模具材料及表面强化论文。陈

合集下载

模具表面强化技术

模具表面强化技术

模具表面强化新技术摘要:通过对模具制造领域中的表面强化技术进行综合介绍,同时对其性能指标和经济性作了详细的比较分析,指出正确运用表面强化技术是提高模具使用寿命的一个行之有效的途径,具有事半功倍的效果。

关键词:表面强化技术;模具;使用寿命The Application and Progress of the Surface Strengthening Technology in Die & Mould Manufacturing FieldAbstract:Through a general introduction of the surface strengthening technologies applied to the die and mould manufacturing field and a detailed comparison on their performances and costs, it ispointed out that properly employing surface strengthening technologies is an effective way to prolong the service life of dies and moulds and can achieve optimum results with less effort.Key words:surface strengthening technology; die & mould; service life 1引言随着我国汽车、家电工业的迅猛发展,对模具工业提出了更高的要求,如何提高模具的加工质量和使用寿命,一直是人们不断探索的课题。

而表面强化技术以其广泛的功能性、良好的环保性以及巨大的增效性等优势正逐步成为提高模具质量和使用寿命的重要途径,这对改善模具的综合性能、充分发挥传统模具的性能潜力具有十分重要的意义。

模具制造技术论文

模具制造技术论文

模具制造技术论文模具制造是当前材料科学与工程领域中表现较为活跃、发展较为迅速的分支。

下面小编给大家分享一些模具制造技术论文,大家快来跟小编一起欣赏吧。

模具制造技术论文篇一浅谈模具制造中的表面强化技术摘要:在日常生产过程中模具的使用寿命成了工业生产过程中最大的问题,如何提高压铸模具的寿命我们就得在对其的表面处理工艺上下工夫。

本文介绍在模具制造领域中应用较为广泛的几类表面强化技术,并对其性能指标和经济性作了比较。

介绍了稀土表面强化技术在模具制造中的应用进展。

对纳米表面强化技术在模具制造中的应用作了展望。

关键词:模具制造表面强化技术引言表面强化是当前材料科学与工程领域中表现较为活跃、发展较为迅速的分支。

表面工程具有学科的综合性,手段的多样性,广泛的功能性,潜在的创新性,环境的保护性,很强的实用性和巨大的增效性,因而受到各行各业的重视。

表面强化技术在模具制造领域中的应用,在很大程度上弥补了模具材料的不足。

可用于模具制造的表面强化技术十分广泛,既包括传统的表面淬火技术、热扩渗技术、堆焊技术和电镀硬铬技术,又包括近20年来迅速发展起来的激光表面强化技术、物理气相沉积技术(PVD)、化学气相沉积技术(CVC)、离子注入技术、热喷涂技术、热喷焊技术、复合电镀技术、复合电刷镀技术和化学镀技术等。

而稀土表面强化技术的进展和纳米表面强化技术的兴起必将进一步推动模具制造的表面强化技术的发展。

表面强化技术应用于模具型腔表面处理,可达到如下目的:(1)提高模具型腔表面硬度、耐磨性、耐蚀性和抗高温氧化性能,大幅度提高模具的使用寿命。

提高模具型腔表面抗擦伤能力和脱模能力,从而提高生产率。

(2)经表面涂层或合金化处理过的碳素工具钢或低合金钢,其综合性能可达到甚至超过高合金化模具材料及硬质合金的性能指标,从而可大幅度降低材料成本。

(3)可以简化模具制造加工工艺和热处理工艺,降低生产成本。

(4)可用于模具型腔表面的纹饰,以提高制品的档次和附加值。

模具表面强化【范本模板】

模具表面强化【范本模板】

模具表面强化处理技术模具是作为制造业的重要工艺装备,它的使用性能,特别是使用寿命反映了一个国家的工业水平,并直接影响到产品的更新换代和在国际市场上的竞争能力.因此,各国都非常重视模具工业的发展和模具寿命的提高工作。

目前,我国模具的寿命还不高,模具消耗量很大,因此,提高我国的模具寿命是一个十分迫切的任务.模具热处理对使用寿命影响很大.我们经常接触到的模具损坏多半是热处理不当而引起。

据统计,模具由于热处理不当,而造成模具失效的占总失效率的50%以上,所以国外模具的热处理,愈来愈多地使用真空炉、半真空炉和无氧化保护气氛炉。

模具热处理工艺包括基体强韧化和表面强化处理。

基体强韧化在于提高基体的强度和韧性,减少断裂和变形,故它的常规热处理必须严格按工艺进行。

表面强化的主要目的是提高模具表面的耐磨性、耐蚀性和润滑性能。

表面强化处理方法很多,主要有渗碳、渗氮、渗硫、渗硼、氮碳共渗、渗金属等。

采用不同的表面强化处理工艺,可使模具使用寿命提高几倍甚至于几十倍,近几年又出现了一些新的表面强化工艺,本文着重四个方面介绍,供同行参考。

一、低温化学热处理1.离子渗氮为了提高模具的抗蚀性、耐磨性、抗热疲劳和防粘附性能,可采用离子渗氮.离子渗氮的突出优点是显著地缩短了渗氮时间,可通过不同气体组份调节控制渗层组织,降低了渗氮层的表面脆性,变形小,渗层硬度分布曲线较平稳,不易产生剥落和热疲劳。

可渗的基体材料比气体渗氮广,无毒,不会爆炸,生产安全,但对形状复杂模具,难以获得均匀的加热和均匀的渗层,且渗层较浅,过渡层较陡,温度测定及温度均匀性仍有待于解决。

离子渗氮温度以450~520℃为宜,经处理6~9h后,渗氮层深约0。

2~0.3mm。

温度过低,渗层太薄;温度过高,则表层易出现疏松层,降低抗粘模能力。

离子渗氮其渗层厚度以0。

2~0.3mm为宜。

磨损后的离子渗氮模具,经修复和再次离子渗氮后,可重新投入使用,从而可大大地提高模具的总使用寿命。

材料表面强化技术及应用(毕业论文doc)

材料表面强化技术及应用(毕业论文doc)

前言作为古老又新颖的学科,表面强化技术为致力于改善材料表面化学性质、组织机构、应力状态的性质,在人们生活中被广泛应用。

通过掺杂、扩散、离子注入、化学沉积、电镀以及电子束等技术改变材料表面性质的研究,使得我们能得到更多表面性质优良的金属,使金属得到叫高的抗腐蚀、抗耐磨性,使工业生产设备及产品使用范围更广1。

这样,我们能得到更好的表面性质金属及非金属,节约了人类资源,保护和改善了我们的生活环境。

材料表面强化技术已经成为了现在制造业最伟大的创造。

追溯至春秋晚期,我国已应用铜器热镀锡和鎏金技术,从工业革命开始到最近50年,材料表面强化技术得到飞速发展。

本文吸取现代先进技术的优点,对表面技术的应用进行总结,取其精华,去其糟粕,进行综合陈述及比较。

虽然创新很少,但对现有技术的归纳比较在一定程度上更好的促进了表面技术的发展和研究。

本论文重点研究现有的表面强化技术以及这些技术的应用,意在归纳总结,学习传承。

使得我们能更好的学习和了解这些先进的表面技术,为我们以后的研发和应用做好铺垫。

表面强化技术是表面工程的一个分支,是工程科学技术中一个涉及学科广泛、活力很强、成果突出并与生产实践紧密结合的领域,它渗透到航空航天、信息技术、新材料技术以及先进制造技术等前沿技术的各个方面。

从高科技产品到人们日常生活都离不开材料表面强化技术。

离子束、激光束、电子束、微波及超高真空技术的开发,引起了表面工程技术研究和应用的热潮,并成为了世界最关键的技术之一2。

本文对材料表面强化技术及应用的研究进行了探讨。

l 韩煦:材料表面强化技术及应用1 表面强化技术概述1.1 表面强化技术概述表面工程是一个既古老又新颖的学科,人们使用表面工程技术已有悠久的历史。

追溯到几千年前,我国早在春秋战国时期就已经开始应用钢的淬火、铜器热镀锡、鎏金及油漆等古老技术3。

但是,表面工程的迅速发展还是从19 世纪工业革命开始,20 世纪80 年代成为世界上10 大关键技术,进入20 世纪90 年代发展势头出现工程研究的热潮,几乎涉及了工业的各个领域,表面工程技术仍是将是主导21 世纪的关键技术之一。

模具材料及强化技术-第7章 模具表面强化技术-2019

模具材料及强化技术-第7章  模具表面强化技术-2019
④ 可用于模具的修复,尤其是电刷镀技术可在不拆卸模具的前提下 完成对模具表面的修复。
⑤ 可用于模具表面的纹饰,能↑其塑料制品的档次和附加值。
常用的模具表面强化处理技术
3
化学热处理:渗碳、渗氮、碳氮共渗、氮碳共渗 渗硼、渗金属(渗铬、渗钒、渗铌、渗铝)
涂镀:电镀、电刷镀、化学镀、热浸镀
气相沉积强化:化学气相沉积 物理气相沉积,如:真空蒸镀、阴极溅射、离子镀
常用渗氮模具钢:38CrMoAl、Cr12、Cr12MoV、3Cr2W8V、 5CrNiMo、4Cr5MoSiV等;渗氮前一般需调质处理,以保证模 具的整体性能。
7.1.2 渗氮
19
2. 渗氮方法
① 气体渗氮(常用,通常在井式炉内进行)
特点:周期长,效率低,费用高,对材料要求严格(为了获得 好的渗氮效果,必须选择含Al、Cr、Mo等元素的钢,使渗氮 后形成氮化物AlN、CrN和Mo2N,↑耐磨性)。
12
2. 渗碳方法
① 气体渗碳(主要用于承受大冲击、高强度、硬度58~62HRC
的小型模具)
② 固体渗碳
③ 液体渗碳
④ 真空渗碳
⑤ 可控气氛渗碳
⑥ 等离子渗碳
⑦ 碳化物弥散析出渗碳(TD法)
7.1.1 渗碳
13
3. 气体渗碳
特点:操作简便,周期短,质量易于控制,劳动条件好。 渗剂:气体碳氢化合物(CO、CH4等),或者有机液体(煤油、
渗剂:一般采用脱水氨气。 渗氮方法:一段式(常温)渗氮、二段式渗氮、三段式渗氮。
② 固体渗氮
③ 液体渗氮 ④ 离子渗氮(常用) ⑤ 真空渗氮 ⑥ 电解催渗氮
7.1.2 渗氮
20
3. 气体渗氮 (1) 一段式(等温)渗氮

模具型腔中表面强化技术的应用分析

模具型腔中表面强化技术的应用分析

模具型腔中表面强化技术的应用分析摘要:随着科学技术的飞速发展和人们生活水平的不断提高,当前人们逐渐对模具制造行业的发展重视起来。

众所周知,模具型腔制作是我们在进行模具制作过程中的重点施工环节,而模具型腔表面强化就是其中的重中之重。

机械相关零件粗加工和机械相关零件细加工中的主要程序都是由模具成型来完成的。

对模具型腔表面强化技术进行科学合理研究,可以在一定程度上提高模具使用寿命。

关键词:模具型腔;表面强化技术;应用分析和探讨广义来讲,当前最为常用的模具使用类型包括塑性变形失效模具、磨损失效模具、疲劳失效模具和冷热疲劳失效模具以及断裂失效模具五种。

为了有效防止模具失效,我们应该对模具型腔表面进行强化,其中强化分为主要包括硬度强化、耐磨强化和耐腐蚀强化以及抗疲劳抗高温氧化强化措施等。

所以应在对模具材料进行正确全面选取之外还应该对模具型腔表面实施适当强化操作以保证模具制作效率。

本文从有关模具型腔表面强化方法和强化特点以及强化目的等方面进行分层阐述,并对模具型腔表面强化机理等作出解释。

1.模具型腔中表面工况概述根据对当前各种模具工况的研究与分析可以看出,其工作条件存在这很大不同,并且此时失效形式也是各不相同。

需要注意的是,在同一副模具上其损伤形式多种多样,此种损伤形式大多数情况是以交叉损伤形式产生的,并且其之间关系是相互联系且相互影响的,此时加速磨具会过早失效。

热作模具制作是当前我国模具生产中的重点生产环节,因为热作模具会受到负荷影响并会使其中的金属材料产生塑性变形状况,另外一种可能的情况就是会使温度较高的液体金属压铸得以成形且相对炽热非金属注射也会成型。

金属材料发生一定塑性变形时会对整体模具生产造成影响,一般来讲,固体金属材料塑性变形模具主要包括热锻模和热镦模以及相关热挤压模等。

模腔被破坏变形的主要原因是有模具生产中的实际生产环境所造成的,其同时也是相应成型部分可逆变形和成型部分磨损以及成型部分产生裂纹等。

模具材料及表面强化论文陈

模具材料及表面强化论文陈

冲压模用钢的最新研究现状首先冲压模具材料制造冲压模具的材料有钢材、硬质合金、钢结硬质合金、锌基合金、低熔点合金、铝青铜、高分子材料等等。

目前制造冲压模具的材料绝大部分以钢材为主,常用的模具工作部件材料的种类有:碳素工具钢、低合金工具钢、高碳高铬或中铬工具钢、中碳合金钢、高速钢、基体钢以及硬质合金、钢结硬质合金等等。

其中新材料冲压模具使用的材料属于冷作模具钢,是应用量大、使用面广、种类最多的模具钢。

主要性能要求为强度、韧性、耐磨性。

目前冷作模具钢的发展趋势是在高合金钢D2(相当于我国Cr12MoV)性能基础上,分为两大分支:一种是降低含碳量和合金元素量,提高钢中碳化物分布均匀度,突出提高模具的韧性。

如美国钒合金钢公司的8CrMo2V2Si、日本大同特殊钢公司的DC53(Cr8Mo2SiV)等。

另一种是以提高耐磨性为主要目的,以适应高速、自动化、大批量生产而开发的粉末高速钢。

如德国的320CrVMo13,等。

热处理、表处理新工艺为了提高模具工作表面的耐磨性、硬度和耐蚀性,必须采用热、表处理新技术,尤其是表面处理新技术。

除人们熟悉的镀硬铬、氮化等表面硬化处理方法外,近年来模具表面性能强化技术发展很快,实际应用效果很好。

其中,化学气相沉积(CVD)、物理气相沉积(PVD)以及盐浴渗金属(TD)的方法是几种发展较快,应用最广的表面涂覆硬化处理的新技术。

它们对提高模具寿命和减少模具昂贵材料的消耗,有着十分重要的意义。

模具钢钢种的发展冷作模具钢:冷作模具钢主要用于制造对冷状态下的工件进行压制成型的模具。

如:冷冲裁模具、冷冲压模具、冷拉深模具、压印模具、冷挤压模具、螺纹压制模具和粉末压制模具等。

冷作模具钢的范围很广,从各种碳素工具钢、合金工具钢、高速工具钢到粉末高速工具钢和粉末高合金模具钢。

热作模具钢:热作模具钢主要用于制造对高温状态下的工件进行压力加工的模具。

如:热锻模具、热挤压模具、压铸模具、热镦锻模具等。

关于塑料模具表面强化技术的研究

关于塑料模具表面强化技术的研究

关于塑料模具表面强化技术的研究【摘要】材料技术水平的不断提高使塑料制品在工业制造和日常生活得到了广泛的应用,越来越多的工业产品和日常用品都涉及到塑料制品,这也对塑料制品的性能提出了更高的要求。

本文详细介绍了塑料模具的相关信息,包括其使用性能、失效形式、表面处理技术等。

分析探讨了如何正确运用表面强化技术、提高塑料模具使用寿命,表明了我国塑料模具表面强化技术的发展方向,旨在进一步推动塑料模具的发展及应用。

【关键词】塑料模具;表面强化;技术研究我国的塑料模具技术水平在工业化进程中取得了巨大的进步,但与发达国家的塑料模具技术水平相比,仍存在着很大的差距,我国塑料模具技术水平有着很大的提升和发展空间。

如何提高塑料模具使用性能及使用寿命,是当前塑料模具研究的一大课题。

对塑料模具表面进行强化处理可以提高塑料模具表面硬度、耐磨性及耐蚀性,进而有效提高其使用性能及使用寿命。

1 塑料模具概述塑料模具,即在塑料加工工业中与成型机配套使用,使生产出的塑料制品构型完整、尺寸精确的工具。

例如,组合式塑料模具可以用于压塑、挤塑、吹塑、注射、低发泡成型等多种制作方式,组合式塑料模具一般由凹模和凸模组成。

其中,凹模具有可变型腔,由凹模组合基板、凹模组件、凹模组合卡板组成;凸模具有可变型芯,由凸模组合基板、凸模组合卡板、凸模组件、侧截组合板、型腔截断组件组成。

我们可以通过凹模、凸模、辅助成型系统的组合变化来加工不同形状、不同尺寸的塑料制品。

由于塑料品种繁多,加工方法多样,塑料成型机及塑料制品结构有繁有简,所以相应的,为满足塑料制品的生产要求,塑料模具的种类和结构形式种类也是多种多样的。

由于不同塑料制品的成型方法不同,对应不同工艺要求,塑料模具可以分为挤出成型模具、注射成型模具、高发泡聚苯乙烯成型模具、吸塑成型模具等。

2 塑料模具性能要求及其失效形式2.1 塑料模具性能要求塑料模具与成型机配套使用时,温度一般在150℃至200℃,这表明了塑料模具的使用过程中不但受到压力作用,同时也受到温度作用,依据塑料模具的使用环境及加工方法我们可以归纳出塑料模具的基本性能要求:(1)良好的型腔表面光滑度。

模具材料及表面强化处理1

模具材料及表面强化处理1

模具材料及表面强化处理1引言模具是工业生产中必不可少的工具,它们在制造产品的过程中起着至关重要的作用。

模具材料的选择和表面强化处理对于模具的性能和寿命有着重要的影响。

本文将介绍常见的模具材料以及常用的表面强化处理方法。

一、模具材料1.1 铸造模具材料1.1.1 灰铁灰铁常用于生产小型模具,其具有良好的耐磨性和可加工性。

然而,由于其脆性较高,不适用于生产大型模具。

1.1.2 钢钢是最常用的模具材料之一,具有良好的强度和耐磨性。

根据工作条件的不同,可以选择碳素钢、合金钢或工具钢作为模具材料。

1.1.3 铝合金铝合金模具具有较低的密度和良好的导热性能,适用于高速冲压和热压成型。

1.2 塑料模具材料1.2.1 铝合金铝合金模具用于生产小型塑料制品,如手机壳等。

它具有良好的导热性和低重量,适用于高速注塑。

1.2.2 硅橡胶硅橡胶模具适用于制造高精度的塑料制品,如光学镜片。

它具有较低的粘附性和高弹性,便于脱模。

二、表面强化处理方法2.1 热处理热处理是常用的表面强化处理方法之一,通过控制材料的加热和冷却过程,使材料的组织结构得到改善,提高其硬度和耐磨性。

2.2 表面喷涂表面喷涂是一种常见的表面强化处理方法,通过在模具表面喷涂一层具有高硬度和耐磨性的材料,如陶瓷涂层或金属涂层,增加模具的寿命和耐磨性。

2.3 氮化处理氮化处理是一种提高模具硬度和耐磨性的表面强化处理方法。

在高温下,将模具表面与氨气反应,形成氮化层,提高模具的硬度和耐磨性。

2.4 氧化处理氧化处理是一种常用的提高模具抗氧化性能的表面强化处理方法。

通过在模具表面形成氧化层,阻止金属与氧气的直接接触,降低模具的氧化速度。

三、结论模具的材料选择和表面强化处理对于模具的性能和寿命有着重要的影响。

灰铁、钢和铝合金是常用的铸造模具材料,而铝合金和硅橡胶是常用的塑料模具材料。

常见的表面强化处理方法包括热处理、表面喷涂、氮化处理和氧化处理,通过这些方法可以提高模具的硬度、耐磨性和抗氧化性能。

塑料模具的表面强化技术研究

塑料模具的表面强化技术研究

塑料模具的表面强化技术研究塑料模具的表面强化技术研究【摘要】本文从表面热处理,化学热处理,化学镀等几个方面,来介绍和阐述国内外在塑料模具表面强化技术方面的应用和发展,并提出了我国在塑料模具表面强化技术方面的发展方向。

【关键词】塑料模具;表面强化技术;应用;发展一、引言随着材料技术的不断发展,塑料制品在日常生活中和工业制造中的应用越来越广泛,许许多多的工业产品和日常用品都大量使用到塑料制品,因此,对于塑料模具的性能提出了越来越高的要求,也为塑料模具的技术水平提出了更加严格的要求。

目前,我国的塑料模具工业和技术在过去的几十年工业化进程中取得了巨大的进步和发展,但是,与国外发达国家的技术和应用水平相比,仍然存在着巨大的差距,需要进一步提升和改进的空间非常大,在一些高精尖的工业技术领域,国内的塑料模具很难满足其需要。

塑料模具的制造和设计,工序复杂,价格昂贵,是一项具有很高技术难度的工业技术。

随着工业化的不断推进,以及塑料制品在各个领域的广泛应用,对于塑料模具的使用寿命的要求越来越高。

根据调查,我国的塑料模具的使用寿命仅为欧美发达国家平均寿命的五分之一,并且在塑料模具表面强化技术方面的投入更是远远的落后于发达国家。

塑料模具的表面强化技术是提高塑料模具使用寿命,提升模具的使用性能的一项重要的技术和途径,是国内外模具工业和技术的主要发展和研究方向。

通过表面强化技术,对于塑料模具的表面的硬度,耐磨性,耐蚀性等进行提高,可以有效的提高模具的使用性能和使用寿命。

这种表面强化技术在发达国家的模具制造中已经得到了广泛的应用,取得了非常显著的成果。

本文从塑料模具的工作条件和失效方式等进行分析,介绍了一些塑料模具表面强化技术的方法,手段和效果以及其优缺点。

二、塑料模具的简介及其分类1.塑料模具的简介。

塑料模具,是塑料加工工业中和塑料成型机配套,赋予塑料制品以完整构型和精确尺寸的工具。

由于塑料品种和加工方法繁多,塑料成型机和塑料制品的结构又繁简不一,所以,塑料模具的种类和结构也是多种多样的。

模具表面强化技术应用现状及发展

模具表面强化技术应用现状及发展

( )改 变表面 化学成 分的强 化方法 二
1等 离子 化学热处理。等离子化学热处理是利用真空辉 . 光放 电产生的离子轰击金属表面 ,使表面的成分、组织结构
和性 能都发生变化 。等离子化学热处理 已有离子渗 N 、渗 C 、 渗B 、渗 T 、渗 S i 、渗 A 等技术投入应用,实践证 明,经等 1 离子化学热处理后的模具耐磨性 、疲劳强度、耐腐蚀性都显 著提 高 ’ 此类技术是 目前模具表面强化 中研究和应用最广 。 泛的 ,处理后模具表层硬化、并有高的残余压应力 。目前又 有双元 C N共渗、多元共渗 ( - 如最近 开发 的无污染体的 S N C - — 共渗 )与复合渗等复合表面化学热处理 ,其 目的是为 了保持 单元渗的优点而克服其缺点 ,以得到综合性能更优 良的多元 共渗层 ,提高模具的使用寿命 。研究表 明在氮化工序工件表 面渗入氮等多种元素,形成耐磨和耐疲劳 的化合物层和扩散 层,而氧化工艺使工件形成抗蚀性极好的氧化膜 ,极大地提 高了模具的寿命 。 2渗金属处理 (D处理 ) 渗金属处理是 日本丰 田研究所 . T 。 开 发 的 ,是 用 熔 盐 浸 镀 法 、 电解 法 及 粉 末 法 进 行 表 面 硬 化 处 理技术的总称 。实际应用最多的是熔盐浸镀法 ( 或称熔盐浸渍 法、盐浴沉积法) 。通过在模 具表面形成 5 5. ~1 1m薄膜 ( 1 实为 渗层) ,可显著提高表面硬度、耐磨性、抗粘着性和 耐腐蚀性 大大提高了模具的使用寿命 。 渗金属处理过程是硼砂盐浴中 活性金属原子与工件 ( 基材 ) 本身 的碳原子相结合 的过程 ,其 碳化物的形成机理是 V b r等碳化物 元素与 C结合在工 ,N ,C 件表面形成 V ,N C rC等 ,其中 V b r来 自盐浴中 C b ,C — ,N ,c 所 添 加 的 金属 含 金 或 氧 化 物 粉 末 ,而 碳 化 物 中的 C 则来 自基

浅析常用模具表面强化处理技术【范本模板】

浅析常用模具表面强化处理技术【范本模板】

浅析常用模具表面强化处理技术DOI:10.16660/j。

cnki.1674-098X。

2017。

11。

052摘要:现代模具工业有“不衰亡工业"之称,模具设计与制造技术已成为衡量一个国家制造业水平高低的重要标志,并在很大程度上决定着产品质量、企业效益和新型产品的开发能力,而模具的工作环境直接影响其使用寿命。

除合理选择模具材料、制定正确的制造加工方法以外,需对模具零部件采取相应的表面强化处理技术,提高模具质量,延长其服务年限.关键词:模具模具寿命表面强化处理技术热处理方法中图分类号:TG162.4 文献标识码:A 文章编号:1674—098X(2017)04(b)-0052—02模具作?橐恢指咝?率、高精度的生产工具,广泛用于电子、机械、农业、化工等各个行业。

模具的工作条件恶劣,在使用过程中常承受着各种各样的力的作用,常因磨损、腐蚀、断裂等形式而报废失效,而模具的失效一般都是由表面磨损开始的,模具失效将直接影响到成型产品质量、企业生产经济效益等。

模具质量决定一切,那么正确制定制造加工方法、合理选择模具材料及热处理方法,对模具零部件进行相应的表面强化处理,延缓模具材料的表面破坏将有效提高模具质量,延长模具的使用寿命,促使产业利益最大化。

1 模具表面强化处理模具表面处理的目的是使模具基体材料表面获得原本没有的性能,或者是进一步提高模具原本具备的性能,这些性能主要是指模具材料表面的耐磨性、抗氧化性、抗咬合性、抗冲击性、抗热粘附性、抗冷热疲劳性及抗腐蚀性等。

模具强化处理归纳总结为化学热处理强化、表面热处理强化、表面镀覆强化、高能束表面强化技术(高密度能表面强化)、模具钢的预硬化技术等五种强化技术。

2 化学热处理强化模具化学热处理强化是将模具加热到一定的温度与特定的活性介质起化学反应,使一种或几种元素渗入模具材料表层,从而改变模具材料表层的化学成分、组织和性能的热处理工艺。

模具的化学热处理方法可分为渗碳、渗氮、碳氮共渗、渗硼和渗金属等。

浅谈模具钢H13的表面强化技术及发展趋势 1

浅谈模具钢H13的表面强化技术及发展趋势 1

浅谈模具钢H13的表面强化技术及发展趋势摘要随着高科技的迅猛发展,人们改善材料的性能,扩大其能力,延长了零件的使用寿命和设备,以改善经济,提出了更高的要求。

失败的许多部分是由于该材料的表面不能由于服务的苛刻条件下,如磨损,腐蚀和表面氧化指南。

提高材料的表面性能,延长机件的使用寿命和材料起着非常重要的作用,它诞生于表面强化技术是潜力得到了快速发展,已被广泛重要性,成为当前材料科学研究中的重点领域之一。

H13钢是最具代表性的热作模具之一,其传统的热处理工艺得到不断完善和优化的表面改性工艺打破了传统的表面热处理的限制,在表面涂层和高能束表面处理方面得到了极大的发展。

本论文选题的意义主要在于通过对模具钢H13的表面强化技术的综述,总结出为提高模具寿命的表面强化方法、工艺及发展趋势。

应用各种表面强化技术可以充分发挥材料的潜力、节约能源;制备特殊的表面强化层;提高经济效益。

关键字:模具钢;表面强化;H13AbstractWith the rapid development of high technology , it improve the performance of materials, expanding its ability to extend the life of parts and equipment to improve the economy, put forward higher requirements. Many parts of the failure is due to the surface of the material can not be due to the harsh conditions of service , such as wear, corrosion and surface oxidation guide . Improve the surface properties of materials to extend the life of parts and materials plays a very important role, it was born in the surface potential of enhanced technology has been rapid development , has been widely importance , become the focus in the field of materials science one .H13 steel is one of the most representative of hot die , its traditional heat treatment process has been continuously improved and optimized surface modification technology to break the traditional limitations of surface treatment , surface coating and high-energy beam surface treatment has been great development. The significance of this topic by topic lies mainly H13 tool steel surface enhanced technical review , summed up in order to improve surface hardening methods, processes and trends die life . Application of surface enhancement technology can realize the full potential of materials, energy saving ; preparation of special surface hardening layer ; improve economic efficiency .Keywords: mold steel;surface hardening;H13目录摘要 (2)Abstract (3)1 H13模具钢应用及模具表面强化技术的综述 (5)1.1综述H13在模具行业的广泛应用 (5)1.2模具表面强化技术的必要性 (6)2 H13模具钢不改变表面化学成分的强化技术的综述 (8)2.1综述不改变表面化学成分的强化技术原理及介绍应用现状 (8)2.2激光处理和表面镀膜的原理及应用 (8)2.2.1 激光表面处理 (8)2.2.2 表面镀膜处理 (8)3 H13模具钢改变表面化学成分的强化技术的综述 (10)3.1综述改变表面化学成分的强化技术原理及应用现状; (10)3.2离子化学处理和渗金处理的原理及应用 (10)4 H13模具钢表面强化技术对比剂发展趋势 (12)5 结束语 (13)参考文献 (14)1 H13模具钢应用及模具表面强化技术的综述1.1综述H13在模具行业的广泛应用模具材料模具行业是最重要的技术和物质基础,其性能,质量,服务模具,模具制造周期以及工业产品的生命高档,多元化,个性化的和具有决定性意义的增值发展方向,因而模具材料的研究一直是各国的重视。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

冲压模用钢的最新研究现状首先冲压模具材料制造冲压模具的材料有钢材、硬质合金、钢结硬质合金、锌基合金、低熔点合金、铝青铜、高分子材料等等。

目前制造冲压模具的材料绝大部分以钢材为主,常用的模具工作部件材料的种类有:碳素工具钢、低合金工具钢、高碳高铬或中铬工具钢、中碳合金钢、高速钢、基体钢以及硬质合金、钢结硬质合金等等。

其中新材料冲压模具使用的材料属于冷作模具钢,是应用量大、使用面广、种类最多的模具钢。

主要性能要求为强度、韧性、耐磨性。

目前冷作模具钢的发展趋势是在高合金钢D2(相当于我国Cr12MoV)性能基础上,分为两大分支:一种是降低含碳量和合金元素量,提高钢中碳化物分布均匀度,突出提高模具的韧性。

如美国钒合金钢公司的8CrMo2V2Si、日本大同特殊钢公司的DC53(Cr8Mo2SiV)等。

另一种是以提高耐磨性为主要目的,以适应高速、自动化、大批量生产而开发的粉末高速钢。

如德国的320CrVMo13,等。

热处理、表处理新工艺为了提高模具工作表面的耐磨性、硬度和耐蚀性,必须采用热、表处理新技术,尤其是表面处理新技术。

除人们熟悉的镀硬铬、氮化等表面硬化处理方法外,近年来模具表面性能强化技术发展很快,实际应用效果很好。

其中,化学气相沉积(CVD)、物理气相沉积(PVD)以及盐浴渗金属(TD)的方法是几种发展较快,应用最广的表面涂覆硬化处理的新技术。

它们对提高模具寿命和减少模具昂贵材料的消耗,有着十分重要的意义。

模具钢钢种的发展冷作模具钢:冷作模具钢主要用于制造对冷状态下的工件进行压制成型的模具。

如:冷冲裁模具、冷冲压模具、冷拉深模具、压印模具、冷挤压模具、螺纹压制模具和粉末压制模具等。

冷作模具钢的范围很广,从各种碳素工具钢、合金工具钢、高速工具钢到粉末高速工具钢和粉末高合金模具钢。

热作模具钢:热作模具钢主要用于制造对高温状态下的工件进行压力加工的模具。

如:热锻模具、热挤压模具、压铸模具、热镦锻模具等。

常用的热作模具钢有:中高含碳量的添加CR、W、MO、V等合金元素的合金模具钢;对特殊要求的热作模具钢,有时采用高合金奥氏体耐热模具钢制造。

塑料模具用钢:由于塑料的品种很多,对塑料制品的要求差别也很大,对制造塑料模具的材料也提出了各种不同的性能要求。

所以,不少工业发达的国家已经形成了范围很广的塑料模具用钢系列。

包括碳素结构钢、渗碳型塑料模具钢、预硬型塑料模具钢、时效硬化型塑料模具钢、耐蚀塑料模具钢、易切塑料模具钢、整体淬硬型塑料模具钢、马氏体时效钢以及镜而抛光用塑料模具钢等在冷作模具钢中,所发展的材料有:(1) 高韧性、高耐磨性模具钢这些钢C、C含量低于传统的Crl2型模具钢,增加了Mo、V合金数量,其耐磨性优于Crl2MolVl钢,韧性和抗回火软化能力则高于Crl2,如美国钒合金钢公司早期发表的VascoDie(8Cr8M02V2Si)、日本大同特殊钢公司的DC53(CrSM02VSi),我国自行开发的则有7CrTM02V2Si(LD钢)、9CrW3M02V2(GM 钢)等,分别用于冷挤压模具,冷冲模具及高强度螺栓的滚丝模具。

(2)低合金空淬微变形钢这类钢的特点是合金含量低(≤5%),淬透性、淬硬性好,Φ100mm 的工件可以空冷淬透、淬火变形小、工艺性好,主要用于制造精密复杂模具。

如美国ASTM 标准钢号A4(Mn2CrM-o)、A6(7Mn2CrMo)、日本大同特殊钢公司的G04。

我国自行研制的Gr2Mn2SiWMoV和8Cr2MnMoWVS等钢种也属于低合金空淬微变形钢,后一种钢号还兼备优良的切削性。

(3)火焰淬火模具钢这类钢的特点是淬火温度范围宽,淬透性好。

由于火焰局部淬火的工艺简便、以缩短模具制造周期,降低制造费用等特点,已经广泛地用于制造剪切、下料、冲压、冷镦等冷作模具,特别是大型镶块模具,如东风汽车公司采用我国研制的7CrSiMiMoV 火焰淬火钢制造汽车大型覆盖件镶块冲模刃口材料,取得了很好的使用效果。

这类钢代表性的钢号有日本爱知公司的SX5(Cr8MoV),大同特殊钢公司的G05,日本日立金属公司的HMDl。

(4)粉末冶金冷作模具钢采用粉末冶金工艺生产的高碳高合金钢,由于钢液雾化形成的微细钢粉凝固很快,可以完全避免一般工艺生产的高碳高合金冷作模具钢在浇注后缓慢凝固产生的粗大碳化物和偏析等缺陷。

特点:磨削性好、韧性好、等向性好、热处理工艺性好。

已发表的粉末冷冶金钢号有美国坩埚钢公司的CPM9V,CPMl0V,日本日立金属的HAP40等。

在热作模具钢中新发展的材料有:(1)通用型热作模具钢1.5155NiCrMoV6为代表的低合金热作模具钢,以H13(4CrSMoSiVl)为代表的中合金热作模具钢;以HIO(3Cr3M03VSi)钨系钼系热作模具钢。

目前在我国4CrSMoSiVl是产量最高的热作模具钢。

(2)高淬透性特大型锻压模块用钢淬透性好,尺寸较大的模具心部可以获得均匀的性能。

如IS04957标准中的40NiCrMoV;法国NF-35-590标准中的dONCDl6;我国的4Cr2MoVNi、3Cr2MoWVNi等。

(3)高热强性模具钢又可分为以下四类。

a.中合金高热强性模具钢,一般是在3Cr3M03Si-V(H10)和4CrSMoSiVl(HB)钢的基础上增加W、Mo、Co、Nb等元素,提高其高温性能。

如美国ASTM标准钢号H10A、我国开发的3Cr3M03W2V等。

b.沉淀硬化型热作模具钢,这类钢的含碳量较低,一般在2%左右。

含有一些沉淀硬化的合金元素如V、Nb、Ni、Al、Mo等,模具淬火后,采用较低温度回火(≈400℃),硬度为40HRC 左右,由于含碳量低,中温回火后的组织为板条状低碳马氏体,具有良好的韧性,而且具有良好的切削性,可以进行型腔加工。

模具在使用过程中,与高温工件接触的工作表面被工件加热到钢的沉淀硬化温度(500~600℃),由于合金碳化物和金属间化合物的析出,工作表面的硬度可上升到45~48HRC,提高了型腔表面的耐磨性模具心部仍保留原有的组织和高韧性,从而提高了模具的使用寿命。

如日本日立金属公司的YHD3、大同特殊钢公司的DH76等。

c.低碳高速钢和基体钢高速工具钢具有良好的抗回火软化性能和高温硬度,但是其韧性和抗冷热疲劳性能较差。

低碳高速钢是将高速钢的碳含量由1%左右降至0.3%-0.6%,在牺牲部分红硬性和耐磨性的情况下,提高韧性和抗冷热疲劳性能,如美国ASTM标准钢号H42,我国标准钢号6W6MoSCr4V。

基体钢的化学成分相当于淬火后的高速钢基体组织成分,所以淬火后过剩碳化物的数量少,细小均匀,使钢的韧性和抗冷热疲劳性能进一步得到改善。

如美国钒合金铁公司的VasooMA(5Gr4W3Mo2V),我国的6Cr4Mo3W2VNb。

这种钢由于综合性能较好,即可以用于热作模具钢,也可以用于制造高性能的冷作模具。

d.奥氏体型热作模具钢,这类钢经固熔时效处理后,在700-800℃仍保持较好的强度,如日本日立金属公司的5Mnl8CrlOV2,我国的7Mnl0Cr8Nil0M03V2等。

塑料模具钢由原国标中的3Crl2Mo(P20)一个钢号发展成由有以下七大类构成的塑料模具用钢系列:(1)非合金塑料模具钢主要用于制造生产通用型热塑性塑料生产工件批量不大,技术要求不太严格制品模具。

如20、45等碳素结构钢和T8、T10等碳素工具钢。

2)预硬型塑料模具钢采用中碳合金钢预先经过淬火和高温回火状态下(硬度为30~40HRC)交货:代表性的钢号如美国的P20、瑞典ASSAB公司的718(3Cr2MnNiMo),日本大同特殊钢公司的PDS5,我国的3Cr2Mo等。

(3)时效硬化型塑料模具钢由于时效温度低,变形小,而且有规律,适用于制造形状复杂,尺寸精度要求高的模具,如美国ASTM标准钢号P21,日本大同特殊钢公司的NAK55(2Ni2A1CuMoS),NAK80,我国的25CrNi3MoAl等。

(4)渗碳型塑料模具钢一般为C、Si含量很低的低碳钢或低碳合金钢,以保证钢在常温下具有高塑性和很低的变形抗力,以便进行型腔的冷挤压,挤压成型腔后进行渗碳淬火、回火,使模具表面具有高硬度和抗磨损性能,一般用于制造要求耐磨性较高的热固性塑料模具和增强塑料模具。

如美国ASTM标准钢号P2(10CrMo)、P3(10CrNi);我国的20Cr、12CrNi2等。

(5)整体淬硬型模具钢一般都是借用高耐磨性冷作模具钢及热作模具钢。

如Cr5M01V(A2)和Crl2MolVl(D2)等冷作模具钢和4Cr5MoSiVl等热作模具钢。

(6)耐蚀塑料模具钢有些塑料制品如聚氯乙烯、氟化塑料、阴燃塑料等在压制过程中对模具有腐蚀作用,因此,对此类塑料模具一般采用马氏体不锈钢和沉淀硬化型不锈钢,如瑞典ASSAB公司的STVAX(4Crl3),我国的研制的PCR(OCrl6Ni4Cu3Nb)等。

(7)无磁塑料模具钢为了适应磁性塑料制品的生产,国内外发展了一些无磁塑料模具钢,将奥氏体型模具钢通过时效硬化处理得到要求的硬度强度和低的导磁率,如日本日立金属公司的HPM7,我国的7Mnl5Cr2A13V2WMo等。

我国冲压模具钢应用技术现状与发展目前我国模具选材用钢较为广泛,除了工具钢(碳素工具钢、合金工具钢、高速工具钢)外,还有轴承钢、弹簧钢、调质钢、渗碳钢、不锈钢等,钢种达数十种之多,但常用的只有二十余种,而用量最多的只有八种:Cr12、Cr12MoV、CrWMn、3Cr2W8V、5CrMnMo、SCrNIMo、45、40Cr。

据估计,这八个钢号年用量占我国模具钢年总用量的80%。

随着产业生产发展和少、无切削工艺广泛应用,对模具钢性能提出了更多、更高的要求,常用钢种已经不能完全满足需要,迫切需要研制和应用新型模具钢。

近年,国内研制了近二百种新型模具钢种,如超硬高速W10Mo4Cr4V3A1、W6Mo5Cr4VsiA1Nb等;强韧耐磨钢7Cr7Mo2V2Si、Cr8MoV2Ti等;高速钢基体钢65W3Mo2Cr4VNb、5OMo3Cr4SiMnAl等;中碳超高强度钢4Cr5Mo2MnVSi、4Cr3MoMnVNbB等;时效钢25Cr3NiMoAl、10Ni3MnCuAl等;火焰淬火钢7CrSiMnMoV、7Cr2 SiMnMoV TiRe等;易切削模具钢8Cr2MnWMoVS、5CrNiMnMoVSCa等。

也引进了国际通用的几种美国钢号,如D2(Cr12MolV1)、H13(4Cr5MoV1Si)、P20(3Cr2Mo)等。

新钢种满足了模具较高力学性能、特殊工艺性能和特殊使用性能的需求,解决了模具设计、加工、使用中的一些困难,大幅度进步了模具使用寿命,带来十分明显的经济效益和社会效益,对产业发展和少、无切削工艺广泛应用起了极大促进作用。

相关文档
最新文档