是菱形.【解答】(1)证明:∵AG ∥BC ,∴∠EAD =∠DCF ,∠AED =∠DFC ,∵D 为AC 的中点,∴AD =CD ,∵在△ADE 和△CDF 中,{∠xxx =∠xxx∠xxx =∠xxx xx =xx,∴△ADE ≌△CDF (AAS );(2)解:①当点F 在C 的左侧时,根据题意得:AE =tcm ,BF =2tcm ,·则CF =BC ﹣BF =6﹣2t (cm ),∵AG ∥BC ,∴当AE =CF 时,四边形AECF 是平行四边形,即t =8﹣2t ,解得:t =83; 当点F 在C 的右侧时,根据题意得:AE =tcm ,BF =2tcm ,则CF =BF ﹣BC =2t ﹣8(cm ),∵AG ∥BC ,∴当AE =CF 时,四边形AEFC 是平行四边形,即t =2t ﹣8,]解得:t =8;综上可得:当t =83或8s 时,以A 、C 、E 、F 为顶点四边形是平行四边形.②若四边形ACFE 是菱形,则有CF =AC =AE =8,则此时的时间t =8÷1=8(s );故答案是:83或8;8.|4.已知,Rt △OAB 的两直角边OA 、OB 分别在x 轴和y 轴上,如图1,A ,B 坐标分别为(﹣2,0),(0,4),将△OAB 绕O 点顺时针旋转90°得△OCD ,连接AC 、BD 交于点E .(1)求证:△ABE ≌△DCE .(2)M 为直线BD 上动点,N 为x 轴上的点,若以A ,C ,M ,N 四点为顶点的四边形是平行四边形,求出所有符合条件的M 点的坐标.(3)如图2,过E 点作y 轴的平行线交x 轴于点F ,在直线EF 上找一点P ,使△PAC 的周长最小,求P 点坐标和周长的最小值.【分析】(1)由A 、B 的坐标可求得AO 和OB 的长,由旋转的性质可求得OC 、OD 的长,从而可求得∠AEB =90°,再由勾股定理可求得CD 和AB 的长,可求得AB =CD ,可证得△ABE ≌△DCE ;(2)由B 、D 坐标可求得直线BD 解析式,当M 点在x 轴上方时,则有CM ∥AN ,则可求得M 点纵坐标,代入直线BD 解析式可求得M 点坐标,当M 点在x 轴下方时,同理可求得M 点纵坐标,则可求得M 点坐标;)(3)由AE =DE 可知A 、D 关于EF 对称,连接CD 交EF 于点P ,则P 点即为满足条件的点,由C 、D 坐标可求得直线CD 的解析式,则可求得P 点坐标,利用勾股定理可分别求得AC 和CD 的长,则可求得此时△PAC 的周长.【解答】解:(1)∵A (﹣2,0),B (0,4),∴OA =2,OB =4,∵将△OAB 绕O 点顺时针旋转90°得△OCD ,∴OC =OA =2,OD =OB =4,AB =CD ,∴∠ACO =∠ECB =∠CBE =45°,∴∠CEB =90°,∴∠AEB =∠CED ,且CE =BE ,在Rt △ABE 和Rt △DCE 中:{xx =xx xx =xx∴Rt △ABE ≌Rt △DCE (HL );(2)由(1)可知D (4,0),且B (0,4),∴直线BD 解析式为y =﹣x +4,当M 点在x 轴上方时,则有CM ∥AN ,即CM ∥x 轴,∴M 点到x 轴的距离等于C 点到x 轴的距离,∴M 点的纵坐标为2,在y =﹣x +4中,令y =2可得x =2,∴M (2,2);当M 点在x 轴下方时,同理可得M 点的纵坐标为﹣2,(在y =﹣x +4中,令y =﹣2可求得x =6,∴M 点的坐标为(6,﹣2);综上可知M 点的坐标为(2,2)或(6,﹣2);(3)由(1)可知AE =DE ,∴A 、D 关于直线EF 对称,连接CD 交EF 于点P ,则PA =PD , ∴PA +PC =PD +PC =CD ,∴满足△PAC 的周长最小,∵C (0,2),D (4,0),∴可设直线CD 解析式为y =kx +2,∴4k +2=0,解得k =−12, ∴直线CD 解析式为y =−12x +2,∵A (﹣2,0),D (4,0),∴F (1,0),即直线EF 解析式为x =1,在y =−12x +2中,令x =1可得y =32, ∴P (1,32), 在Rt △AOC 中,由勾股定理可求得AC =2√2, 在Rt △COD 中,由勾股定理可求得CD =√22+42=2√5, ∴PA +PC +AC =CD +AC =2√5+2√2, 即△PAC 的周长最小值为2√5+2√2.。

一次函数综合—线段和差、存在性问题解析

一次函数综合—线段和差、存在性问题解析

一次函数的应用—线段和差、存在性问题一、一次函数线段和差最值问题【知识点】1. 最短路径原理【原理1】作法作图原理在直线l 上求一点P,使PA+PB 值最小。

连AB,与l 交点即为P.两点之间线段最短.PA+PB 最小值为AB.【原理2】作法作图原理在直线l 上求一点P,使PA+PB 值最小.作 B 关于l 的对称点B'连A B',与l 交点即为P.两点之间线段最短.PA+PB 最小值为A B'.【原理3】作法作图原理在直线l 上求一点P,使作直线AB,与直线l的交点即为P.三角形任意两边之差小于第三边.≤AB .PBPA-(1)求线段和最小时动点坐标或直线解析式; (2)求三角形周长最小值;(3)求线段差最大时点的坐标或直线解析式。

3. 口诀:“和小异,差大同”(一)一次函数线段和最小值问题【例题讲解】★★☆例题1.在平面直角坐标系xOy 中,y 轴上有一点P ,它到点(4,3)A ,(3,1)B 的距离之和最小,则点P 的坐标是( ) A .(0,0)B .4(0,)7C .5(0,)7D .4(0,)5【答案】C的值最大 .【原理 4】作法作图原理在直线 l 上求一点 P ,使的值最大 .作 B 关于 l 的对称点 B '作直线 A B ',与 l 交点即为 P .三角形任意两边之差小于第三边.≤A B ' .PB PA -PB PA -PB PA -【解析】解:作A 关于y 轴的对称点C ,连接BC 交y 轴于P ,则此时AP PB +最小,即此时点P 到点A 和点B 的距离之和最小,(4,3)A ,(4,3)C ∴-,设直线CB 的解析式是y kx b =+,把C 、B 的坐标代入得:3413k bk b =-+⎧⎨-=+⎩,解得:47k =-,57b =,4577y x ∴=-+,把0x =代入得:57y =, 即P 的坐标是5(0,)7,故选:C .【备注】本题考查了轴对称-最短路线问题,一次函数的解析式,坐标与图形性质等知识点,关键是能画出P 的位置,题目比较典型,是一道比较好的题目.★★☆练习1.如图,在平面直角坐标系中,已知点(2,3)A ,点(2,1)B -,在x 轴上存在点P 到A ,B 两点的距离之和最小,则P 点的坐标是 .【答案】(1,0)-【解析】解:作A 关于x 轴的对称点C ,连接BC 交x 轴于P ,则此时AP BP +最小,A 点的坐标为(2,3),B 点的坐标为(2,1)-,(2,3)C ∴-,设直线BC 的解析式是:y kx b =+,把B 、C 的坐标代入得:2123k b k b -+=⎧⎨+=-⎩解得11k b =-⎧⎨=-⎩.即直线BC 的解析式是1y x =--,当0y =时,10x --=,解得:1x =-,P ∴点的坐标是(1,0)-.故答案为:(1,0)-.【备注】本题考查了一次函数图象上点的坐标特征,用待定系数法求一次函数的解析式,轴对称-最短路线问题的应用,关键是能找出P 点,题目具有一定的代表性,难度适中.★★☆练习2.如图,直线34120x y +-=与x 轴、y 轴分别交于点B 、A 两点,以线段AB 为边在第一象限内作正方形ABCD .若点P 为x 轴上的一个动点,求当PC PD +的长最小时点P 的坐标.【答案】详见解析【解析】解:直线34120x y +-=与x 轴、y 轴分别交于点B 、A 两点,则点A 、B 的坐标分别为:(0,3),(4,0),如图所示,过点C 作CH x ⊥轴交于点H ,90ABO BAO ∠+∠=︒,90ABO CBH ∠+∠=︒,CBH BAO ∴∠=∠,又90AOB CHB ∠=∠=︒,AB BC =,()AOB BHC AAS ∴∆≅∆,4CH OB ∴==,3HB OA ==,故点(7,4)C ,同理可得点(3,7)D ,确定点C 关于x 轴的对称点(7,4)C '-,连接C D '交x 轴于点P ,则此时PC PD +的长最小,将点C '、D 的坐标代入一次函数表达式并解得: 直线CD 的表达式为:116144y x =-+, 当0y =时,6111x =,故点61P,0).(11【备注】本题考查的是一次函数上坐标点的特征,涉及到点的对称性、正方形性质等,本题的难点在于:通过证明三角形全等,确定点C、D的坐标.★★☆例题2.在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,3OB=,D为边OB的中点,若E为x轴上的一个动点,当CDE∆的周长最小时,求点E OA=,4的坐标()A.(3,0)-B.(1,0)C.(0,0)D.(3,0)【答案】B【解析】解:如图,作点D关于x轴的对称点D',连接CD'与x轴交于点E,连接DE.若在边OA上任取点E'与点E不重合,连接CE'、DE'、D E''由DE CE D E CE CD D E CE DE CE'+'=''+'>'='+=+,可知CDE∆的周长最小.OB=,D为边OB的中点,42∴=,OD∴,(0,2)D在矩形OACB 中,3OA =,4OB =,D 为OB 的中点,3BC ∴=,2D O DO '==,6D B '=,//OE BC ,Rt ∴△D OE Rt '∽△D BC ',∴OE D OBC D B '=' 即236OE = 1OE =,∴点E 的坐标为(1,0)故选:B .【备注】此题主要考查轴对称--最短路线问题,解决此类问题,一般都是运用轴对称的性质,将求折线问题转化为求线段问题,其说明最短的依据是三角形两边之和大于第三边.★★☆练习1.如图,在平面直角坐标系中,点A 、B 的坐标分别为(1,4)和(3,0),点C 是y 轴上的一个动点,连接AC 、BC ,当ABC ∆的周长最小值时,ABC ∆的面积为 .【答案】3【解析】解:如图,作点A 关于y 轴的对称点A ',连接A B '交y 轴于点C ',此时ABC ∆'的周长最小,设直线A B ' 的解析式为y kx b =+,(1,4)A '-,(3,0)B ,∴430k b k b -+=⎧⎨+=⎩,1k ∴=-,3b =,∴直线A B ' 的解析式为3y x =-+,当0x =时,3y =,(0,3)C ∴',ABC AA BAA C S SS∆'''∴=-11242122=⨯⨯-⨯⨯ 413=-=.所以ABC ∆'的面积为3.故答案为:3.【备注】本题考查了轴对称、最短路线问题、坐标与图形性质、三角形的面积,解决本题的关键是掌握轴对称的性质.★★☆练习2.如图,在平面直角坐标系中,直线122y x =+与x 轴、y 轴分别交于A 、B 两点,以AB 为边 在第二象限内作正方形ABCD .(1)求点A 、B 的坐标,并求边AB 的长;(2)求点C 和点D 的坐标;(3)在x 轴上找一点M ,使MDB ∆的周长最小,请求出M 点的坐标,并直接写出MDB ∆的周长最小值.【答案】详见解析【解析】解: (1)对于直线122y x =+, 令0x =,得到2y =;令0y =,得到4x =-,(4,0)A ∴-,(0,2)B ,即4OA =,2OB =, 则224225AB =+=;(2)过D 作DE x ⊥轴,过C 作CF y ⊥轴,四边形ABCD 为正方形,AB BC AD ∴==,90ABC BAD BFC DEA AOB ∠=∠=∠=∠=∠=︒,90FBC ABO ∠+∠=︒,90ABO BAO ∠+∠=︒,90DAE BAO ∠+∠=︒,FBC OAB EDA ∴∠=∠=∠,()DEA AOB BFC AAS ∴∆≅∆≅∆,2AE OB CF ∴===,4DE OA FB ===,即426OE OA AE =+=+=,246OF OB BF =+=+=,则(6,4)D -,(2,6)C -;(3)如图所示,连接BD ,找出B 关于y 轴的对称点B ',连接DB ',交x 轴于点M ,此时BM MD DM MB DB +=+'='最小,即BDM ∆周长最小,(0,2)B ,(0,2)B ∴'-,设直线DB '解析式为y kx b =+,把(6,4)D -,(0,2)B '-代入得:642k b b -+=⎧⎨=-⎩,解得:1k =-,2b =-,∴直线DB '解析式为2y x =--,令0y =,得到2x =-,则M 坐标为(2,0)-, 此时MDB ∆的周长为21062+.【备注】本题属于一次函数综合题,涉及的知识有:待定系数法求一次函数解析式,坐标与图形性质,勾 股定理,全等三角形的判定与性质,正方形的性质,对称性质,以及一次函数与坐标轴的交点,熟练掌握 性质及定理是解本题的关键(二)一次函数线段差最大值问题【例题讲解】★★☆例题1.已知,如图点(1,1)A ,(2,3)B -,点P 为x 轴上一点,当||PA PB -最大时,点P的坐标为( )A .1(,0)2B .5(,0)4C .1(,0)2-D .(1,0)【答案】A【解析】解:作A 关于x 轴对称点C ,连接BC 并延长交x 轴于点P , (1,1)A ,C ∴的坐标为(1,1)-,连接BC ,设直线BC 的解析式为:y kx b =+,∴123k b k b +=-⎧⎨+=-⎩, 解得:21k b =-⎧⎨=⎩, ∴直线BC 的解析式为:21y x =-+, 当0y =时,12x =, ∴点P 的坐标为:1(2,0),当B ,C ,P 不共线时,根据三角形三边的关系可得:||||PA PB PC PB BC -=-<,∴此时||||PA PB PC PB BC -=-=取得最大值.故选:A .【备注】此题考查了轴对称、待定系数法求一次函数的解析式以及点与一次函数的关系.此题难度较大,解题的关键是找到P 点,注意数形结合思想与方程思想的应用.★★☆练习1.平面直角坐标系中,已知(4,3)A 、(2,1)B ,x 轴上有一点P ,要使PA PB -最大,则P 点坐 标为【答案】(1,0)【解析】解:(4,3)A 、(2,1)B ,x 轴上有一点P ,||PA PB AB ∴-,∴当A ,B ,P 三点共线时,PA PB -最大值等于AB 长,此时,设直线AB 的解析式为y kx b =+,把(4,3)A 、(2,1)B 代入,可得3412k b k b =+⎧⎨=+⎩, 解得11k b =⎧⎨=-⎩, ∴直线AB 的解析式为1y x =-,令0y =,则1x =,P ∴点坐标为(1,0),故答案为:(1,0). 【备注】本题主要考查了坐标与图形性质,利用待定系数法求得直线AB 的解析式是解决问题的关键. ★★☆练习2.如图,在平面直角坐标系中,点A 的坐标为(0,4),点B 的坐标为(6,0),点P 在一次函数1322y x =+的图象上运动,则PB PA -的最大值为( )A .2B .233C .4D .143【答案】C【解析】解:如图,作点A 关于直线1322y x =+的对称点K ,连接AK 交直线于H ,连接PK .AK PH ⊥,(0,4)A ,∴直线AK 的解析式为24y x =-+,由132224y x y x ⎧=+⎪⎨⎪=-+⎩,解得12x y =⎧⎨=⎩, (1H ∴,20,AH KH =,(2,0)K ∴.PB PA PB PK KB ∴-=-,∴当点P 在BK 的延长线上时,P B P K BK '-'=的值最大,最大值为624-=,故选:C .【备注】本题考查一次函数图象上的点的特征、轴对称等知识,解题的关键是学会利用对称解决最值问题 属于中考常考题型.【题型知识点总结】一次函数最短路径问题注意事项:1. 根据“和小异,差大同”判断是否需要作对称;2. 作对称时注意要选取动点运动的直线为对称轴作某一定点的对称点。

一次函数之矩形存在性问题

一次函数之矩形存在性问题

一次函数之矩形存在性问题问题背景研究一个一次函数$f(x)=kx+b$,其中$k$和$b$是常数。

现在有一个问题:对于任意$k$和$b$,是否存在一条与$x$轴和$y$轴分别相交于四个整点的矩形,使得这个矩形内部恰好有两个整点落在$f(x)$上?问题解答我们可以分两步来回答这个问题。

首先,回忆一下函数图像中与$x$轴和$y$轴相交于整点的情形。

不难发现,$f(x)=kx+b$与$x$轴相交于$x=-\frac{b}{k}$,与$y$轴相交于$(0,b)$。

因此,只要存在一个解,满足$-\frac{b}{k}$和$0$都是整数,即可得到一条相交于四个整点的直线。

其次,我们来看如何确定这个直线是否与$f(x)$恰好有两个整点的交点。

由于$f(x)$是一次函数,在$x$增大的过程中,它的取值是连续变化的。

因此,如果$f(x)$在某个区间内恰好取到了两个整数,那么在这个区间内必然存在一个值$x_0$,使得$f(x_0)$就是这两个整数的平均值。

因此,我们只需要找到这样一个区间,使得这个区间的两个整数均落在$f(x)$上,即可得到一条与$f(x)$恰好有两个整点的相交点。

综上,我们可以得出结论:对于任意$k$和$b$,都存在一条与$x$轴和$y$轴分别相交于四个整点的矩形,使得这个矩形内部恰好有两个整点落在$f(x)$上。

结论说明这个结论具有较强的普遍适用性。

首先,由于我们并没有对$k$和$b$的取值范围进行限制,因此这个结论适用于所有一次函数$f(x)=kx+b$的情况。

其次,由于我们利用了$f(x)$的连续性,因此这个结论也适用于所有连续函数的情况。

最后,由于我们没有涉及到任何特定的整点或整数的性质,因此这个结论也是普遍成立的。

参考文献无。

一次函数中的(特殊图形)存在性问题(解析版)八年级数学上册同步考点归类培优题库

一次函数中的(特殊图形)存在性问题(解析版)八年级数学上册同步考点归类培优题库

专题十五 一次函数中的(特殊图形)存在性问题考点一 直角三角形存在性问题【方法点拨】分类讨论哪个角为直角,一般分三种情况,简称“两垂线+一圆”1.如图1,在平面直角坐标系中,点A 坐标为(﹣4,4),点B 的坐标为(4,0).(1)求直线AB 的解析式;(2)点M 是坐标轴上的一个点,若AB 为直角边构造直角三角形△ABM ,请求出满足条件的所有点M 的坐标;(3)如图2,以点A 为直角顶点作∠CAD =90°,射线AC 交x 轴的负半轴与点C ,射线AD 交y 轴的负半轴与点D ,当∠CAD 绕点A 旋转时,OC ﹣OD 的值是否发生变化?若不变,直接写出它的值;若变化,直接写出它的变化范围(不要解题过程).【思路点拨】(1)由A 、B 两点的坐标利用待定系数法可求得直线AB 的解析式;(2)分别过A 、B 两点作AB 的垂线,与坐标轴的交点即为所求的M 点,再结合相似三角形的性质求得OM 的长即可求得点M 的坐标;(3)过A 分别作x 轴和y 轴的垂线,垂足分别为E 、F ,可证明△AEC ≌△AFD ,可得到EC =FD ,从而可把OC ﹣OD 转化为FD ﹣OD ,再利用线段的和差可求得OC ﹣OD =OE +OF =8;【解析】解:(1)设直线AB 的解析式为:y =kx +b (k ≠0).∵点A (﹣4,4),点B (0,2)在直线AB 上,∴{−4k +b =4b =2,解得{k =−12b =2, ∴直线AB 的解析式为:y =−12x +2;(2)∵△ABM 是以AB 为直角边的直角三角形,∴有∠BAM =90°或∠ABM =90°,①当∠BAM =90°时,如图1,过A 作AB 的垂线,交x 轴于点M 1,交y 轴于点M 2,则可知△AEM 1∽△BEA ,∴M 1E AE =AE BE ,由(1)可知OE =OB =AE =4,∴M 1E 4=48,解得M 1E =2, ∴OM 1=2+4=6,∴M 1(﹣6,0),∵AE ∥y 轴,∴M 1EM 1O =AEOM 2,即26=4OM 2,解得OM 2=12,∴M 2(0,12);②当∠ABM =90°时,如图2,过B 作AB 的垂线,交y 轴于点M 3,设直线AB交y轴于点E,则由(1)可知E(0,2),∴OE=2,OB=4,由题意可知△BOE∽△M3OB,∴OEOB =OBOM3,即24=4OM3,解得OM3=8,∴M3(0,﹣8),综上可知点M的坐标为(﹣6,0)或(0,12)或(0,﹣8);(3)不变.理由如下:过点A分别作x轴、y轴的垂线,垂足分别为G、H,如图3.则∠AGC=∠AHD=90°,又∵∠HOC=90°,∴∠GAH=90°,∴∠DAG+∠DAH=90°,∵∠CAD=90°,∴∠DAG+∠CAG=90°,∴∠CAG=∠DAH.∵A (﹣4,4),∴OG =AH =AG =OH =4.在△AGC 和△AHD 中{∠AGC =∠AHD AG =AH ∠CAG =∠DAH∴△AGC ≌△AHD (ASA ),∴GC =HD .∴OC ﹣OD =(OG +GC )﹣(HD ﹣OH )=OG +OH =8.故OC ﹣OD 的值不发生变化,值为8.【点睛】本题为一次函数的综合应用,涉及知识点有待定系数法、全等三角形的判定和性质、相似三角形的判定和性质及分类讨论思想等.在(1)中注意待定系数法的应用步骤,在(2)中确定出M 点的位置是解题的关键,在(3)中构造三角形全等是解题的关键.本题考查知识点较多,综合性较强,难度适中.2.已知,如图1,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3,过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交OA 于点E .(1)求经过点E 、D 的直线解析式;(2)将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC 交于点G ,使得EF =2GO ,请求出此时OG 的长度.(3)对于(2)中的点G ,在直线ED 上是否存点P ,使得点P 与点D 、G 构成的△DPG 是直角三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.【思路点拨】(1)只要证明△ADE ∽△BCD ,可得AD BC =AE DB ,求出AE 即可解决问题;(2)由△ADE ≌△RDG ,可得AF =RG ,设OG =m ,则AF =GR =2﹣m ,构建方程即可解决问题;(3)分两种情形①作GP ⊥BE 于P ,则△PDG 是直角三角形.②作P ′G ⊥DG 交直线DE 于P ′,则△DGP ′是直角三角形.分别根据一次函数利用方程组确定交点坐标即可;【解析】解:(1)如图1中,∵四边形ABCO 是矩形,∴∠OAB =∠B =90°,∵∠AOD =∠DOC =45°,∴OA =AD =2,DB =1,∵DE ⊥DC ,∴∠EDC =90°,∴∠ADE +∠BDC =90°,∵∠BDC +∠BCD =90°,∴∠ADE =∠DCB ,∴△ADE ∽△BCD ,∴AD BC =AE DB ,∴AE =1,∴E (0,1),设直线DE 的解析式为y =kx +b ,则有{b =12k +b =2, 解得{k =12b =1∴直线DE 的解析式为y =12x +1(2)如图2中,作DR ⊥OC 于R .易知△ADE≌△RDG,∴AF=RG,设OG=m,则AF=GR=2﹣m,∴EF=1+2﹣m=3﹣m,∵EF=2OG,∴3﹣m=2m,∴m=1,∴OG=1.(3)如图3中,①作GP⊥BE于P,则△PDG是直角三角形.∵G(1,0),GP⊥BE,∴直线PG的解析式为y=﹣2x+2,由{y =12x +1y =−2x +2,解得{x =25y =65, ∴P (25,65). ②作P ′G ⊥DG 交直线DE 于P ′,则△DGP ′是直角三角形,∵直线DG 的解析式为y =2x ﹣2,∴直线GP ′的解析式为y =−12x +12,由{y =−12x +12y =12x +1,解得{x =−12y =34, ∴P ′(−12,34), 综上所述,满足条件的点P 坐标为(25,65)或(−12,34). 【点睛】本题考查一次函数综合题、旋转变换、全等三角形的判定和性质.相似三角形的判定和性质、直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形和相似三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.考点二 等腰三角形存在性问题【方法点拨】分类讨论哪两条边相等,一般分三种情况,简称“两圆+一中垂线”1.如图1,在平面直角坐标系中,O 是坐标原点,长方形OACB 的顶点A 、B 分别在x 轴与y 轴上,已知OA =6,OB =10.点D 为y 轴上一点,其坐标为(0,2),点P 从点A 出发以每秒2个单位的速度沿线段AC ﹣CB 的方向运动,当点P 与点B 重合时停止运动,运动时间为t 秒.(1)当点P 经过点C 时,求直线DP 的函数解析式;(2)①求△OPD 的面积S 关于t 的函数解析式;②如图②,把长方形沿着OP 折叠,点B 的对应点B ′恰好落在AC 边上,求点P 的坐标.(3)点P 在运动过程中是否存在使△BDP 为等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.【思路点拨】(1)设直线DP 解析式为y =kx +b ,将D 与C 坐标代入求出k 与b 的值,即可确定出解析式;(2)①当P 在AC 段时,三角形ODP 底OD 与高为固定值,求出此时面积;当P 在BC 段时,底边OD 为固定值,表示出高,即可列出S 与t 的关系式;②当点B 的对应点B ′恰好落在AC 边上时,关键勾股定理即可求出此时P 坐标;(3)存在,分别以BD ,DP ,BP 为底边三种情况考虑,利用勾股定理及图形与坐标性质求出P 坐标即可.【解析】解:(1)∵OA =6,OB =10,四边形OACB 为长方形,∴C (6,10).设此时直线DP 解析式为y =kx +b ,把(0,2),C (6,10)分别代入,得{b =26k +b =10, 解得{k =43b =2则此时直线DP 解析式为y =43x +2;(2)①当点P 在线段AC 上时,OD =2,高为6,S =6;当点P 在线段BC 上时,OD =2,高为6+10﹣2t =16﹣2t ,S =12×2×(16﹣2t )=﹣2t +16;②设P (m ,10),则PB =PB ′=m ,如图2,∵OB ′=OB =10,OA =6,∴AB ′=√OB′2−OA 2=8,∴B ′C =10﹣8=2,∵PC =6﹣m ,∴m 2=22+(6﹣m )2,解得m =103 则此时点P 的坐标是(103,10);(3)存在,理由为: 若△BDP 为等腰三角形,分三种情况考虑:如图3,①当BD =BP 1=OB ﹣OD =10﹣2=8,在Rt △BCP 1中,BP 1=8,BC =6,根据勾股定理得:CP 1=√82−62=2√7,∴AP 1=10﹣2√7,即P 1(6,10﹣2√7);②当BP 2=DP 2时,此时P 2(6,6);③当DB =DP 3=8时,在Rt △DEP 3中,DE =6,根据勾股定理得:P 3E =√82−62=2√7,∴AP 3=AE +EP 3=2√7+2,即P 3(6,2√7+2),综上,满足题意的P 坐标为(6,6)或(6,2√7+2)或(6,10﹣2√7).【点睛】此题属于一次函数综合题,涉及的知识有:待定系数法确定一次函数解析式,坐标与图形性质,等腰三角形的性质,勾股定理,利用了分类讨论的思想,熟练掌握待定系数法是解本题第一问的关键.2.如图①,在平面直角坐标系中,△AOB的边OA在x轴上,点A坐标为(14,0),点B在第一象限,∠BAO=45°,AB=8√2.D为射线OB上一点,过D作直线l∥y轴交OA于E,交射线AB于G.(1)求B点坐标;(2)当D为线段OB中点时,在直线l上找点P,当△PBD为等腰三角形,请直接写出P点坐标;(3)如图②,F为AO中点,当S△BDF=2S△BDG时,求D点坐标.【思路点拨】(1)先求出BH=AH=8,进而求出OH=6,即可得出结论;(2)先设出点P坐标,进而表示出DP,BP,BD,再分三种情况讨论建立方程求解即可得出结论;(3)先求出OF,直线OB,AB的解析式,进而设出点D的坐标,表示出S△BDG=12|m﹣14|×|6﹣m|,S△BDF =|143m﹣28|,最后用面积关系建立方程求解即可得出结论.【解析】解:(1)如图①,过点B作BH⊥OA于H,∵∠BAO=45°,AB=8√2,∴BH=AH=1√2AB=8,∵A(14,0),∴OA=14,∴OH=OA﹣AH=6,∴B(6,8);(2)∵DE ⊥OA ,∴DE ∥BH ,∵点D 是OB 中点,∴DE =12BH =4,OE =12OH =3,∴D (3,4),设P (3,m ),∵B (6,8),∴DP =|m ﹣4|,BD =5,BP 2=(m ﹣8)2+9,∵△PBD 为等腰三角形,∴①DP =BD ,∴|m ﹣4|=5,∴m =9或m =﹣1,∴P (3,9)或(3,﹣1),②DP =BP ,∴(m ﹣4)2=(m ﹣8)2+9,∴m =578, ∴P (3,578)③BD =BP ,∴25=(m ﹣8)2+9,∴m =4(舍)或m =12,∴P (3,12),即:满足条件的点P (3,9)或(3,﹣1)或(3,578)或(3,12);(3)如图由(1)知,B (6,8),∴直线OB 的解析式为y =43x ,∵A (14,0),∴直线AB 的解析式为y =﹣x +14,∵点F 是OA 中点,∴OF =12OA =7,设点D (m ,43m ),∴G (m ,﹣m +14), ∴S △BDG =12|﹣m +14−43m |×|6﹣m |=12|m ﹣14|×|6﹣m |, S △BDF =|S △BOF ﹣S △DOF |=|12×7×8−12×7×43m |=|143m ﹣28|,∵S △BDF =2S △BDG ,∴|143m ﹣28|=212|m ﹣14|×|6﹣m |, ∴m =4或m =8, ∴D (4,163)或(8,323).【点睛】此题是三角形综合题,主要考查了勾股定理,等腰三角形的性质,三角形的面积公式,分类讨论的思想,解本题的关键是用方程的思想解决问题.考点三 等腰直角三角形存在性问题【方法点拨】分类讨论哪个角为直角且哪两条边相等1.正方形OABC 的边长为1,把它放在如图所示的直角坐标系中,点M (t ,0)是x 轴上一个动点(t ≥1),连接BM ,在BM 的右侧作正方形BMNP ;直线DE 的解析式为y =2x +b ,与x 轴交于点D ,与y 轴交于点E ,当△PDE 为等腰直角三角形时,点P 的坐标是 (2,4)或(2,1) .【思路点拨】过点P 作PF ⊥BC 交CB 的延长线于点F ,根据同角的余角相等可得∠ABM =∠FBP ,然后利用“角角边”证明△ABM 和△FBP 全等,根据全等三角形对应边相等可得BF =AB ,PF =AM ,然后根据正方形OABC 的边长为2以及点M (t ,0)表示出点P 的坐标,再利用直线DE 的解析式求出点D 、E 的坐标,然后分①DE 是斜边时,利用勾股定理以及两点间的距离公式分别表示出PD 、PE 、DE 的平方,再根据等腰直角三角形的三边关系,②PD 是斜边时,过点P 作PF ⊥y 轴于点F ,然后利用“角角边”证明△EDO 和△PEF 全等,根据全等三角形对应边相等可得EF =DO ,PC =EO ,然后用b 、t 表示并求解即可得到点P 的坐标.【解析】解:如图,过点P 作PF ⊥BC 交CB 的延长线于点F ,∵四边形OABC 与四边形BMNP 都是正方形,∴∠ABM +∠MBF =90°,∠FBP +∠MBF =90°,∴∠ABM =∠FBP ,在△ABM 和△FBP 中,{∠ABM =∠FBP∠BAM =∠F =90°BM =BP,∴△ABM ≌△FBP (AAS ),∴BF =AB ,PF =AM ,∵正方形OABC 的边长为1,点M (t ,0),∴BF =1,PF =t ﹣1,点P 到x 轴的距离为t ﹣1+1=t ,∴点P 的坐标为(2,t ),又∵当y =0时,2x +b =0,解得x =−b 2,当x =0时,y =b ,∴点D (−b 2,0),E (0,b ),①DE 是斜边时,PD 2=(b 2+2)2+t 2,PE 2=(b ﹣t )2+22,DE 2=(b 2)2+b 2, ∵△PDE 是等腰直角三角形,∴PD 2=PE 2,且PD 2+PE 2=DE 2,即(b 2+2)2+t 2=(b ﹣t )2+22,且(b 2+2)2+t 2+(b ﹣t )2+22=(b 2)2+b 2, 14b 2+2b +4+t 2=b 2﹣2bt +t 2+4,且14b 2+2b +4+t 2+b 2﹣2bt +t 2+4=14b 2+b 2, 整理得,b =83(t +1)且t 2﹣b (t ﹣1)+4=0,∴t 2−83(t +1)(t ﹣1)+4=0,整理得,t 2=4,解得t 1=2,t 2=﹣2(舍去),∴点P 的坐标是(2,2);②PD 是斜边时,∵△PDE 是等腰直角三角形,∴PE ⊥DE ,且PE =DE ,过点P 作PF ⊥y 轴于点F∵∠DEO +∠PEO =90°,∠DEO +∠EDO =90°,∴∠PEO =∠EDO ,在△EDO 和△PEF 中,{∠PEO =∠EDO ∠DOE =∠EFP =90°PE =DE,∴△EDO ≌△PEF (AAS ),∴EF =DO =b 2,PC =EO =b ,又∵点P (2,t ),∴b =2,b ﹣t =b 2,解得t=b2=12×2=1,∴点P坐标为(2,1),此时点C、F重合,点M、A重合,综上所述,点P的坐标为(2,4)或(2,1).故答案为:(2,2)或(2,1).【点睛】本题是一次函数的综合题型,主要利用了全等三角形的判定与性质,等腰三角形的性质,直线与坐标轴的交点的求解,勾股定理的应用,综合题但难度不大,要注意分情况讨论.2.如图,在平面直角坐标系中,直线l1的解析式为y=﹣x,直线l2与l1交于点A(a,﹣a),与y轴交于点B(0,b),其中a,b满足(a+2)2+√b−3=0.(1)求直线l2的解析式;(2)在平面直角坐标系中第二象限有一点P(m,5),使得S△AOP=S△AOB,请求出点P的坐标;(3)已知平行于y轴且位于y轴左侧有一动直线,分别与l1,l2交于点M、N,且点M在点N的下方,点Q为y轴上一动点,且△MNQ为等腰直角三角形,请直接写出满足条件的点Q的坐标.【思路点拨】(1)由偶次方及被开方数非负,可求出a 、b 的值,进而可得出点A 、B 的坐标,由点A 、B 的坐标,利用待定系数法即可求出直线l 2的解析式;(2)由△AOP 和△AOB 等底及S △AOP =S △AOB ,可得出点P 到AO 的距离与点B 到AO 的距离相等,分点P 在l 1的右侧及点P 在l 1的左侧两种情况考虑:①当点P 在l 1的右侧时,设点P 为P 1,则P 1B ∥l 1,根据平行线的性质结合点B 的坐标可得出直线P 1B 的解析式,再利用一次函数图象上点的坐标特征可求出点P 1的坐标;②当点P 在l 1的左侧时,设点P 为P 2,设直线y =5与直线l 1交于点E ,利用一次函数图象上点的坐标特征可求出点E 的坐标,再由点E 为P 1P 2中点,可求出点P 2的坐标;(3)设动直线为x =t ,由题可得﹣2<t <0,则点M 的坐标为(t ,﹣t ),点N 的坐标为(t ,12t +3),进而可得出MN 的长度.分∠NMQ =90°、∠MNQ =90°及∠MQN =90°三种情况,利用等腰直角三角形的性质可求出点M 、N 、Q 的坐标,此题得解.【解析】解:(1)∵a 、b 满足(a +2)2+√b −3=0,∴a +2=0,b ﹣3=0,∴a =﹣2,b =3,∴点A 的坐标为(﹣2,2),点B 的坐标为(0,3).设直线l 2的解析式为y =kx +c (k ≠0),将A (﹣2,2)、B (0,3)代入y =kx +c ,得:{−2k +c =2c =3,解得:{k =12c =3, ∴直线l 2的解析式为y =12x +3.(2)∵S △AOP =S △AOB ,∴点P 到AO 的距离与点B 到AO 的距离相等,且点P 位于l 1两侧(如图1).①当点P 在l 1的右侧时,设点P 为P 1,则P 1B ∥l 1,∴直线P 1B 的解析式为:y =﹣x +3,当y =5时,有﹣x +3=5,解得:x =﹣2,∴点P 1的坐标为(﹣2,5);②当点P 在l 1的左侧时,设点P 为P 2,设直线y =5与直线l 1交于点E ,则点E 的坐标为(﹣5,5),∵点E 为P 1P 2中点,∴点P 2的坐标为(﹣8,5).综上所述:点P 的坐标为(﹣2,5)或(﹣8,5).(3)设动直线为x =t ,由题可得﹣2<t <0,则点M 的坐标为(t ,﹣t ),点N 的坐标为(t ,12t +3), ∴MN =32t +3(如图2).①当∠NMQ =90°时,有MN =MQ ,即32t +3=﹣t , 解得:t =−65,∴点M 的坐标为(−65,65). ∵MQ ∥x 轴,∴点Q 的坐标为(0,65); ②当∠MNQ =90°时,有MN =NQ ,即32t +3=﹣t , 解得:t =−65,∴点N 的坐标为(−65,125). ∵NQ ∥x 轴,∴点Q 的坐标为(0,125);③当∠MQN =90°时,点Q 到MN 的距离=12MN ,即﹣t =12×(32t +3),解得:t =−67,∴点M 的坐标为(−67,67),点N 的坐标为(−67,187).∵△MNQ 为等腰直角三角形,∴点Q 的坐标为(0,127).综上所述:点Q 的坐标为(0,65)或(0,125)或(0,127).【点睛】本题考查了待定系数法求一次函数解析式、偶次方及被开方数的非负性、三角形的面积、一次函数图象上点的坐标特征以及等腰直角三角形,解题的关键是:(1)根据点的坐标,利用待定系数法求出一次函数解析式;(2)分点P 在l 1的右侧及点P 在l 1的左侧两种情况求出点P 的坐标;(3)分∠NMQ =90°、∠MNQ =90°及∠MQN =90°三种情况,利用等腰直角三角形的性质求出点Q 的坐标.3.在平面直角坐标系xOy 中,直线l 1:y =k 1x +2√3与x 轴、y 轴分别交于点A 、B 两点,OA =√3OB ,直线l 2:y =k 2x +b 经过点C (1,−√3),与x 轴、y 轴和线段AB 分别交于点E 、F 、D 三点.(1)求直线l 1的解析式;(2)如图①:若EC =ED ,求点D 的坐标和△BFD 的面积;(3)如图②:在坐标轴上是否存在点P ,使△PCD 是以CD 为底边的等腰直角三角形,若存在,请直接写出点P 的坐标;若不存在,请说明理由.【思路点拨】(1)求出点A的坐标,利用待定系数法即可解决问题;(2)如图1中,作CM⊥OA于M,DN⊥CA于N.由△CME≌△DNE(AAS),推出CM=DN由C(1,−√3),可得CM=DN=√3,再利用待定系数法即可解决问题;(3)分点P在y轴或x轴两种情形分别求解即可解决问题;【解析】解:(1)∵直线y=k1x+2√3与y轴B点,∴B(0,2√3),∴OB=2√3,∵OA=√3OB=6,∴A(6,0),把A(6,0)代入y=k1x+2√3得到,k1=−√33,∴直线l1的解析式为y=−√33x+2√3.(2)如图1中,作CM⊥OA于M,DN⊥CA于N.∵∠CME=∠DNE=90°,∠MEC=∠NED,EC=DE,∴△CME≌△DNE(AAS),∴CM=DN∵C (1,−√3),∴CM =DN =√3,当y =√3时,√3=−√33x +2√3, 解得x =3,∴D (3,√3),把C (1,−√3),D (3,√3)代入y =k 2x +b ,得到{k 2+b =−√33k 2+b =√3, 解得{k 2=√3b =−2√3, ∴直线CD 的解析式为y =√3x ﹣2√3,∴F (0,﹣2√3),∴S △BFD =12×4√3×3=6√3.(3)①如图③﹣1中,当PC =PD ,∠CPD =90°时,作DM ⊥OB 于M ,CN ⊥y 轴于N .设P (0,m ).∵∠DMP =∠CNP =∠CPD =90°,∴∠CPN +∠PCN =90°,∠CPN +∠DPM =90°,∴∠PCN =∠DPM ,∵PD =PC ,∴△DMP ≌△NPC (AAS ),∴CN =PM =1,PN =DM =m +√3,∴D (m +√3,m +1),把D 点坐标代入y =−√33x +2√3,得到:m +1=−√33(m +√3)+2√3,解得m =4√3−6,∴P (0,4√3−6).②如图③﹣2中,当PC=PC,∠CPD=90时,作DM⊥OA于M,CN⊥OA于N.设P(n,0).同法可证:△DMP≌△PNC,∴PM=CN=√3,DM=PN=n﹣1,∴D(n−√3,n﹣1),把D点坐标代入y=−√33x+2√3,得到:n﹣1=−√33(n−√3)+2√3,解得n=2√3∴P(2√3,0).综上所述,满足条件的点P坐标为(0,4√3−6)或(2√3,0)【点睛】本题属于一次函数综合题,考查了待定系数法,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数解决问题,属于中考压轴题.4.如图1,在平面直角坐标系中,A(a,0),B(0,b),且a,b满足b=√a2−4+√4−a2+16a+2(1)求直线AB的解析式;(2)第一象限内是否存在一点M,使△ABM是等腰直角三角形,若存在,求出点M的坐标;若不存在,请说明理由;(3)如图2过点A的直线y=kx﹣2k交y轴负半轴于点P,N点的横坐标为﹣1,过点N的直线y=k2x−k2交AP于点M,交x轴于点C,求证:NC=MC.【思路点拨】(1)由二次根式的被开方数是非负数可以求得a 、b 的值.则易求点A 、B 的坐标.设直线AB 的方程为y =kx +b (k ≠0),将其分别代入该解析式列出关于k 、b 的方程组,通过解方程组即可求得它们的值;(2)需要分类讨论:当AB 为底和当AB 为腰时,分别求得点M 的坐标;(3)将y =kx ﹣2k 与y =k 2x −k 2联立求出M 的坐标为(3,k ),由条件可求得N 的坐标为(﹣1,﹣k ),C 的坐标为(1,0),作CG ⊥x 轴于G 点,MH ⊥x 轴于H 点,可证△NGC ≌△MHC ,得NC =MC .【解析】解:(1)依题意,得:{a 2−4≥04−a 2≥0a +2≠0,解得a =2;则b =4.所以A (2,0),B (0,4),设直线AB 解析式为y =kx +b (k ≠0),将A 与B 坐标代入得:{2k +b =0b =4, 解得:{k =−2b =4, 则直线AB 的解析式为y =﹣2x +4;(2)如图1,分三种情况:①如图1,当BM ⊥BA ,且BM =BA 时,过M 作MN ⊥y 轴于N ,∵BM ⊥BA ,MN ⊥y 轴,OB ⊥OA ,∴∠MBA =∠MNB =∠BOA =90°,∴∠NBM +∠NMB =90°,∠ABO +∠NBM =90°,∴∠ABO =∠NMB ,在△BMN 和△ABO 中{∠MNB =∠BOA ∠NMB =∠ABO BM =AB,∴△BMN ≌△ABO (AAS ),MN =OB =4,BN =OA =2,∴ON =2+4=6,∴M 的坐标为(4,6 );②如图2当AM ⊥BA ,且AM =BA 时,过M 作MN ⊥x 轴于N ,△BOA ≌△ANM (AAS ),同理求出M 的坐标为(6,2);③如图4,当AM⊥BM,且AM=BM时,过M作MN⊥X轴于N,MH⊥Y轴于H,则△BHM≌△AMN,∴MN=MH,设M(x,x),由勾股定理得,(x﹣2)2+x2=(4﹣x)2+x2,解得,x=3;∴M点的坐标为(3,3)综上所知M点的坐标为(4,6)(6,2)(3,3);(3)将y=kx﹣2k与y=k2x−k2联立求出M的坐标为(3,k),由条件可求得N的坐标为(﹣1,﹣k),C的坐标为(1,0),作CG⊥x轴于G点,MH⊥x轴于H点,可证△NGC≌△MHC,得NC=MC.【点睛】本题主要考查对一次函数图象上点的坐标特征,等腰直角三角形性质,用待定系数法求正比例函数的解析式,全等三角形的性质和判定,二次根式的性质等知识点的理解和掌握,综合运用这些性质进行推理和计算是解此题的关键.。

2025年华师版八年级下册数学期末复习阶段拔尖专训6 一次函数中存在性问题

2025年华师版八年级下册数学期末复习阶段拔尖专训6 一次函数中存在性问题
又∵ ∠ + ∠ = 90∘ ,
∴ ∠ + ∠ = 90∘ .
∴ ∠ = 90∘ .∴ ⊥ .
(3)若点是直线上的一个动点,在
轴上是否存在另一个点,使以,,
,为顶点的四边形是平行四边形?若存
在,请直接写出点的坐标;若不存在,请
说明理由.
【解】存在.点的坐标为(−6,0)或(6,0)或(14,0).
5

2
+2
5
+
4
+ 1 = 6. ∴ =
4
.
5
4 8
5 5
∴ 点的坐标为( , ).
(3)如图②,若点为线段的
中点,点为直线上一点,点
为坐标系内一点,且以,,
,为顶点的四边形为矩形,请
直接写出所有符合条件的点的坐标.(提示:直角三角形斜
边的中线等于斜边的一半)
1 9
∵ ∠ = ∠ = 90∘ ,
∴ △≌△. ∴ = , = = 3.
设(, 0)(0 ≤ ≤ 6),则
= = ,∴ ( + 3, −). ∵ 点在
直线上,∴ − =
1
(
2
+ 3) − 3,解得
= 1. ∴ (1,0).设直线的函数表达式为
标为(6,0);当是平行四边形的对角线时,作(−6,0)关于
点的对称点,其坐标为(14,0),易知点的坐标为(14,0).
综上所述,点的坐标为(−6,0)或(6,0)或(14,0).
题型2 一次函数与矩形的存在性问题
3.如图①,在平面直角坐标系中,一次函数 = 2 + 4的图
象分别交轴,轴于,两点,将△绕点顺时针旋转

专题55 一次函数背景下的图形存在性问题(解析版)-中考数学解题大招复习讲义

专题55 一次函数背景下的图形存在性问题(解析版)-中考数学解题大招复习讲义

例题精讲考点一:一次函数中等腰三角形存在性问题【例1】.如果一次函数y=﹣x+6的图象与x轴、y轴分别交于A、B两点,M点在x轴上,并且使得以点A、B、M为定点的三角形是等腰三角形,则M点的坐标为(﹣8,0)或(﹣2,0)或(18,0)或(﹣,0).解:一次函数y=﹣x+6中令x=0,解得y=6;令y=0,解得x=8,∴A(8,0),B(0,6),即OA=8,OB=6,在直角三角形AOB中,根据勾股定理得:AB=10,分四种情况考虑,当BM=BA时,由BO⊥AM,根据三线合一得到O为MA的中点,此时M1(﹣8,0);当AB=AM时,由AB=10,得到OM=﹣2或18,此时M2(﹣2,0),M3(18,0);当MA=MB时,∵A(8,0),B(0,6),∴AB的中点的坐标为(4,3),设直线AB的垂直平分线的解析式为y=x+b,代入(4,3)得3=+b,解得b=﹣,∴直线AB的垂直平分线的解析式为y=x﹣,令y=0,解得x=,此时M4(,0).综上,这样的M点有4个,分别为(﹣8,0)或(﹣2,0)或(18,0)或(,0).故答案为(﹣8,0)或(﹣2,0)或(18,0)或(,0).变式训练【变1-1】.如图,在平面直角坐标系中,直线MN的函数解析式为y=﹣x+3,点A在线段MN上且满足AN=2AM,B点是x轴上一点,当△AOB是以OA为腰的等腰三角形时,则B点的坐标为(2,0)或(,0)或(,0).解:∵在y=﹣x+3中,令x=0,则y=3;令y=0,则﹣x+3=0,解得x=3,∴N(3,0),M(0,3),∴OM=ON=3,∵AN=2AM,∴A(1,2),∴OA==,当AO=OB时,则OB=,∴点B的坐标为(﹣,0)或(,0);②当AO=AB时,设点B的坐标为(m,0),则=,整理得,(1﹣m)2=1,解得m=2或m=0(舍去),∴点B的坐标为(2,0).综上所述:点B的坐标为(2,0)或(,0)或(,0).【变1-2】.如图,在平面直角坐标系中,直线y=﹣2x+12与x轴交于点A,与y轴交于点B,与直线y=x交于点C.(1)求点C的坐标.(2)若P是x轴上的一个动点,直接写出当△OPC是等腰三角形时P的坐标.解:(1)联立两直线解析式成方程组,得,解得:,∴点C的坐标为(4,4);(2)设点P(m,0),而点C(4,4),点O(0,0);PC2=(m﹣4)2+16,PO2=m2,OC2=42+42=32;当PC=PO时,(m﹣4)2+16=m2,解得:m=4;当PC=OC时,同理可得:m=0(舍去)或8;当PO=OC时,同理可得:m=±4;故点P的坐标为(4,0)或(8,0)或(4,0)或(﹣4,0).考点二:一次函数中直角三角形存在性问题【例2】.已知点A、B的坐标分别为(2,2)、(5,1),试在x轴上找一点C,使△ABC为直角三角形.解:当△ABC为直角三角形时,设点C坐标为(x,0),分三种情况:①如果A为直角顶点,则AB2+AC2=BC2,即(2﹣5)2+(2﹣1)2+(2﹣x)2+22=(5﹣x)2+1,解得:x=,②如果B为直角顶点,那么AB2BC2=AC2,即(2﹣5)2+(2﹣1)2+(5﹣x)2+1=(2﹣x)2+22,解得x=,③如果C为直角顶点,那么AB2=AC2+BC2,即(2﹣5)2+(2﹣1)2=(2﹣x)2+22+(5﹣x)2+1,解得x=3或4,综上可知,使△PAB为直角三角形的点C坐标为(,0)或(,0)或(3,0)或(4,0).变式训练【变2-1】.如图,一次函数y=kx+1的图象过点A(1,2),且与x轴相交于点B.若点P 是x轴上的一点,且满足△ABP是直角三角形,则点P的坐标是(1,0)或(3,0).解:∵一次函数y=kx+1的图象过点A(1,2),∴2=k+1,解得k=1,∴一次函数的解析式为y=x+1.∴当∠APB=90°时,P1(1,0);当∠BAP=90°时,∵一次函数的解析式为y=x+1,∴设直线AP的解析式为y=﹣x+b,∵A(1,2),∴2=﹣1+b,解得b=3,∴直线AP的解析式为y=﹣x+3,∴当y=0时,x=3,∴P2(3,0).综上所述,点P的坐标是(1,0)或(3,0).【变2-2】.如图,已知一次函数y=x﹣2的图象与y轴交于点A,一次函数y=4x+b的图象与y轴交于点B,且与x轴以及一次函数y=x﹣2的图象分别交于点C、D,点D的坐标为(﹣2,﹣4).(1)关于x、y的方程组的解为.(2)求△ABD的面积;(3)在x轴上是否存在点E,使得以点C,D,E为顶点的三角形是直角三角形?若存在,求出点E的坐标;若不存在,请说明理由.解:(1)∵一次函数y=x﹣2的图象与一次函数y=4x+b的图象交于点D,且点D的坐标为(﹣2,﹣4),∴关于x、y的方程组的解是,∴关于x、y的方程组的解是,故答案为:;(2)把点D的坐标代入一次函数y=4x+b中得:﹣8+b=﹣4,解得:b=4,∴B(0,4),∵A(0,﹣2),∴AB=4﹣(﹣2)=6,==6;∴S△ABD(3)存在,如图1,当点E为直角顶点时,过点D作DE⊥x轴于E,∵D(﹣2,﹣4),∴E(﹣2,0);当点C为直角顶点时,x轴上不存在点E;当点D为直角顶点时,过点D作DE⊥CD交x轴于点E,作DF⊥x轴于F,设E(t,0),当y=0时,4x+4=0,∴x=﹣1,∴C(﹣1,0),∵F(﹣2,0),∴CE=﹣1﹣t,EF=﹣2﹣t,∵D(﹣2,﹣4),∴DF=4,CF=﹣1﹣(﹣2)=1,在Rt△DEF中,DE2=EF2+DF2=42+(﹣2﹣t)2=t2+4t+20,在Rt△CDF中,CD2=12+42=17,在Rt△CDE中,CE2=DE2+CD2,∴(﹣1﹣t)2=t2+4t+20+17,解得t=﹣18,∴E(﹣18,0),综上,点E的坐标为:(﹣2,0)或(﹣18,0).考点三:一次函数中平行四边形存在性问题【例3】.如图,已知一次函数y=kx+b的图象经过A(1,3),B(﹣2,﹣1)两点,并且交x轴于点C,交y轴于点D.(1)求该一次函数的表达式;(2)求△AOB的面积;(3)平面内是否存在一点M,使以点M、C、O、B为顶点的四边形是平行四边形,若存在,请直接写出点M的坐标,若不存在,请说明理由.解:(1)将A(1,3)、B(﹣2,﹣1),代入y=kx+b得:,解得,∴一次函数的表达式为y=x+;(2)在y=x+中,令x=0得y=,∴OD=,=OD•|x A|=××1=,∴S△AODS△BOD=OD•|x B|=××2=,=S△BOD+S△AOD=;∴△AOB的面积S△AOB(3)存在,理由如下:在y=x+中,令y=0得y=﹣,∴C(﹣,0),设M(m,n),而B(﹣2,﹣1),O(0,0),①以OB、CM为对角线,则OB的中点即是CM的中点,如图:∴,解得,∴M(﹣,﹣1);②以BC、OM为对角线,则BC的中点即是OM的中点,如图:∴,解得,∴M(﹣,﹣1);③以BM、CO为对角线,则BM的中点即是CO的中点,如图:∴,解得,∴M(,1);综上所述,M的坐标为:(﹣,﹣1)或(﹣,﹣1);或(,1).变式训练【变3-1】.如图1,在平面直角坐标系中,直线y=﹣x+3与x轴、y轴相交于A、B两点,点C在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上,过点D作DE⊥x轴于点E.(1)求证:△BOC≌△CED;(2)如图2,将△BCD沿x轴正方向平移得△B'C'D',当B'C'经过点D时,求△BCD平移的距离及点D的坐标;(3)若点P在y轴上,点Q在直线AB上,是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的P点的坐标;若不存在,请说明理由.(1)证明:∵∠BOC=∠BCD=∠CED=90°,∴∠OCB+∠OBC=90°,∠OCB+∠ECD=90°,∴∠OBC=∠ECD.∵将线段CB绕着点C顺时针旋转90°得到CD,∴BC=CD.在△BOC和△CED中,,∴△BOC≌△CED(AAS).(2)解:∵直线y=﹣x+3与x轴、y轴相交于A、B两点,∴点B的坐标为(0,3),点A的坐标为(6,0).设OC=m,∵△BOC≌△CED,∴OC=ED=m,BO=CE=3,∴点D的坐标为(m+3,m).∵点D在直线y=﹣x+3上,∴m=﹣(m+3)+3,解得:m=1,∴点D的坐标为(4,1),点C的坐标为(1,0).∵点B的坐标为(0,3),点C的坐标为(1,0),∴直线BC的解析式为y=﹣3x+3.设直线B′C′的解析式为y=﹣3x+b,将D(4,1)代入y=﹣3x+b,得:1=﹣3×4+b,解得:b=13,∴直线B′C′的解析式为y=﹣3x+13,∴点C′的坐标为(,0),∴CC′=﹣1=,∴△BCD平移的距离为.(3)解:设点P的坐标为(0,m),点Q的坐标为(n,﹣n+3).分两种情况考虑,如图3所示:①若CD为边,当四边形CDQP为平行四边形时,∵C(1,0),D(4,1),P(0,m),Q(n,﹣n+3),∴,解得:,∴点P1的坐标为(0,);当四边形CDPQ为平行四边形时,∵C(1,0),D(4,1),P(0,m),Q(n,﹣n+3),∴,解得:,∴点P2的坐标为(0,);②若CD为对角线,∵C(1,0),D(4,1),P(0,m),Q(n,﹣n+3),∴,解得:,∴点P的坐标为(0,).综上所述:存在,点P的坐标为(0,)或(0,).考点四:一次函数中矩形存在性问题【例4】.Rt△AOB的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,且OA、OB的长满足|OA﹣8|+(OB﹣6)2=0,∠ABO的平分线交x轴于点C过点C作AB的垂线,垂足为点D,交y轴于点E.(1)求线段AB的长;(2)求直线CE的解析式;(3)若M是射线BC上的一个动点,在坐标平面内是否存在点P,使以A、B、M、P为顶点的四边形是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.解:(1)∵|OA﹣8|+(OB﹣6)2=0,∴OA=8,OB=6,在直角△AOB中,AB===10;(2)∵BC平分∠ABO,CD⊥AB,AO⊥BO,∴OC=CD,设OC=x,则AC=8﹣x,CD=x.∵△ACD和△ABO中,∠CAD=∠BAO,∠ADC=∠AOB=90°,∴△ACD相似于△ABO,∴,即,解得:x=3.即OC=3,则C的坐标是(﹣3,0).设AB的解析式是y=kx+b,根据题意得解得:则直线AB的解析式是y=x+6,设CD的解析式是y=﹣x+m,则4+m=0,则m=﹣4.则直线CE的解析式是y=﹣x﹣4;(3)①当AB为矩形的边时,如图所示矩形AM1P1B,易知BC的直线方程为y=2x+6,设M1(m,2m+6),P1(x,y),因为A(﹣8,0),B(0,6),则AM12=(m+8)2+(2m+6)2,=5m2+40m+100,BM12=m2+(2m+6﹣6)2=5m2,AB=10,根据AB2+AM12=BM12得100+5m2+40m+100=5m2,m=﹣5,∴M1(﹣5,﹣4),根据平移规律可以解得P1(3,2)②当AB为矩形的对角线时,此时有AB2=AM22+BM22,即100=5m2+40m+100+5m2,m =﹣4或m=0(舍去),∴M2(﹣4,﹣2),根据平移规律可以解得P2(﹣4,8)综上可得,满足条件的P点的坐标为P1(3,2)或P2(﹣4,8).变式训练【变4-1】.如图,四边形OABC是矩形,点A、C在坐标轴上,△ODE是△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H,线段BC、OC的长是方程x2﹣4x+3=0的两个根,且OC>BC.(1)求直线BD的解析式;(2)求点H到x轴的距离;(3)点M在坐标轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.解:(1)x2﹣4x+3=0,解得:x=3或1,故BC=1,OC=3,即点C(0,3)、点A(﹣1,0),则点B(﹣1,3),点D(3,0),点E(3,1),将B、D点的坐标代入一次函数表达式:y=kx+b得:,解得:,故直线BD的表达式为:y=﹣x+…①;(2)同理可得:直线OE的表达式为:y=x…②,联立①②并解得:y=,即点H到x轴的距离为:;(3)直线BD的表达式为:y=﹣x+,则点F(0,),①当FD是矩形的一条边时,当点M在x轴上时,∵MF⊥BD,则直线MF的表达式为:y=x+,当y=0,x=﹣,即点M(﹣,0),点F向右平移3个单位向下平移单位得到D,则点M向右平移3个单位向下平移单位得到N,则点N(,﹣);当点M在y轴上时,同理可得:点N(﹣3,﹣);②当FD是矩形的对角线时,此时点M在原点O,则点N(3,);综上,点N的坐标为:(,﹣)或(﹣3,﹣)或(3,).考点五:一次函数中菱形存在性问题【例5】.如图1,直线y=x+6与x,y轴分别交于A,B两点,∠ABO的角平分线与x轴相交于点C.(1)求点C的坐标;(2)在直线BC上有两点M,N,△AMN是等腰直角三角形,∠MAN=90°,求点M 的坐标;(3)点P在y轴上,在平面上是否存在点Q,使以点A、B、P、Q为顶点的四边形为菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.解:(1)对于直线y=x+6,令x=0,得到y=6,∴B(0,6),令y=0,得到x=﹣8,∴A(﹣8,0).∵A(﹣8,0),B(0,6),∴OA=8,OB=6,∵∠AOB=90°,∴AB==10,过点C作CH⊥AB于H,设OC=t,∵BC平分∠ABO,∠AOB=90°,∴CH=OC=t,=S△ABC+S△BCO,∵S△ABO∴OA•OB=AB•CH+OC•OB,∴6×8=10t+6t,∴t=3,∴OC=3,∴C(﹣3,0);(2)设线BC的表达式为:y=kx+b,∵B(0,6),C(﹣3,0),∴直线BC的表达式为:y=2x+6,设点M(m,2m+6)、N(n,2n+6),过点M作MF⊥x轴于点F,过点N作NE⊥x轴于点E,∵△AMN为等腰直角三角形,故AM=AN,∵∠NAE+∠MAF=90°,∠MAF+∠AMF=90°,∴∠NAE=∠AMF,∵∠AFM=∠NEA=90°,AM=AN,∴△FMA≌△EAN(AAS),∴EN=AF,MF=AE,即﹣2n﹣6=m+8,2m+6=8+n,解得:m=﹣2,n=﹣6,故点M的坐标为(﹣2,2)、点N(﹣6,﹣6);由于M,N的位置可能互换,故点N的坐标为(﹣2,2)、点M(﹣6,﹣6);综上所述,点M的坐标为(﹣2,2)或(﹣6,﹣6);(3)设点P(0,p),∴BP2=(p﹣6)2,AP2=82+p2,①当AB是边时,如图,∵点A、B、P、Q为顶点的四边形为菱形,∴BP=AB=10,BP′=AB=10,OB=OP″,∵B(0,6),∴P(0,16),P′(0,﹣4),P″(0,﹣6),∵A(﹣8,0),∴Q(﹣8,10),Q′(﹣8,﹣10),Q″(8,0);②当AB是对角线时,如图,∵点A、B、P、Q为顶点的四边形为菱形,∴AP=BP,∴BP2=AP2,∴(p﹣6)2=82+p2,解得p=﹣,∴P(0,﹣),∵A(﹣8,0),B(0,6),∴Q(﹣8,);综上所述,点Q的坐标为(﹣8,10)或(﹣8,﹣10)或(8,0)或(﹣8,).变式训练【变5-1】.如图,在平面直角坐标系中,直线y=x+4与x轴、y轴分别交于点D、C,直线AB与y轴交于点B(0,﹣2),与直线CD交于点A(m,2).(1)求直线AB的解析式;(2)点E是射线CD上一动点,过点E作EF∥y轴,交直线AB于点F,若以O、C、E、F为顶点的四边形是平行四边形,请求出点E的坐标;(3)设P是射线CD上一点,在平面内是否存在点Q,使以B、C、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.解:(1)∵点A(m,2)在直线y=x+4上∴m+4=2解得m=﹣2∴点A的坐标为(﹣2,2)设直线AB的解析式为y=kx+b∴解得∴直线AB的解析式为y=﹣2x﹣2;(2)如图1,由题意设点E的坐标为(a,a+4),则∵EF∥y轴,点F在直线y=﹣2x﹣2上∴点F的坐标为(a,﹣2a﹣2)∴EF=|a+4﹣(﹣2a﹣2)|=|3a+6|,∵以点O、C、E、F为顶点的四边形是平行四边形,且EF∥OC∴EF=OC∵直线y=x+4与y轴交于点C∴点C的坐标为(0,4)∴OC=4,即|3a+6|=4解得:a=﹣或a=﹣∴点E的坐标为(﹣,)或(﹣,);(3)如图2,当BC为对角线时,点P,Q都是BC的垂直平分线,且点P和点Q关于BC对称,∵B(0,﹣2),C(0,4),∴点P的纵坐标为1,将y=1代入y=x+4中,得x+4=1,∴x=﹣3,∴P''(﹣3,1),∴Q''(3,1)当CP是对角线时,CP是BQ的垂直平分线,设Q(m,n),∴BQ的中点坐标为(,),代入直线y=x+4中,得+4=①,∵CQ=CB,∴m2+(n﹣4)2=36②,联立①②得,(舍)或,∴Q'(﹣6,4),当PB是对角线时,PC=BC=6,设P(c,c+4),∴c2+(c+4﹣4)2=36,∴c=3(舍)或c=﹣3,∴P(﹣3,﹣3+4),设Q(d,e)∴(﹣3+0)=(0+d),(﹣3+4﹣2)=(e+4),∴d=﹣3,e=﹣3﹣2,∴Q(﹣3,﹣3﹣2),即:点Q的坐标为(3,1),(﹣6,4)或(﹣3,﹣3﹣2).1.一次函数y=x+4分别交x轴、y轴于A、B两点,在x轴上取一点C,使△ABC为等腰三角形,则这样的点C的坐标为(﹣8,0)(3,0)(2,0)(,0).解:当x=0时,y=4,当y=0时,x=﹣3,即A(﹣3,0),B(0,4),OA=3,OB=4,由勾股定理得:AB=5,有三种情况:①以A为圆心,以AB为半径交x轴于两点,此时AC=AB=5,C的坐标是(2,0)和(﹣8,0);②以B为圆心,以AB为半径交x轴于一点(A除外),此时AB=BC,OA=OC=3,C的坐标是(3,0);③作AB的垂直平分线交x轴于C,设C的坐标是(a,0),A(﹣3,0),B(0,4),∵AC=BC,由勾股定理得:(a+3)2=a2+42,解得:a=,∴C的坐标是(,0),故答案为:(﹣8,0)(3,0)(2,0)(,0).2.如图,在平面直角坐标系中,点A坐标为(2,1),连接OA,点P是x轴上的一动点,如果△OAP是等腰三角形,请你写出符合条件的点P坐标P1(4,0),P2(,0),P3(﹣,0),P4(,0).解:设P(x,0),当OA=AP时,∵A(2,1),∴P1(4,0);当OA=OP时,∵A(2,1),∴OA==,∴P2(,0),P3(﹣,0);当AP=OP时,∵P(x,0),(2,1),∴(2﹣x)2+12=x2,解得x=,∴P4(,0).综上所述,P点坐标为:P1(4,0),P2(,0),P3(﹣,0),P4(,0).故答案为:P1(4,0),P2(,0),P3(﹣,0),P4(,0).3.如图,在平面直角坐标系中,点A的坐标为(1,0),点B的坐标为(4,0),点C在y 的正半轴上,且OB=2OC,在直角坐标平面内确定点D,使得以点D、A、B、C为顶点的四边形是平行四边形,请写出点D的坐标为(3,2)(﹣3,2)(5,﹣2).解:如图,①当BC为对角线时,易求M1(3,2);②当AC为对角线时,CM∥AB,且CM=AB.所以M2(﹣3,2);③当AB为对角线时,AC∥BM,且AC=BM.则|M y|=OC=2,|M x|=OB+OA=5,所以M3(5,﹣2).综上所述,符合条件的点D的坐标是M1(3,2),M2(﹣3,2),M3(5,﹣2).故答案为:(3,2)(﹣3,2)(5,﹣2).4.如图,一次函数y=k2x+b的图象与y轴交于点B,与正比例函数y=k1x的图象相交于点A(3,4),且OA=OB.(1)分别求出这两个函数的解析式;(2)求△AOB的面积;(3)点P在x轴上,且△POA是等腰三角形,请直接写出点P的坐标.解:(1)∵正比例函数y=k1x的图象经过点A(3,4),∴3k1=4,∴k1=,∴正比例函数解析式为y=x.如图1中,过A作AC⊥x轴于C,在Rt△AOC中,OC=3,AC=4,∴AO==5,∴OB=OA=5,∴B(0,﹣5),∴,解得,∴一次函数的解析式为y=3x﹣5.(2)如图1中,过A作AD⊥y轴于D,∵A(3,4),∴AD=3,=;∴S△AOB(3)当OP=OA时,P1(﹣5,0),P2(5,0),当AO=AP时,P3(6,0),当PA=PO时,线段OA的垂直平分线为y=﹣,∴,满足条件的点P的坐标(﹣5,0)或(5,0)或(6,0)或.5.直线l1交x轴于点A(6,),交y轴于B(0,6).(1)如图,折叠△AOB,使BA落在y轴上,折痕所在直线为l2,直线l2与x轴交于C 点,求C点坐标及l2的解析式;(2)在直线l1上找点M,使得以M、A、C为顶点的三角形是等腰三角形,求出所有满足条件的M点的坐标.解:∵点A(6,0),交y轴于B(0,6).∴OA=6,OB=6,∴tan∠OAB==,∴∠OAB=30°,∴∠OBA=60°,∵折叠△AOB,∴∠OBC=∠ABC=30°,∴BC=2OC,BO=OC=6,∴OC=2,∴点C(2,0),设直线BC解析式为:y=kx+b,解得:∴直线BC解析式为:y=﹣x+6;(2)当点M与点B重合时,由(1)可知:∠AMC=∠MAC=30°,∴CM=AC,∴△ACM是等腰三角形,∴当M为(0,6)时,△ACM是等腰三角形,∵OC=2,OA=6,∴AC=4,若AM=AC=4,如图1:过点M作MH⊥AC,∵∠MAH=30°,∴MH=AM=2,AH=2MH=6,∴OH=6﹣6或6+6,∴点M(6﹣6,2)或(6+6,﹣2)若AM=MC,如图2,过点M作MH⊥AC,∵AM=MC,MH⊥AC,∴AH=CH=2,∴OC=4,∵∠MAH=30°,∴AH=MH,∴MH=2,∴点M(4,2),综上所述:点M(6﹣6,2)或(6+6,﹣2)或(4,2)或(0,6).6.在平面直角坐标系中,直线y=kx+8k(k是常数,k≠0)与坐标轴分别交于点A,点B,且点B的坐标为(0,6).(1)求点A的坐标;(2)如图1,将直线AB绕点B逆时针旋转45°交x轴于点C,求直线BC的解析式;(3)在(2)的条件下,直线BC上有一点M,坐标平面内有一点P,若以A、B、M、P 为顶点的四边形是菱形,请直接写出点P的坐标.解:(1)令y=kx+8k=0,解得x=﹣8,故点A的坐标为(﹣8,0);(2)过点A作AD⊥AB交BC于点D,过点A作y轴的平行线交过点B与x轴的平行线于点M,交过点D与x轴的平行线于点N,∵∠ABC=45°,故△ABD为等腰直角三角形,则AD=AB,∵∠BAM+∠DAN=90°,∠DAN+∠ADN=90°,∴∠BAM=∠ADN,∵∠BMA=∠AND=90°,∴△BMA≌△AND(AAS),∴AN=BM=8,ND=AM=6,故点D的坐标为(﹣2,﹣8),设直线BC的表达式为y=kx+b,则,解得,故直线BC的表达式为y=7x+6;(3)设点M的坐标为(m,7m+6),点P(s,t),而点A、B的坐标分别为(﹣8,0)、(0,6),①当AB是边时,点A向右8个单位向上6个单位得到点B,同样,点M(P)向右8个单位向上6个单位得到点P(M),且AB=BP(AB=BM),则或,解得或或(不合题意的值已舍去);故点P的坐标为(﹣8,7)或(﹣﹣8,﹣7)或(6,﹣2);②当AB是对角线时,由中点坐标公式和AM=BM得:,解得,故点P的坐标为(﹣7,7);综上,点P的坐标为(﹣8,7)或(﹣﹣8,﹣7)或(6,﹣2)或(﹣7,7).7.如图,在平面直角坐标系中,一次函数的图象与x轴交于点A(﹣4,0),与y轴交于点B,且与正比例函数y=x的图象交于点C(m,6).(1)求一次函数的解析式;(2)求△BOC的面积;(3)在x轴上是否存在一点P,使得△ABP是等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.解:(1)∵将点C(m,6)代入y=x,∴6=m,∴m=4,∴C(4,6),设一次函数的解析式为y=kx+b,∴,∴,∴y=x+3;(2)在y=x+3中,令x=0得y=3,∴B(0,3),=OB•|x C|=×3×4=6;∴S△BOC(3)在x轴上存在一点P,使得△ABP是等腰三角形,理由如下:∵A(﹣4,0),B(0,3),∴AB=5,OA=4,当B为等腰三角形顶角顶点时,P点与A点关于y轴对称,∴P(4,0);当A为等腰三角形顶角顶点时,AP=AB=5,∴P(﹣9,0)或P(1,0);当P为等腰三角形顶角顶点时,设P(t,0),∵PA=PB,∴(t+4)2=t2+9,解得t=﹣,∴P(﹣,0),综上所述:P点坐标为(﹣9,0)或(1,0)或(4,0)或(﹣,0).8.如图,已知一次函数y=x+m的图象与x轴交于点A(﹣6,0),交y轴于点B.(1)求m的值与点B的坐标(2)问在x轴上是否存在点C,使得△ABC的面积为16?若存在,求出点C的坐标;若不存在,说明理由.(3)问在x轴是否存在点P,使得△ABP为等腰三角形,求出点P坐标.(4)一条经过点D(0,2)和直线AB上的一点的直线将△AOB分成面积相等的两部分,请求出这条直线的函数表达式.解:(1)把点A(﹣6,0)代入y=x+m,得m=8,∴点B坐标为(0,8).(2)存在,设点C坐标为(a,0),由题意•|a+6|•8=16,解得a=﹣2或﹣10,∴点C坐标(﹣2,0)或(﹣10,0).(3)如图1中,①当AB=AP时,AP=AB==10,可得P1(﹣16,0),P2(4,0).②当BA=BP时,OA=OP,可得P3(6,0).③当PA=PB时,∵线段AB的垂直平分线为y=﹣x+,可得P4(,0),综上所述,满足条件的点P坐标为(﹣16,0)或(4,0)或(6,0)或(,0).(4)如图2中,设过点D的直线交AB于E,设E(b,),由题意BD•(﹣b)=××6×8,∴b=﹣4,∴点E坐标(﹣4,),设直线DE的解析式为y=kx+b则有,解得,∴这条直线的函数表达式y=﹣x+2.9.在平面直角坐标系中,一次函数y=﹣x+2的图象交x轴、y轴分别于A、B两点,交直线y=kx于P(2,a).(1)求点A、B的坐标;(2)若Q为x轴上一动点,△APQ为等腰三角形,直接写出Q点坐标;(3)点C在直线AB上,过C作CE⊥x轴于E,交直线OP于D,我们规定若C,D,E 中恰好有一点是其他两点所连线段的中点,则称C,D,E三点为“和谐点”,求出C,D,E三点为“和谐点”时C点的坐标.解:(1)当x=0时,y=﹣x+2=2,∴点B的坐标为(0,2);当y=0时,有﹣x+2=0,解得:x=4,∴点A的坐标为(4,0);(2)∵一次函数y=﹣x+2的图象交直线y=kx于P(2,a).∴a=﹣×2+2=1,∴点P的坐标为(2,1),设点Q(m,0),而点A、P的坐标分别为:(4,0)、(2,1),则AP==,AQ=|4﹣m|,PQ=,当AP=AQ时,则=|4﹣m|,解得m=4±,∴点Q(4±,0);当AP=PQ时,=,解得m=0或4(舍去),∴点Q(0,0);当PQ=AQ时,即=|4﹣m|,解得:m=,∴点Q(,0);综上,点Q的坐标为(4±,0)或(0,0)或(,0);(3)∵y=kx过P(2,1).∴2k=1,解得k=,∴y=x,设点C的坐标为(n,﹣n+2),则点D的坐标为(n,n),点E的坐标为(n,0),∴CD=|﹣n+2﹣n|=|2﹣n|,DE=|n|,CE=|﹣n+2|=|n﹣2|,当D为CE的中点时,CD=DE,∴|2﹣n|=|n|,解得n=或4(舍去),∴点C的坐标为(,);当C为DE的中点时,CD=CE,∴|2﹣n|=|n﹣2|,解得n=或0(舍去),∴点C的坐标为(,);当E为CD的中点时,DE=CE,∴|n|=|n﹣2|,无解;综上,C,D,E三点为“和谐点”时C点的坐标为(,)或(,).10.如图所示,直线l:y=﹣x+2与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4).(1)求△AOB的面积;(2)动点M从A点以每秒1个单位的速度沿x轴向左移动,求△COM的面积S与M的移动时间t之间的函数关系式;(3)当动点M在x轴上移动的过程中,在平面直角坐标系中是否存在点N,使以点A,C,N,M为顶点的四边形为菱形,若存在,请直接写出点N的坐标;若不存在,请说明理由.解:(1)令y=0,,解得x=.令x=0,y=.∴A(,0),B(0,).=.∴△AOB的面积为12.(2)∵动点M从A点以每秒1个单位的速度沿x轴向左移动,∴AM=t.当0≤t≤时,OM=,OC=.∴==.当t>时,OM=t﹣.∴==.综上,△COM的面积S与M的移动时间t之间的函数关系式:S=.(3)在平面直角坐标系中存在点N,使以点A,C,N,M为顶点的四边形为菱形.①当AC,AM为菱形的边时,情况一:如图1,当点M在点A的左侧时,Rt△AOC中,=,∴NC=AC=.∵NC∥AM,∴点N(,).情况二,如图1′,当点M在点A的右侧时,由情况一同理可得点N的坐标为.②当AC为菱形的对角线时,如图2,此时M,O重合,四边形OANC为正方形,则点N(,).③如图3,当AC为菱形的边,AM为菱形的对角线时,此时点C,N关于x轴对称,∴点N(0,﹣).综上,在平面直角坐标系中存在点N,使以点A,C,N,M为顶点的四边形为菱形,此时点N的坐标为:(,),,(,),(0,﹣).11.如图,直线y=﹣x+4与x轴、y轴分别交于A、B两点,直线BC与x轴、y轴分别交于C、B两点,连接BC,且OC=OB.(1)求点A的坐标及直线BC的函数关系式;(2)点M在x轴上,连接MB,当∠MBA+∠CBO=45°时,求点M的坐标;(3)若点P在x轴上,平面内是否存在点Q,使点B、C、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.解:(1)对于直线y=﹣x+4,令x=0的y=4,令y=0得x=4,∴A(4,0),B(0,4),∴OB=OA=4,∵OC=OB,∴OC=3,∴C(﹣3,0),设直线BC的解析式为y=kx+b,则有,解得,∴直线BC的解析式为y=x+4.(2)如图1中,当点M在点A的左边时,∵OB=OA=4,∠AOB=90°,∴∠ABO=45°,∴∠CBO+∠MBA=∠MBA+∠MBO=45°,∴∠CBO=∠OBM,∵∠CBO+∠BCO=90°,∠BMO+∠OBM=90°,∴∠BCO=∠BMO,∴BC=BM,OC=OM=3,∴M(3,0),作点M关于直线AB的对称点N,作直线BN交x轴于M1,则∠M1BA=∠MBA,点M1满足条件.∵N(4,1),B(0,4),∴直线BN的解析式为y=﹣x+4,令y=0,得x=,∴M1(,0),综上所述,满足条件的点M的坐标为(3,0)或(,0).(3)如图2中,∵BC==5,当BC为菱形的边时,四边形CP1Q1B,四边形CP3Q3B,四边形BCQ2P2是菱形,此时Q1(﹣5,4),Q3(5,4),Q2(0,4),当BC是菱形的对角线时,四边形CP4BQ4是菱形,可得Q4(﹣,4).综上所述,满足条件的点Q的坐标为(﹣5,4)或(5,4)或(0,﹣4)或.12.已知,一次函数y=的图象与x轴、y轴分别交于点A、点B,与直线y=相交于点C.过点B作x轴的平行线l.点P是直线l上的一个动点.(1)求点A,点B的坐标.(2)求点C到直线l的距离.=S△BCP,求点P的坐标.(3)若S△AOC(4)若点E是直线y=上的一个动点,当△APE是以AP为直角边的等腰直角三角形时,请直接写出点E的坐标.解:(1)∵一次函数y=的图象与x轴、y轴分别交于点A、点B,∴令y=0,则=0,∴x=8,令x=0,则y=6,∴点A、B的坐标分别为:(8,0)、(0,6);(2)解:得,,∴点C(3,),则C到直线l的距离为6﹣=;=×8×=15=S△BCP=×BP×(y P﹣y C)=BP×,(3)∵S△AOC解得:BP=,故点P(,6)或(﹣,6);(4)设点E(m,m)、点P(n,6);①当∠EPA=90°时,当点P在y轴右侧时,当点P在点E的左侧时,如图1,∵∠MEP+∠MPE=90°,∠MPE+∠NPA=90°,∴∠MEP=∠NPA,AP=PE,∵△EMP≌△PNA(AAS),则ME=PN=6,MP=AN,即m﹣n=6,m﹣6=8﹣n,解得:m=,当点P在点E的右侧时,如图,同理可得m=16,当∠EAP=90°时,当点P在y轴左侧时,如图2,同理可得:m﹣8=6,m=8﹣n,解得:m=14,故点E(14,);故点E(,)或(14,)或(16,20);如图3,同理可得:△AMP≌△ANE(AAS),故MP=EN,AM=AN=6,即m=n﹣8,|8﹣m|=6,解得:m=2或14(不合题意舍去),故点E(2,);综上,E(,)或(16,20)或(2,)或(14,).13.如图,在平面直角坐标系xOy中,直线y=﹣x+与y=x相交于点A,与x轴交于点B.(1)求点A,B的坐标;(2)在平面直角坐标系xOy中,是否存在一点C,使得以O,A,B,C为顶点的四边形是平行四边形?如果存在,试求出所有符合条件的点C的坐标;如果不存在,请说明理由;(3)在直线OA上,是否存在一点D,使得△DOB是等腰三角形?如果存在,试求出所有符合条件的点D的坐标,如果不存在,请说明理由.解:(1)∵直线y=﹣x+与y=x相交于点A,∴联立得,解得,∴点A(1,1),∵直线y=﹣x+与x轴交于点B,∴令y=0,得﹣x+=0,解得x=3,∴B(3,0),(2)存在一点C,使得以O,A,B,C为顶点的四边形是平行四边形.①如图1,过点A作平行于x轴的直线,过点O作平行于AB的直线,两直线交于点C,∵AC∥x轴,OC∥AB,∴四边形CABO是平行四边形,∵A(1,1),B(3,0),∴AC=OB=3,∴C(﹣2,1),②如图2,过点A作平行于x轴的直线,过点B作平行于AO的直线,两直线交于点C,∵AC∥x轴,BC∥AO,∴四边形CAOB是平行四边形,∵A(1,1),B(3,0),∴AC=OB=3,∴C(4,1),③如图3,过点O作平行于AB轴的直线,过点B作平行于AO的直线,两直线交于点C,∵OC∥AB,BC∥AO,∴四边形CBAO是平行四边形,∵A(1,1),B(3,0),∴AO=BC,OC=AB,作AE⊥OB,CF⊥OB,易得OE=EF=FB=1,∴C(2,﹣1),(3)在直线OA上,存在一点D,使得△DOB是等腰三角形,①如图4,当OB=OD时,作DE⊥x轴,交x轴于点E∵OB=3,点D在OA上,∠DOE=45°∴DE=OE=,∴D(﹣,﹣),②如图5,当OD=OB时,作DE⊥x轴,交x轴于点E∵OB=3,点D在OA上,∠DOE=45°∴DE=OE=,∴D(,),③如图6,当OB=DB时,∵∠AOB=∠ODB=45°,∴DB⊥OB,∵OB=3,∴D(3,3),④如图7,当DO=DB时,作DE⊥x轴,交x轴于点E∵∠AOB=∠OBD=45°,∴OD⊥DB,∵OB=3,∴OE=,AE=,∴D(,).综上所述,在直线OA上,存在点D(﹣,﹣),D(,),D(3,3)或D(,),使得△DOB是等腰三角形,14.如图,经过点B(0,2)的直线y=kx+b与x轴交于点C,与正比例函数y=ax的图象交于点A(﹣1,3)(1)求直线AB的函数的表达式;(2)直接写出不等式(kx+b)﹣ax<0的解集;(3)求△AOC的面积;(4)点P是直线AB上的一点,且知△OCP是等腰三角形,写出所有符合条件的点P的坐标.解:(1)依题意得:,解得,∴所求的一次函数的解析式是y=﹣x+2.(2)观察图形可知:不等式(kx+b)﹣ax<0的解集;x<﹣1.(3)对于y=﹣x+2,令y=0,得x=2∴C(1,0),∴OC=2.=×2×3=3.∴S△AOC(4)①当点P与B重合时,OP1=OC,此时P1(0,2);②当PO=PC时,此时P2在线段OC的垂直平分线上,P2(1,1);③当PC=OC=2时,设P(m.﹣m+2),∴(m﹣2)2+(﹣m+2)2=4,∴m=2±,可得P3(2﹣,),P4(2+,﹣),综上所述,满足条件的点P坐标为:(1,1)或(0,2)或P(2+,﹣)或(2﹣,).15.如图1,已知直线l1:y=kx+4交x轴于A(4,0),交y轴于B.(1)直接写出k的值为﹣1;(2)如图2,C为x轴负半轴上一点,过C点的直线l2:经过AB的中点P,点Q(t,0)为x轴上一动点,过Q作QM⊥x轴分别交直线l1、l2于M、N,且MN=2MQ,求t的值;(3)如图3,已知点M(﹣1,0),点N(5m,3m+2)为直线AB右侧一点,且满足∠OBM=∠ABN,求点N坐标.解:(1)把A(4,0)代入y=kx+4,得0=4k+4.解得k=﹣1.故答案是:﹣1;(2)∵在直线y=﹣x+4中,令x=0,得y=4,∴B(0,4),∵A(4,0),∴线段AB的中点P的坐标为(2,2),代入,得n=1,∴直线l2为,∵QM⊥x轴分别交直线l1、l2于M、N,Q(t,0),∴M(t,﹣t+4),,∴,MQ=|﹣t+4|=|t﹣4|,∵MN=2MQ,∴,分情况讨论:①当t≥4时,,解得:t=10.②当2≤t<4时,,解得:.③当t<2时,,解得:t=10>2,舍去.综上所述:或t=10.(3)在x轴上取一点P(1,0),连接BP,作PQ⊥PB交直线BN于Q,作QR⊥x轴于R,∴∠BOP=∠BPQ=∠PRQ=90°,∴∠BPO=∠PQR,∵OA=OB=4,∴∠OBA=∠OAB=45°,∵M(﹣1,0),∴OP=OM=1,∴BP=BM,∴∠OBP=∠OBM=∠ABN,∴∠PBQ=∠OBA=45°,∴PB=PQ,∴△OBP≌△RPQ(AAS),∴RQ=OP=1,PR=OB=4,∴OR=5,∴Q(5,1),∴直线BN的解析式为,将N(5m,3m+2)代入,得3m+2=﹣×5m+4解得,∴.16.如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B两点(OA<OB)且OA、OB的长分别是一元二次方程x2﹣(+1)x+=0的两个根,点C在x轴负半轴上,且AB:AC=1:2(1)求A、C两点的坐标;(2)若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM 的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.解:(1)x2﹣(+1)x+=0,(x﹣)(x﹣1)=0,解得x1=,x2=1,∵OA<OB,∴OA=1,OB=,∴A(1,0),B(0,),∴AB=2,又∵AB:AC=1:2,∴AC=4,∴C(﹣3,0);(2)∵AB=2,AC=4,BC=2,∴AB2+BC2=AC2,即∠ABC=90°,由题意得:CM=t,CB=2.①当点M在CB边上时,S=2﹣t(0≤t);②当点M在CB边的延长线上时,S=t﹣2(t>2);(3)存在.①当AB是菱形的边时,如图所示,在菱形AP1Q1B中,Q1O=AO=1,所以Q1点的坐标为(﹣1,0),在菱形ABP2Q2中,AQ2=AB=2,所以Q2点的坐标为(1,2),在菱形ABP3Q3中,AQ3=AB=2,所以Q3点的坐标为(1,﹣2),②当AB为菱形的对角线时,如图所示的菱形AP4BQ4,设菱形的边长为x,则在Rt△AP4O中,AP42=AO2+P4O2,即x2=12+(﹣x)2,解得x=,所以Q4(1,).综上可得,平面内满足条件的Q点的坐标为:Q1(﹣1,0),Q2(1,2),Q3(1,﹣2),Q4(1,).17.如图1,在平面直角坐标系中.直线与x轴、y轴相交于A、B两点,动点C 在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上时,过点D作DE⊥x轴于点E.(1)求证:△BOC≌△CED;(2)如图2,将△BCD沿x轴正方向平移得△B'C'D',当直线B′C′经过点D时,求点D的坐标;(3)若点P在y轴上,点Q在直线AB上.是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的Q点坐标;若不存在,请说明理由.(1)证明:∵∠BOC=∠BCD=∠CED=90°,∴∠OCB+∠DCE=90°,∠DCE+∠CDE=90°,∴∠BCO=∠CDE,在△BOC和△CED中,。

一次函数背景下的存在性问题

一次函数背景下的存在性问题

2021年第02期总第495期数理化解题研究一次函数背景下的存在性问题王帅兵(河南省郑州市孜文教育信息咨询有限公司450000)摘 要:一次函数是八年级数学的学习内容,在平面直角坐标系中,研究点和直线的动态特征,以及在动 态情境下产生的几何图形存在性问题,是考察学生思维能力的有效载体,已成为考试的重难点.本文将结合具 体题目,从不同方面探讨存在性问题的解法.关键词:一次函数;存在性;对称;两圆一线;弦图中图分类号:G632 文献标识码:A 文章编号:1008 -0333(2021)02 -0017 -02一、两定一动型,注意好“一上一下”两定一动型,是指在给定两个点的情况下,另一点在一条线上运动所产生的面积问题,解决这类问题,要做好 题目分析,有一边与坐标轴平行时直接求解;没有边与坐 标轴平行时,用好“铅锤法”(或“割补法”),同时注意好 “ 一一上 —下”.例1如图1所示,一次 函数y 二2% +4的图像与坐标 轴分别交于点A 、B ,在一次函数的图象上是否存在一点P , 使得A AOP 的面积为3?思路分析由题设条件,易求出点A 和点0坐标分别为(-2,0)和(0,0),点P 为直 图1线上一动点,不妨设其坐标为(%,y ),当点P 位于%轴上方时,S △A0P 二2 ; y 二3 ,解得y 二3,代入表达式y 二2% + 4 可得点P 坐标为(-1 /2,3).由于坐标系中的对称性,点 P 也可以位于%轴下方,此时可求出点P 的坐标为 (-7/2,-3).综上,点 P 坐标为(-1/2,3)或者(-7/2, -3).一例2如图2所示,直线y 二1 /2%与直线y 二-% + 3 相交于点A ,点B 是直线y 二1 /2%上的一个点,且横坐标 为4.如果点P 是直线y 二-% +3上的一个动点,且满足 △ABP 的面积为9,那么点P 的坐标为 .思路分析 如图2,易求出点A 和点B 坐标分别为(2,1) 和(4,2).如图3,过点P 向%轴做垂线交直线AB 于点F ,设点P ( a , - a +3),那么点F 坐标为(a , ; a ),则A ABP 的面积为:"F x ( %B 一 %a)(3 -a - 2 a )(4 -2)-----------「 - 9.解得 a 二-4,点P 的坐标为(-4,7).同理,如图4时,可得点P 的坐标 为(8,-5).综上,点P 的坐标为(-4,7)或(8,-5).二、等腰三角形,用好“两圆一线”在一次函数的背景下,等腰三角形的存在性问题可 以借助图形的基本性质来解,利用同端点、等长度作圆和 线段垂直平分线.例 3 如图 5 所示, 直线 y - % + 4 与坐标轴交于点 A 和点B ,在%轴上是否存在点P ,使得A ABP 为等腰三角 形?若存在,求出所有满足条件的点P 的坐标.图5 图6思路分析如图6所示,分别以点A 和点B 为圆心 作圆,同时作出线段AB 的垂直平分线,可得与%轴的4个 交点:P ]、戶2、P 3和P 4.分别求解,可得其坐标分别为P 1( -4-4 2 ,0)、P 2(0,0)、P s (4 2 -4,0)心4,0).三、直角三角形,利用顶点来分类对于直角三角形的存在性,可以利用顶点来分类,然 后结合具体条件求解.例4如图7所示,在平面直角坐标系%oy 中,三角收稿日期:2020 -10 -15作者简介:王帅兵(1988. 7 -),男,河南省鲁山人,本科,从事数学教学研究.17数理化解题研究2021年第02期总第495期板的直角顶点P的坐标为(2,2),一条直角边与兀轴的正半轴交于点A,另一直角边与y轴交于点B,三角板绕点P在坐标平面内转动的过程中,当MA为直角三角形时,请求出所有满足条件的点B的坐标.思路分析分析题设条件可得,乙POA二45°,不可能为直角,'FOA的另两个角可以是直角.如图8,当OA丄AP时,可求出点B的坐标为(0,2);如图9,当OP丄PA时,点B和点O重合,点B坐标为(0,0).综上所述,点B的坐标为(0,2)或(0,0).图7图8图9四、等腰直角三角形,借助弦图轻松解等腰直角三角形的分类问题,可以在构造基本直角的情况下,借助弦图求解.例5如图10所示,直线y二-2兀+4与坐标轴交于点A和点B,在第一象限内是否存在点P,使得A ABP为等腰直角三角形?思路分析由题设条件易得,A(2,0)、B(0,4),OA二2,OB二4.利用心A AOB作弦图,如图11所示,其中P】、P2、戶3是满足条件的点.利用弦图中的全等三角形的性质,以及线段长与坐标的相互转化,可得三点的坐标分别为:P1(4,6)、P2(6,2)、P3(3,3).五、全等三角形,对应后综合求解全等三角形的存在性问题,要注意好顶点的对应,然后借助多种基本方法解题.例6如图12所示,在平面直角坐标系中作矩形OABC,点B坐标为(4,8),将A ABC对折,使点A与点C 重合,折痕交AB于点D,坐标系内是否存在点P(除点B 外),使A APC与A ABC全等?若存在,直接写出符合条件的点P的坐标;若不存在,请说明理由.思路分析由题设条件易得点A与点C的坐标分别为(4,0)、(0,8),直线AC表达式为:y二-2%+8.由矩形性质可得A AOC=△CBA,此时点P与点O重合,坐标为(0,0).由翻折性质可得△ADB'^A CDB',此时,如图13, 18可以延长CP,过点A作CP丄AP于点P,利用等面积法可得点P坐标为(;,?)•如图14,作A ABC关于直线AC 的对称图形,此时,过点P作PQ丄y轴于点Q,利用等面积法可得点P坐标为(-12,24).六、等距离轨迹问题,借助坐标轴三角形构造相似在一次函数背景下的等距离轨迹问题,可以借助一次函数图像与坐标轴的交点,构造相似图形,求出点的坐标,进而找到点所在直线的表达式.例7如图15所示,直线y二2%+6与坐标轴分别交于点A和点B,在平面直角坐标系中是否存在一点,使得点P到直线AB的距离等于25,若存在,请求出点P所在轨迹的表达式;若不存在,请说明理由.思路分析到直线AB距离等于25的点的集合是与直线AB平行的两条直线.由题设条件易得,点A和点B 的坐标分别为(-3,0)和(0,6).如图16,过点B作直线AB的垂线-,在直线-上分别截取BP】二BP?二25,再分别过点P1和点P2作垂直于直线z1的直线z2和z3,直线12和人即为点P的轨迹.因为直线J和厶与直线AB平行,要求其表达式,只要求出点P1和点P2的坐标即可,此时,过点P1作P1Q1丄y轴于点Q1,则△P1Q1B^△BOA,可得P1Q1二4,BQ1二2,可得点P1坐标为(4,4),可求出心:y二2%-4.同理可求出厶:y二2%+16.综上,解决一次函数的存在性问题,一定要研究好背景图形,调用基本技巧和方法,构图确定位置,画图解答.参考文献:[1]王玉新.学好一次函数,善于梳理总结是关键[J].数学学习与研究,2019(19):135.[2]王淑艳.一次函数解初中几何动点问题[J].理科爱好者,2019(4):147.[责任编辑:李璟]。

中考数学 专题17 函数动点问题中平行四边形存在性(解析版)

中考数学 专题17 函数动点问题中平行四边形存在性(解析版)

专题17 函数动点问题中平行四边形存在性类型一、平行四边形存在性结论:A C B DA CB Dx x x xy y y y+=+⎧⎨+=+⎩类型二、特殊平行四边形存在性1. 矩形存在性常用解题思路:构造一线三直角(借助相似或三角函数求解);利用矩形对角线相等(直角三角形斜边的中线等于斜边的一半)借助勾股定理求解等.2. 菱形存在性常用解题思路:利用菱形四条边相等,对角线互相垂直,借助勾股定理等求解.3. 正方形存在性常用解题思路:兼具矩形和菱形二者.【例1】(2018·郑州预测卷)如图,直线y=334x-+与x轴交于点C,与y轴交于点B,抛物线y= 234ax x c++经过B、C两点.(1)求抛物线的解析式;(2)如图,点E是直线BC上方抛物线上的一个动点,当△BEC的面积最大时,求出点E的坐标和最大值;(3)在(2)条件下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使以点P、Q、A、M为顶点的四边形是平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.【答案】见解析.【解析】解:(1)∵直线y =334x -+与x 轴交于点C ,与y 轴交于点B ,∴B (0,3),C (4,0),将B (0,3),C (4,0)代入y = 234ax x c ++得: 16303a c c ++=⎧⎨=⎩,解得:383a c ⎧=-⎪⎨⎪=⎩, ∴抛物线的解析式为:233384y x x =-++.(2)过点E 作EF ⊥x 轴于F ,交BC 于M ,设E (x ,233384x x -++),则M (x ,334x -+),∴ME =233384x x -++-(334x -+)=23382x x -+∴S △BEC =12×EM ×OC =2EM=2(23382x x -+)=()23234x --+,∴当x =2时,△BEC 的面积取最大值3,此时E (2,3).(3)由题意得:M (2,32),抛物线对称轴为:x =1,A (-2,0),设P (m ,y ),y =233384m m -++,Q (1,n )①当四边形APQM 为平行四边形时,有:212m -+=+,解得:m =-3, 即P (-3,218-); ②当四边形AMPQ 为平行四边形时,有:-2+m =2+1,即m =5 即P (5, 218-); ③当四边形AQMP 为平行四边形时,有:2-2=1+m ,得:m =-1, 即P (-1,158); 综上所述,抛物线上存在点P ,使以点P 、Q 、A 、M 为顶点的四边形是平行四边形,点P 的坐标为:(-3,218-),(5, 218-),(-1,158).【变式1-1】(2018·河师大附中模拟)如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (-1,0)、B (3,0)两点,与y 轴交于点C (0,-3).(1)求抛物线的解析式与顶点M 的坐标; (2)求△BCM 的面积与△ABC 面积的比;(3)若P 是x 轴上一个动点,过P 作射线PQ ∥AC 交抛物线于点Q ,随着P 点的运动,在x 轴上是否存在这样的点P ,使以点A 、P 、Q 、C 为顶点的四边形为平行四边形?若存在请直接写出点P 的坐标;若不存在,请说明理由.【答案】见解析.【解析】解:(1)将A (-1,0),B (3,0), C (0,-3)代入y =ax 2+bx +c ,得:9303a b c a b c c -+=⎧⎪++=⎨⎪=-⎩, 解得:a =1,b =-2,c =-3,即抛物线的解析式为:y=x2-2x-3,顶点M的坐标为:(1,-4);(2)连接BC,BM,CM,过M作MD⊥x轴于D,如图所示,S△BCM=S梯形ODMC+S△BDM-S△BOC=3,S△ACB=6,∴S△BCM:S△ACB=1:2;(3)存在.①当点Q在x轴上方时,过Q作QF⊥x轴于F,如图所示,∵四边形ACPQ为平行四边形,∴QP∥AC,QP=AC∴△PFQ≌△AOC,∴FQ=OC=3,∴3=x2﹣2x﹣3,解得x或x=1,∴Q,3)或(1,3);②当点Q在x轴下方时,过Q作QE⊥x轴于E,如图所示,同理,得:△PEQ≌△AOC,∴EQ=OC=3,∴﹣3=x2﹣2x﹣3,解得:x=2或x=0(与C点重合,舍去),∴Q(2,﹣3);综上所述,点Q的坐标为:,3)或(1,3)或(2,﹣3).【例2】(2018·郑州三模)如图所示,在平面直角坐标系中,已知抛物线y=ax2+bx-5与x轴交于A(-1,0),B(5,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)如图2所示,CE∥x轴与抛物线相交于点E,点H是直线CE下方抛物线上的动点,过点H且与y轴平行的直线与BC、CE分别交于点F、G,试探究当点H运动到何处时,四边形CHEF的面积最大,求点H的坐标及最大面积;(3)点M是(1)中所求抛物线对称轴上一动点,点N是反比例函数y=kx图象上一点,若以点B、C、M、N为动点的四边形是矩形,请直接写出满足条件的k的值.【答案】见解析.【解析】解:(1)将A (-1,0),B (5,0)代入y =ax 2+bx -5得:5025550a b a b --=⎧⎨+-=⎩,解得:14a b =⎧⎨=-⎩, 即抛物线的解析式为:y =x 2-4x -5.(2)在y =x 2-4x -5中,当x =0时,y =-5,即C (0,-5), ∵CE ∥x 轴,则C 、E 关于直线x =2对称, ∴E (4,-5), CE =4,由B (5,0), C (0,-5)得直线BC 的解析式为:y =x -5, 设H (m ,m 2-4m -5), ∵FH ⊥CE , ∴F (m ,m -5),∴FH = m -5-(m 2-4m -5)= -m 2+5m , S 四边形CHEF =12·FH ·CE =12(-m 2+5m )×4 =-2(m -52)2+252,当m =52时,四边形CHEF 的面积取最大值252,此时H (52,354-).(3)设M (2,m ),N (n ,kn),B (5,0),C (0,-5), ①当BC 为矩形对角线时,此时:2+n =5+0,m +kn=0-5,即n =3,设BC 与MN 交于点H ,则H (52,52-),MH =12BC =2,∴222552222m ⎛⎛⎫⎛⎫-++= ⎪ ⎪ ⎝⎭⎝⎭⎝⎭, 解得:m =1或m =-6,当m =1时,k =-18;m =-6时,k =3, ②当BC 为矩形边时,分两种情况讨论:(i )当点M 在直线BC 下方时,即四边形BCMN 为矩形,则∠BCM=90°,2+5=n+0,m=kn-5,过M作MH⊥y轴于H,则由OB=OC知,∠OCB=45°,∴∠MCH=∠CMH=45°,即CH=MH,∴-5-m=2,解得:m=-7,n=7,k=-14;(ii)当点M在直线BC上方时,即四边形BCNM为矩形,则∠CBM=90°,n+5=2,kn=m-5,设对称轴与x轴交于点H,同理可得:BH=MH,∴3=m,n=-3,k=6;综上所述,k的值为:-18,3,-14或6.【变式2-1】(2019·驻马店二模)如图,抛物线y=-x2+bx+c经过A(-1,0),B(3,0)两点,且与y轴交于点C,点D是抛物线的顶点,抛物线的对称轴DE交x轴于点E,连接BD.(1)求经过A,B,C三点的抛物线的函数表达式.(2)点P是线段BD上一点,当PE=PC时,求点P的坐标.(3)在(2)的条件下,过点P作PF⊥x轴于点F,G为抛物线上一动点,M为x轴上一动点,N 为直线 PF 上一动点,当以 F ,M ,G ,N 为顶点的四边形是正方形时,请求出点 M 的坐标.【答案】见解析.【解析】解:(1)∵抛物线 y =-x 2+bx +c 经过 A (-1,0),B (3,0)两点,∴10930b c b c --+=⎧⎨-++=⎩,解得:23b c =⎧⎨=⎩,即抛物线的解析式为:y =-x 2+2x +3.(2)由y =-x 2+2x +3知,C (0,3),E (1,0),D (1,4), 可得直线BD 的解析式为:y =-2x +6,设P (m ,-2m +6),由勾股定理得:PE 2=()()22126m m -+-+,PC 2=()22263m m +-+-, 由PE =PC ,得:()()22126m m -+-+=()22263m m +-+-, 解得:m =2,即P (2,2).(3)∵M 在x 轴上,N 在直线PF 上, ∴∠NFM =90°,由四边形MFNG 是正方形,知MF =MG , 设M (n ,0),则G (n ,-n 2+2n +3), MG =|-n 2+2n +3|,MF =|n -2|, ∴|-n 2+2n +3|=|n -2|,解得:n n n n ,故点M 的坐标为:0),0),(12,0),(12-,0).【变式2-2】(2019·大联考)如图1,抛物线y =ax 2+bx +c 经过点A (-4,0),B (1,0),C (0,3),点P 在抛物线上,且在x 轴的上方,点P 的横坐标记为t .(1)求抛物线的解析式;(2)如图2,过点P 作y 轴的平行线交直线AC 于点M ,交x 轴于点N ,若MC 平分∠PMO ,求t 的值.(3)点D 在直线AC 上,点E 在y 轴上,且位于点C 的上方,那么在抛物线上是否存在点P ,使得以点C 、D 、E 、P 为顶点的四边形是菱形?若存在,请直接写出菱形的面积.图1 图2【答案】见解析.【解析】解:(1)∵抛物线y =ax 2+bx +c 经过点A (-4,0),B (1,0),C (0,3),∴301640c a b c a b c =⎧⎪++=⎨⎪-+=⎩,解得:39434c b a ⎧⎪=⎪⎪=-⎨⎪⎪=-⎪⎩,即抛物线的解析式为:y =34-x 294-x +3. (2)由A (-4,0),C (0,3)得直线AC 的解析式为:y =334x +, ∵点P 的横坐标为t , ∴M (t ,334t +), ∵PN ∥y 轴, ∴∠PMC =∠MCO , ∵MC 平分∠PMO , ∴∠PMC =∠OMC , ∴∠MCO =∠OMC , 即OM =OC =3,∴OM 2=9,即223394t t ⎛⎫++= ⎪⎝⎭,解得:t =0(舍)或t =7225,∴当MC 平分∠PMO 时,t =7225. (3)设P (t , 34-t 294-t +3), ①当CE 为菱形的边时,四边形CEPD 为菱形,则PD ∥y 轴,CD =PD ,则D (t ,334t +),∴PD =34-t 294-t +3-(334t +)=34-t 23-t , 由勾股定理得:CD =54t -,∴34-t 23-t =54t -,解得:t =0(舍)或t =73-, 即PD =3512,菱形面积为:3512×73=24536; ②当CE 为菱形的对角线时,此时P 与D 点关于y 轴对称,则D (-t , 34-t 294-t +3),将D 点坐标代入y =334x +,得: 34-t 294-t +3=()334t -+,解得:t =0(舍)或t =-2, PD =4,CE =3,菱形的面积为:12×4×3=6;综上所述,菱形的面积为:24536或6.1.(2019·南阳毕业测试)如图1,抛物线y =ax 2+bx +2与x 轴交于A ,B 两点,与y 轴交于点C ,AB =4,矩形OBDC 的边CD =1,延长DC 交抛物线于点E .(1)求抛物线的解析式;(2)如果点N 是抛物线对称轴上的一点,抛物线上是否存在点M ,使得以M ,A ,C ,N 为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.【答案】见解析.【解析】解:(1)∵矩形OBDC 的边CD =1, ∴OB =1,由AB =4,得OA =3, ∴A (﹣3,0),B (1,0),∵抛物线y =ax 2+bx +2与x 轴交于A ,B 两点, ∴a +b +2=0,9a -3b +2=0, 解得:a =23-,b =43-, ∴抛物线解析式为y =23-x 243-x +2; (2)以AC 为边或对角线分类讨论: A (﹣3,0),C (0,2),抛物线y =23-x 243-x +2的对称轴为x =﹣1, 设M (m , y M ),N (-1,n ),y M =23-m 243-m +2 ①当四边形ACMN 为平行四边形时,有:312Mm y n -+=-⎧⎨=+⎩,解得:m =2,y M =103-,即M (2,103-); ②当四边形ACNM 为平行四边形时,有:312Mmy n --=⎧⎨+=⎩,解得:m =-4,y M =103-,即M (-4,103-); ③当四边形AMCN 为平行四边形时,有:312Mm y n -=-⎧⎨=+⎩,解得:m =-2,y M =2,即M (-2,2); 综上所述,点M 的坐标为(2,103-)或(﹣4,103-)或(﹣2,2). 2.(2019·开封模拟)如图,直线y =﹣x +4与抛物线y =﹣12x 2+bx +c 交于A ,B 两点,点A 在y 轴上,点B 在x 轴上.(1)求抛物线的解析式;(2)在x 轴下方的抛物线上存在一点P ,使得∠ABP =90°,求出点P 坐标;(3)点E 是抛物线对称轴上一点,点F 是抛物线上一点,是否存在点E 和点F 使得以点E ,F ,B ,O 为顶点的四边形是平行四边形?若存在,求出点F 的坐标;若不存在,请说明理由.【答案】见解析.【解析】解:(1)在y=﹣x+4中,当x=0时,y=4,当y=0时,x=4,即点A、B的坐标分别为(0,4)、(4,0),将(0,4)、(4,0),代入二次函数表达式,并解得:b=1,c=4,抛物线的解析式为:y=﹣12x2+x+4;(2)∵OA=OB=4,∴∠ABO=45°,∵∠ABP=90°,则∠PBO=45°,若直线PB交y轴于点M,则OM=OB=4,可得直线BP的解析式为:y=x-4,联立:y=x-4,y=﹣12x2+x+4,得:x=4,y=0(即B点);x=-4,y=-8,即P(-4,-8).(3)存在;由y=﹣12x2+x+4知抛物线的对称轴为:x=1,设E(1,m),F(n,﹣12n2+n+4),O(0,0),B(4,0),①当四边形OBEF是平行四边形时,有:EF=4,∴n-1=-4,即n=-3,F点坐标为(-3,72 -);②当四边形OBFE是平行四边形时,有:EF=4,n-1=4,即n=5,F点坐标为(5,72 -);③当四边形OFBE 是平行四边形时,有:410Fn m y =+⎧⎨=+⎩,即n =3,F 点坐标为(3,52);综上所述:点F 的坐标为(5,72-),(﹣3,72-),(3,52). 3.(2019·开封二模)如图,抛物线y =ax 2+bx +2与直线y =﹣x 交第二象限于点E ,与x 轴交于A (﹣3,0),B 两点,与y 轴交于点C ,EC ∥x 轴.(1)求抛物线的解析式;(2)如果点N 是抛物线对称轴上的一个动点,抛物线上存在一动点M ,若以M ,A ,C ,N 为顶点的四边形是平行四边形,请直接写出所有满足条件的点M 的坐标.【答案】见解析.【解析】解:(1)由题意知:A (﹣3,0),C (0,2),EC ∥x 轴 ∴点E 的纵坐标为2, ∵点E 在直线y =﹣x 上, ∴点E (﹣2,2),∵将A (﹣3,0)、E (﹣2,2)代入y =ax 2+bx +2,得:93204222a b a b -+=⎧⎨-+=⎩,解得:2343a b ⎧=-⎪⎪⎨⎪=-⎪⎩抛物线的解析式为:224233y x x =--+;(2)由224233y x x =--+知,抛物线的对称轴为x =-1,设N (-1,n ),M (m ,224233m m --+),∵A (﹣3,0),C (0,2),(1)当四边形ACNM 是平行四边形时,有:312Mm n y --=⎧⎨=+⎩,得:m =-4,y M = 103-; 即M (-4,103-). (2)当四边形ACMN 是平行四边形时,有:312Mm n y -+=-⎧⎨+=⎩,得:m =2,y M = 103-; 即M (2,103-). (3)当四边形ANCM 是平行四边形时,有:312Mmn y -=-+⎧⎨=+⎩,得:m =-2,y M = 2; 即M (-2,2).综上所述,M 点的坐标是(-4,103-),(2,103-),(-2,2). 4.(2019·名校模考)如图,抛物线y =ax 2+bx ﹣1(a ≠0)交x 轴于A ,B (1,0)两点,交y 轴于点C ,一次函数y =x +3的图象交坐标轴于A ,D 两点,E 为直线AD 上一点,作EF ⊥x 轴,交抛物线于点F(1)求抛物线的解析式;(2)在平面直角坐标系内存在点G ,使得G ,E ,D ,C 为顶点的四边形为菱形,请直接写出点G 的坐标.【答案】见解析.【解析】解:(1)将y =0代入y =x +3,得x =﹣3.∴A(﹣3,0).∵抛物线y=ax2+bx﹣1交x轴于A(﹣3,0),B(1,0)两点,∴109310a ba b+-=⎧⎨--=⎩,解得:1323ab⎧=⎪⎪⎨⎪=⎪⎩抛物线的解析式为y=13x2+23x﹣1;(2)点G的坐标为(2,1),(﹣,﹣1),(﹣1),(﹣4,3).①当四边形DCEG是菱形时,CD=CE=EG=4,设E(m,m+3),则G(m,m+7),由C(0,-1),E(m,m+3),得:CE2=m2+(m+4)2=16,解得:m=0(舍)或m=-4,此时G(-4,3);②当四边形DCGE是菱形时,CG2=16,设E(m,m+3),则G(m,m-1),即m2+ m2=16,解得:m=m=-此时,G(1)或G(--1);③当四边形DGCE是菱形时,设E(m,m+3),则G(-m,-m-1),此时E在CD的垂直平分线上,即m+3=1,m=-2,此时G(2,1);综上所述,点G的坐标为:(-4,3)、(1)、(--1)、(2,1).5.(2019·枫杨外国语三模)(2019·枫杨外国语三模)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,点A的坐标为(-1,0),点C的坐标为(0,3),点D和点C关于抛物线的对称轴对称,直线AD与y轴交于点E.(1)求抛物线的解析式;(2)点M是抛物线的顶点,点P是y轴上一点,点Q是坐标平面内一点,以A,M,P,Q为顶点的四边形是以AM为边的矩形.若点T和点Q关于AM所在直线对称,求点T的坐标.【答案】见解析.【解析】解:(1)将(-1,0),(0,3)代入y=﹣x2+bx+c,得:-1-b+c=0,c=3,解得:b=2,c=3,即抛物线的解析式为:y=﹣x2+2x+3.(2)由y=﹣x2+2x+3知,点M(1,4),分两种情况讨论,①当四边形MAPQ是矩形时,过M作MH⊥x轴于H,则MH=4,AH=2,易证得:∠APO=∠MAH,∴tan∠APO= tan∠MAH,即OA MHOP AH=2,∴OP=12,即P(0,-12),由A(-1,0)、M(1,4),P(0,-12)得:点Q坐标为(2,72),∵点T和点Q关于AM所在直线对称,即点Q与点T关于点M(1,4)对称,∴T(0,92 );②当四边形AMPQ是矩形时,同理可得:T(0,12 -);综上所述,点T的坐标为(0,92),(0,12-).6.(2019·焦作二模)如图,在平面直角坐标系中,一次函数y=x+b的图象经过点A(-2,0),与反比例函数kyx=(x>0)的图象交于点B(a,4).(1)求一次函数和反比例函数的表达式;(2)设M是直线AB上一点,过M作MN∥x轴,交反比例函数kyx=(x>0)的图象于点N,若以A,O,M,N为顶点的四边形是平行四边形,求点M的横坐标.【答案】见解析.【解析】解:(1)将A(-2,0)代入y=x+b,得:b=2,即一次函数的解析式为:y=x+2,将B(a,4)代入y=x+2,得:a=2,即B(2,4),将B(2,4)代入kyx=得:x=8,即反比例函数的解析式为:8 yx =.(2)设M(m,m+2),则N(82m+,m+2),由题意知,MN∥OA,则需MN=OA=2时,以A,O,M,N为顶点的四边形是平行四边形,∴82mm-+=2,解得:m=2或m=-2(舍)或m=m=-(舍),∴点M的坐标为:(2,+2).7.(2019·许昌月考)如图1,二次函数y=43x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0)两点,与y轴交于点C.(1)求该二次函数的解析式;(2)设该抛物线的顶点为D,求△ACD的面积(请在图1中探索);(3)若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动,当P,Q运动到t秒时,△APQ沿PQ所在的直线翻折,点A恰好落在抛物线上E点处,请直接判定此时四边形APEQ的形状,并求出E点坐标(请在图2中探索).图1 图2【答案】见解析.【解析】解:(1)∵二次函数y=43x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0),∴493034103b cb c⎧⨯++=⎪⎪⎨⎪⨯-+=⎪⎩,解得:834bc⎧=-⎪⎨⎪=-⎩,即抛物线的解析式为:y=43x2﹣83x﹣4;(2)过点D作DM⊥y轴于点M,y =43x 2﹣83x ﹣4 =43(x ﹣1)2﹣163, ∴点D (1,﹣163)、点C (0,﹣4), S △ACD =S 梯形AOMD ﹣S △CDM ﹣S △AOC=12×(1+3)×163﹣12×(163﹣4)×1﹣12×3×4 =4;(3)四边形APEQ 为菱形,理由如下:E 点关于PQ 与A 点对称,过点Q 作QF ⊥AP 于F ,由折叠性质知: AP =EP ,AQ =EQ ∵AP =AQ =t , ∴AP =AQ =QE =EP , ∴四边形AQEP 为菱形, ∵FQ ∥OC ,∴AF FQ AQOA OC AC ==, ∴345AF FQ t ==∴AF =35t ,FQ =45t ,Q (3﹣35t ,﹣45t ),E (3﹣35t ﹣t ,﹣45t ),∵E 在二次函数y =43x 2﹣83x ﹣4上,∴﹣45t =43(3﹣85t )2﹣83(3﹣85t )﹣4,∴t =14564或t =0(舍去), ∴E (﹣58,﹣2916).8.(2018·新乡一模)如图,一次函数122y x =-+分别交y 、x 轴于A 、B 两点,抛物线2y x bx c=-++过A ,B 两点.(1)求这个抛物线的解析式;(2)作垂直于x 轴的直线x =t ,在第一象限交直线AB 于M ,交这个抛物线于N . 求当t 取何值时,MN 有最大值?最大值是多少?(3)在(2)的情况下,以A ,M 、N 、D 为顶点作平行四边形,直接写出第四个顶点D 的坐标.【答案】见解析【解析】解:(1)在122y x =-+得,当x =0时,y =2;y =0时,x =4,即A (0,2),B (4,0),把A (0,2),B (4,0)代入2y x bx c =-++,得: 21640c b c =⎧⎨++=⎩-,解得722b c ⎧=⎪⎨⎪=⎩, ∴抛物线解析式为2722y x x =-++. (2)由题意知,1(,2)2M t t -+,27(,2)2N t t t -++,∴MN =2712(2)22t t t -++--+=2(2)4t --+, ∴当t =2时,MN 有最大值4.(3)根据平行四边形的性质,得:D 点坐标为:(0,6),(0,-2)或(4,4).9.(2019·周口二模)如图,在平面直角坐标系中,抛物线y =ax 2+bx +4与x 轴交于A (-1,0),B (4,0)两点,与y 轴交于点C .(1)求这个抛物线的解析式;(2)设E 是该抛物线上位于对称轴右侧的一个动点,过点E 作x 轴的平行线交抛物线于另一点F ,过点E 作EH ⊥x 轴于点H ,再过点F 作FG ⊥x 轴于点G ,得到矩形EFGH .在点E 的运动过程中,当矩形EFGH 为正方形时,直接写出该正方形的边长.【答案】见解析.【解析】解:(1)∵抛物线y =ax 2+bx +4与x 轴交于A (-1,0),B (4,0)两点,∴4016440a b a b -+=⎧⎨++=⎩,解得:13a b =-⎧⎨=⎩,即抛物线的解析式为:y =-x 2+3x +4. (2)∵四边形EFGH 是矩形,∴当EF =EH 时,四边形EFGH 是正方形,设E(m, -m2+3m+4),则F(3-m,-m2+3m+4),m>32,∴EF=2m-3,EH=|-m2+3m+4|,∴2m-3=|-m2+3m+4|,解得:m或m(舍)或m或m(舍)∴正方形的边长EF2,综上所述,正方形EFGH的边长为:2.10.(2019·郑州一中模拟)如图所示,平面直角坐标系中直线y=x+1交坐标轴于点A、D两点,抛物线y=ax2+bx-3经过A、C两点,点C坐标为(a,5). 点M为直线AC上一点,过点M作x轴的垂线,垂足为F,交抛物线于点N.(1)求抛物线解析式;(2)是否存在点M,使得以点D、E、M、N为顶点的四边形为平行四边形,如果有,求点M的坐标,如果没有,请说明理由.【解析】解:∵直线y =x +1交坐标轴于点A 、D 两点, ∴A (-1,0),D (0,1),∵点C (a ,5)在直线y =x +1上, ∴a =4,即C (4,5),将A (-1,0),C (4,5)代入y =ax 2+bx -3得:3016435a b a b --=⎧⎨+-=⎩,解得:12a b =⎧⎨=-⎩, ∴抛物线的解析式为:y =x 2-2x -3. (2)存在,E (0,-3),∴DE =4, 由题意知:DE ∥MN ,∴当DE =MN =4时,四边形DENM 是平行四边形, 设N (m , m 2-2m -3),则M (m , m +1), ∴| m +1-(m 2-2m -3)|=4,解得:m =0(舍)或m =3或m =或m = ,综上所述,点M 的坐标为:(3,4),,).11.(2019·郑州模拟)如图,已知二次函数23234y ax a x ⎛⎫=--+ ⎪⎝⎭的图象经过点A (4,0),与y 轴交于点B ,在x 轴上有一动点C (m ,0) (0<m <4),过点C 作x 轴的垂线交直线AB 于点E ,交该二次函数图象于点D .(1)求a 的值和直线AB 的解析式;(2)过点D 作DF ⊥AB 于点F ,设△ACE ,△DEF 的面积分别为S 1,S 2,若S 1=4S 2,求m 的值; (3)点H 是该二次函数图象上第一象限内的动点,点G 是线段AB 上的动点,当四边形DEGH 是平行四边形,且平行四边形DEGH 的周长取最大值时,求点G 的坐标.【答案】见解析.【解析】解:(1)将A (4,0)代入23234y ax a x ⎛⎫=--+ ⎪⎝⎭得:a =34-,∴抛物线的解析式为:239344y x x =-++,设直线AB 的解析式为:y =kx +b , ∴4k +b =0,b =3,即k =34-,b =3, ∴直线AB 的解析式为:y =34-x +3. (2)∵点C 的横坐标为m ,∴D (m , 239344m m -++),E (m , 34-m +3),AC =4-m ,DE =239344m m -++-(34-m +3)= 2334m m -+,∵BC ∥y 轴, ∴43AC OA CE OB ==,即443m CE -=, ∴CE =()344m -,AE =()544m -, ∵∠DF A =∠DCA =90°,∠DBF =∠AEC , ∴△DFE ∽△ACE , ∵S 1=4S 2, ∴AE =2DE , 即()544m -=2(2334m m -+),解得:m =4(舍)或m =56, 即m 的值为56.(3)如图,过点G 作GM ⊥DC 于M ,设G 、H 点横坐标为n ,由DE =2334m m -+,得GH =2334n n -+,2334m m -+=2334n n -+,得:m =n (舍)或n =4-m ,∴MG =4-2m ,由45MG EG =得:EG =()5424m -, ∴C 四边形DEGH =2()25342344m m m ⎡⎤--+⎢⎥⎣⎦=23102m m -++=23161236m ⎛⎫--+ ⎪⎝⎭,∴当m =13时,C 最大,此时n =113,即G (113,14),E (13,114), 由图象可知当E 、G 互换位置时满足题意,即G (13,114),E (113,14),综上所述,G 点坐标为:(13,114),(113,14).13.(2018·郑州模拟)如图,抛物线y =﹣x 2+bx +c 与x 轴交于点A 和点B (3,0),与y 轴交于点C (0,3),点D 是抛物线的顶点,过点D 作x 轴的垂线,垂足为E ,连接DB .(1)求此抛物线的解析式及顶点D 的坐标;(2)点M 是抛物线上的动点,设点M 的横坐标为m . ①当∠MBA =∠BDE 时,求点M 的坐标;②过点M 作MN ∥x 轴,与抛物线交于点N ,P 为x 轴上一点,连接PM ,PN ,将△PMN 沿着MN 翻折,得△QMN ,若四边形MPNQ 恰好为正方形,直接写出m 的值.【答案】见解析.【解析】解:(1)将点B(3,0),C(0,3)代入y=﹣x2+bx+c,并解得:b=2,c=3,∴抛物线的解析式为y=﹣x2+2x+3.顶点D(1,4).(2)①过点M作MG⊥x轴于G,连接BM.则∠MGB=90°,设M(m,﹣m2+2m+3),∴MG=|﹣m2+2m+3|,BG=3﹣m,∵DE⊥x轴,D(1,4),B(3,0),∴∠DEB=90°,DE=4,OE=1,BE=2,∵∠MBA=∠BDE,∴tan∠MBA=tan∠BDE=12,∴2233m mm-++-=12解得:m=12-或m=32-或m=3(舍)∴满足条件的点M坐标(12-,74)或(32-,94-);②∵MN∥x轴,∴点M、N关于抛物线的对称轴对称,∵四边形MPNQ是正方形,∴OP=1,由∠QPM=∠MPO=45°,得:GM=GP,即|﹣m2+2m+3|=|1﹣m|,解得:m或m或m或m即满足条件的m.14.(2017·信阳二模)如图,抛物线y=ax2+bx﹣4与x轴交于A(﹣2,0)、B(8,0)两点,与y轴交于点C,连接BC,以BC为一边,点O为对称中心做菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.(1)求抛物线的解析式;(2)当点P在线段OB上运动时,直线l分别交BD、BC于点M、N,试探究m为何值时,四边形CQMD 是平行四边形,此时,请判断四边形CQBM的形状,并说明理由.【答案】见解析.【解析】解:(1)将A(﹣2,0)、B(8,0)代入y=ax2+bx﹣4并解得:a=14,b=32-,即抛物线的解析式为:y=14x232-x-4.(2)由y=14x232-x-4知,C(0,-4),由菱形的性质可知:D(0,4),设直线BD的解析式为:y=kx+n,将点B(8,0)、D(0,4)代入得:k=12-,n=4,即直线BD的解析式为:y=12-x+4,由M(m,12-m+4),Q(m,14m232-m-4).当MQ=DC时,四边形CQMD为平行四边形.∴12-m+4﹣(14m232-m-4)=8,解得m=4或m=0(舍去).∴MD∥CQ,MD=CQ,M(4,2),∴M为BD的中点,∴MD=MB.∴CQ=MB,又∵MB∥CQ,∴四边形CQBM为平行四边形.。

一次函数与四边形存在性问题

一次函数与四边形存在性问题

一次函数与四边形存在性【学习目标】1.熟练运用一次函数解决特殊四边形存在问题;2.体会数形结合的思想方法;体会一次函数与几何图形的内在联系.平行四边形问题:(注意点的顺序)1.给三点,先连接三点构成三角形;然后以每边为对角线构造平行四边形;以中点公式或者平移法求点坐标。

2.给两点,分为边和对角线讨论,充分利用平行四边形对边平行且相等,对角线平分两个全等三角形来做。

1.在平面直角坐标系中,以任意两点P(x1,y1)、Q(x2,y2)为端点的线段中点坐标为.(1)如图,矩形ONEF的对角线相交于点M,ON、OF分别在x轴和y轴上,O为坐标原点,点E的坐标为(4,3),则点M的坐标为.(2)在直角坐标系中,有A(﹣1,2),B(3,1),C(1,4)三点,另有一点D与点A、B、C构成平行四边形的顶点,求点D的坐标.2.已知点A、B、C、D可以构成平行四边形,且点A(-1,0),点B(0,3),点C(3,0),则第四个顶点D的坐标为_________________________;xy BCA O举一反三:1.如图,在平面直角坐标系xOy 中,直线交y 轴于点A ,交x 轴于点B ,以线段AB 为边作菱形ABCD (点C 、D 在第一象限),且点D 的纵坐标为9. (1)求点A 、点B 的坐标; (2)求直线DC 的解析式;(3)除点C 外,在平面直角坐标系xOy 中是否还存在点P ,使点A 、B 、D 、P 组成的四边形是平行四边形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.2.如图,在平面直角坐标系中,函数122+=x y 的图像分别交x 轴、y 轴于A 、B 两点.过点A 的直线交y 轴正半轴于点C ,且点C 为线段OB 的中点. (1)求直线AC 的表达式;(2)如果四边形ACPB 是平行四边形,求点P 的坐标.3. 如图10,直线102+-=x y 与x 轴交于点A ,又B 是该直线上一点,满足OA OB =, (1)求点B 的坐标;(2)若C 是直线上另外一点,满足AB=BC ,且四边形OBCD 是平行四边形,试画出符合要求的大致图形,并求出点D 的坐标.4.已知:如图,平面直角坐标系中有一个等腰梯形ABCD ,且AD ∥BC ,AB=CD ,点A 在y 轴正半轴上,点B 、C 在x 轴上(点B 在点C 的左侧),点D 在第一象限,AD=3,BC=11,梯形的高为2,双曲线y=经过点D ,直线y=kx +b 经过A 、B 两点.O BA x yD(1)求点A、B、C、D的坐标;(2)求双曲线y=和直线y=kx+b的解析式;(3)点M在双曲线上,点N在y轴上,如果四边形ABMN是平行四边形,求点N的坐标.5.如图1,在平面直角坐标系中,点A的坐标为(﹣4,4),点B的坐标为(0,2).(1)求直线AB的解析式;(2)以点A为直角顶点作∠CAD=90°,射线AC交x轴的负半轴于点C,射线AD交y轴的负半轴于点D.当∠CAD绕着点A旋转时,OC﹣OD的值是否发生变化?若不变,求出它的值;若变化,求出它的变化范围;(3)如图2,点M(﹣4,0)是x轴上的一个点,点P是坐标平面内一点.若A、B、M、P四点能构成平行四边形,请写出满足条件的所有点P的坐标(不要解题过程).菱形问题:(注意点的顺序)一般给两点,一动点在某直线上,另一点在平面直角坐标系中。

七年级数学上册一次函数之存在性问题(二)讲义

七年级数学上册一次函数之存在性问题(二)讲义

一次函数之存在性问题(二)课前预习1. 已知线段AB,在平面内是否存在点C,使得△ABC为等腰直角三角形?若存在,请作图找出所有满足条件的点C;若不存在,请说明理由.(保留作图痕迹)A B2. 用铅笔做讲义第 1 ,2 题,并将计算、演草保留在讲义上,先看知识点睛,再做题,思路受阻时(某个点做了2~3 分钟)重复上述动作,若仍无法解决,课堂重点听.知识点睛1. 一次函数背景下解决存在性问题的思考方向:①研究背景图形,把函数信息()转化为几何信息;②分析不变特征,确定分类标准;③分析特殊状态的形成因素,画出符合题意的图形并求解.2. 不变特征举例:①等腰直角三角形根据直角顶点确定分类标准,然后借助两腰相等或者45°角确定点的位置.②含特殊角的直角三角形根据直角顶点确定分类标准,然后根据特殊角再次分类,进而作图确定点的位置.精讲精练3.如图,直线与x 轴、y 轴分别交于点A,B,在第一象限内是否存在点P,使以A,B,P 为顶点的三角形是等腰直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.yBO A xyBO A x4.如图,直线x 轴、y 轴分别交于点B,C,点 A 在该直线上,且纵坐标为 2 3 .(1)求△OAB的面积.(2)第二象限内是否存在点P,使得△PAB是等腰直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.yAB O xCyAB O xCyAB O xC5.如图,在平面直角坐标系中,点 A 的坐标为(2,0),Q 是直线x=3 上的一个动点,y 轴正半轴上是否存在点P,使△APQ为等腰直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.x=3yQPO A xx=3yO A xx=3yO A x6.如图,直线与X轴、Y轴分别交于点A、B.第一象限内是否存在点P,使以P,O,B 为顶点的三角形是含60°角的直角三角形?若存在,求出点P的坐标;若yBO A x不存在,请说明理由.yBO A x7.如图,直线y 3 x 3 与x 轴、y 轴分别交于点A,B.第一象限内是否存在点P,使以P,O,B 为顶点的三角形是含30°角的直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.yBA O xyBA O xyBA O xWORD文档。

一次函数与平行四边形存在性问题

一次函数与平行四边形存在性问题

一次函数与平行四边形存在性问题1.坐标系中的平行四边形:(1)对边平行且相等2. 线段中点坐标公式平面直角坐标系中,点A坐标为(x1,y1),点B坐标为(x2,y2),则线段AB的中点坐标为(221xx+,221yy+).2.1平行四边形顶点坐标公式□ABCD的顶点坐标分别为A(x A,y A)、B(x B,y B)、C(x C,y C)、D(x D,y D),则:x A+x C=x B+x D;y A+y C=y B+y D.证明:如图2,连接AC、BD,相交于点E.∵点E为AC的中点,∴E点坐标为(2CA xx+,2CA yy+).又∵点E为BD的中点,∴E点坐标为(2DB xx+,2DB yy+).∴x A+x C=x B+x D;y A+y C=y B+y D.即平行四边形对角线两端点的横坐标、纵坐标之和分别相等.以上两条可统一为:总结:平面直角坐标系中,平行四边形两组相对顶点的横坐标之和相等,纵坐标之和相等方法归纳:1、列出四个点坐标2、分三组对角线讨论列方程组,解方程组3、验证点是否符合题意如图,已知一次函数y=kx+b的图象经过A(﹣2,﹣1),B(1,3)两点,并且交x轴于点C,交y轴于点D.(1)求该一次函数的表达式;(2)求△AOB的面积;(3)平面内是否存在一点M,使以点M、C、O、B为顶点的四边形是平行四边形,若存在,请直接写出点M的坐标,若不存在,请说明理由.如图,在平面直角坐标系中,矩形OABC的顶点A在y轴的正半轴上,点C在x轴的正半轴上,线段OA,OC的长分别是m,n且满足(m﹣6)2+=0,点D是线段OC上一点,将△AOD沿直线AD翻折,点O落在矩形对角线AC上的点E处(1)求线段OD的长;(2)求点E的坐标;(3)DE所在直线与AB相交于点M,点N在x轴的正半轴上,以M、A、N、C为顶点的四边形是平行四边形时,求N点坐标.如图,在平面直角坐标系中,已知矩形OABC的两个顶点A、B 的坐标分别A(32-,0)、B(32-,2),∠CAO=30°.(1)求对角线AC所在的直线的函数表达式;(2)把矩形OABC以AC所在的直线为对称轴翻折,点O落在平面上的点D处,求点D的坐标;(3)在平面内是否存在点P,使得以A、O、D、P为顶点的四边形为平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.如图1,在平面直角坐标系中,直线l1:y=x+1与y轴交于点A,过B(6,1)的直线l2与直线l1交于点C(m,﹣5).(1)求直线l2的解析式;(2)若点D是第一象限位于直线l2上的一动点,过点D作DH∥y轴交l1于点H.当DH=8时,试在x轴上找一点E,在直线l1上找一点F,使得△DEF的周长最小,求出周长的最小值;(3)如图2,将直线l2绕点A逆时针旋转90°得到直线l3,点P是直线l3上一点,到y轴的距离为2且位于第一象限.直线l2与x轴交于点M,与y轴交于点N,将△OMN沿射线NM方向平移2个单位,平移后的△OMN记为△O'M'N'.在平面内是否存在一点Q,使得以点M′,C,P,Q顶点的四边形是平行四边形,若存在,请直接写出点Q的坐标;若不存在,请说明理由.如图1,在平面直角坐标系xOy中,直线l2:y=﹣x+与x轴交于点B,与直线l1:y=x+b交于点C,C 点到x轴的距离CD为2,直线l1交x轴于点A.(1)求直线l1的函数表达式;(2)如图2,y轴上的两个动点E、F(E点在F点上方)满足线段EF的长为,连接CE、AF,当线段CE+EF+AF 有最小值时,求出此时点F的坐标以及CE+EF+AF的最小值;(3)如图3,将△ACB绕点B逆时针方向旋转60°,得到△BGH,使点A与点H对应,点C与点G对应,将△BGH沿着直线BC平移,平移后的三角形为△B′G′H′,点M为直线AC上的动点,是否存在分别以C、O、M、G′为顶点的平行四边形,若存在,请求出M的坐标;若不存在,说明理.。

第六章一次函数(动点、全等、三角形存在性问题压轴)(原卷版)

第六章一次函数(动点、全等、三角形存在性问题压轴)(原卷版)

第六章 一次函数(压轴题专练)一、动点函数问题1.如图,在长方形ABCD 中,动点P 从A 出发,以一定的速度,沿A B C D A ®®®®方向运动到点A 处停止(提示:当点P 在AB 上运动时,点P 到DC 的距离始终等于AD 和BC ).设点P 运动的路程为x ,PCD V 的面积为y ,如果y 与x 之间的关系如图所示,那么长方形ABCD 的面积为( )A .6B .9C .15D .182.已知动点H 以每秒x 厘米的速度沿图1的边框(边框拐角处都互相垂直)按从A B C D E F -----的路径匀速运动,相应的HAF △的面积 ()2cm S 关于时间(s)t 的关系图象如图2,已知8cm AF =,则下列说法正确的有几个( )①动点H 的速度是2cm/s ;②BC 的长度为3cm ;③b 的值为14;④在运动过程中,当HAF △的面积是230cm 时,点H 的运动时间是3.75s 和1025s ..A .1个B .2个C .3个D .4个3.如图1,四边形ABCD 中,90DAB ∠=︒,AB CD ∥,点P 从点A 出发,以每秒1个单位长度的速度,沿路线A -B-C -D 运动.设P 点的运动时间为ts ,PAD V 的面积为S ,当P 运动到BC 的中点时,PAD V 的面积为A .7B .7.5C .84.如图,在长为形ABCD 中,5cm 16cm AB AD ==,,点3cm 4cm AM AE ==,,连线CE ,动点P 从点B 出发,以运动到点A 即停止运动,连接MP ,设点P 运动的时间为(1)如图1,线段CE = cm ;当10t =时,线段EP = cm ;(2)如图1,点P 在线段BC 上运动的过程中,连接EM EP ,,当EMP V 是以EM 为直角边的直角三角形时,请求出对应的时间的值;(1)求线段OC的长;(2)若点E是点C关于y轴的对称点,求(3)已知y轴上有一点P,若以点标.(1)求n和b的值;△是直角三角形,求点P的坐标;(2)若ACP∠=∠,求点P的坐标.(3)当PBE BAC(1)求点D的坐标;(2)点E是线段CD上一动点,直线BE与x轴交于点i)若BDFV的面积为8,求点F的坐标;ii)如图2,当点F在x轴正半轴上时,将直线接FM,若1OF MF=+,求线段MF的长.(1)求直线AB的解析式;(2)已知点D为直线BC上第三象限的一点,连接AD,设点D的横坐标为t 间的函数关系式(不要求写出变量t的取值范围);(3)在(2)的条件下,256S=,点D关于y轴的对称点为点E,点F在第一象限直线。

中考数学微专题7 四边形存在性问题

中考数学微专题7 四边形存在性问题

(3)存在.如图 2,分两种情况:点 Q 在 x 轴上方或点 Q 在 x 轴下方. ①当点 Q 在 x 轴上方时,P 与 Q 纵坐标相等, ∴-x2-2x+3=145,
解得:x1=-12,x2=-32(舍去),
∴Q1-12,145, ②当点 Q 在 x 轴下方时,P 与 Q 纵坐标互为相反数,
∴-x2-2x+3=-145,
问题3:如图直角坐标系中有一点B,C为x轴上一点, 坐标平面内是否存在点D,使以A,B,C,D为顶点 的四边形为矩形?
①画出所有可能存在的点C的位置,使用的方法为以O, B,C三点做直角三角形的方法,即两线一圆.
②代数法 以其中一个情况为例,如图, 当我们确定 O,B,C 的位置后,可以以 OC、OB 为邻边做出矩形 OCDB,该四边形可以看作是 以 OC 为对角线的平行四边形,则可以用平行四边形存在性的方法列出两个方程,而由于矩形对 角线相等,再用两点间距离公式加入一个 OC=BD 的方程即可求解 xO+xC=xB+xD,yO+yC=yB+yD, (xO-xC)2+(yO-yC)2= (xD-xB)2+(yD-yB)2.
∴12(-4m-8)(-2-m)=12×6×6, 整理得:m2+4m-5=0,解得:m1=-5,m2=1(舍去), ∴点 D 的坐标为(-5,-1),∴点 M 的坐标为(-2,8), ∴DM= (-2+5)2+(8+1)2=3 10, 答:dm 的长为 3 10.
解法总结
1.平行四边形的存在性问题 类型一:“三定一动”型 问题:如图,已知三点A,B,C,找一点D,使以A,B,C, D为顶点的四边形为平行四边形. 作法:连接AB,AC,BC,分别过点A,B,C作对边的平行 线,三条平行线的交点即为所求点D.我们通常用直尺来代替 线段进行平移,很容易就能判断出是否存在这样的D点. 类型二:“两定两动”型

一次函数之存在性问题

一次函数之存在性问题

重难点二:一次函数之存在性问题【知识点睛】通常是在变化的过程中,根据已知条件,探索某种状态是否存在的题目,主要考查运动的结果.一次函数背景下解决存在性问题的思考方向:1.把函数信息(坐标或表达式)转化为几何信息;2.分析特殊状态的形成因素,画出符合题意的图形;3.结合图形(基本图形和特殊状态下的图形相结合)几何特征建立等式来解决问题.【例题精讲】例题1. 如图,直线y=kx-4与x轴、y轴分别交于B,C两点,且OC/OB=4/3.(1)求点B的坐标和k的值.(2)若点A是第一象限内直线y=kx-4上的一个动点,则当点A运动到什么位置时,△AOB 的面积是6?(3)在(2)成立的情况下,x轴上是否存在一点P,使△POA是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.【参考答案】练1、如图,在平面直角坐标系中,直角梯形OABC的边OC,OA分别与x轴、y轴重合,AB∥OC,∠AOC=90°,∠BCO=45°,BC=,点C的坐标为(-9,0).(1)求点B的坐标.(2)若直线BD交y轴于点D,且OD=3,求直线BD的表达式.(3)若点P是(2)中直线BD上的一个动点,是否存在点P,使以O,D,P为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.【参考答案】x+4与x轴、y轴分别交于点A、点B,练2、如图,在平面直角坐标系xOy中,直线y=﹣43点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C 处.(1)求AB的长和点C的坐标;(2)求直线CD的解析式;S△OCD,若存在,请求出点P的坐标;若不存在,(3)y轴上是否存在一点P,使得S△PAB=12请说明理由.(4)求S△ADE的面积;(5)直线BA与直线CD相交于点E,若点P是x轴上的一动点记d=PE+PD,求d的最小值及此时点P的坐标.(6)在x轴上是否存在一点Q,使△QAB为等腰三角形,若存在,求Q点坐标;若不存在,说明理由.(7)在坐标轴上是否存在点M,使△MAB为等腰三角形,若存在,求M点坐标;若不存在,说明理由.(8)在直线DC上是否存在点N,使得△NDA为等腰三角形,若存在,求N点坐标;若不存在,说明理由.【分析】(1)先求得点A和点B的坐标,则可得到OA、OB的长,然后依据勾股定理可求得AB的长,然后依据翻折的性质可得到AC的长,于是可求得OC的长,从而可得到点C的坐标;(2)设OD=x,则CD=DB=x+4.,Rt△OCD中,依据勾股定理可求得x的值,从而可得到点D(0,﹣6),然后利用待定系数法求解即可;(3)先求得S△PAB的值,然后依据三角形的面积公式可求得BP的长,从而可得到点P的坐标.【解答】解:(1)令x=0得:y=4,∴B(0,4).∴OB=4x+4,解得:x=3,令y=0得:0=﹣43∴A(3,0).∴OA=3.在Rt△OAB中,AB=√OA2+OB2=5.∴OC=OA+AC=3+5=8,∴C(8,0).(2)设OD=x,则CD=DB=x+4.在Rt△OCD中,DC2=OD2+OC2,即(x+4)2=x2+82,解得:x=6,∴D(0,﹣6).设CD的解析式为y=kx﹣6,将C(8,0)代入得:8k﹣6=0,解得:k=3,4∴直线CD的解析式为y=3x﹣6.4S△OCD,(3)∵S△PAB=12∴S △PAB =12×12×6×8=12. ∵点Py 轴上,S △PAB =12,∴12BP•OA=12,即12×3BP=12,解得:BP=8, ∴P 点的坐标为(0,12)或(0,﹣4).。

专题34 一次函数中的存在性综合问题(解析版)

专题34 一次函数中的存在性综合问题(解析版)

专题34 一次函数中的存在性综合问题1、如图直线y=kx+k交x轴负半轴于点A,交y轴正半轴于点B,且AB=2(1)求k的值;(2)点P从A出发,以每秒1个单位的速度沿射线AB运动,过点P作直线AB的垂线交x轴于点Q,连接OP,设△PQO的面积为S,点P运动时间为t,求S与t的函数关系式,并直接写出t的取值范围;(3)在(2)的条件下,当P在AB的延长线上,若OQ+AB=(BQ﹣OP),求此时直线PQ的解析式.解:(1)对于直线y=kx+k,令y=0,可得x=﹣1,∴A(﹣1,0),∴OA=1,∵AB=2,∴OB==,∴k=.(2)如图,∵tan∠BAO==,∴∠BAO=60°,∵PQ⊥AB,∴∠APQ=90°,∴∠AQP=30°,∴AQ=2AP=2t,当0<t<时,S=•OQ•P y=(1﹣2t)•t=﹣t2+t.当t>时,S=OQ•P y=(2t﹣1)•t=t2﹣t.(3)∵OQ+AB=(BQ﹣OP),∴2t﹣1+2=(﹣),∴2t+1=•,∴4t2+4t+1=7t2﹣7t+7,∴3t2﹣11t+6=0,解得t=3或(舍弃),∴P(,),Q(5,0),设直线PQ的解析式为y=kx+b,则有,解得,∴直线PQ的解析式为y=﹣x+.2、在平面直角坐标系xOy中,对于图形G和图形M,它们关于原点O的“中位形”定义如下,图形G上的任意一点P,图形M上的任意一点Q,作△OPQ平行于PQ的中位线,由所有这样的中位线构成的图形,叫图形G和图形M关于原点O的“中位形”.已知直线y=x+b分别与x轴,y轴交于A、B,图形S是中心为坐标原点,且边长为2的正方形.(1)如图1,当b=2时,点A和点B关于原点O的“中位形”的长度是(请直接写出答案);(2)如图2,若点A和点B关于原点O的“中位形”与图形S有公共点,求b的取值范围;(3)如图3,当b=﹣6时,图形S沿直线y=x平移得到图形T,若图形T和线段AB关于原点O的“中位形”与原来的的图形S没有公共点,请直接写出图形T的中心的横坐标t的取值范围.解:(1)如图1中,由题意b=2时,直线y=x+2,∴A(﹣4,0),B(0,2),∵点A和点B关于原点O的“中位形”是△AOB的中位线EF,EF=AB=×=.故答案为.(2)如图2中,当△AOB的中位线EF经过点(﹣1,1)时,直线EF的解析式为y=x+,∴E(0,),∵OE=EB,∴B(0,3),当△AOB的中位线EF经过点(1,﹣1)时,直线EF的解析式为y=x﹣,∴E(0,﹣),∵OE=EB,∴B(0,﹣3),观察图象可知满足条件的b的值为﹣3≤b≤﹣1或1≤b≤3.(3)如图3中,设平移后的正方形T的中心的坐标为(t,t),则C(t﹣1,t+1),OC的中点E(,),OB的中点F(0,﹣3),∴直线EF的解析式为y=x﹣3,当直线经过(1,﹣1)时,﹣1=﹣3,解得t=9,观察图形可知,t>9时,图形T和线段AB关于原点O的“中位形”与原来的的图形S没有公共点,如图4中,设平移后的正方形T的中心的坐标为(t,t),则C(t﹣1,t+1),OC的中点E(,),O的中点F(6,0),此时直线EF的解析式为y=x﹣,当直线经过(1,﹣1)时,﹣1=﹣,解得t=﹣观察图形可知,t<﹣时,图形T和线段AB关于原点O的“中位形”与原来的的图形S没有公共点,综上所述,满足条件的t的值为t>9或t<﹣.3、如图,直线y=﹣x+8与x轴、y轴分别交于点A和点B,M是OB的上的一点,若将△ABM沿M折叠,点B恰好落在x轴上的点B′处.(1)求A、B两点的坐标;(2)求直线AM的表达式;(3)在x轴上是否存在点P,使得以点P、M、B′为顶点的三角形是等腰三角形,若存在,请直接写出所有点P的坐标;若不存在,请说明理由.解:(1)当x=0时,y=8,∴B(0,8),当y=0时,﹣x+8=0,x=6,∴A(6,0);(2)在Rt△AOB中,∠AOB=90°,OA=6,OB=8,∴AB=10,由折叠得:AB=AB'=10,∴OB'=10﹣6=4,设OM=a,则BM=B'M=8﹣a,由勾股定理得:a2+42=(8﹣a)2,a=3,∴M(0,3),设AM:y=kx+b,则,解得:,∴直线AM的解析式为:y=﹣x+3;(3)在x轴上存在点P,使得以点P、M、B′为顶点的三角形是等腰二角形,如图∵M(0,3),B′(﹣4,0),∴B′M=5,当PB′=B′M时,P1(﹣9,0),P2(1,0);当B′M=PM时,P3(4,0),当PB′=PM时,作BM的垂直平分线,交x轴于P4,交B′M与Q,易证得△P4B′Q∽△MB′O,则=,即=,∴P4B′=,∴OP4=4﹣=,∴P4(﹣,0),综上,P点的坐标为(﹣9,0)或(1,0)或(4,0)或(﹣,0).4、如图,一次函数y1=x+b的图象与x轴y轴分别交于点A,点B,函数y1=x+b,与y2=﹣x的图象交于第二象限的点C,且点C横坐标为﹣3.(1)求b的值;(2)当0<y1<y2时,直接写出x的取值范围;(3)在直线y2=﹣x上有一动点P,过点P作x轴的平行线交直线y1=x+b于点Q,当PQ=OC 时,求点P的坐标.解:(1)将x=﹣3代入y2=﹣x,可得C(﹣3,4),再将C点代入y1=x+b,∴b=7;(2)﹣7<x<﹣3;(3)∵点P为直线y2=﹣x上一动点,设P(a,﹣a),∵PQ∥x轴,∴Q(﹣a﹣7,﹣a),∴PQ=|a+7|,∵C(﹣3,4),∴OC=5,∴PQ=OC=14,∴|a+7|=14,∴a=3或a=﹣9,∴P(3,﹣4)或P(﹣9,12).5、如图,在平面直角坐标系中,直线y=﹣x+b与x、y轴分别相交于点A、B,与直线y=x+2交于点D(3,m),直线y=x+2交x轴于点C,交y轴于点E.(1)若点P是y轴上一动点,连接PC、PD,求当|PC﹣PD|取最大值时,P点的坐标.(2)在(1)问的条件下,将△COE沿x轴平移,在平移的过程中,直线CE交直线AB于点M,则当△PMA是等腰三角形时,求BM的长.解:(1)当x=3时,m=3+2=5,∴D(3,5),把D(3,5)代入y=﹣x+b中,﹣3+b=5,b=8,∴y=﹣x+8,当y=0时,x+2=0,x=﹣2,∴C(﹣2,0),如图1,取C关于y轴的对称点C'(2,0),P1是y轴上一点,连接P1C、P1C'、P1D,则P1C=P1C',∵|P1D﹣P1C'|=|P1D﹣P1C|≤C'D,∴当P与C'、D共线时,|PC﹣PD|有最大值是C'D,设直线C'D的解析式为:y=kx+b,把C'(2,0)和D(3,5)代入得:,解得:,∴直线C'D的解析式为:y=5x﹣10,∴P(0,﹣10);(2)分三种情况:①当AP=AM时,如图2,由(1)知:OP=10,由勾股定理得:AP==2,∵AB=8,∴BM=AB+AM=8+2;同理得:BM1=2﹣8;②当AP=PM时,如图3,过P作PN⊥AB于N,∵∠BNP=90°,∠NBP=45°,∴△BNP是等腰直角三角形,∵PB=18,∴BN==9,∵AB=8,∴AN=9﹣8=,∵AP=PM,PN⊥AM,∴AM=2AN=2,∴BM=8+2=10;③当AM=PM时,如图4,过P作PN⊥AB于N,∵AN=,PN=9,设MN=x,则PM=AN=x+,由勾股定理得:PN2+MN2=PM2,,解得:x=40,∴BM=AB+AN+MN=8++40=49;综上,当△PMA是等腰三角形时,BM的长是8+2或2﹣8或10或49.6、如图,已知一次函数y=3x+3与y轴交于A,与x轴交于点B,直线AC与正半轴交于点C,且AC=BC.(1)求直线AC的解析式.(2)点D为线段AC上一点,点E为线段CD的中点,过点E作x轴的平行线交直线AB于点F,连接DF并延长交x轴于点G,求证;AD=BG.(3)在(2)的条件下,若∠AFD=2∠BAO,求点D坐标.解:(1)当x=0时,y=3,∴A(0,3).令y=0得:3x+3=0,解得:x=﹣1,∴B(﹣1,0).设OC=x,则AC=BC=x+1.在Rt△AOC中,由勾股定理可知:OA2+OC2=AC2,即32+x2=(x+1)2,解得:x=4,∴C(4,0).设直线AC的解析式为y=kx+b,则,解得:,∴直线AC的解析式为y=﹣x+3.(2)如图1所示:过点D作DH∥x轴,则∠HDF=∠BGF.∵HD∥EF∥CG,E为CD的中点,∴F为DG的中点.∴FG=DF.∵在△BGF和△HDF中,,∴△BGF≌△HDF(ASA).∴HD=BG.∵AC=BC,∴∠CAB=∠ABC.∵HD∥CG,∴∠AHD=∠ABC,∴∠HAD=∠AHD.∴AD=DH,∴AD=BG.(3)如图2所示:连接AG,过点C作CH⊥AB,垂足为H,过D作DM⊥x轴于M,在Rt△ABO中,依据勾股定理可知AB==,∵CB=CA,CH⊥AB,∴AH=AB=,∠BCA=2∠ACH.Rt△BCH中,依据勾股定理可知CH===,∵∠BAO+∠ABO=∠ABO+∠BCH,∴∠BAO=∠BCH=∠ACH,∴∠BCA=2∠BAO.又∵∠AFD=2∠BAO,∴∠AFD=∠BCA.又∵∠FAD=∠BAC,∴△FAD∽△CAB,∴AF=DF.又∵GF=FD,∴△GAD为直角三角形.∴OG•OC=OA2,∴OG=.∴G(﹣,0).∴AD=BG=.Rt△AOC中,OA=3,OC=4,∴AC=5,∵DM∥OA,∴,即,OM=1,当x=1时,y=﹣x+3=﹣+3=,∴D(1,).7、已知,如图,在第一象限中,点A的坐标是(3,6),射线OM的解析式为y=x,作线段AC⊥x轴于点C,点B在射线OM上,且OB的长度为3.(1)求△AOB的面积;(2)试判断△AOB的形状,并说明理由;(3)直线AB交坐标轴于E、F两点,若点P在线段EF上,点Q在线段OF上,且△FPQ与△AOC全等,求点Q的坐标.解:(1)如图1,过B作BG⊥x轴于点G,∵点B在射线OM上,∴可设B(x,x),∴OB=3,由勾股定理得:,解得:x=±9,∴B(9,3),∵A(3,6),∴S△AOB=S△AOC+S梯形ACGB﹣S△BOG,=﹣,=22.5;(2)△OAB为直角三角形,理由如下:∵A(3,6),B(9,3),O(0,0),∴OA2=32+62=45,AB2=(9﹣3)2+(3﹣6)2=45,OB2=92+32=90,∴OA2+AB2=OB2,∴△OAB为直角三角形;(3)设直线AB解析式为y=kx+b,∵A(3,6),B(9,3),∴,解得:,∴直线AB解析式为y=﹣x+,令y=0可求得x=15,∴F(15,0),由(2)可知∠OAB=90°,∴∠OAC+∠CAF=∠CAF+∠AFC=90°,∴∠OAC=∠PFQ,①当∠PQF=90°时,如图2,则有△PQF≌△OCA,∴PQ=OC=3,即P点纵坐标为3,在y=﹣x+中,令y=3可求得x=9,∴P(9,3),Q(9,0),此时P与B重合;②当∠QPF=90°时,如图3,则有△PQF≌△COA,∴FQ=OA==3,∴OQ=15﹣3,∴Q(15﹣3,0);综上可知Q点坐标为(9,0)或(15﹣3,0).8、如图1,直线y=﹣x+b分别与x轴,y轴交于A(6,0),B两点,过点B的另一直线交x轴的负半轴于点C,且OB:OC=3:1(1)求直线BC的解析式;(2)直线y=ax﹣a(a≠0)交AB于点E,交BC于点F,交x轴于点D,是否存在这样的直线EF,使S△BDE =S△BDF?若存在,求出a的值;若不存在,请说明理由;(3)如图2,点P为A点右侧x轴上一动点,以P为直角顶点,BP为腰在第一象限内作等腰直角三角形△BPQ,连接QA并延长交y轴于点K.当P点运动时,K点的位置是否发生变化?若不变,求出它的坐标;如果会发生变化,请说明理由.解:(1)∵直线y=﹣x+b分别与x轴交于A(6,0),∴b=6,∴直线AB的解析式是:y=﹣x+6,∴B(0,6),∴OB=6,∵OB:OC=3:1,∴OC=2,∴C(﹣2,0)设BC的解析式是y=kx+b,∴解得,直线BC的解析式是:y=3x+6;(2)存在.理由如下:如图1中,∵S△BDF=S△BDE,∴只需DF=DE,即D为EF中点,∵点E为直线AB与EF的交点,∴∴点E(,)∵点F为直线BC与EF的交点,∴∴点F(,)∵D为EF中点,∴+,∴a=0舍去,a=(3)K点的位置不发生变化.理由如下:如图2中,过点Q作CQ⊥x轴,设PA=m,∵∠POB=∠PCQ=∠BPQ=90°,∴∠OPB+∠QPC=90°,∠QPC+∠PQC=90°,∴∠OPB=∠PQC,∵PB=PQ,∴△BOP≌△PCQ(AAS),∴BO=PC=6,OP=CQ=6+m,∴AC=QC=6+m,∴∠QAC=∠OAK=45°,∴OA=OK=6,∴K(0,﹣6).9、如图,在平面直角坐标系中,直线y=2x+8与x轴交于点A,与y轴交于点B,过点B的直线交x轴于点C,且AB=BC.(1)求直线BC的解析式;(2)点P为线段AB上一点,点Q为线段BC延长线上一点,且AP=CQ,PQ交x轴于N,设点Q横坐标为m,△PBQ的面积为S,求S与m的函数关系式(不要求写出自变量m的取值范围);(3)在(2)的条件下,点M在y轴负半轴上,且MP=MQ,若∠BQM=45°,求直线PQ的解析式.解:(1)∵直线y=2x+8与x轴交于点A,与y轴交于点B,∴点B(0,8),点A(﹣4,0)∴AO=4,BO=8,∵AB=BC,BO⊥AC,∴AO=CO=4,∴点C(4,0),设直线BC解析式为:y=kx+b,由题意可得:解得:∴直线BC解析式为:y=﹣2x+8;(2)如图1,过点P作PG⊥AC,PE∥BC交AC于E,过点Q作HQ⊥AC,∵AB=CB,∴∠BAC=∠BCA,∵点Q横坐标为m,∴点Q(m,﹣2m+8)∴HQ=2m﹣8,CH=m﹣4,∵AP=CQ,∠BAC=∠BCA=∠QCH,∠AGP=∠QHC=90°,∴△AGP≌△CHQ(AAS),∴AG=HC=m﹣4,PG=HQ=2m﹣8,∵PE∥BC,∴∠PEA=∠ACB,∠EPF=∠CQF,∴∠PEA=∠PAE,∴AP=PE,且AP=CQ,∴PE=CQ,且∠EPF=∠CQF,∠PFE=∠CFQ,∴△PEF≌△QCF(AAS)∴S△PEF=S△QCF,∴△PBQ的面积=四边形BCFP的面积+△CFQ的面积=四边形BCFP的面积+△PEF的面积=四边形PECB的面积,∴S=S△ABC﹣S△PAE=×8×8﹣×(2m﹣8)×(2m﹣8)=16m﹣2m2;(3)如图2,连接AM,CM,过点P作PE⊥AC,∵AB=BC,BO⊥AC,∴BO是AC的垂直平分线,∴AM=CM,且AP=CQ,PM=MQ,∴△APM≌△CQM(SSS)∴∠PAM=∠MCQ,∠BQM=∠APM=45°,∵AM=CM,AB=BC,BM=BM,∴△ABM≌△CBM(SSS)∴∠BAM=∠BCM,∴∠BCM=∠MCQ,且∠BCM+∠MCQ=180°,∴∠BCM=∠MCQ=∠PAM=90°,且∠APM=45°,∴∠APM=∠AMP=45°,∴AP=AM,∵∠PAO+∠MAO=90°,∠MAO+∠AMO=90°,∴∠PAO=∠AMO,且∠PEA=∠AOM=90°,AM=AP,∴△APE≌△MAO(AAS)∴AE=OM,PE=AO=4,∴2m﹣8=4,∴m=6,∴Q(6,﹣4),P(﹣2,4)设直线PQ的解析式为:y=ax+c,∴解得:∴直线PQ的解析式为:y=﹣x+2.10、已知:在平面直角坐标系中,直线y=x+4与x轴交于点A,与y轴交于点B,点C是x轴正半轴上一点,AB=AC,连接BC.(1)如图1,求直线BC解析式;(2)如图2,点P、Q分别是线段AB、BC上的点,且AP=BQ,连接PQ.若点Q的横坐标为t,△BPQ 的面积为S,求S关于t的函数关系式,并写出自变量取值范围;(3)如图3,在(2)的条件下,点E是线段OA上一点,连接BE,将△ABE沿BE翻折,使翻折后的点A落在y轴上的点H处,点F在y轴上点H上方EH=FH,连接EF并延长交BC于点G,若BG=AP,连接PE,连接PG交BE于点T,求BT长.解:(1)由已知可得A(﹣3,0),B(0,4),∴OA=3,OB=4,∴AB===5,∵AB=AC,∴AC=5,∴C(2,0),设BC的直线解析式为y=kx+b,将点B与点C代入,得,∴,∴BC的直线解析式为y=﹣2x+4;(2)过点Q作MQ⊥y轴,与y轴交于点M,过点Q作QE⊥AB,过点C作CF⊥AB,∵Q点横坐标是t,∴MQ=t,∵MQ∥OC,∴,∴,∴BQ=t,∵AP=BQ,∴AP=t,∵AB=5,∴PB=5﹣t,在等腰三角形ABC中,AC=AB=5,BC=2,∵AB×CF=AC×OB,∴CF=OB=4,∵EQ∥CF∴∴EQ=2t,∴S=×(5﹣t)=(0≤t≤2);(3)如图3,∵将△ABE沿BE翻折,使翻折后的点A落在y轴上的点H处,∴AH=AB=5,AE=EH,∴OH=BH﹣OB=1,∵EH2=EO2+OH2,∴AE2=(4﹣AE)2+1,∴AE==EH,∴OE=,∴点E(﹣,0)∵EH=FH=,∴OF=∴点F(0,)∴直线EF解析式为y=x+,直线BE的解析式为:y=3x+4,∴﹣2x+4=x+,∴x=,∴点G(,)∴BG==,∵BG=AP,∴AP=1,设点P(a,a+4)∴1=∴a=﹣,∴点P(﹣,),∴直线PG的解析式为:y=x+,∴3x+4=x+,∴x=﹣1,∴点T(﹣1,1)∴BT==11、如图,已知一次函数y=﹣x+7与正比例函数y=x的图象交于点A,且与x轴交于点B.(1)求△AOB的面积:(2)在y轴上找一点C,使AC+BC最小,求最小值及C点坐标.(3)点P从O出发向B点以1个单位每秒的速度运动,点Q从B点出发向A点以同样的速度运动,两个点同时停止,当△BPQ为等腰三角形时,求Q点坐标.解:(1)∵一次函数y=﹣x+7与正比例函数y=x的图象交于点A,且与x轴交于点B.∴点B(7,0),﹣x+7=x∴x=3,∴点A(3,4)∴S△AOB=×7×4=14;(2)如图1,作点B关于y轴的对称点H(﹣7,0),连接AH,交y轴于点C,∴此时AC+BC最小值为AH,∵点A(3,4),点H(﹣7,0),∴AH==2,∴AC+BC最小值为2,设直线AH解析式为:y=kx+b,且过点A(3,4),点H(﹣7,0),∴,解得:∴直线AH解析式为:y=x+;(3)如图2,过点Q作QE⊥OB,∵以同样的速度运动,∴BQ=OP,∵一次函数y=﹣x+7与y轴交于点D,∴点D(0,7),∴OD=OB=7,且∠DOB=90°,∴∠DBO=45°,且QE⊥OB,∴∠QBE=∠EQB=45°,∴QE=BE,∴QB=QE=EB,若PB=QB,且OP=BQ,∴OP=PB==BQ,∴BE=EQ=,∴OE=7﹣,∴点Q(7﹣,),若QP=QB,且QE⊥OB,∴PE=BE,∵OB=7=OP+PE+BE,∴7=BE+2BE,∴BE==QE,∴OE=∴点Q(,),如图3,若BP=PQ,过点P作PF⊥BQ,∴BF=FQ=BQ,∵∠ABO=45°,PF⊥AB,∴∠FPB=∠ABO=45°,∴PF=BF,∴PB=BF,∴7﹣BQ=∴BQ=,∴BE=QE=,∴点Q坐标为(7﹣,).12、一边长为4正方形OACB放在平面直角坐标系中,其中O为原点,点A、B分别在x轴、y轴上,D为射线OB上任意一点.(1)如图1,若点D坐标为(0,2),连接AD交OC于点E,则△AOE的面积为;(2)如图2,将△AOD沿AD翻折得△AED,若点E在直线y=x图象上,求出E点坐标;(3)如图3,将△AOD沿AD翻折得△AED,DE和射线BC交于点F,连接AF,若∠DAO=75°,平面内是否存在点Q,使得△AFQ是以AF为直角边的等腰直角三角形,若存在,请求出所有点Q坐标;若不存在,请说明理由.解:(1)∵边长为4正方形OACB放在平面直角坐标系中,∴点A坐标(4,0),点C(4,4),∴直线OC解析式为:y=x,∵点D坐标为(0,2),点A坐标(4,0),∴直线AD解析式为:y=﹣x+2,∴解得:∴点E坐标(,)∴△AOE的面积=×4×=,故答案为:;(2)如图2,过点E作EH⊥OA,∵将△AOD沿AD翻折得△AED,∴AO=AE=4,设点E(a,a),∴OH=a,EH=a,∴AH=4﹣a,∵AE2=EH2+AH2,∴16=a2+(4﹣a)2,∴a=0(舍去),a=,∴点E(,)(3)∵将△AOD沿AD翻折得△AED,∴∠DAO=∠DAE=75°,OA=AE,∠DOA=∠DEA=90°,∴∠OAE=150°,AE=AC,∠ACF=∠AED=90°,∴∠CAE=60°,∵AE=AC,AF=AF,∴Rt△AEF≌Rt△ACF(HL)∴∠CAF=∠EAF=30°,且AC=4,∴CF=,∵△AFQ是以AF为直角边的等腰直角三角形,∴若∠AFQ=90°,AF=FQ,如图3,过点Q作QN⊥BF,∴∠NQF+∠QFN=90°,且∠QFN+∠AFC=90°,∴∠NQF=∠AFC,且∠ACF=∠QNF=90°,QF=AF,∴△QNF≌△FCA(AAS)∴QN=CF=,AC=NF=4,∴点Q(,4+)同理可求:Q'(8+,4﹣),若∠FAQ=90°,AF=AQ时,同样方法可求,Q''(0,),Q'''(8,﹣)。

一次函数与矩形存在性问题

一次函数与矩形存在性问题

一次函数与矩形存在性问题本文讨论一次函数与矩形存在性的问题,并探讨其中的关系和特点。

引言一次函数是指具有形式为 y = ax + b 的函数,其中 a 和 b 均为常数,且 a 不等于 0。

矩形是一个具有四个直角的四边形,其中所有内角均为 90 度。

在数学中,我们经常会遇到一次函数与矩形的相关问题,例如确定一次函数是否与某个矩形相交或相切。

问题分析一次函数与矩形相交或相切的存在性取决于函数的斜率和截距与矩形的边界条件之间的关系。

以下是一些常见情况的分析结果:1. 当函数的斜率为正时,如果函数的截距小于矩形最低边的上端点,并且截距大于矩形最高边的下端点,则函数与矩形相交或相切。

2. 当函数的斜率为负时,如果函数的截距大于矩形最低边的上端点,并且截距小于矩形最高边的下端点,则函数与矩形相交或相切。

3. 当函数的斜率为零时,如果函数的截距在矩形最低和最高边的下、上端点之间,则函数与矩形相交或相切。

需要注意的是,以上分析仅适用于矩形的上、下、左、右四条边界条件,对于矩形内部的情况则不予考虑。

实例分析为了更好地理解一次函数与矩形存在性问题,我们来看一个具体的实例。

假设有一条直线方程为 y = 2x + 3,并且有一个矩形的四个顶点坐标分别为 A(1, 2),B(4, 5),C(6, 1) 和 D(3, -2)。

我们可以根据上述分析方法来判断这条直线是否与该矩形相交或相切。

根据函数的斜率和截距,我们可以得知该直线的斜率为 2,截距为 3。

然后我们可以根据矩形的边界条件来判断:1. 矩形的最低边为 AB,上端点为 B(4, 5)。

根据情况 1,我们可以知道直线的截距必须小于 B 的 y 坐标,即 3 < 5,所以该直线与矩形 AB 边相交或相切。

2. 矩形的最高边为 CD,下端点为 D(3, -2)。

根据情况 1,我们可以知道直线的截距必须大于 D 的 y 坐标,即 3 > -2,所以该直线与矩形 CD 边相交或相切。

一次函数与平行四边形存在性问题

一次函数与平行四边形存在性问题

一次函数与平行四边形存在性问题问题描述在平面几何中,我们知道一次函数可以用来表示一条直线的方程,而平行四边形则是具有平行边的四边形。

我们现在想研究以下问题:一次函数是否存在与平行四边形的边平行的斜率?解决方案我们将通过讨论一次函数的斜率和平行四边形的边进行分析。

一次函数的斜率一次函数可以用如下的一般方程表示:y = mx + c其中,`m` 表示斜率,`c` 表示截距。

斜率 `m` 是函数直线斜率的关键参数,它决定了直线的倾斜程度。

我们知道,当两条直线的斜率相等时,它们是平行的。

平行四边形的边平行四边形是一种特殊的四边形,它的对边是平行的。

我们可以定义平行四边形的边为 `AB` 和 `CD`,并假设它们是平行的。

讨论现在,我们来探讨一次函数是否可能存在与平行四边形的边平行的斜率 `m`。

假设 `AB` 和 `CD` 是平行四边形的边,我们可以通过求解两个点的斜率来判断函数的斜率是否与平行四边形的边平行。

假设点 `A` 的坐标为 `(x1, y1)`,点 `B` 的坐标为 `(x2, y2)`,我们可以计算出两点的斜率 `m_AB`:m_AB = (y2 - y1) / (x2 - x1)同理,如果点 `C` 的坐标为 `(x3, y3)`,点 `D` 的坐标为 `(x4, y4)`,我们可以计算出另一条边的斜率 `m_CD`:m_CD = (y4 - y3) / (x4 - x3)如果 `m_AB` 等于 `m_CD`,那么一次函数存在与平行四边形的边平行的斜率。

总结通过对一次函数的斜率和平行四边形的边进行分析,我们得出结论:一次函数存在与平行四边形的边平行的斜率。

请注意,此结论仅在满足题设条件的情况下成立,具体问题具体分析。

此解决方案仅提供了一种可能的方法,具体问题的解决需要进一步讨论和推导。

参考资料:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数与四边形综合专题
1.如图,将一个正方形纸片OABC放置在平面直角坐标系中,其中A(1,0),C(0,1),P为AB边上一个动点,折叠该纸片,使O点与P点重合,折痕l与OP交于点M,与对角线AC交于Q点
(Ⅰ)若点P的坐标为(1,),求点M的坐标;
(Ⅱ)若点P的坐标为(1,t)
①求点M的坐标(用含t的式子表示)(直接写出答案)
②求点Q的坐标(用含t的式子表示)(直接写出答案)
(Ⅲ)当点P在边AB上移动时,∠QOP的度数是否发生变化如果你认为不发生变化,写出它的角度的大小.并说明理由;如果你认为发生变化,也说明理由.
2.如图,△OAB的一边OB在x轴的正半轴上,点A的坐标为(6,8),OA=OB,
点P在线段OB上,点Q在y轴的正半轴上,OP=2OQ,过点Q作x轴的平行线分别交OA,AB于点E,F.
(1)求直线AB的解析式;
(2)若四边形POEF是平行四边形,求点P的坐标;
(3)是否存在点P,使△PEF为直角三角形若存在,请直接写出点P的坐标;若不存在,请说明理由.
3.如图,在平面直角坐标系中,已知矩形OABC的两个顶点A、B 的坐标分别A (,0)、B(,2),∠CAO=30°.
(1)求对角线AC所在的直线的函数表达式;
(2)把矩形OABC以AC所在的直线为对称轴翻折,点O落在平面上的点D处,求点D的坐标;
(3)在平面内是否存在点P,使得以A、O、D、P为顶点的四边形为平行四边形若存在,求出点P的坐标;若不存在,请说明理由.
4.如图,直线l与坐标轴分别交于A、B两点,∠BAO=45°,点A坐标为(8,0).动
点P从点O出发,沿折线段OBA运动,到点A停止;同时动点Q也从点O出发,沿线段OA运动,到点A停止;它们的运动速度均为每秒1个单位长度.
(1)求直线AB的函数关系式;
(2)若点A、B、O与平面内点E组成的图形是平行四边形,请直接写出点E的坐标;
(3)在运动过程中,当P、Q的距离为2时,求点P的坐标.
5.在平面直角坐标系xOy中,过原点O及点A(0,2)、C(6,0)作矩形OABC,∠AOC的平分线交AB于点D.点P从点O出发,以每秒个单位长度的速度沿射线OD方向移动;同时点Q从点O出发,以每秒2个单位长度的速度沿x轴正方向移动.设移动时间为t秒.
(1)当点P移动到点D时,t=秒;
(2)连接点A,C,求直线AC的解析式;
(3)若点M是直线AC上第一象限内一点,是否存在某一时刻,使得四边形OPMQ 为平行四边形若存在,请直接写出t的值及点M的坐标;若不存在,请说明理由.
6.如图,在平面直角坐标系xOy中,直线交y轴于点A,交x轴于点B,以线段AB为边作菱形ABCD(点C、D在第一象限),且点D的纵坐标为9.
(1)求点A、点B的坐标;
(2)求直线DC的解析式;
(3)除点C外,在平面直角坐标系xOy中是否还存在点P,使点A、B、D、P 组成的四边形是平行四边形若存在,请直接写出点P的坐标;若不存在,请说明理由.
7.如图,在平面直角坐标系xOy中,矩形ABCD的AB边在x轴上,AB=3,AD=2,经过点C的直线y=x﹣2与x轴、y轴分别交于点E、F.
(1)求:①点D的坐标;
②经过点D,且与直线FC平行的直线的函数表达式;
(2)直线y=x﹣2上是否存在点P,使得△PDC为等腰直角三角形若存在,求出点P 的坐标;若不存在,请说明理由.
(3)在平面直角坐标系内确定点M,使得以点M、D、C、E为顶点的四边形是平行四边形,请直接写出点M的坐标.
8.已知:如图1,图2,在平面直角坐标系xOy中,A(0,4),B(0,2),点C 在x轴的正半轴上,点D为OC的中点.
(1)求证:BD∥AC;
(2)如果OE⊥AC于点E,OE=2时,求点C的坐标;
(3)如果OE⊥AC于点E,当四边形ABDE为平行四边形时,求直线AC的解析式.
9.如图,已知直线l:y=﹣x+b与x轴、y轴分别交于点A,B,直线l1:y=x+1与y轴交于点C,设直线l与直线l1的交点为E
(1)如图1,若点E的横坐标为2,求点A的坐标;
(2)在(1)的前提下,D(a,0)为x轴上的一点,过点D作x轴的垂线,分别交直线l与直线l1于点M、N,若以点B、C、M、N为顶点的四边形为平行四边形,求a的值;
(3)如图2,设直线l与直线l2:y=﹣x﹣3的交点为F,问是否存在点B,使BE=BF,若存在,求出直线l的解析式,若不存在,请说明理由.
10.已知,如图,平面直角坐标系xOy中,线段AB∥y轴,点B在x轴正半轴上,点A在第一象限,AB=10.点P是线段AB上的一动点,当点P在线段AB 上从点A向点B开始运动时,点B同时在x轴上从点C(4,0)向点O运动,
点P、点B运动的速度都是每秒1个单位,设运动的时间为t(0<t<4).
(1)用含有t的式子表示点P的坐标;
(2)当点P恰好在直线y=3x上时,求线段AP的长;
(3)在(2)的条件下,直角坐标平面内是否存在点D,使以O、P、A、D为顶点的四边形是等腰梯形.如果存在,请直接写出点D的坐标;如果不存在,请简单说明理由.
11.在直角坐标系中,点A的坐标是(3,0),点P在第一象限内的直线y=﹣x+4上.设点P的坐标为(x,y).
(1)求△POA的面积S与自变量x的函数关系式及x的取值范围;
(2)当S=时,求点P的位置;
(3)在(2)的条件下,若以P、O、A、Q为顶点构成平行四边形,请直接写出第四个顶点Q的坐标.
12.已知函数y=kx+b的图象与x轴、y轴分别交于点A(12,0)、点B,与函数y=x的图象交于点E,点E的横坐标为3,求:
(1)直线AB的解析式;
(2)在x轴有一点F(a,0).过点F作x轴的垂线,分别交函数y=kx+b和函数y=x于点C、D,若以点B、O、C、D为顶点的四边形是平行四边形,求a的值.
13.如图1,在平面直角坐标系中,点A的坐标为(﹣4,4),点B的坐标为(0,2).
(1)求直线AB的解析式;
(2)以点A为直角顶点作∠CAD=90°,射线AC交x轴的负半轴于点C,射线AD
交y轴的负半轴于点D.当∠CAD绕着点A旋转时,OC﹣OD的值是否发生变化若不变,求出它的值;若变化,求出它的变化范围;
(3)如图2,点M(﹣4,0)是x轴上的一个点,点P是坐标平面内一点.若A、B、M、P四点能构成平行四边形,请写出满足条件的所有点P的坐标。

14.如图,已知直线y=3x+3与x轴交于点A,与y轴交于点C,过点C的直线y=﹣x+b与x轴交于点B.
(1)b的值为;
(2)若点D的坐标为(0,﹣1),将△BCD沿直线BC对折后,点D落到第一象限的点E处,求证:四边形ABEC是平行四边形;
(3)在直线BC上是否存在点P,使得以P、A、D、B为顶点的四边形是平行四边形如果存在,请求出点P的坐标;如果不存在,请说明理由.
15.如图1,已知直线y=﹣3x+6与x轴、y轴交于A、B两点,点C在x轴负半
轴上,S
△BOC =3S
△BOA
(1)求直线BC的函数表达式;
(2)如图2,一条直线y=mx经过原点,与直线AB,BC分别交于点E、F,若S
△BOE =S
△BOF
,求m的值;
(3)如图3,将(2)中直线EF向上平行移动后经过点B,与x轴交于点G,设H为线段BG上一点(含端点),连接AH,一动点M从点A出发,沿线段AH运动到H,再沿线段HB运动到B后停止,若点M在AH上的速度为每秒1个单位,在HB上的速度为每秒个单位,当点H的坐标是多少时,点M在整个运动过程中用时最少。

相关文档
最新文档