最新八年级下二次根式易错点归纳
巧解八年级数学下册第十六章二次根式易混淆知识点
(名师选题)巧解八年级数学下册第十六章二次根式易混淆知识点单选题)×(﹣2√21),则有()1、已知m=(﹣√33A.5.0<m<5.1B.5.1<m<5.2C.5.2<m<5.3D.5.3<m<5.4答案:C分析:直接利用二次根式的乘法运算法则化简,进而得出m的取值范围.∵m=(−√3)×(−2√21)=2√7=√28,35.22=27.4,5.32=28.09,∴5.2<m<5.3.故选C.小提示:考查二次根式的乘除法,估算无理数的大小,掌握无理数的估算方法是解题的关键.2、若2、5、n为三角形的三边长,则化简√(3−n)2+√(8−n)2的结果为()A.5B.2n−10C.2n−6D.10答案:A分析:先确定n的取值范围,再化简二次根式.解:∵2、5、n为三角形的三边长,∴3<n<7,∴√(3−n)2+√(8−n)2=|3−n|+|8−n|=n−3+8−n=5,故选:A.小提示:本题主要考查了二次根式的化简,掌握二次根式的性质和三角形的三边关系是解决本题的关键.3、计算:(3√48−2√27)÷√3=()A.4B.5C.6D.8答案:C分析:先根据二次根式的性质化简括号内的式子,再进行减法运算,最后进行除法运算即可.原式=(12√3−6√3)÷√3=6√3÷√3=6.故选C.小提示:本题考查了二次根式的混合运算,利用二次根式的性质化简是解题的关键.4、下列二次根式中,最简二次根式是()A.√5B.√4C.√12D.√12答案:A分析:根据最简二次根式的定义,被开方数中不含能开得尽方的因数或因式,被开方数中不含分母,判断即可.解:A、√5是最简二次根式,符合题意;B、√4=2不是最简二次根式,不符合题意;C、√12=2√3不是最简二次根式,不符合题意;D、√12=√22不是最简二次根式,不符合题意;故选:A.小提示:本题考查了最简二次根式,掌握最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式是解题的关键.5、下列计算正确的是()A.√5+√2=√7B.√a2−b2=a−bC.a√x−b√x=(a−b)√x D.√6+√102=√3+√5答案:C分析:根据二次根式的加减法法则、二次根式的化简逐项判断即可得.解:A、√5与√2不是同类二次根式,不能合并,则此项错误,不符合题意;B、√a2−b2=√(a+b)(a−b)≠a−b,则此项错误,不符合题意;C、a√x−b√x=(a−b)√x,则此项正确,符合题意;D、因为2√3+2√5=√12+√20,所以√6+√102≠√3+√5,则此项错误,不符合题意;故选:C .小提示:本题考查了二次根式的加减法、二次根式的化简,熟练掌握运算法则是解题关键.6、若代数式√x x−1在实数范围内有意义,则x 的取值范围为( )A .x >0B .x ≥0C .x ≠0D .x ≥0且x ≠1答案:D解:根据分式有意义的条件和二次根式有意义的条件,可知x -1≠0,x ≥0,解得x ≥0且x ≠1.故选D.7、下列各式中,是二次根式有( )①√7;②√−3;③√103;④√−3−x 2;⑤√a 2+9;⑥√1x 2+1.A .2个B .3个C .4个D .5个答案:B分析:根据二次根式的概念进行分析判断.解:①√7是二次根式,②√−3没有意义,不是二次根式,③√103是三次根式,不是二次根式,④√−3−x 2没有意义,不是二次根式,⑤√a 2+9是二次根式,⑥√1x 2+1是二次根式,∴①⑤⑥是二次根式,共3个,故选:B .小提示:本题考查二次根式的定义,理解二次根式的概念(形如√a ,a ≥0的式子叫做二次根式)是解题关键. 填空题8、化简√4−√10+2√5√4+√10+2√5=_______.答案:√5+1分析:设√4−√10+2√5√4+√10−2√5=t,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.解:设√4−√10+2√5√4+√10−2√5=t,由算术平方根的非负性可得t≥0,则t2=4−√10+2√5+4+√10+2√5+2√16−(10+2√5)=8+2√6−2√5=8+2√(√5−1)2=8+2(√5−1)=6+2√5=(√5+1)2∴t=√5+1.所以答案是:√5+1.小提示:此题考查的是二次根式的化简,掌握完全平方公式和二次根式的性质是解题关键.9、计算:√63÷√7−|−4|=_____.答案:-1分析:先计算除法,化简绝对值,再计算,即可求解.解:√63÷√7−|−4|=√9−4=3−4=-1所以答案是:-1小提示:本题主要考查了二次根式的混合运算,熟练掌握二次根式的混合运算法则是解题的关键.10、给出表格:的代数式表示)答案:10.1k分析:根据题意易得a=0.1k,b=10k,然后问题可求解.解:由√15=k,√0.15=a,√1500=b,则a+b=10.1k;所以答案是:10.1k.小提示:本题主要考查二次根式的性质,熟练掌握二次根式的性质是解题的关键.解答题11、已知x=√3+1,y=√3﹣1,求:(1)代数式xy的值;(2)代数式x3+x2y+xy2+y3的值.答案:(1)2;(2)16√3.分析:(1)直接代入平方差公式计算即可;(2)先计算出x+y和x2+y2,原式整理成(x2+y2)(x+y)代入计算即可;(1)xy=(√3+1)(√3-1)=(√3)2-1=2;(2)∵x=√3+1,y=√3﹣1,xy=2,∴x+y=√3+1+√3-1=2√3,∴x2+y2=(x+y)2-2xy=8,则x3+x2y+xy2+y3= x2(x+y)+y2(x+y)=(x2+y2)(x+y)=8×2√3=16√3.小提示:此题考查整式的化简求值,平方差公式,完全平方公式,解题关键在于掌握运算法则.12、你能找出规律吗?(1)计算:√4×√9=___________;√4×9=__________;√16×√25=___________;√16×25=___________(2)由(1)的结果猜想:√a×√b=___________(a≥0,b≥0)(3)请按照此规律计算:①√5×√10②√123×√225(4)已知a=√2,b=√10,则√40=_________(用含a,b的式子表示)答案:(1)6;6;20;20;(2)√ab;(3)①5√2,②2;(4)a2b 分析:(1)根据二次根式的运算法则计算即可;(2)由(1)的规律得出√a×√b=√ab(a≥0,b≥0);(3)根据(2)的结论即可求解;(4)利用(2)的结论的逆运算即可求解.(1)√4×√9=2×3=6;√4×9=√36=6;√16×√25=4×5=20;√16×25=√400=20;所以答案是:6;6;20;20;(2)由(1)得:√4×√9=√4×9;√16×√25=√16×25;猜想:√a×√b=√ab(a≥0,b≥0);所以答案是:√ab;(3)①√5×√10=√5×10=√50=5√2;②√123×√225=√53×√125=√53×125=√4=2;(4)∵a=√2,b=√10,∴√40=√4×10=√22×√10=(√2)2×√10=a2b;所以答案是:a2b.小提示:本题考查了二次根式的乘除混合运算,弄清题中的规律是解本题的关键.。
八年级数学二次根式易混淆知识点
二次根式是指含有根号的代数式,常见的形式有平方根、立方根、四次根等。
在学习和运用二次根式的过程中,有一些易混淆的知识点容易令学生们产生困惑。
下面我们来详细讨论一下这些知识点。
1.化简二次根式:对于一个二次根式,我们希望化简它,使得根号内不含有平方数。
但是在化简二次根式的过程中,有一些易混淆的地方需要注意。
首先,我们需要知道如何分解因式,因为化简二次根式的关键就是将根号内的数分解成完全平方数的乘积。
例如,对于√32这个二次根式,我们可以将32分解成其平方因子和剩余的部分:32=16*2、然后,我们就可以将二次根式化简为√(16*2)=√16*√2=4√2其次,我们需要知道如何将二次根式与有理数进行运算。
在这个过程中,有一些易混淆的地方需要注意。
首先,我们要注意有理数的分子和分母是否含有根号。
如果有,我们需要采用有理化分母的方法进行处理。
例如,对于√3/2这个分数,我们可以将其有理化分母,得到√3/√4=√3/2、然后,我们就可以进行有理数的加减乘除运算。
例如,对于√3/2+√2/3这个表达式,我们可以将其通分得到(3√3+2√2)/6最后,我们需要注意二次根式的简化形式。
在化简二次根式的过程中,有时我们会得到平方根和立方根或其他形式的根号。
在这种情况下,我们需要将其转化为同一形式的根号。
例如,对于∛8这个二次根式,我们可以将其转化为平方根:∛8=∛(2*4)=∛(2*2*2)=√2∛2、通过这样的转化,我们可以更方便地进行计算和化简。
2.二次根式的加减运算:在进行二次根式的加减运算时,有一些易混淆的地方需要注意。
首先,我们要注意二次根式的有理部分与根号部分分别进行计算。
例如,对于√5+√8这个表达式,我们不能直接合并根号内的数进行计算,而是要先计算出有理部分和根号部分的结果,然后再合并得到最终结果。
我们可以将√5+√8=1√5+2√2=√5+2√2、这个结果是最简形式。
其次,我们需要注意如何进行有理化分母。
八年级数学下册 12.3 二次根式的加减 二次根式错解分类辨析素材 (新版)苏科版
二次根式错解分类辨析二次根式是初中数学中的重要内容,其中的概念和性质都有条件限制,同学们在运用这些概念和性质解题时,往往会忽视这些条件而导致错解.现列举六种常见的解题错误进行分析,希望能引起同学们的注意. 一、忽视二次根式a 中0≥a 这一隐含条件而造成错解例1、化简11)1(---a a 错解:)11()1(11)1(2--∙-=---a a a a =a a -=--1)1( 辨析:错解中忽视了11--a >0这一隐含条件,即a <1,此式的值应为负值. 正解:)11()1(11)1(2--∙--=---a a a a =a a --=---1)1( 二、运用a a =2时忽视a <0这种情形,没有把22)(a a 和区别开来.例2、化简2)21(- 错解:2)21(-=1-2 辨析:错解中没有把22)(a a 和区别开来,忽视了1-2是一个负数这种情况.平时应养成先判断a 的符号,再脱去2a 中的根号这一好的习惯.正解:因为1-2<0 所以2)21(-=21-=2-1三、运用二次根式性质时出错例3、5253∙ 错解:565)23(5253=⨯=∙ 辨析:上面错在不明确5253和的意义,也不明确二次根式乘法的运算步骤.正解:3056)55)(23(5253=⨯=⨯⨯=∙四、忽视同类二次根式的定义例4、已知b a b b a ++34与是同类二次根式,则a 、b 的值是( )A 、 0a =,2b =B 、1a =,1b =C 、1b ,1a 2b ,0a ====或D 、 0b ,2a ==错解:由⎩⎨⎧+==+b a 3b 42b a 解得⎩⎨⎧==1b 1a 故选B .辨析:两个根式是同类二次根式,必须满足以下两个条件:①是最简二次根式,②被开方数相同。
而b a b 4+不是最简二次根式,故需先将其化简.正解:依题意:⎩⎨⎧+==+b a 3b 2b a 解得⎩⎨⎧==2b 0a 故选A .五、违背运算规律例5 计算:231)23(2-⨯-÷.错解:原式=212=÷.分析:对于同一级运算,要按从左到右的顺序进行,错解中违反了这一规律. 正解:原式=2)23(2231232-=-⨯- =34256252+=-六、忽视将二次根式的计算结果化为最简二次根式例6、 计算:)3225)(65(-+。
二次根式章节分类总复习 八年级数学下学期重难点及章节分类精品讲义
第02讲 《二次根式》章节分类总复习考点一 二次根式有意义的条件 知识点睛:1. 二次根式的定义:非负数a 的算术平方根a 叫做二次根式 ☆:二次根式的判断不需要化简,直接根据定义判断即可, 易错类型:因为24=,误认为4不是二次根式2. 二次根式有意义的条件a 中a 叫做被开方数,其中二次根式有意义的条件就是a ≥0;☆1:当二次根式和分式结合时,要注意分式的分母≠0 ☆2:a 的双重非负性⎩⎨⎧≥≥0.0.本身②被开方数①a a ;故有:a 前无“-”,a 本身值不可能是负的 类题训练1.下列式子,哪些是二次根式,哪些不是二次根式:,,,(x >0),,,﹣,,(x ≥0,y ≥0).【分析】一般地,我们把形如 (a ≥0)的式子叫做二次根式.结合所给式子即可作出判断. 【解答】解:符合二次根式的定义;是三次根式;是分式,不是二次根式; (x >0)符合二次根式的定义; 是二次根式; 是四次根式; ﹣符合二次根式的定义; 是分式,不是二次根式;(x ≥0,y ≥0)符合二次根式的定义.2.(2021春•下城区期末)已知二次根式,当x =1时,此二次根式的值为( ) A .2 B .±2 C .4D .±4【分析】将x的值代入二次根式,然后利用二次根式的性质化简求解.【解答】解:当x=1时,原式=,故选:A.3.(2021春•阳谷县期末)已知是整数,则正整数n的最小值是【分析】因为是整数,且=2,则6n是完全平方数,满足条件的最小正整数n为6.【解答】解:∵=2,且是整数,∴2是整数,即6n是完全平方数;∴n的最小正整数值为6.故答案为:6.4.(2021秋•普陀区期中)若是二次根式,那么x的取值范围是.【分析】二次根式要求被开方数是非负数,即10﹣5x≥0,从而解得x的取值范围.【解答】解:∵是二次根式,∴10﹣5x≥0,∴x≤2.故答案为:x≤2.5.(2021春•余杭区期中)当x=时,的值最小.【分析】根据二次根式的性质即可求出答案.【解答】解:当x=3时,此时2x﹣6=0,的最小值为0,故答案为:36.已知二次根式.(1)求x的取值范围;(2)求当x=﹣2时,二次根式的值;(3)若二次根式的值为零,求x的值.【分析】(1)根据二次根式的定义得出3﹣x≥0,解之可得答案;(2)将x=﹣2代入计算可得;(3)当被开方数为0时,二次根式的值即为0,据此列出关于x的方程求解可得.【解答】解:(1)根据题意,得:3﹣x≥0,解得x≤6;(2)当x=﹣2时,===2;(3)∵二次根式的值为零,∴3﹣x=0,解得x=6.7.已知x、y为实数,且满足,求5x+|2y﹣1|﹣的值.【分析】先根据二次根式的性质列出不等式组,求出x的取值,再把x的值代入所求代数式即可解答.【解答】解:则;==2.考点二二次根式相关概念知识点睛:1.最简二次根式:满足以下2个条件的二次根式成为最简二次根式①被开方数的因数是整数,因式是整式;②不含开的尽方的因数或因式☆:判断最简二次根式,被开方数的字母部分次数最高为1次,且不含分母二次根式的运算,最后结果都要求必须化为最简二次根式2.同类二次根式:所含被开方数相同的最简二次根式叫做同类二次根式类题训练1.(2021秋•桐柏县期中)下列二次根式中的最简二次根式是()A.B.C.D.【分析】根据最简二次根式的定义即可求出答案.【解答】解:A、原式=3,故A不符合题意.B、原式=3,故B不符合题意.C、是最简二次根式,故C符合题意.D、原式=2,故D不符合题意.故选:C.2.把下列根式化成最简二次根式.(1)5(2)6(3)(a>0)(4)(n<0)【分析】(1)直接利用二次根式的性质化简得出答案;(2)直接利用二次根式的性质化简得出答案;(3)直接利用二次根式的性质化简得出答案;(4)直接利用二次根式的性质化简得出答案.【解答】解:(1)5=5×2=10;(2)6=6×=6×=;(3)(a>0)=5a;(4)(n<0)=×=﹣.3.(2021春•岳麓区校级期末)下列式子能与合并的是()A.B.C.D.【分析】根据二次根式的性质把各个二次根式化简,根据同类二次根式的概念判断即可.【解答】解:A、==4,能与合并,符合题意;B 、=2,不能与合并,不符合题意;C 、=,不能与合并,不符合题意;D 、=,不能与合并,不符合题意;故选:A . 4.如果最简二次根式与2是同类二次根式,则a = .【分析】根据同类二次根式的定义列出方程,解方程得到答案. 【解答】解:∵最简二次根式与2是同类二次根式,∴3a ﹣8=17﹣2a , 解得,a =5, 故答案为:5.考点三 二次根式的运算知识点睛:二次根式乘法公式:())(③②)(①0b ,0··)0()0(022≥≥=⎩⎨⎧≤-≥==≥=a b a b a a a a a a a a a a 二次根式除法公式:()()()()ba b a c b a b a b a c ba ca aa ab b ab b a b a b a ba ba --=-+-=+=≥==≥=)0(1)0,0()0,0(>>变形公式:>④类题训练1.(2021秋•拱墅区期中)下列计算正确的是( ) A .B .C .D .【分析】根据平方根的性质、立方根的性质以及绝对值的性质即可求出答案. 【解答】解:A 、原式=0.3,故A 不符合题意.公式①、②、③常用于以下两种题型:(1)化简求值(2)无理数比较大小常见比较大小的三种方式:(1)利用近似值比较大小(2)把系数移到根号内比较(3)分别平方,然后比较大小以上方法注意两数的正负号公式④及其变形常用于分母有理化的化简,即分式的分子分母同乘分母的无理化因式,使分母变为整数。
人教版八年级数学下册第16章二次根式重难点详解
点拨:观察发现已知条件 x, y中的 5 与2
5 2 是一对相反数,而所求式子是这
两个数的平方和与这两个数的乘积的差,故可由已知转变条件,运用完全平方式
简化求值.
栏目名:错题集
解二次根式常见错误分类解析
一、审题不清导致错误 例 1 16 的平方根是______ .
错解: 16 的平方根是 4.
诊断:错把 16 的平方根当成 16 的平方根。
。
栏目名:期末练兵
综合练习题
一、选择题(每小题 3 分,共 30 分)
1.下列各式正确的是(
)
A. 4 2; B. (6)2 6; C. 7 5 7 5; .
D. 52 5
2.下列各式中属于最简二次根式的是( )
A. 27
B. 5
C. 12
3.在下列各组根式中,是同类二次根式的是(
剖析:二次根式 a 中 a 的取值范围为 a 0 ,从而 a 0 。
解:∵ x3 2x2 0; ∴ x x 2 0
而 x 2 0,x 0 即 x 0. 又 x 2 0, x 2
∴ x 的取值范围是 2 x 0 。
例 2 数 a、 b 在 数 轴 上 的 位 置 如 图 所
正解: 5 2 3 5 2 3 15 2 3
3
3
十、乱用运算律导致错误
例 11 计算 6 3 2 .
错解:原式= 6 ÷ 3 + 6 ÷ 2 = 2 3 。
诊断:除法没有分配律,本题应分母有理化。
正解: 6 3 2 =
6
6 3 2
诊断:当一个式子与一个多项式相乘时,多项式应注意添括号.
最新人教版八年级数学下册 二次根式知识点归纳及题型总结
最新人教版八年级数学下册二次根式知识点归纳及题型总结二次根式知识点归纳和题型归类一、知识框图二、知识要点梳理知识点一、二次根式的主要性质:1.二次根式的定义:形如$\sqrt{a}$($a\geq 0$)的式子叫做二次根式。
2.二次根式的双重非负性:$\sqrt{a}\geq 0$,即一个非负数的算术平方根是一个非负数。
3.二次根式的同底同指数相加减:$\sqrt{a}+\sqrt{b}=\sqrt{a+b}$,$\sqrt{a}-\sqrt{b}=\sqrt{a-b}$。
4.积的算术平方根的性质:$\sqrt{ab}=\sqrt{a}\cdot\sqrt{b}$。
5.商的算术平方根的性质:$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$($b\neq 0$)。
6.若$a\geq 0$,则$\sqrt{a^2}=|a|$。
知识点二、二次根式的运算1.二次根式的乘除运算1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号。
2) 注意每一步运算的算理。
3) 乘法公式的推广:$(\sqrt{a}\pm\sqrt{b})^2=a+b\pm2\sqrt{ab}$。
2.二次根式的加减运算:先化简,再运算。
3.二次根式的混合运算1) 明确运算的顺序,即先乘方、开方,再乘除,最后算加减,有括号先算括号里。
2) 整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用。
例题:1.下列各式中一定是二次根式的是()。
A。
$-3$;B。
$x$;C。
$x^2+1$;D。
$x-1$2.$x$取何值时,下列各式在实数范围内有意义。
1)$\sqrt{-15+x}$;(2)$\frac{1}{\sqrt{x+4}}$3)$\sqrt{x+4}+\sqrt{2x+1}$;(4)$\sqrt{x+1}-\sqrt{x}$5)$3-\sqrt{x+1}$;(6)$\frac{2x}{\sqrt{x+1}}$7)若$x(x-1)=\frac{1}{4}$,则$x$的取值范围是()。
第05讲 实数与二次根式(易错点梳理+微练习)(解析版)
第05讲实数与二次根式易错点梳理易错点梳理易错点01混淆平方根与算术平方根对于正数a 来说,a ±表示a 的平方根,a 表示a 的算术平方根。
易错点02混淆平方根与立方根的性质正数的平方根有两个,它们互为相反数;负数没有平方根,实数a 的立方根只有一个,无论a 是正数、负数还是0。
易错点03二次根式概念理解错误对二次根式的定义理解不透,认为只要带二次根号即为二次根式,忽视了二次根式a 中0≥a 的条件,所以在平时做题中必须特别注意理解二次根式的被开方数是非负数。
易错点04二次根式运算顺序出错由于乘除是同一级运算,因此按顺序哪个在前,要先算哪个运算。
易错点05错用二次根式的性质二次根式的性质有)0,0(≥≥∙=b a b a ab ;)0,0(>≥=b a ba ba ,切记不存在b a b a ±=±。
易错点06解题时忽视限制条件应用二次根式的运算性质)0,0(≥≥∙=b a b a ab ,)0,0(>≥=b a ba ba 时,必须要满足括号里的条件。
考向01平方根例题1:(2021·四川凉山·)A .9B .9和﹣9C .3D .3和﹣3【答案】D【思路分析】先化简,再根据平方根的地红衣求解.3±,故选D .【点拨】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,如果一个数的平方等于a ,则这个数叫做a 的平方根,即x 2=a ,那么x 叫做a 的平方根,记作x =±.例题2:(2021·黑龙江齐齐哈尔·中考真题)下列计算正确的是()A .4=±B .()2234636m n m n =C .24833a a a ⋅=D .33xy x y-=【答案】A【思路分析】根据平方根,幂的乘方与积的乘方,单项式乘以单项式及合并同类项的运算法则分别对每一个选项进行分析,即可得出答案.【解析】A 、4=±,正确,故该选项符合题意;B 、()2234639m n m n =,错误,故该选项不合题意;C 、24633a a a ⋅=,错误,故该选项不合题意;D 、3xy 与3x 不是同类项,不能合并,故该选项不合题意;故选:A .【点拨】本题考查了平方根、幂的乘方与积的乘方,单项式乘以单项式以及合并同类项,熟练掌握平方根的定义、幂的乘方与积的乘方、单项式乘以单项式以及合并同类项的运算法则是解题关键.考向02立方根例题3:(2021·辽宁大连·中考真题)下列计算正确的是()A .2(3=-B=C1=D .1)3+=【答案】B【思路分析】根据二次根式的运算及立方根可直接进行排除选项.【解析】解:A 、(23=,错误,故不符合题意;B =,正确,故符合题意;C 1=-,例题4:(2021·江苏南京·中考真题)一般地,如果n x a =(n 为正整数,且1n >),那么x 叫做a 的n 次方根,下列结论中正确的是()A .16的4次方根是2B .32的5次方根是2±C .当n 为奇数时,2的n 次方根随n 的增大而减小D .当n为奇数时,2的n 次方根随n 的增大而增大【答案】C【思路分析】根据题意n 次方根,列举出选项中的n 次方根,然后逐项分析即可得出答案.【解析】A.42=16 4(2)=16-,∴16的4次方根是2±,故不符合题意;B.5232= ,5(2)32-=-,∴32的5次方根是2,故不符合题意;C.设x y =则155153232,28,x y ====1515,x y ∴>且1,1,x y >>,x y ∴>∴当n 为奇数时,2的n 次方根随n 的增大而减小,故符合题意;D.由C 的判断可得:D 错误,故不符合题意.故选C .【点拨】本题考查了新概念问题,n 次方根根据题意逐项分析,得出正确的结论,在分析的过程中注意x 是否为负数,通过简单举例验证选项是解题关键.考向03实数例题5:(2021·山东日照·中考真题)在下列四个实数中,最大的实数是()A .-2BC .12D .0【答案】B【思路分析】根据实数的大小比较方法进行比较即可.【解析】解: 正数大于0,负数小于0,正数大于负数,∴1022>>>-,故选:B .【点拨】本题考查了实数的大小比较,理解“正数大于0,负数小于0,正数大于负数”是正确判断的关键.例题6:(2021·贵州毕节·中考真题)下列各数中,为无理数的是()A .πB .227C .0D .2-【答案】A【思路分析】根据无理数的定义逐项判断即可.【解析】A 、π是无理数,符合题意;B 、223.1428577= 小数点后的142857是无限循环的,则227是有理考向04二次根式的概念与性质例题7:(2021·湖北襄阳·中考真题)x 的取值范围是()A .3x ≥-B .3x ≥C .3x ≤-D .3x >-【答案】A【思路分析】根据二次根式有意义的条件,列出不等式,即可求解.在实数范围内有意义,∴x +3≥0,即:3x ≥-,故选A .【点拨】本题主要考查二次根式有意义的条件,掌握二次根式的被开方式是非负数,是解题的关键.例题8:(2021·浙江杭州·中考真题)下列计算正确的是()A2=B 2=-C 2±D 2=±【答案】A【思路分析】由二次根式的性质,分别进行判断,即可得到答案.2==,故A 正确,C 2=,故B 、D 错误;故选:A .【点拨】本题考查了二次根式的性质,解题的关键是掌握性质进行判断.考向05二次根式的乘除例题9:(2021·湖南株洲·中考真题)计算:4-=()A .-B .-2C .D .【答案】A化简,然后根据乘法法则运算即可.【解析】解:()44--⨯-A .【点拨】本题考查了二次根式的乘法运算,熟悉相关性质是解题的关键.例题10:(2021·广西桂林·中考真题)下列根式中,是最简二次根式的是()AB C D 【答案】D【思路分析】要选择属于最简二次根式的答案,就是要求知道什么是最简二次根式的两个条件:1、被开方最简二次根式,故本选项不符合题意;C |a ,不是最简二次根式,故本选项不符合题意;D 、符合最简二次根式的定义,是最简二次根式,故本选项正确.故选:D .【点拨】本题考查了满足是最简二次根式的两个条件:1、被开方数是整数或整式;2、被开方数不能再开方.考向06二次根式的加减例题11:(2021·广西梧州·中考真题)下列计算正确的是()A=B =C .2=D .2=2【答案】D【思路分析】根据二次根式的性质和二次根式的加法法则和除法法则逐一进行计算,从而得出答案;=A B=选项C 错误;)2=2,选项D 正确;故选:D【点拨】本题考查了二次根式的混合运算,熟练掌握运算法则是解题的关键例题12:(2021·江苏泰州·中考真题)下列各组二次根式中,化简后是同类二次根式的是()ABC D 【答案】D【思路分析】把每个选项中的不是最简二次根式化为最简二次根式即可作出判断.【解析】A =B =与类二次根式,故此选项错误;C 故此选项错误;D ==,D .【点拨】本题考查了二次根式的化简,同类二次根式的识别等知识,注意二次根式必须化成最简二次根式.微练习一、单选题【答案】B<<∴56<,∴30的算术平方根介于5与6之间.故选:B .2.(2021·江苏·连云港市新海实验中学二模)下列计算:①222+=a a a ,②(1)x y x xy +=+,③46,④236() mn mn =,正确的有()A .1个B .2个C .3个D .4个【答案】B【分析】解:①23a a a +=,故①错误;②(1)x y x xy +=+,故②正确;③446+,故③正确;④2336() mn m n =,故④错误;故正确的有②,③,共2个,故选:B .3.(2021·湖南师大附中博才实验中学一模))A .4和5之间B .5和6之间C .6和7之间D .7和8之间【答案】B∴56,5和6之间;故选B .4.(2021·广东·珠海市紫荆中学三模)下列四个实数中,最小的数是()A .5-B .14C .0D 【答案】A【分析】解:∵-5<0<14,A .227B C .3.1415926D 【答案】B【分析】解:A .227是分数,属于有理数;B 是无理数;C .3.1415926是有限小数,属于有理数;D 3=是整数,属于有理数;故选:B .6.(2021·重庆·西南大学附中模拟预测)在函数2y x =-中,自变量x 的取值范围是()A .1x >-B .1x ≥-C .1x ≥-且2x ≠D .1x >-且2x ≠【答案】C【分析】解:根据题意得:1020x x +≥⎧⎨-≠⎩,解得:x ≥−1且x ≠2.故选:C .7.(2021·山东兰陵·一模)实数a ,b 在数轴上对应的点的位置如图所示,化简a 的结果是()A .2a b -+B .2a b -C .b -D .b【答案】A【分析】解:由数轴可知,a <0<b ,∴a -b <0∴2a a b a b a =-+-=-;故选:A8.(2021·江苏建邺·二模)2b =-,则b 满足的条件是()A .2b >B .2b <C .2b ≥D .2b ≤【答案】D2b =-∴20b -≥∴2b ≤故选:D .9.(2021·内蒙古包头·三模)下列说法中,真命题有()有意义,则1x >;②已知27α∠=︒,则α∠的补角是153︒;③已知2x =是方程260x x c -+=的一个实数根,则c 的值为8;1≥x ,故错误;②已知27α∠=︒,则α∠的补角是153︒,故正确;③已知2x =是方程260x x c -+=的一个实数根,则22-12+c =0,解得c =8,故正确;④在反比例函数2k y x-=中,若0x >时,y 随x 的增大而增大,则k -2<0,则k 的取值范围是2k <,故错误;故选:B .10.(2021·重庆·字水中学三模))A .5和6之间B .6和7之间C .7和8之间D .8和9之间.【答案】C【分析】解:===== 78∴<介于7和8之间,故选:C .11.(2021·广西·南宁十四中三模)下列属于最简二次根式的是()AB C D 【答案】B【分析】A.3=开方数是分数,不是最简二次根式,故此选项不符合题意;B.是最简二次根式,故此选项符合题意;3=含有能开得尽方的因数,不是最简二次根式,故此选项不符合题意;D.10=被开方数是分数,不是最简二次根式,故此选项不符合题意;故选B 12.(2021·甘肃庆阳·二模))A B .3C .D .【答案】D【分析】解:S =D13.(2021·福建·厦门市第九中学二模))AB C .3D合题意;C.3 D.=故选D.14.(2021·广东·江门市第二中学二模)下列运算正确的是()B.AC.x5•x6=11x D.(x2)5=7x【答案】C【分析】解:A不是同类二次根式,不能合并,故A选项错误;B、12a,故B选项错误;C、x5•x6=11x,故C选项正确;D、(x2)5=10x,故D选项错误,故选:C.15.(2021·福建南平·二模)下列运算正确的是()A=B=C2=D=【答案】A【分析】解:A=B:选项错误,不符合题意;C:选项错误,不符合题意;D:选项错误,不符合题意;故答案选A.二、填空题16.(2021·陕西·交大附中分校模拟预测)______.【答案】1或2.【分析】解:∵23=∴23<<,1,2,故答案为:1或2.17.(2021·江苏·连云港市新海实验中学二模)______________.【答案】2【分析】解:原式=2,故答案为:2.|=__.18.(2021·宁夏·银川唐徕回民中学一模)30+|﹣119.(2021·陕西·西安市铁一中学模拟预测)112-⎛⎫= ⎪⎝⎭____________.【答案】2-【分析】解:原式2=2=.故答案为2-.20.(2021·黑龙江·哈尔滨市萧红中学三模)=_______.【答案】32【分析】解:原式=32=.故答案为:32.21.(2021·浙江·杭州市采荷中学二模)=______.【答案】22=,故答案为:2.22.(2021·山东·济宁学院附属中学三模)已知1y ==_______.【答案】2【分析】 1y =,2020x x -≥⎧⎨-≥⎩,解得2x =,1y =∴,∴2=.故答案为:2.23.(2021·山东省诸城市树一中学三模)已知1a =,1b -,则33a b ab -=__________.【答案】【分析】解:33a b ab -()22ab a b =-()()ab a b a b =+-,∵1a +,1b =,∴)11211ab ==-=,11a b +-=112a b -=+-=,24.(2021·陕西·交大附中分校模拟预测)21|3|()2--+-.【答案】4【分析】解:原式=3﹣3+4=4.25.(2021·湖南师大附中博才实验中学二模)计算:201332-⎛⎫+-+- ⎪⎝⎭【答案】【分析】解:原式=143+-+=26.(2021·浙江·绍兴市柯桥区杨汛桥镇中学二模)计算:11()(53--.【答案】2-【分析】解:11()(53--35=-+2=.27.(2021·陕西·西北工业大学附属中学模拟预测)1124-⎛⎫+ ⎪⎝⎭21124-⎛⎫+ ⎪⎝⎭42=+2=.。
二次根式化简及运算的三个易错点剖析
数学篇学思导引二次根式的化简和运算是同学们学习二次根式时的一个主要内容.由于二次根式的定义、性质以及运算中包含的隐含条件、附加条件比较多,因此,同学们在化简和运算的过程中稍不注意,就会出现各种错误.对此,本文列举了几种常见错误类型,以帮助同学们提高解题的正确率.一、忽略二次根式定义中的两个非负性条件二次根式也就是形如a(a≥0)的代数式.我们在理解二次根式的定义时,要注意两个很容易被忽略的前提条件:一是二次根式当中的被开方数一定要是一个非负数,即a≥0;二是二次根式本身就是一个非负数,即a≥0(a≥0).这两个前提条件看起来并不起眼,但若在做题的时候忽视了这两个前提条件,就可能会出错.例1将式子3-m2n+5mn3-4m2n2化简.错解:原式=3m-n+5n mn-4mn.错解剖析:该错解显然没有注意挖掘二次根式成立的隐含条件,忽略了二次根式特有的双重非负性,即开根号必须注意a≥0、a≥0这两个前提条件.正解:因为-m2n≥0,m2≥0,所以n<0.又因为mn3≥0,n<0,所以m≤0.所以原式=-3m-n-5n mn-4mn.例2化简(a-的结果是______.错解:原式==-(a-2)=2-a.错解剖析:这道题难度不高,但却很容易出错,错解错在没有考虑到a-2是负值的可能性,直接就按照a-2>0来进行计算,这说明了对二次根式的定义掌握不牢固.由二次根式要满足a≥0(a≥0)的条件,能得出-1a-2>0,a-2<0,a<2这几个结论.由于a-2<0,所以a-2无法直接移到根号里.正解:原式=-(2-a==-2-a.二、忽略二次根式乘除公式中字母的取值范围二次根式的乘除公式指的是积和商的算术平方根,用公式表示就是ab=a⋅b(a≥0,b≥0)和=a a>0,b≥0).很显然,运用二次根式的乘除公式必须满足括号里的限制条件,否则二次根式就是无意义的.但很多同学在运用二次根式的乘除公式解题时经常会忽略这两个字母的取值范围,从而导致解题出错.例3根据已知条件a<2,b<3,化简.=a-2)=.二次根式化简及运算的三个易错点剖析江苏省盐城亭湖初级中学茆正权28数学篇学思导引错解剖析:解题过程看似正确,但其实忽略了二次根式的商的算术平方根中字母的取值情况,由于题目已经明确告知了a 和b 的取值范围,在运用二次根式的除法公式化简时还应明确代数式的取值范围.正解:因为a <2,b <3,所以a -2<0,b -3<0.所以原式=.例4已知m 为实数,化简-m 3.错解:-m 3=m 2⋅(-m )=m 2⋅-m =|m |⋅-m =m -m .错解剖析:解题过程没考虑m 的取值范围,盲目套用算术平方根公式.这种错误非常常见,同学们在记忆公式的时候显然只注意了前半部分,忽视了括号中的内容,这样算出来的答案显然是错误的.正解:因为m 为实数,因此-m 3≥0,m 3≤0,所以m ≤0.所以-m 3=m 2⋅-m =-m -m .三、错用二次根式的运算法则二次根式的运算法则跟整式和分式的运算法则是一致的,必须遵循同级运算的规则,即从左往右依次计算.乘法对加法存在分配律,但除法对加法没有分配律,所以同学们在进行二次根式运算,特别是进行混合运算时,应严格按照从左到右的顺序计算,且不能盲目套用运算法则.例5化简32÷(26+13)的结果是().A.62-23B.63-33C.63-3636错解:原式=1=+32⋅3=33+36.故选D 项.错解剖析:本题之所以会误选D 项,是因为错误地运用分配律进行计算.实际上,乘法分配律为a (b +c )=ab +ac ,但对于除法却没有对应的分配律,即不能按a ÷(b +c )=a ÷b +a ÷c 计算.正解:原式=32=32==63-36因此本题的正确答案是C 项.例6请计算ab ⋅1ab.错解:原式=1=.错解剖析:乘法和除法属于同级运算,需要按照一般运算顺序从左往右进行运算.而错解错在先算后面的乘法,再算前面的除法,虽然算起来很简单,但结果就错了.乘除混合运算是没有结合律的,正确的算法是先算前面的除法,再算后面的乘法.正解:原式=1ab ⋅1ab ==.所以正确答案应该是二次根式的化简和运算问题看似简单,却常常暗藏陷阱,是出错率较高的一类问题.同学们在做题的时候,必须认真审题,挖掘题目当中的隐含条件,以及可能出现的陷阱.同时,对于二次根式的基本知识,尤其是二次根取值范围.29。
初二二次根式所有知识点总结和常考题提高难题压轴题练习(含答案解析)
初二二次根式所有知识点总结和常考题知识点:1、二次根式: 形如)0(≥a a 的式子。
①二次根式必须满足:含有二次根号“”;被开方数a 必须是非负数。
②非负性2、最简二次根式:满足:①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式的二次根式。
3、化最简二次根式的方法和步骤:(1)如果被开方数含分母,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。
(2)如果被开方数含能开得尽方的因数或因式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。
3、二次根式有关公式(1))0()(2≥=a a a (2)a a =2(3)乘法公式)0,0(≥≥∙=b a b a ab(4)除法公式)0,0( b a ba b a ≥= 4、二次根式的加减法则:先将二次根式化为最简二次根式,再将被开方数相同的二次根式进行合并。
5、二次根式混合运算顺序:先乘方,再乘除,最后加减,有括号的先算括号里的。
常考题:一.选择题(共14小题)1.下列二次根式中属于最简二次根式的是( ) A .B .C .D .2.式子有意义的x 的取值范围是( )A .x ≥﹣且x ≠1B .x ≠1C .D .3.下列计算错误的是( ) A . B . C .D .4.估计的运算结果应在( )A .6到7之间B .7到8之间C .8到9之间D .9到10之间5.如果=1﹣2a,则()A.a<B.a≤C.a>D.a≥6.若=(x+y)2,则x﹣y的值为()A.﹣1 B.1 C.2 D.37.是整数,则正整数n的最小值是()A.4 B.5 C.6 D.78.化简的结果是()A.B.C.D.9.k、m、n为三整数,若=k,=15,=6,则下列有关于k、m、n的大小关系,何者正确?()A.k<m=n B.m=n<k C.m<n<k D.m<k<n10.实数a在数轴上的位置如图所示,则化简后为()A.7 B.﹣7 C.2a﹣15 D.无法确定11.把根号外的因式移入根号内得()A.B. C.D.12.已知是正整数,则实数n的最大值为()A.12 B.11 C.8 D.313.若式子有意义,则点P(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限14.已知m=1+,n=1﹣,则代数式的值为()A.9 B.±3 C.3 D.5二.填空题(共13小题)15.实数a在数轴上的位置如图所示,则|a﹣1|+=.16.计算:的结果是.17.化简:(﹣)﹣﹣|﹣3|=.18.如果最简二次根式与是同类二次根式,则a=.19.定义运算“@”的运算法则为:x@y=,则(2@6)@8=.20.化简×﹣4××(1﹣)0的结果是.21.计算:﹣﹣=.22.三角形的三边长分别为,,,则这个三角形的周长为cm.23.如果最简二次根式与能合并,那么a=.24.如图,矩形内两相邻正方形的面积分别是2和6,那么矩形内阴影部分的面积是.(结果保留根号)25.实数p在数轴上的位置如图所示,化简=.26.计算:=.27.已知a、b为有理数,m、n分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b=.三.解答题(共13小题)28.阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)(1)请用不同的方法化简.(2) 参照(三)式得=;‚参照(四)式得=.(3)化简:+++…+.29.计算:(﹣1)(+1)﹣(﹣)﹣2+|1﹣|﹣(π﹣2)0+.30.先化简,再求值:,其中.31.先化简,再求值:,其中x=1+,y=1﹣.32.先化简,再求值:,其中.33.已知a=,求的值.34.对于题目“化简并求值:+,其中a=”,甲、乙两人的解答不同.甲的解答:+=+=+﹣a=﹣a=;乙的解答:+=+=+a﹣=a=.请你判断谁的答案是错误的,为什么?35.一个三角形的三边长分别为、、(1)求它的周长(要求结果化简);(2)请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.36.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:…①(其中a、b、c为三角形的三边长,s为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式:s=…②(其中p=.)(1)若已知三角形的三边长分别为5,7,8,试分别运用公式①和公式②,计算该三角形的面积s;(2)你能否由公式①推导出公式②?请试试.37.已知:,,求代数式x2﹣xy+y2值.38.计算或化简:(1);(2)(a>0,b>0).39.先阅读下列的解答过程,然后再解答:形如的化简,只要我们找到两个数a、b,使a+b=m,ab=n,使得+=m,=,那么便有:==±(a>b).例如:化简.解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12即+=7,×=∴===2+.由上述例题的方法化简:.40.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a=,b=;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+ =(+ )2;(3)若a+4=,且a、m、n均为正整数,求a的值?初二二次根式所有知识点总结和常考题提高难题压轴题练习(含答案解析)参考答案与试题解析一.选择题(共14小题)1.(2005•岳阳)下列二次根式中属于最简二次根式的是()A. B. C.D.【分析】B、D选项的被开方数中含有未开尽方的因数或因式;C选项的被开方数中含有分母;因此这三个选项都不是最简二次根式.【解答】解:因为:B、=4;C、=;D、=2;所以这三项都不是最简二次根式.故选A.【点评】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式.2.(2013•娄底)式子有意义的x的取值范围是()A.x≥﹣且x≠1 B.x≠1 C.D.【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【解答】解:根据题意得,2x+1≥0且x﹣1≠0,解得x≥﹣且x≠1.故选A.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.3.(2007•荆州)下列计算错误的是()A.B.C. D.【分析】根据二次根式的运算法则分别计算,再作判断.【解答】解:A、==7,正确;B、==2,正确;C、+=3+5=8,正确;D、,故错误.故选D.【点评】同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.4.(2008•芜湖)估计的运算结果应在()A.6到7之间B.7到8之间C.8到9之间D.9到10之间【分析】先进行二次根式的运算,然后再进行估算.【解答】解:∵=4+,而4<<5,∴原式运算的结果在8到9之间;故选C.【点评】本题考查了无理数的近似值问题,现实生活中经常需要估算,“夹逼法”是估算的一般方法,也是常用方法.5.(2011•烟台)如果=1﹣2a,则()A.a<B.a≤C.a>D.a≥【分析】由已知得1﹣2a≥0,从而得出a的取值范围即可.【解答】解:∵,∴1﹣2a≥0,解得a≤.故选:B.【点评】本题考查了二次根式的化简与求值,是基础知识要熟练掌握.6.(2009•荆门)若=(x+y)2,则x﹣y的值为()A.﹣1 B.1 C.2 D.3【分析】先根据二次根式的性质,被开方数大于或等于0,可求出x、y的值,再代入代数式即可.【解答】解:∵=(x+y)2有意义,∴x﹣1≥0且1﹣x≥0,∴x=1,y=﹣1,∴x﹣y=1﹣(﹣1)=2.故选:C.【点评】本题主要考查了二次根式的意义和性质:概念:式子(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.7.(2012秋•麻城市校级期末)是整数,则正整数n的最小值是()A.4 B.5 C.6 D.7【分析】本题可将24拆成4×6,先把化简为2,所以只要乘以6得出62即可得出整数,由此可得出n的值.【解答】解:∵==2,∴当n=6时,=6,∴原式=2=12,∴n的最小值为6.故选:C.【点评】本题考查的是二次根式的性质.本题还可将选项代入根式中看是否能开得尽方,若能则为答案.8.(2013•佛山)化简的结果是()A.B.C.D.【分析】分子、分母同时乘以(+1)即可.【解答】解:原式===2+.故选:D.【点评】本题考查了分母有理化,正确选择两个二次根式,使它们的积符合平方差公式是解答问题的关键.9.(2013•台湾)k、m、n为三整数,若=k,=15,=6,则下列有关于k、m、n的大小关系,何者正确?()A.k<m=n B.m=n<k C.m<n<k D.m<k<n【分析】根据二次根式的化简公式得到k,m及n的值,即可作出判断.【解答】解:=3,=15,=6,可得:k=3,m=2,n=5,则m<k<n.故选:D【点评】此题考查了二次根式的性质与化简,熟练掌握二次根式的化简公式是解本题的关键.10.(2011•菏泽)实数a在数轴上的位置如图所示,则化简后为()A.7 B.﹣7 C.2a﹣15 D.无法确定【分析】先从实数a在数轴上的位置,得出a的取值范围,然后求出(a﹣4)和(a﹣11)的取值范围,再开方化简.【解答】解:从实数a在数轴上的位置可得,5<a<10,所以a﹣4>0,a﹣11<0,则,=a﹣4+11﹣a,=7.故选A.【点评】本题主要考查了二次根式的化简,正确理解二次根式的算术平方根等概念.11.(2013秋•五莲县期末)把根号外的因式移入根号内得()A.B. C.D.【分析】根据二次根式的性质及二次根式成立的条件解答.【解答】解:∵成立,∴﹣>0,即m<0,原式=﹣=﹣.故选:D.【点评】正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键.二次根式成立的条件:被开方数大于等于0,含分母的分母不为0.12.(2009•绵阳)已知是正整数,则实数n的最大值为()A.12 B.11 C.8 D.3【分析】如果实数n取最大值,那么12﹣n有最小值;又知是正整数,而最小的正整数是1,则等于1,从而得出结果.【解答】解:当等于最小的正整数1时,n取最大值,则n=11.故选B.【点评】此题的关键是分析当等于最小的正整数1时,n取最大值.13.(2005•辽宁)若式子有意义,则点P(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据二次根式的被开方数为非负数和分母不为0,对a、b的取值范围进行判断.【解答】解:要使这个式子有意义,必须有﹣a≥0,ab>0,∴a<0,b<0,∴点(a,b)在第三象限.故选C.【点评】本题考查二次根式有意义的条件,以及各象限内点的坐标的符号.14.(2013•上城区一模)已知m=1+,n=1﹣,则代数式的值为()A.9 B.±3 C.3 D.5【分析】原式变形为,由已知易得m+n=2,mn=(1+)(1﹣)=﹣1,然后整体代入计算即可.【解答】解:m+n=2,mn=(1+)(1﹣)=﹣1,原式====3.故选:C.【点评】本题考查了二次根式的化简求值:先把被开方数变形,用两个数的和与积表示,然后利用整体代入的思想代入计算.二.填空题(共13小题)15.(2004•山西)实数a在数轴上的位置如图所示,则|a﹣1|+=1.【分析】根据数轴上表示的两个数,右边的数总比左边的大,分别得出a﹣1与0,a﹣2与0的关系,然后根据绝对值的意义和二次根式的意义化简.【解答】解:根据数轴上显示的数据可知:1<a<2,∴a﹣1>0,a﹣2<0,∴|a﹣1|+=a﹣1+2﹣a=1.故答案为:1.【点评】本题主要考查了数轴,绝对值的意义和根据二次根式的意义化简.二次根式的化简规律总结:当a≥0时,=a;当a≤0时,=﹣a.16.(2013•南京)计算:的结果是.【分析】先进行二次根式的化简,然后合并同类二次根式即可.【解答】解:原式=﹣=.故答案为:.【点评】本题考查了二次根式的加减运算,属于基础题,关键是掌握二次根式的化简及同类二次根式的合并.17.(2013•泰安)化简:(﹣)﹣﹣|﹣3|=﹣6.【分析】根据二次根式的乘法运算法则以及绝对值的性质和二次根式的化简分别化简整理得出即可.【解答】解:(﹣)﹣﹣|﹣3|=﹣3﹣2﹣(3﹣),=﹣6.故答案为:﹣6.【点评】此题主要考查了二次根式的化简与混合运算,正确化简二次根式是解题关键.18.(2006•广安)如果最简二次根式与是同类二次根式,则a= 5.【分析】根据最简二次根式和同类二次根式的定义,列方程求解.【解答】解:∵最简二次根式与是同类二次根式,∴3a﹣8=17﹣2a,解得:a=5.【点评】此题主要考查最简二次根式和同类二次根式的定义.19.(2007•芜湖)定义运算“@”的运算法则为:x@y=,则(2@6)@8=6.【分析】认真观察新运算法则的特点,找出其中的规律,再计算.【解答】解:∵x@y=,∴(2@6)@8=@8=4@8==6,故答案为:6.【点评】解答此类题目的关键是认真观察新运算法则的特点,找出其中的规律,再计算.20.(2014•荆州)化简×﹣4××(1﹣)0的结果是.【分析】先把各二次根式化为最简二次根式,再根据二次根式的乘法法则和零指数幂的意义计算得到原式=2﹣,然后合并即可.【解答】解:原式=2×﹣4××1=2﹣=.故答案为:.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂.21.(2014•广元)计算:﹣﹣=﹣2.【分析】分别进行分母有理化、二次根式的化简,然后合并求解.【解答】解:==﹣2.故答案为:﹣2.【点评】本题考查了二次根式的加减法,本题涉及了分母有理化、二次根式的化简等运算,属于基础题.22.(2013•宜城市模拟)三角形的三边长分别为,,,则这个三角形的周长为5cm.【分析】三角形的三边长的和为三角形的周长,所以这个三角形的周长为++,化简合并同类二次根式.【解答】解:这个三角形的周长为++=2+2+3=5+2(cm).故答案为:5+2(cm).【点评】本题考查了运用二次根式的加减解决实际问题.23.(2012秋•浏阳市校级期中)如果最简二次根式与能合并,那么a=1.【分析】根据两最简二次根式能合并,得到被开方数相同,然后列一元一次方程求解即可.【解答】解:根据题意得,1+a=4a﹣2,移项合并,得3a=3,系数化为1,得a=1.故答案为:1.【点评】本题考查了最简二次根式,利用好最简二次根式的被开方数相同是解题的关键.24.(2006•宿迁)如图,矩形内两相邻正方形的面积分别是2和6,那么矩形内阴影部分的面积是2﹣2.(结果保留根号)【分析】根据题意可知,两相邻正方形的边长分别是和,由图知,矩形的长和宽分别为+、,所以矩形的面积是为(+)•=2+6,即可求得矩形内阴影部分的面积.【解答】解:矩形内阴影部分的面积是(+)•﹣2﹣6=2+6﹣2﹣6=2﹣2.【点评】本题要运用数形结合的思想,注意观察各图形间的联系,是解决问题的关键.25.(2003•河南)实数p在数轴上的位置如图所示,化简=1.【分析】根据数轴确定p的取值范围,再利用二次根式的性质化简.【解答】解:由数轴可得,1<p<2,∴p﹣1>0,p﹣2<0,∴=p﹣1+2﹣p=1.【点评】此题从数轴读取p的取值范围是关键.26.(2009•泸州)计算:=2.【分析】运用二次根式的性质:=|a|,由于2>,故=2﹣.【解答】解:原式=2﹣+=2.【点评】合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.27.(2011•凉山州)已知a、b为有理数,m、n分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= 2.5.【分析】只需首先对估算出大小,从而求出其整数部分a,其小数部分用﹣a表示.再分别代入amn+bn2=1进行计算.【解答】解:因为2<<3,所以2<5﹣<3,故m=2,n=5﹣﹣2=3﹣.把m=2,n=3﹣代入amn+bn2=1得,2(3﹣)a+(3﹣)2b=1化简得(6a+16b)﹣(2a+6b)=1,等式两边相对照,因为结果不含,所以6a+16b=1且2a+6b=0,解得a=1.5,b=﹣0.5.所以2a+b=3﹣0.5=2.5.故答案为:2.5.【点评】本题主要考查了无理数大小的估算和二次根式的混合运算.能够正确估算出一个较复杂的无理数的大小是解决此类问题的关键.三.解答题(共13小题)28.(2009•邵阳)阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)(1)请用不同的方法化简.(2) 参照(三)式得=;‚参照(四)式得=.(3)化简:+++…+.【分析】(1)中,通过观察,发现:分母有理化的两种方法:1、同乘分母的有理化因式;2、因式分解达到约分的目的;(2)中,注意找规律:分母的两个被开方数相差是2,分母有理化后,分母都是2,分子可以出现抵消的情况.【解答】解:(1)=,=;(2)原式=+…+=++…+=.【点评】学会分母有理化的两种方法.29.(2014•张家界)计算:(﹣1)(+1)﹣(﹣)﹣2+|1﹣|﹣(π﹣2)0+.【分析】根据零指数幂、负整数指数幂和平方差公式得到原式=5﹣1﹣9+﹣1﹣1+2,然后合并即可.【解答】解:原式=5﹣1﹣9+﹣1﹣1+2=﹣7+3.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂、负整数指数幂.30.(2009•广州)先化简,再求值:,其中.【分析】本题的关键是对整式化简,然后把给定的值代入求值.【解答】解:原式=a2﹣3﹣a2+6a=6a﹣3,当a=时,原式=6+3﹣3=6.【点评】本题主要考查整式的运算、平方差公式等基本知识,考查基本的代数计算能力.注意先化简,再代入求值.31.(2005•沈阳)先化简,再求值:,其中x=1+,y=1﹣.【分析】这是个分式除法与减法混合运算题,运算顺序是先做括号内的减法,此时要注意把各分母先因式分解,确定最简公分母进行通分;做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.【解答】解:原式===;当x=1+,y=1﹣时,原式=.【点评】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.32.(2010•莱芜)先化简,再求值:,其中.【分析】这道求代数式值的题目,不应考虑把x的值直接代入,通常做法是先把代数式去括号,把除法转换为乘法化简,然后再代入求值.本题注意x﹣2看作一个整体.【解答】解:原式====﹣(x+4),当时,原式===.【点评】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.33.(2008•余姚市校级自主招生)已知a=,求的值.【分析】先化简,再代入求值即可.【解答】解:∵a=,∴a=2﹣<1,∴原式=﹣=a﹣1﹣=a﹣1+=2﹣﹣1+2+=4﹣1=3.【点评】本题考查了二次根式的化简与求值,将二次根式的化简是解此题的关键.34.(2002•辽宁)对于题目“化简并求值:+,其中a=”,甲、乙两人的解答不同.甲的解答:+=+=+﹣a=﹣a=;乙的解答:+=+=+a﹣=a=.请你判断谁的答案是错误的,为什么?【分析】因为a=时,a﹣=﹣5=﹣4<0,所以≠a﹣,故错误的是乙.【解答】解:甲的解答:a=时,﹣a=5﹣=4>0,所以=﹣a,正确;乙的解答:因为a=时,a﹣=﹣5=﹣4<0,所以≠a﹣,错误;因此,我们可以判断乙的解答是错误的.【点评】应熟练掌握二次根式的性质:=﹣a(a≤0).35.(2011•上城区二模)一个三角形的三边长分别为、、(1)求它的周长(要求结果化简);(2)请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.【分析】把三角形的三边长相加,即为三角形的周长.再运用运用二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.【解答】解:(1)周长=++==,(2)当x=20时,周长=,(或当x=时,周长=等)【点评】对于第(2)答案不唯一,但要注意必须符合题意.36.(2005•台州)我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:…①(其中a、b、c为三角形的三边长,s为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式:s=…②(其中p=.)(1)若已知三角形的三边长分别为5,7,8,试分别运用公式①和公式②,计算该三角形的面积s;(2)你能否由公式①推导出公式②?请试试.【分析】(1)代入计算即可;(2)需要在括号内都乘以4,括号外再乘,保持等式不变,构成完全平方公式,再进行计算.【解答】解:(1)s=,=;p=(5+7+8)=10,又s=;(2)=(﹣)=,=(c+a﹣b)(c﹣a+b)(a+b+c)(a+b﹣c),=(2p﹣2a)(2p﹣2b)•2p•(2p﹣2c),=p(p﹣a)(p﹣b)(p﹣c),∴=.(说明:若在整个推导过程中,始终带根号运算当然也正确)【点评】考查了三角形面积的海伦公式的用法,也培养了学生的推理和计算能力.37.(2009秋•金口河区期末)已知:,,求代数式x2﹣xy+y2值.【分析】观察,显然,要求的代数式可以变成x,y的差与积的形式,从而简便计算.【解答】解:∵,,∴xy=×2=,x﹣y=∴原式=(x﹣y)2+xy=5+=.【点评】此类题注意变成字母的和、差或积的形式,然后整体代值计算.38.(2010秋•灌云县校级期末)计算或化简:(1);(2)(a>0,b>0).【分析】(1)先化简,再运用分配律计算;(2)先化简,再根据乘除法的法则计算.【解答】解:(1)原式==6﹣12﹣6=6﹣18;(2)原式=﹣×=﹣3a2b2×=﹣a2b.【点评】熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.39.(2013秋•故城县期末)先阅读下列的解答过程,然后再解答:形如的化简,只要我们找到两个数a、b,使a+b=m,ab=n,使得+=m,=,那么便有:==±(a>b).例如:化简.解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12即+=7,×=∴===2+.由上述例题的方法化简:.【分析】应先找到哪两个数的和为13,积为42.再判断是选择加法,还是减法.【解答】解:根据,可得m=13,n=42,∵6+7=13,6×7=42,∴==.【点评】解题关键是把根号内的式子整理为完全平方的形式.40.(2013•黔西南州)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a=m2+3n2,b=2mn;(2)利用所探索的结论,找一组正整数a、b、m、n填空:4+ 2=(1+ 1)2;(3)若a+4=,且a、m、n均为正整数,求a的值?【分析】(1)根据完全平方公式运算法则,即可得出a、b的表达式;(2)首先确定好m、n的正整数值,然后根据(1)的结论即可求出a、b的值;(3)根据题意,4=2mn,首先确定m、n的值,通过分析m=2,n=1或者m=1,n=2,然后即可确定好a的值.【解答】解:(1)∵a+b=,∴a+b=m2+3n2+2mn,∴a=m2+3n2,b=2mn.故答案为:m2+3n2,2mn.(2)设m=1,n=1,∴a=m2+3n2=4,b=2mn=2.故答案为4、2、1、1.(3)由题意,得:a=m2+3n2,b=2mn∵4=2mn,且m、n为正整数,∴m=2,n=1或者m=1,n=2,∴a=22+3×12=7,或a=12+3×22=13.【点评】本题主要考查二次根式的混合运算,完全平方公式,解题的关键在于熟练运算完全平方公式和二次根式的运算法则.。
八年级数学下学期《二次根式》易错题集
《二次根式》易错题集易错题知识点1.忽略二次根式有意义的条件,只有被开方数a≥0时,式子a才是二次根式;若a<0,则式子a就不能叫二次根式,即a无意义。
2.易把2a与2)(a混淆。
3.二次根式的乘除法混合运算的顺序,一般从左到右依次进行或先把除法统一成乘法后,再用乘法运算法则计算。
4.对同类二次根式的定义理解不透。
5.二次根式的混合运算顺序不正确。
典型例题选择题1.当a>0,b>0时,n是正整数,计算的值是()A.(b﹣a)B.(a n b3﹣a n+1b2)C.(b3﹣ab2)D.(a n b3+a n+1b2)考点:二次根式的性质与化简。
分析:把被开方数分为指数为偶次方的因式的积,再开平方,合并被开方数相同的二次根式.解答:解:原式=﹣=a n b3﹣a n+1b2=(a n b3﹣a n+1b2).故选B.点评:本题考查的是二次根式的化简.最简二次根式的条件:被开方数中不含开得尽方的因式或因数.2.当x取某一范围的实数时,代数式的值是一个常数,该常数是()A.29 B.16 C.13 D.3考点:二次根式的性质与化简。
分析:将被开方数中16﹣x和x﹣13的取值范围进行讨论.解答:解:=|16﹣x|+|x﹣13|,(1)当时,解得13<x<16,原式=16﹣x+x﹣13=3,为常数;(2)当时,解得x<13,原式=16﹣x+13﹣x=29﹣2x,不是常数;(3)当时,解得x>16;原式=x﹣16+x﹣13=2x﹣29,不是常数;(4)当时,无解.故选D点评:解答此题,要弄清二次根式的性质:=|a|,分类讨论的思想.3.当x<﹣1时,|x﹣﹣2|﹣2|x﹣1|的值为()A.2 B.4x﹣6 C.4﹣4x D.4x+4考点:二次根式的性质与化简。
分析:根据x<﹣1,可知2﹣x>0,x﹣1<0,利用开平方和绝对值的性质计算.解答:解:∵x<﹣1∴2﹣x>0,x﹣1<0∴|x﹣﹣2|﹣2|x﹣1|=|x﹣(2﹣x)﹣2|﹣2(1﹣x)=|2(x﹣2)|﹣2(1﹣x)=﹣2(x﹣2)﹣2(1﹣x)=2.故选A.点评:本题主要考查二次根式的化简方法与运用:a>0时,=a;a<0时,=﹣a;a=0时,=0;解决此类题目的关键是熟练掌握二次根式、绝对值等考点的运算.4.化简|2a+3|+(a<﹣4)的结果是()A.﹣3a B.3a﹣C.a+D.﹣3a考点:二次根式的性质与化简;绝对值。
人教版八年级下册数学二次根式知识点归纳及题型总结
二次根式知识点归纳和题型归类上大附中何小龙一、知识框图二、知识要点梳理知识点一、二次根式的主要性质:1.;2.;3.;4.积的算术平方根的性质:;5. 商的算术平方根的性质:.6.若,则错误!未找到引用源。
.知识点二、二次根式的运算 1.二次根式的乘除运算(1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号. (2) 注意每一步运算的算理; (3) 乘法公式的推广:2.二次根式的加减运算 先化简,再运算,3.二次根式的混合运算 (1)明确运算的顺序,即先乘方、开方,再乘除,最后算加减,有括号先算括号里;(2)整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用.一. 利用二次根式的双重非负性来解题(0≥a (a ≥0),即一个非负数的算术平方根是一个非负数。
) 1.下列各式中一定是二次根式的是( )。
A 、3-; B 、x ; C 、12+x ; D 、1-x 2.x 取何值时,下列各式在实数范围内有意义。
(1) (2)121+-x (3)45++x x (4)(5)1213-+-x x(6).(7)若1)1(-=-x x x x ,则x 的取值范围是 (8)若1313++=++x x x x ,则x 的取值范围是 。
3.若13-m 有意义,则m 能取的最小整数值是 ;若20m 是一个正整数,则正整数m 的最小值是________.4.当x 为何整数时,1110+-x 有最小整数值,这个最小整数值为 。
5. 若20042005a a a -+-=,则22004a -=_____________;若433+-+-=x x y ,则=+y x6.设m 、n 满足329922-+-+-=m m m n ,则mn = 。
7.若m 适合关系式35223199199x y m x y m x y x y +--++-=-+⋅--,求m 的值.8. 若三角形的三边a 、b 、c 满足3442-++-b a a =0,则第三边c 的取值范围是9.已知ABC △的三边a b c ,,满足2|12|102422a b c a b ++--=+--,则ABC △为( )10.若0|84|=--+-m y x x ,且0>y 时,则( ) A 、10<<m B 、2≥m C 、2<m D 、2≤m二.利用二次根式的性质2a =|a |=⎪⎩⎪⎨⎧<-=>)0()0(0)(a a a b a a (即一个数的平方的算术平方根等于这个数的绝对值)来解题1.已知233x x +=-x 3+x ,则( ) A.x ≤0 B.x ≤-3 C.x ≥-3 D.-3≤x ≤2..已知a<b ,化简二次根式b a 3-的正确结果是( )A .ab a -- B .ab a - C .ab a D .ab a -3.若化简|1-x|-1682+-x x 的结果为2x-5则( ) A 、x 为任意实数 B 、1≤x ≤4 C 、x ≥1 D 、x ≤44.已知a ,b ,c 为三角形的三边,则222)()()(a c b a c b c b a -++--+-+=5. 当-3<x<5时,化简25109622+-+++x x x x = 。
八年级数学二次根式易错点与难点突破
1、算术平方根、平方根的联系
2、已知 是整数,则满足条件的最小正整数n是。
3、若最简二次根式 和 是同类二次根式,则x+y=。
4、计算
(1) (2)
知识点 二次根式的概念、性质与四则运算
【知识梳理】
1、二次根式的性质:(1)( )2=(______);(2) = = 。
2、一般地,二次根式的乘法法则是 =(a,b)。
7、一列数 、 、 、……,其中 , (n为不小于2的整数),则 =。
8、已知 ,则 =。6
9、若 ,则 =。1
10、已知 (0<a<1),则 =。
11、若实数x、y、z满足 ,则 的平方根是。±5
12、计算:
(1) (2) (3)
13、(1)若x、y是实数,且 ,求 的值;
(2)已知 ,求 的值。
① ;② ;③ ;④ ;……
(1)根据以上线索,请你写出第8个等式:;
(2)请根据你找到的规律,写出第n个等式:。(n为正整数)
【课堂练习三】
1、先观察下列等式,再回答问题。
① =1+ = ;② =1+ = ;③ =1+ = 。请你根据上面提供的信息,猜想 的结果为;根据你找到的规律,写出第n个等式:。(n为正整数)
据此回答下列问题:(1)直接写出表示AP、DP的式子:、;
(2)求AP+DP的最小值;(3)运用以上方法求 的最小值。(0<x<4)
推广:(1) =(a,b,c);
(2) =(a,b)。
3、积的算术平方根的性质: =(a,b)。
4、一般地,二次根式的除法法则是 =(a,b)。
推广: =(a,b)。
6、最简二次根式的概念:一般地,把被开方数不含和能的因数或因式的二次根式叫作最简二次根式。
最新苏教版八年级下册数学第十二章二次根式知识点
第十二章二次根式一、二次根式的概念一般地,我们把形如错误!(a≥0)的式子叫做二次根式,“错误!”称为二次根号。
★正确理解二次根式的概念,要把握以下五点:(1)二次根式的概念是从形式上界定的,必须含有二次根号“错误!”,“错误!"的根指数为2,即“错误!”,我们一般省略根指数2,写作“错误!”.如错误!可以写作错误!。
(2)二次根式中的被开方数既可以是一个数,也可以是一个含有字母的式子.(3)式子错误!表示非负数a的算术平方根,因此a≥0,错误!≥0。
其中a≥0是错误!有意义的前提条件.(4)在具体问题中,如果已知二次根式 a ,就意味着给出了a≥0这一隐含条件。
(5)形如b错误!(a≥0)的式子也是二次根式,b与错误!是相乘的关系。
要注意当b是分数时不能写成带分数,例如错误!错误!可写成错误!,但不能写成2 错误!错误!。
二、二次根式的性质:★( a )2(a≥0)与错误!的区别与联系:三、代数式用基本运算符号(基本运算包括加、减、乘、除、乘方和开方)把数或表示数的字母连接起来的式子叫代数式.例:3,x,x+y,错误!(x≥0),—ab,错误!(t≠0,x3都是代数式注(1)单独一个数或字母也是代数式;(2)代数式中不能含有关系符号(>,<,=等) (1)将两个代数式用关系符号(>,<,=等)连接起来的式子叫关系式,方程和不等式都是关系式。
如2x+3>3x—5是关系式。
列代数式的常用方法:(1)直接法:根据问题的语言叙述直接写出代数式。
(2)公式法:根据公式列出代数式。
(3)探究规律法:将蕴含在一组数或一组图形中的排列规律用代数式表示出来。
四、二次根式的乘除1、单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
2、单项式与单项式相除,把系数与同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
浙教版数学八下知识点总结易错
浙教版数学八下知识点总结易错浙教版数学八下知识点总结(易错点标注)一、二次根式。
1. 二次根式的概念。
- 一般地,形如√(a)(a≥0)的式子叫做二次根式。
这里a可以是数,也可以是代数式,但必须满足a≥0这个条件。
- 易错点:容易忽略被开方数a≥0这个条件。
例如,当a = - 1时,√(-1)在实数范围内无意义,但有些同学在计算时可能会错误地进行运算。
2. 二次根式的性质。
- √(a^2)=| a|=a(a≥0) -a(a < 0)- (√(a))^2=a(a≥0)- 易错点:- 在计算√(a^2)时,容易直接写成a而忽略a的正负性。
例如,当a=-2时,√((-2)^2)=| - 2| = 2,而不是-2。
- 对于(√(a))^2,容易忘记a≥0这个前提条件就进行运算。
3. 二次根式的运算。
- 二次根式的乘法法则:√(a)·√(b)=√(ab)(a≥0,b≥0)- 二次根式的除法法则:(√(a))/(√(b))=√(frac{a){b}}(a≥0,b > 0)- 易错点:- 在乘法运算中,忽略a≥0,b≥0的条件。
例如,计算√(-2)·√(-3)是错误的,因为被开方数不能为负数。
- 在除法运算中,容易忘记b > 0这个条件,并且在分母有理化时可能出现计算错误。
二、一元二次方程。
1. 一元二次方程的概念。
- 一般形式:ax^2+bx + c = 0(a≠0),其中ax^2是二次项,a是二次项系数;bx 是一次项,b是一次项系数;c是常数项。
- 易错点:- 容易忽略a≠0这个条件。
例如,当a = 0时,方程ax^2+bx + c = 0就不是一元二次方程,而是一元一次方程bx + c = 0。
2. 一元二次方程的解法。
- 直接开平方法:对于方程x^2=k(k≥0),解得x=±√(k)。
- 配方法:将方程ax^2+bx + c = 0(a≠0)转化为(x + m)^2=n(n≥0)的形式,再用直接开平方法求解。
(完整版)新人教版八年级数学下册二次根式的知识点汇总
二次根式的知识点汇总知识点一: 二次根式的观点形如 ( )的式子叫做二次根式。
注:在二次根式中,被开放数能够是数,也能够是单项式、多项式、分式等代数式,但一定注意:由于负数没有平方 根,因此是 为二次根式的前提条件,如 , , 等是二次根式,而 , 等都不是二次根式。
例 1.以下式子,哪些是二次根式,哪些不是二次根式:2、33、1 、 x ( x>0 )、 0、42、-2 、 1 、xx yx y ( x ≥ 0, y?≥ 0).剖析:二次根式应知足两个条件:第一,有二次根号“”;第二,被开方数是正数或 0.知识点二:取值范围1、 二次根式存心义的条件:由二次根式的意义可知,当 a ≧ 0 时, 存心义,是二次根式,因此要使二次根式存心义,只需使被开方数大于或等于零即可。
2、 二次根式无心义的条件:因负数没有算术平方根,因此当 a ﹤0 时, 没存心义。
例 2.当 x 是多少时, 3x 1 在实数范围内存心义? 例 3.当 x 是多少时,2x 3 +1在实数范围内存心义?x1知识点三:二次根式()的非负性()表示 a 的算术平方根,也就是说, ( )是一个非负数,即0( )。
注:由于二次根式 ( )表示 a 的算术平方根,而正数的算术平方根是正数,0 的算术平方根是 0,因此非负数()的算术平方根是非负数,即 0(),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方近似。
这个性质在解答题目时应用许多,如若,则 a=0,b=0 ;若 ,则 a=0,b=0 ;若,则 a=0,b=0 。
例 4(1) 已知 y=2 x + x2 +5,求xy的值. (2) 若 a 1 + b 1 =0,求 a 2004+b 2004 的值1知识点四:二次根式()的性质()文字语言表达为:一个非负数的算术平方根的平方等于这个非负数。
注:二次根式的性质公式()是逆用平方根的定义得出的结论。
上边的公式也能够反过来应用:若,则,如:,.例 1 计算1.(3) 2 2.(3 5)2 3.(5) 2 4.(7) 2 2 6 2例 2 在实数范围内分解以下因式:(1) x2-3 ( 2) x4-4 (3) 2x 2-3知识点五:二次根式的性质文字语言表达为:一个数的平方的算术平方根等于这个数的绝对值。
八年级数学下册12_3二次根式的加减根式问题常见错误例
根式问题常见错误例析在解二次要式的化简或计算问题时,常见一些同窗因概念不清或轻忽问题的必要条件而造成错误。
现举例剖析如下:一、概念不清例1 假设x+x 1=4,那么x-x1= . 错解:(x-x 1)2=(x+x 1)2-4=42-4=12,∴x -x 1=23. 评析:解题进程中轻忽了平方根概念中“x 2=a ”,x 可取正负两个值。
正解:(x-x 1)2=12,∴x-x1=±23。
二、错误明白得代数式的意义 例2 计算:x 12÷52x 。
错解:x 12÷25x =x 12÷52×x =x 12×25·x =5x 3。
评析:上面解法中错误地将根式52x 明白得为52x x ,前者是运算结果,后者是一种运算:错误地明白得改变了运算顺序: x 12÷52x 相当于x 12÷(52×x ); 而x 12×25·x 那么是(x 12÷52)·x 。
正解:原式=x 12÷52x =x 12÷52x =x 12×x 25=53。
三、轻忽运算法那么例3 计算:236+÷(31-21)。
错解:原式=236+÷31-236+÷21=236+×3-236+×2=56-12。
评析:此题误将乘法分派律用于除法,轻忽a ÷(b+c)≠a ÷b+a ÷c.正解:原式=236+÷2332+-=236+×326-=-6.四、轻忽“分母的有理化因式其值不能为零”分母有理化的一样方式是分子、分母同乘以分母的有理化因式,第二是借助分解,然后约分;利用前一方式分母有理化应注意的有理化因式值的情形。
例4 计算:x ÷(1+1+x )(x ≥-1).错解:x ÷(1+1+x )=)11)(11()11(+-+++-x x x x =x x x -+-)11(=1+x -1. 评析:因x ≥-1,故x=0符合题意,但当x=0时,1-1+x =0,现在相当于分子分母同乘以零.故虽计算结果正确,但其进程也是错误的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 二次根式易错点归纳
一、概念不清
例1.下列各式中,哪些是二次根式?哪些不是二次根式?为什么?
,π
都是二次根式;
π
剖析:对二次根式的定义理解不透,认为只要带二次根号,即为二次根式,忽视了二次根式
a ≥0的条件,所以在平时做题中必须特别注意理解二次根式的被开方数是非负数.
都是二次根式;
π
二、违背运算顺序
例22)
错解:原式1=
剖析:由于乘除是同一级运算,因此按顺序除在前,要先算除法.
正解:原式2112(273232(===-++ 三、错用运算法则
例3
.
错解:原式
= 剖析:本题乱套乘法分配律,应注意:()a b c a b a c ÷+≠÷+÷.
正解:原式
==. 四、错用根式性质
例4.计算:(1(2
错解:(1)原式1306664
=-=;
(2)原式==
0,0)
a b
=≥≥0,0)
a b
=≥>;
=.
正解:(1)原式148112
===⨯=.五、忽视字母范围
例5
错解:原式=.
-a=b,错在没有注意a=b的情形.
正解:(1)当a≠b时,原式=;
(2)当a=b时,原式
=.
六、忽视隐含条件
例6.化简:
错解:原式=
1
a
->,所以a<0,这个条件.
正解:原式==七、忽视限制条件
例7.已知a+b=-2,ab=1
错解:原式2===-.
剖析:应用二次根式的运算性质:
0,0)a b =≥≥;
0,0)a b =≥>时,必须这样括号里的条件,本题由a+b=-2,ab=1可知a <0,b <0,不满足性质的条件造成错误.
正解:由条件可知
a <0,
b <0,所以原式
=)2a b
a b ab +=--=-=. 八、忽视题设条件
例832
-
≤x ≤52).
错解:原式232542x x x =++-=-.
剖析:这里忽视了32
-
≤x ≤52这个条件,当有附加条件时,a =的应用. 正解:因为32-≤x ≤52,所以-3≤x ≤5,所以2x +3≥0,2x -5≤0,
所以,原式23258x x =+-+=.
九、忽视分类讨论
例9.
2121x x x =++-=+.
a =化简时,必须利
用零点分段法进行分类讨论,否则易出现错误.
正解:第一步:找分点,令x +2=0,x -1=0,所以x =-2,x =1;
第二步,分区间,x <-2,-2≤x <1,x ≥1;
第三步,分段按条件化简:
当x<-2时,原式=-(x+2)+(1-x)=-2x-1;当-2≤x<1时,原式=x+2+1-x=3;
当x≥1时,原式=x+2+x-1=2x+1.。