北航基础物理学期中考试A卷(热学部分)2005-2006(完整含答案)
北航基础物理学期中考试A卷(热学部分)2005-2006(完整含答案)

A北京航空航天大学2005-2006 学年第 1学期期中《基础物理学-2(热学部分)》考 试 A 卷学号 姓名考试说明:考试为闭卷考试,考试时间为120分钟。
注意事项:1、 第一部分基础满分共30分。
2、 本部分试题共10题,每题3分。
3、 请用2B 铅笔在答题纸上规范填涂答案。
单项选择题(在每小题列出的四个备选项中只有一个是符合题目要求的,错选、多选或未选均无分。
1. 三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,而方均根速率之比为()()()2/122/122/12::CB A v v v =1∶2∶4,则其压强之比A p ∶B p ∶C p 为:(A) 1∶2∶4. (B) 1∶4∶8. (C) 1∶4∶16. (D) 4∶2∶1. [ ]2. 金属导体中的电子,在金属内部作无规则运动,与容器中的气体分子很类似.设金属中共有N个自由电子,其中电子的最大速率为 m v ,电子速率在v ~v + d v 之间的概率为⎩⎨⎧=0d d 2v v A N N 式中A 为常数.则该电子气电子的平均速率为 (A)33m A v . (B) 44m A v . (C) m v . (D) 23m A v . [ ]3. 按照麦克斯韦分子速率分布定律,具有最概然速率p v 的分子,其动能为:v0≤v ≤v mv > v m(A)RT 23. (B) kT 23. (C) kT . (D) RT 21. [ ]4. 关于温度的意义,有下列几种说法:(1) 气体的温度是分子平均平动动能的量度.(2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义.(3) 温度的高低反映物质内部分子运动剧烈程度的不同.(4) 从微观上看,气体的温度表示每个气体分子的冷热程度. 这些说法中正确的是(A) (1)、(2) 、(4). (B) (1)、(2) 、(3).(C) (2)、(3) 、(4). (D) (1)、(3) 、(4). [ ]5. 一定量的理想气体,开始时处于压强,体积,温度分别为p 1,V 1,T 1的平衡态,后来变到压强,体积,温度分别为p 2,V 2,T 2的终态.若已知V 2 >V 1,且T 2 =T 1,则以下各种说法中正确的是: (A) 不论经历的是什么过程,气体对外净作的功一定为正值. (B) 不论经历的是什么过程,气体从外界净吸的热一定为正值. (C) 若气体从始态变到终态经历的是等温过程,则气体吸收的热量最少.(D) 如果不给定气体所经历的是什么过程,则气体在过程中对外净作功和从外界净吸热的正负皆无法判断. [ ]6. 一定量的理想气体,其状态变化遵从多方过程方程pV n = 常量,已知其体积增大为原来的二倍时,温度相应降低为原来的四分之一,则多方指数n 为(A) 3. (B) 2.(C)21. (D) 31. [ ] 7. 一定量的理想气体,从a 态出发经过①或②过程到达b 态,acb 为等温线(如图),则①、②两过程中外界对系统传递的热量Q 1、Q 2是(A) Q 1>0,Q 2<0. (B) Q 1<0,Q 2<0.(C) Q 1>0,Q 2>0. (D) Q 1<0,Q 2>0. [ ]8. 一定量的理想气体,从p -V 图上初态a 经历(1)或(2)过程到达末态b ,已知a 、b 两态处于同一条绝热线上(图中虚线是绝热线),则气体在(A) (1)过程中放热,(2) 过程中吸热. (B) (1)过程中吸热,(2) 过程中放热.(C) 两种过程中都吸热.p VV(D) 两种过程中都放热. [ ]9. 一定量的理想气体经历acb 过程时吸热500 J .则经历acbda 过程时,吸热为(A) –1200 J . (B) –700 J .(C) –400 J . (D) 700 J . [ ]10. 理想气体卡诺循环过程的两条绝热线下的面积大小(图中阴影部分)分别为S 1和S 2,则二者的大小关系是:(A) S 1 > S 2. (B) S 1 = S 2.(C) S 1 < S 2. (D) 无法确定.[ ]11. 某理想气体分别进行了如图所示的两个卡诺循环:Ⅰ(abcda )和Ⅱ(a'b'c'd'a'),且两个循环曲线所围面积相等.设循环I的效率为η,每次循环在高温热源处吸的热量为Q ,循环Ⅱ的效率为η′,每次循环在高温热源处吸的热量为Q ′,则 (A) η > η′, Q < Q ′. (B) η > η′, Q > Q ′. (C) η < η′, Q < Q ′. (D) η < η′, Q > Q ′. [ ]12. 卡诺定理指出:工作于两个一定温度的高、低温热源之间的(A) 一切热机效率相等. (B) 一切可逆机效率相等. (C) 一切不可逆机的效率相等. (D) 一切不可逆机的效率一定高于可逆机的效率. [ ] 13. 关于热功转换和热量传递过程,有下面一些叙述: (1) 功可以完全变为热量,而热量不能完全变为功; (2) 一切热机的效率都只能够小于1; (3) 热量不能从低温物体向高温物体传递; (4) 热量从高温物体向低温物体传递是不可逆的. 以上这些叙述 (A) 只有(2)、(4)正确. (B) 只有(2)、(3) 、(4)正确. (C) 只有(1)、(3) 、(4)正确.(D) 全部正确. [ ]p (×105 Pa)-3 m 3)14. 如图所示:一定质量的理想气体,从同一状态A 出发,分别经AB (等压)、AC (等温)、AD (绝热)三种过程膨胀,使体积从V 1增加到V 2.问哪个过程中气体的熵增加最多?哪个过程中熵增加为零?正确的答案是:(A) 过程AC 熵增加最多,过程AD 熵增加为零.(B) 过程AB 熵增加最多,过程AC 熵增加为零.(C) 过程AB 熵增加最多,过程AD 熵增加为零.(D)过程AD 熵增加最多,过程AB 熵增加为零. [ ]15. 理想气体绝热地向真空自由膨胀,体积增大为原来的两倍,则始、末两态的温度T 1与T 2和始、末两态气体分子的平均自由程1λ与2λ的关系为(A) 212T T =,21λλ= . (B) 212T T =,2121λλ=. (C) 21T T =,21λλ=. (D) 21T T =,2121λλ= [ ]一.填空题(每题1分,共15分)1. 在容积为10-2 m 3 的容器中,装有质量100 g 的气体,若气体分子的方均根 速率为200 m • s -1,则气体的压强为________________.2. 一容器内储有某种气体,若已知气体的压强为 3×105 Pa ,温度为27℃,密 度为0.24 kg/m 3,则可确定此种气体是________气;并可求出此气体分子热运动 的最概然速率为_______________________m/s .3. 边长为1 m 的立方箱子内盛有处于标准状态下的 3×1025个氧分子,此时氧分子的平均速率=v __________________m/s .若已知在单位时间内撞击在容器器壁单位面积上的分子数是v n 41(其中n 为分子数密度),计算1秒钟内氧分子与箱子碰撞的次数N = _________________s -1.4. 在无外力场作用的条件下,处于平衡态的气体分子按速度分布的规律,可用 ________________分布律来描述.如果气体处于外力场中,气体分子在空间的分布规 律,可用__________分布律来描述.5. 某系统由两种理想气体A 、B 组成.其分子数分别为N A 、N B .若在某一温度下,A 、B 气体各自的速率分布函数为f A (v )、f B (v ),则在同一温度下,由A 、B 气体组成的系统的速率分布函数为f (v ) =__________________________________.6. 按照分子运动论的观点,气体中的扩散现象是由于分子热运动所引起的_____V12______输运;热传导现象是由于分子热运动所引起的___________输运;粘滞现象是由于分子热运动所引起的____________输运.7. 一定量的某种理想气体,先经过等体过程使其热力学温度升高为原来的4倍;再经过等温过程使其体积膨胀为原来的2倍,则分子的平均碰撞频率变为原来的____倍.8. 如图所示,已知图中画不同斜线的两部分的面积分别为S1和S2,那么(1)如果气体的膨胀过程为a─1─b,则气体对外做功W=________;(2)如果气体进行a─2─b─1─a的循环过程,则它对外做功W=_______________.9. 若用气体状态参量(p、V、T)来表述一定量气体的内能,则有:(1) 理想气体的内能是______________的单值函数;(2) 真实气体的内能是______________________________________的函数.10. 刚性双原子分子的理想气体在等压下膨胀所作的功为W,则传递给气体的热量为__________.11. 常温常压下,一定量的某种理想气体(其分子可视为刚性分子,自由度为i),在等压过程中吸热为Q,对外作功为W,内能增加为E∆,则E/_____________.W/Q=_____________.=∆Q12. 一理想卡诺热机在温度为300 K和400 K的两个热源之间工作.(1) 若把高温热源温度提高100 K,则其效率可提高为原来的________倍;(2) 若把低温热源温度降低100 K,则其逆循环的致冷系数将降低为原来的______倍.13. 有ν摩尔理想气体,作如图所示的循环过程acba ,其中acb 为半圆弧,b -a 为等压线,p c =2p a .令气体进行a -b 的等压过程时吸热Q ab ,则在此循环过程中气体净吸热量Q _______Q ab . (填入:>,<或=)14. 由绝热材料包围的容器被隔板隔为两半,左边是理想气体,右边真空.如果把隔板撤去,气体将进行自由膨胀过程,达到平衡后气体的温度__________(升高、降低或不变),气体的熵__________(增加、减小或不变).15. 1 mol 理想气体在气缸中进行无限缓慢的膨胀,其体积由V 1变到V 2.(1) 当气缸处于绝热情况下时,理想气体熵的增量∆S = _________________.(2) 当气缸处于等温情况下时,理想气体熵的增量∆S = _________________.p Vabp基础物理学II 试卷(热学部分)答案一.选择题(每题1分,共15分)1C 2B 3C 4B 5D 6A 7C 8A 9B 10B 11D 12B 13A 14C 15D二.填空题(每题1分,共15分)1. 1.33×105 Pa 1分2. 氢 0.5分; 1.58×103 0.5分3. 425 0.5分; 1.9×1028 0.5分4. 麦克斯韦 0.5分; 玻尔兹曼 0.5分5.BA B B A A N N f N f N ++)()(v v 1分6. 质量0.3分;动能0.3分;定向动量0.4分7. 1 1分8. S 1+ S 2 0.5分; - S 1 0.5分9. 温度T 0.5分; 温度T 和体积V (或温度T 和压强p ) 0.5分 10. W 271分 11. 22+i 0.5分; 2+i i 0.5分12. 1.6 0.5分; 310.5分13. < 1分14. 不变 0.5分; 增加 0.5分15. 0 0.5分; 12ln V V R 0.5分。
北航05年基础物理期中试题

北京航空航天大学2004-2005学年第二学期基础物理学I期中试卷姓名________________________ 学号________________________成绩一选择正确答案:(每题4分)1. 质量为m 的物体自空中落下,它除受重力外,还受到一个与速度平方成正比的阻力的作用,比例系数为k ,k 为正值常量.该下落物体的收尾速度(即最后物体作匀速运动时的速度)将是(A)kmg . (B)kg 2. (C) gk . (D) gk . [ ]2. 一单摆挂在木板的小钉上(摆球的质量<<木板的质量),木板可沿两根竖直且无摩擦的轨道下滑,如图.开始时木板被支撑物托住,且使单摆摆动.当摆球尚未摆到最高点时,移开支撑物,木板自由下落,则在下落过程中,摆球相对于板(A) 作匀速率圆周运动. (B) 静止. (C) 仍作周期性摆动. (D) 作上述情况之外的运动.[ ]3. 一竖直向上发射之火箭,原来静止时的初质量为m 0经时间t 燃料耗尽时的末质量为m ,喷气相对火箭的速率恒定为u ,不计空气阻力,重力加速度g 恒定.则燃料耗尽时火箭速率为(A) 2/ln v 0gt m m u -=. (B) gt m m u -=0ln v .(C) gt mm u +=0ln v . (D) gt mm u -=0lnv . [ ]4. 质量为0.10 kg 的质点,由静止开始沿曲线 j i t2)3/5(r 3+= (SI) 运动,则在t =0到t = 2 s 时间内,作用在该质点上的合外力所做的功为(A) 5/4 J . (B) 20 J . (C) 75/4J . (D) 40 J . [ ]5. 一均匀细杆原来静止放在光滑的水平面上,现在其一端给予一垂直于杆身的水平方向的打击,此后杆的运动情况是: (A) 杆沿力的方向平动.(B) 杆绕其未受打击的端点转动. (C) 杆的质心沿打击力的方向运动,杆又绕质心转动. (D) 杆的质心不动,而杆绕质心转动. [ ]6. 有一质量为M ,半径为R ,高为H 的匀质圆柱体,通过与其侧面上的一条母线相重合的轴的转动惯量为:(A) (1/4)MR 2. (B) (1/2)MR 2.(C) (2/3)MR 2. (D) (3/2)MR 2. [ ]7. 如图所示,一质量为m 的滑块,两边分别与劲度系数为k 1和k 2的轻弹簧联接,两弹簧的另外两端分别固定在墙上.滑块m 可在光滑的水平面上滑动,0点为系统平衡位置.将滑块m 向右移动到x 0,自静止释放,并从释放时开始计时.取坐标如图所示,则其振动方程为:(A)]cos[210t m k k x x +=. (B) ])(cos[21210t k k m k k x x +=.(C) ]cos[210π++=t mk k x x . (D) ])(cos[21210π++=t k k m k k x x .(E) ]cos[210t k k m x x +=. [ ]8. 轻弹簧上端固定,下系一质量为m 1的物体,稳定后在m 1下边又系一质量为m 2的物体,于是弹簧又伸长了∆x .若将m 2移去,并令其振动,则振动周期为(A) gm x m T 122∆π=.(B) gm x m T 212∆π=.(C) gm x m T 2121∆π=.(D) gm m x m T )(2212+π=∆. [ ]9. 一沿x 轴传播的平面简谐波,频率为ν .其微分方程为2222161t yxy∂∂=∂∂ (SI).则(A) 波速为16 m/s . (B) 波速为 1/16 m/s .(C) 波长为 4 m . (D) 波长等于ν4(SI). [ ]10. 一根粗细均匀的自来水管弯成如图所示形状,最高处比最低处高出h = 2 m .当正常供水(管中水流速度处处相同,并设水可视为理想流体,水的密度ρ = 1.0×103 kg/m 3, g = 10 m ·s -2)时测得最低处管中水的压强为2×105 Pa ,则管道最高处水的压强为(A) 2.2×105 Pa . (B) 2×105 Pa . (C) 1.8×105 Pa . (D) 105 Pa . [ ]二、填空题:(每题4分)1.设质点的运动学方程为j t R i t R rωωsin cos += (式中R 、ω 皆为常量), 则质点的v=___________________,dt dv /=_____________________.2.半径为30 cm 的飞轮,从静止开始以0.50 rad ·s -2的匀角加速度转动,则飞轮边缘上一点在飞轮转过240°时的切向加速度a t =_____________,法向加速度a n =_______________.h3. 一质量为M的质点沿x轴正向运动,假设该质点通过坐标为x的位置时速度的大小可以表示为kx (k为正值常量),那么作用于该质点上的力F =__________,该质点从x = x0点出发运动到x = x1处所经历的时间∆t =________.后的速率都等于v,每单位时间流向叶片的水的质量保持不变且等于Q,则水作用于叶片的力大小为______________,方向为_________.5. 两个滑冰运动员的质量各为70 kg,均以6.5 m/s的速率沿相反的方向滑行,滑行路线间的垂直距离为10 m,当彼此交错时,各抓住一10 m长的绳索的一端,然后相对旋转,则抓住绳索之后各自对绳中心的角动量L=_______;它们各自收拢绳索,到绳长为5 m时,各自的速率v=_______.6.质量为20 kg、边长为1.0 m的均匀立方物体,放在水平地面上.有一拉力F作用在该物体一顶边的中点,且与包含该顶边的物体侧面垂直,如图所示.地面极粗糙,物体不可能滑动.若要使该立方体翻转90°,则拉力F不能小于___________________.7.一根质量为m、长为l的均匀细杆,可在水平桌面上绕通过其一端的竖直固定轴转动.已知细杆与桌面的滑动摩擦系数为μ,则杆转动时受的摩擦力矩的大小为________________. 8.两个同方向同频率的简谐振动,其合振动的振幅为20 cm,与第一个简谐振动的相位差为φ–φ1 = π/6.若第一个简谐振动的振幅为310cm = 17.3 cm,则第二个简谐振动的振幅为___________________ cm,第一、二两个简谐振动的相位差φ1- φ2为____________.9. 两列振动方向互相垂直的平面简谐机械波相遇,在相遇区域内,媒质质点的运动轨迹为圆,则这两列波应满足的条件是:频率__________________;在各相遇点振动相位差____________________;振幅_________________.10. 在一个大气压、20℃时水的粘滞系数η = 1.0×10-3 Pa·s,密度取ρ = 1.0×103 kg/m3.设水在半径r = 0.025 m的自来水管中流动,临界雷诺数R e = 2000,则管内平均流速v = _______________________时,流动将自层流转变为湍流.三计算题: (第6分,其它题7分)1. 一个具有单位质量的质点在随时间 t 变化的力j t i t t F)612()43(2-+-= (SI) 作用下运动.设该质点在t = 0时位于原点,且速度为零.求t = 2秒时,该质点受到对原点的力矩和该质点对原点的角动量.2. 将一个均匀的圆柱体放在平板卡车上,圆柱体的轴到卡车后沿的距离为l ,如图所示.如卡车突然以匀加速度a向前开动,圆柱体在车上只滚不滑,试以卡车为参照系进行计算,求当圆柱体刚滚下车时,卡车相对地面行驶的距离.3. 如图,一角频率为ω,振幅为A的平面简谐波沿x轴正方向传播,PO'= λ /4(λ为该波波长);设反射波不衰减,求:(1) 入射波与反射波的表达式;;(2) P点的振动方程.。
北航2022-2023 学年第 1 学期《基础物理学(2)》期末考试卷

2022-2023学年第1学期《基础物理学(2)》期末考试卷注意事项:1.试题共4页,满分100分。
2.请在A4纸或提前打印的答题纸上作答,不必抄题,顺序作答,不作答的题也需写上题号。
3. 答题完毕,将答卷拍照后按顺序整理成一个PDF文件提交,照片文字要清晰。
文件命名为“班级-学号-姓名-任课老师”。
一. 选择题(将正确答案的字母填写在答题纸的相应位置,每小题3分,共30分)1.有容积不同的A、B两个容器,A中装有单原子分子理想气体,B中装有双原子分子理想气体,若两种气体的压强相同,那么,这两种气体的单位体积的内能(E / V)A和(E / V)B的关系:(A) 为(E / V)A<(E / V)B.(B) 为(E / V)A>(E / V)B.(C) 为(E / V)A=(E / V)B.(D) 不能确定.[]2. 若氧分子[O2]气体离解为氧原子[O]气后,其热力学温度提高一倍,则氧原子的平均速率是氧分子的平均速率的:(A) 4倍.(B) 2倍.(C)2倍.(D) 1 /2倍.[]3. 一定量的理想气体,当温度不变而压强增大一倍时,分子的平均碰撞频率Z和平均自由程λ的变化情况是:(A) Z和λ都增大一倍.(B) Z和λ都减为原来的一半.(C) Z增大一倍而λ减为原来的一半.(D) Z减为原来的一半而λ增大一倍.[]4.“理想气体和单一热源接触作等温膨胀时,吸收的热量全部用来对外作功.”对此说法,有如下几种评论,哪种是正确的?(A) 违反热力学第一定律,也违反热力学第二定律.(B) 不违反热力学第一定律,也不违反热力学第二定律.(C) 不违反热力学第二定律,但违反热力学第一定律.(D) 不违反热力学第一定律,但违反热力学第二定律.[]15. 一物体作简谐振动,振动方程为1cos 2x A t ω⎛⎫=+ ⎪⎝⎭π.则该物体在t = 0时刻的动能与t = T /8(T 为振动周期)时刻的动能之比为:(A) 1:4. (B) 1:2. (C) 1:1.(D) 2:1. (E) 4:1.[ ]6. 正在报警的警钟,每隔0.5 秒钟响一声,有一人在以72 km/h 的速度向警钟所在地驶去的车里,这个人在1分钟内听到的响声为:(设声音在空气中的传播速度是340 m/s )(A) 113 次. (B) 120 次.(C) 127 次. (D) 128 次.[ ]7. 如图所示,波长为λ的平行单色光垂直入射在折射率为n 2的薄膜上,经上下两个表面反射的两束光发生干涉.若薄膜厚度为e ,而且n 1>n 2>n 3,则两束反射光在相遇点的相位差为:(A) 4πn 2 e / λ. (B) 2πn 2 e / λ.(C) (4πn 2 e / λ) +π. (D) (2πn 2 e / λ) −π.[]8. 一束单色线偏振光,其振动方向与1/4波片的光轴夹角α = π/4.此偏振光经过1/4波片后:(A) 仍为线偏振光. (B) 振动面旋转了π/2.(C) 振动面旋转了π/4. (D) 变为圆偏振光.[ ]9. 已知一单色光照射在钠表面上,测得光电子的最大动能是 1.2 eV ,而钠的红限波长是5400 Å,那么入射光的波长是:(1 eV =1.60×10−19 J ,1 Å=10−10m ,普朗克常量h =6.63×10−34J ·s, 真空中光速c =3×108 m ·s −1)(A) 5350 Å. (B) 5000 Å.(C) 4350 Å. (D) 3550 Å.[ ]10. 根据玻尔理论,氢原子中的电子在n =4的轨道上运动的动能与在基态的轨道上运动的动能之比为:(A) 1/4. (B) 1/8.(C) 1/16. (D) 1/32.[ ]n 1 λ二. 填空题(将正确答案填写在答题纸的相应位置,每小题3分,共30分)1. 用总分子数N 、气体分子速率v 和速率分布函数 f (v ) 表示下列各量:(1) 速率大于v 0的分子数=____________________;(2) 速率大于v 0的那些分子的平均速率=_________________;(3) 多次观察某一分子的速率,发现其速率大于v 0的概率=_____________.2. 有一卡诺热机,用290 g 空气作为工作物质,工作在27℃的高温热源与−73℃的低温热源之间,此热机的效率η=______________.若在等温膨胀的过程中气缸体积增大到2.718倍,则此热机每一循环所作的功为_________________.(空气的摩尔质量为29×10−3 kg/mol ,普适气体常量R =8.3111K mol J −−⋅⋅)3. 一定量的双原子分子理想气体,分别经历等压过程和等体过程,温度由T 1升到T 2,则前者的熵增加量为后者的熵增加量的______________倍.4. 一个单摆的摆长为l = 0.95 m ,摆球质量为m = 0.40 kg (摆球的半径较摆长小得多).开始时把摆球拉到摆角为θ0 = 0.0524 rad 的位置,并给摆球以v 0 = 0.20 m/s 的速度使之向平衡位置运动(如图),同时开始计时.以平衡位置为坐标原点,偏离平衡位置右侧为正方向,则单摆的振动方程为______________________.(重力加速度g =9.8 m ⋅s −2)5. 如图所示为一平面简谐波在t = 2 s 时刻的波形图,该简谐波的表达式是__________________________________;P 处质点的振动方程是______________________________________.(该波的振幅A 、波速u 与波长λ 为已知量)6. 用波长λ=632.8 nm(1nm=10−9m)的平行光垂直照射单缝,缝宽b =0.15 mm ,缝后用凸透镜把衍射光会聚在焦平面上,测得同侧第一级与第三级暗条纹之间的距离为1.69mm ,则此透镜的焦距为________________.7. 用波长为589.3 nm (1 nm = 10−9 m)的钠黄光垂直入射到每毫米有500 条缝的光栅上,观察到第一级主极大的衍射角为________________,若此光栅的缝宽b =1.0 µm ,则最多能观察到钠黄光的谱线数目为________________条.8. 两个偏振片叠放在一起,强度为0I 的自然光垂直入射其上,若通过两个偏振片后的光强为08I /,则这两个偏振片的偏振化方向间的夹角(取锐角)是____________,若在两片之间再插入一片偏振片,其偏振化方向与前后两片的偏振化方向的夹角(取锐角)相等.则通过三个偏振片后的透射光强度为____________.9. 已知粒子在一维矩形无限深势阱中运动,其波函数为:()3sin x x aψπ=, ( 0≤x ≤a ) 那么粒子在x = 5a /6处出现的概率密度为____________.10. 按照量子力学计算:(1)氢原子中处于主量子数n = 3能级的电子,轨道角动量可能取的值分别为_____________________ .(2) 若氢原子中电子的轨道角动量为12,则其在外磁场方向的投影可能取的值分别为_____________________ .三. 计算题(每小题10分,共40分)1. 2 mol 单原子分子的理想气体,开始时处于压强p 1 =10 atm 、温度T 1 =400 K 的平衡态.后经过一个绝热过程,压强变为p 2 =2 atm 试求:(1) 气体内能的增量;(2) 在该过程中气体所作的功;(3) 终态时,气体的分子数密度.( 1 atm= 1.013×105 Pa , 玻尔兹曼常量k=1.38×10−23 J ·K −1,普适气体常量R =8.31 J ·mol −1·K −1 )2. 某质点作简谐振动,周期为2 s ,振幅为0.06 m ,t = 0 时刻,质点恰好处在负向最大位移处,求:(1) 该质点的振动方程;(2) 此振动以波速u = 2 m/s 沿x 轴正方向传播时,形成的一维简谐波的波函数,(以该质点的平衡位置为坐标原点);(3) 该波的波长.3. 在双缝干涉实验中,单色光源S 0到两缝S 1和S 2的距离分别为l 1和l 2,并且l 1-l 2=3λ,λ为入射光的波长,双缝之间的距离为d ,双缝到屏幕的距离为D (D >>d ),如图.求: (1) 零级明纹到屏幕中央O 点的距离; (2) 相邻明条纹间的距离.4. 对于动能是1 KeV 的电子,其位置限制在10−10 m 范围内,求:(1) 不考虑相对论效应,电子的德布罗意波长;(2) 估算其动量不确定量的百分比 Δp /p .(不确定关系式p x h ΔΔ≥,普朗克常量h =6.63×10−34 J ·s, 电子静止质量m e =9.11×10−31 kg , 1 eV =1.60×10−19 J)屏。
2024年北京市航空航天大学附属中学物理高三上期中经典试题含解析

2024年北京市航空航天大学附属中学物理高三上期中经典试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、单项选择题:本题共6小题,每小题4分,共24分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、如图所示,从A点由静止释放一弹性小球,一段时间后与固定斜面上B点发生碰撞,碰后小球速度大小不变,方向变为水平方向,又经过相同的时间落在地面上C点,已知地面上D点位于B点正下方,C、D间的距离为s,则A.A、D两点间的距离为2sB.A、D两点间的距离为sC.A、B两点间的距离为sD.A、B两点间的距离为3 2 s2、如图所示,图中实线是一簇未标明方向的由点电荷产生的电场线,虚线是某带电粒子通过该电场区域时的运动轨迹,A、B是轨迹上的两点,若带电粒子在运动过程中只受到静电力作用,根据此图不能作出的正确判断是( )A.带电粒子在A、B两点的受力方向B.带电粒子所带电荷的正、负C.带电粒子在A、B两点的加速度何处较大D .带电粒子在A 、B 两点的速度何处较大3、如图所示,一个质点做匀加速直线运动,依次经过a 、b 、c 、d 四点,已知经过ab 、bc 和cd 三段所用时间之比为2:1:2,通过ab 和cd 段的位移分别为x 1和x 2,则bc 段的位移为( )A .12()2x x + B .12()4x x + C .12(3)2x x + D .12(3)4x x + 4、有一个竖直固定放置的四分之一光滑圆弧轨道,轨道圆心O 到地面的高度为h ,小球从轨道最高点A 由静止开始沿着圆弧轨道滑下,从轨道最低点B 离开轨道,然后做平抛运动落到水平地面上的C 点,C 点与A 点的水平距离也等于h ,则下列说法正确的是( )A .当小球运动到轨道最低点B 时,轨道对它的支持力等于重力的4倍B .小球在圆弧轨道上运动的过程中,重力对小球的冲量在数值上大于圆弧的支持力对小球的冲量C .根据已知条件可以求出该四分之一圆弧轨道的轨道半径为0.2hD .小球做平抛运动落到地面时的速度与水平方向夹角θ的正切值tanθ=0.55、在绕地球的圆形轨道上飞行的航天飞机上,将质量为m 的物体挂在一个弹簧秤上,若轨道处的重力加速度为g ',则下面说法中正确的是( )A .物体所受的合外力为mg ',弹簧秤的读数为零B .物体所受的合外力为零,弹簧秤的读数为mg 'C .物体所受的合外力为零,弹簧秤的读数为零D .物体所受的合外力为mg ',弹簧秤的读数为mg '6、如图所示,光滑水平地面上有两个大小相同、质量不等的小球A 和B,A 以3m/s 的速率向右运动,B 以lm/s 的速率向左运动,发生正碰后都以2m/s 的速率反弹,则A 、B 两球的质量之比为A .3:5B .2:3C .1:2D .1:3二、多项选择题:本题共4小题,每小题5分,共20分。
大学航空航天专业《大学物理(上册)》期中考试试卷 含答案

大学航空航天专业《大学物理(上册)》期中考试试卷含答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、一个半径为、面密度为的均匀带电圆盘,以角速度绕过圆心且垂直盘面的轴线旋转;今将其放入磁感应强度为的均匀外磁场中,的方向垂直于轴线。
在距盘心为处取一宽度为的圆环,则该带电圆环相当的电流为________,该电流所受磁力矩的大小为________ ,圆________盘所受合力矩的大小为________。
2、如图所示,一静止的均匀细棒,长为、质量为,可绕通过棒的端点且垂直于棒长的光滑固定轴在水平面内转动,转动惯量为。
一质量为、速率为的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为,则此时棒的角速度应为______。
3、质量为的物体,初速极小,在外力作用下从原点起沿轴正向运动,所受外力方向沿轴正向,大小为。
物体从原点运动到坐标为点的过程中所受外力冲量的大小为_________。
4、从统计的意义来解释, 不可逆过程实质上是一个________________的转变过程, 一切实际过程都向着________________ 的方向进行。
5、两个同振动方向、同频率、振幅均为A的简谐振动合成后振幅仍为A,则两简谐振动的相位差为_______ 。
6、质量为m的物体和一个轻弹簧组成弹簧振子,其固有振动周期为T.当它作振幅为A的自由简谐振动时,其振动能量E=__________。
7、若静电场的某个区域电势等于恒量,则该区域的电场强度为_______________,若电势随空间坐标作线性变化,则该区域的电场强度分布为 _______________。
8、设作用在质量为1kg的物体上的力F=6t+3(SI).如果物体在这一力的作用下,由静止开始沿直线运动,在0到 2.0 s的时间间隔内,这个力作用在物体上的冲量大小I=__________________。
北京航空航天大学基础物理学试卷

(A) 0.
(B) U 0 . r
(C)
RU 0 . r2
(D) U 0 . R
[
]
5. 一导体球外充满相对介电常量为εr 的均匀电介质,若测得导体表面附近场强为 E,则导体 球面上的自由电荷面密度σ为
(A) ε 0 E. (C) ε r E.
(B) ε 0 ε r E. (D) (ε 0 ε r - ε 0)E.
4.
在两种介质的分界面上不存在自由电荷时,界面两侧的电位移
v D
和场强
v E
必须同时满足
的边界条件是:__________________________.
5. 图中所示的一无限长直圆筒,沿圆周方向上的面电流密度(单位垂直长 i
度上流过的电流)为 i,则圆筒内部的磁感强度的大小为 B =________,方
向_______________.
6. 一带电粒子平行磁感线射入匀强磁场,则它作________________运动.
一带电粒子垂直磁感线射入匀强磁场,则它作________________运动.
一带电粒子与磁感线成任意交角射入匀强磁场,则它作______________运动.
bI 2
O c
2
(A) (B) (C) (D)
B B B B
==≠≠00,,00,因因,因为为因为为BBv11虽虽=+然然BBv22BBv=1=3=B+030B=v,, 20但.=B30Bv=1,0+但Bv2B3≠≠0
0. .
7. 两根无限长载流直导线相互正交放置,如图所示.I1 沿 y 轴
的正方向,I2 沿 z 轴负方向.若载流 I1 的导线不能动,载流 I2
_____
北航05-06基础物理2期末及答案

毛主席语录:任何让考生有挂科危险的考试都是反革命!一、选择题:(每题3分,共30分)1. 把双缝干涉实验装置放在折射率为n 的水中,两缝间距离为d ,双缝到屏的距离为D (D >>d ),所用单色光在真空中的波长为λ,则屏上干涉条纹中相邻的明纹之间的距离是(A) λD / (nd ) (B) n λD /d . (C) λd / (nD ). (D) λD / (2nd ) [ ]2. 一束波长为λ的平行单色光垂直入射到一单缝AB 上,装置如图.在屏幕D 上形成衍射图样,如果P 是中央亮纹一侧第一个暗纹所在的位置,则BC 的长度为(A) λ / 2.(B) λ.(C) 3λ / 2 . (D) 2λ . [ ]3. 某元素的特征光谱中含有波长分别为λ1=450 nm 和λ2=750 nm (1 nm =10-9 m)的光谱线.在光栅光谱中,这两种波长的谱线有重叠现象,重叠处λ2的谱线的级数将是 (A) 2 ,3 ,4 ,5 ...... (B) 2 ,5 ,8 ,11...... (C) 2 ,4 ,6 ,8 ......(D) 3 ,6 ,9 ,12...... [ ]4. 一束光强为I 0的自然光,相继通过三个偏振片P 1、P 2、P 3后,出射光的光强为I =I 0 / 8.已知P 1和P 3的偏振化方向相互垂直,若以入射光线为轴,旋转P 2,要使出射光的光强为零,P 2最少要转过的角度是(A) 30°. (B) 45°. (C) 60°. (D) 90°. [ ]5. ABCD 为一块方解石的一个截面,AB 为垂直于纸面的晶体平面与纸面的交线.光轴方向在纸面内且与AB 成一锐角θ,如图所示.一束平行的单色自然光垂直于AB 端面入射.在方解石内折射光分解为o 光和e 光,o 光和e 光的(A) 传播方向相同,电场强度的振动方向互相垂直. (B) 传播方向相同,电场强度的振动方向不互相垂直.C屏fPD LABλDA CB 光 轴θ(C) 传播方向不同,电场强度的振动方向互相垂直.(D) 传播方向不同,电场强度的振动方向不互相垂直. [ ]6. 一匀质矩形薄板,在它静止时测得其长为a ,宽为b ,质量为m 0.由此可算出其面积密度为m 0 /ab .假定该薄板沿长度方向以接近光速的速度v 作匀速直线运动,此时再测算该矩形薄板的面积密度则为(A) ab c m 20)/(1v - (B) 20)/(1c ab m v -(C) ])/(1[20c ab m v - (D) 2/320])/(1[c ab m v - [ ]7. 在氢原子的L 壳层中,电子可能具有的量子数(n ,l ,m l ,m s )是(A) (1,0,0,21-). (B) (2,1,-1,21).(C) (2,0,1,21-). (D) (3,1,-1,21-).[ ]8. 量子力学得出,频率为ν 的线性谐振子,其能量只能为 (A) E = h ν. (B) E = nh ν, ( n = 0,1,2,3……).(C) E = n 21h ν,( n = 0,1,2,3……).(D) νh n E )21(+=, ( n = 0,1,2,3……).[ ]9. 如果(1)锗用锑(五价元素)掺杂,(2)硅用铝(三价元素)掺杂,则分别获得的半导体属于下述类型:(A) (1),(2)均为n 型半导体. (B) (1)为n 型半导体,(2)为p 型半导体. (C) (1)为p 型半导体,(2)为n 型半导体.(D) (1),(2)均为p 型半导体. [ ]10. 在激光器中利用光学谐振腔 (A) 可提高激光束的方向性,而不能提高激光束的单色性. (B) 可提高激光束的单色性,而不能提高激光束的方向性. (C) 可同时提高激光束的方向性和单色性.(D) 既不能提高激光束的方向性也不能提高其单色性.[]二、填空题:(每题3分,共30分)1. 在迈克耳孙干涉仪的一支光路上,垂直于光路放入折射率为n、厚度为h的透明介质薄膜.与未放入此薄膜时相比较,两光束光程差的改变量为___________.2. 在单缝夫琅禾费衍射实验中,用单色光垂直照射,若衍射图样的中央明纹极大光强为I0,a为单缝宽度,λ为入射光波长,则在衍射角θ 方向上的光强度I = ______________________________________________________.3. 假设某一介质对于空气的临界角是45°,则光从空气射向此介质时的布儒斯特角是_______________________.4. 波长为600 nm ( 1nm = 10-9 m)的单色光,垂直入射到某种双折射材料制成的四分之一波片上.已知该材料对非寻常光的主折射率为1.74,对寻常光的折射率为1.71,则此波片的最小厚度为_________________.5. 当惯性系S和S′的坐标原点O和O′重合时,有一点光源从坐标原点发出一光脉冲,在S系中经过一段时间t后(在S′系中经过时间t′),此光脉冲的球面方程(用直角坐标系)分别为:S系___________________________________________;S′系_________________________________________.6. 已知一静止质量为m0的粒子,其固有寿命为实验室测量到的寿命的1/n,则此粒子的动能是____________.7. 在光电效应实验中,测得某金属的遏止电压|U a |与入射光频率ν的关系曲线如图所示,由此可知该金属的红限频率ν0=___________Hz ;逸出功A =____________eV .8. 用文字叙述黑体辐射的斯特藩─玻尔兹曼定律的内容是:__ .9.设描述微观粒子运动的波函数为),(t rψ,则*ψψ表示____________________________________________________________________; ),(t rψ须满足的条件是______________________________________;其归一化条件是__________________________________________.10. 根据量子力学原理,当氢原子中电子的动量矩 6=L 时,L 在外磁场方向上的投影L z 可取的值分别为___________________________.三、计算题(每题10分, 共40分)1. 一平面透射多缝光栅,当用波长λ1 = 600 nm (1 nm = 10-9 m)的单色平行光垂直入射时,在衍射角θ = 30°的方向上可以看到第2级主极大,并且在该处恰能分辨波长差∆λ = 5×10-3nm 的两条谱线.当用波长λ2 =400 nm 的单色平行光垂直入射时,在衍射角θ = 30°的方向上却看不到本应出现的第3级主极大.求光栅常数d 和总缝数N ,再求可能的缝宽a .2. 火箭A 以0.8c 的速率相对地球向正北方向飞行,火箭B 以0.6c 的速率相对地球向正西方向飞行(c 为真空中光速).求在火箭B 中观察火箭A 的速度的大小和方向.3. 已知氢光谱的某一线系的极限波长为3647 Å,其中有一谱线波长为6565 Å.试由玻尔氢原子理论,求与该波长相应的始态与终态能级的能量. (R =1.097×107 m -1 )4. α粒子在磁感应强度为B = 0.025 T 的均匀磁场中沿半径为R =0.83 cm 的圆形轨道运|U a | (V)ν (×1014 Hz)2-2510动.(1) 试计算其德布罗意波长.(2) 若使质量m = 0.1 g 的小球以与α粒子相同的速率运动.则其波长为多少? (α粒子的质量m α =6.64×10-27 kg ,普朗克常量h =6.63×10-34 J ·s ,基本电荷e =1.60×10-19 C)一、选择题:(每题3分,共30分)1.(A)2. (B)3. (D)4. (B)5. (C)6. (C)7. (B)8.(D)9. (B) 10. (C)二、填空题:(每题3分,共30分)1. 2(n – 1)h 3分2.222220sin )sin (sin λθλθa a I ππ 3分或写成 220s i n uuI I =, λθsin a u π= 3. 54.7° 3分4. 5 μm 3分5. 22222t c z y x =++ 1分22222t c z y x '='+'+' 2分 6. )1(20-n c m 3分7. 5×1014 2分2 2分8. 黑体的辐射出射度与绝对温度的四次方成正比 3分 9. 粒子在t 时刻在(x ,y ,z )处出现的概率密度 1分 单值、有限、连续 1分1d d d 2=⎰⎰⎰z y x ψ 1分10. 0、 ±、 2± 3分三、计算题(每题10分, 共计40分)1. 解:据光栅公式 λψk d =sin得: =︒⨯==30sin 6002sin ψλk d 2.4×103 nm = 2.4 μm 3分 据光栅分辨本领公式 kN R ==∆λλ/得: ==∆λλk N 60000. 3分在θ = 30°的方向上,波长λ2 = 400 nm 的第3级主极大缺级,因而在此处恰好是波长λ2的单缝衍射的一个极小,因此有:2330sin λ=︒d ,230sin λk a '=︒∴ a=k 'd / 3, k ' =1或2 2分 缝宽a 有下列两种可能:当 k ' =1 时, 4.23131⨯==d a μm = 0.8 μm . 1分当 k ' =2时, a =2×d /3 = 2×2.4 /3 μm = 1.6 μm . 1分2. 解:选地球为K 系,火箭B 为K ′系,正东方向为x 和x ′轴的正向,正北方向为y 和y ′轴的正向.火箭A 为运动物体.则K ′对K 系的速度u = -0.6c ,火箭A 对地的速度v x = 0,v y = 0.8c ,v z = 0.根据狭义相对论的速度变换公式:c c u ux x x 6.0)/(12=--='v v v 3分 c c u c u xy y 64.0)/(1/1222='--='v v v 3分0)/(1/1222='--='c u c u xz z v v v 2分 在火箭B 中测得火箭A 的速度v '的大小为c x x x 877.0)()()(222='+'+'='v v v v 1分v '与x ′轴之间的夹角为 =''=-v v x 1cos α 46.83° 1分3. 解:极限波数 2//1~k R ==∞λν 可求出该线系的共同终态. 1分 2==∞λR k 2分)11(1~22n k R -==λν2分 由λ =6565 Å 可得始态 ∞∞-=λλλλR n =3 2分由 2216.13nn E E n -==eV 1分 可知终态n =2,E 2 = -3.4 eV 1分始态 n =3,E 3 = -1.51 eV 1分4. 解:(1) 德布罗意公式:)/(v m h =λ 由题可知α 粒子受磁场力作用作圆周运动 R m B q /2v v α=,qRB m =v α又 e q 2= 则 eRB m 2=v α 4分 故 nm 1000.1m 1000.1)2/(211--⨯=⨯==eRB h αλ 3分 (2) 由上一问可得 αm eRB /2=v对于质量为m 的小球αααλλ⋅=⋅==mm m m eRB hm h 2v =6.64×10-34 m 3分。
北航基础物理学期末考试A卷2006-2007(完整含答案)

北京航空航天大学2006-2007 学年第 1学期期末《基础物理学-2》考 试 A 卷学号 姓名考试说明:考试为闭卷考试,考试时间为120分钟。
注意事项:1、 第一部分基础满分共30分。
2、 本部分试题共10题,每题3分。
3、 请用2B 铅笔在答题纸上规范填涂答案。
单项选择题(在每小题列出的四个备选项中只有一个是符合题目要求的,错选、多选或未选均无分。
1. 下列各图所示的速率分布曲线,哪一图中的两条曲线能是同一温度下氮气和氦气的分子速率分布曲线?[ ]2. 对于室温下的双原子分子理想气体,在等压膨胀的情况下,系统对外所作的功与从外界吸收的热量之比W / Q 等于(A) 2/3. (B) 1/2.(C) 2/5. (D) 2/7.[ ]3. 一定量的理想气体向真空作绝热自由膨胀,体积由V 1增至V 2,在此过程中气体的(A) 内能不变,熵增加. (B) 内能不变,熵减少.(C) 内能不变,熵不变. (D) 内能增加,熵增加.[ ]4. 在双缝干涉实验中,设缝是水平的.若双缝所在的平板稍微向上平移,其它条件不变,则屏上的干涉条纹(A) 向下平移,且间距不变. (B) 向上平移,且间距不变.(C) 不移动,但间距改变. (D) 向上平移,且间距改变.[ ]5. 使一光强为I 0的平面偏振光先后通过两个偏振片P 1和P 2.P 1和P 2的偏振化方向与原入射光光矢量振动方向的夹角分别是α 和90°,则通过这两个偏振片后的光强I 是 (A)21I 0 cos 2α . (B) 0. (C) 41I 0sin 2(2α). (D) 41I 0 sin 2α . (E) I 0 cos 4α .[ ]6. 某种透明媒质对于空气的临界角(指全反射)等于45°,光从空气射向此媒质时的布儒斯特角是(A) 35.3°(B) 40.9°(C) 45° (D) 54.7°(E) 57.3°[ ]7. 宇宙飞船相对于地面以速度v 作匀速直线飞行,某一时刻飞船头部的宇航员向飞船尾部发出一个光讯号,经过∆t (飞船上的钟)时间后,被尾部的接收器收到,则由此可知飞船的固有长度为 (c 表示真空中光速)(A) c ·∆t (B) v ·∆t(C) 2)/(1c tc v -⋅∆ (D) 2)/(1c t c v -⋅⋅∆[ ]8. 设粒子运动的波函数图线分别如图(A)、(B)、(C)、(D)所示,那么其中确定粒子动量的精确度最高的波函数是哪个图?[ ]9. 如果(1)锗用锑(五价元素)掺杂,(2)硅用铝(三价元素)掺杂,则分别获得的半导体属于下述类型:(A) (1),(2)均为n 型半导体.(B) (1)为n 型半导体,(2)为p 型半导体.(C) (1)为p 型半导体,(2)为n 型半导体.(D) (1),(2)均为p 型半导体.[ ]10. 激光全息照相技术主要是利用激光的哪一种优良特性?(A) 亮度高. (B) 方向性好.(C) 相干性好. (D) 抗电磁干扰能力强.[ ]二.填空题(每题3分, 共30分)1. 有一瓶质量为M 的氢气(视作刚性双原子分子的理想气体),温度为T ,则氢分子的平均平动动能为__________,氢分子的平均动能为__________,该瓶氢气的内能为__________.2. 右图为一理想气体几种状态变化过程的p -V 图,其中MT 为等温线,MQ 为绝热线,在AM 、BM 、CM 三种准静态过程中:(1) 温度升高的是__________过程;(2) 气体吸热的是__________过程.3. 用λ=600 nm 的单色光垂直照射牛顿环装置时,从中央向外数第4个(不计中央暗斑)暗环对应的空气膜厚度为_______________________μm .(1 nm=10-9 m)4. 在单缝的夫琅禾费衍射实验中,屏上第三级暗纹对应于单缝处波面可划分____________个半波带,若将缝宽缩小一半,原来第三级暗纹处将是___________________纹.5. 用波长为λ的单色平行红光垂直照射在光栅常数d =2μm (1μm=10-6 m)的光栅上,用焦距f =0.500m 的透镜将光聚在屏上,测得第一级谱线与透镜主焦点的距离l =0.1667m .则可知该入射的红光波长λ=_________________nm .(1 nm =10-9 m)6. 在光学各向异性晶体内部有一确定的方向,沿这一方向寻常光和非常光的___________相等,这一方向称为晶体的光轴.只具有一个光轴方向的晶体称为______________晶体.7. 一观察者测得一沿米尺长度方向匀速运动着的米尺的长度为 0.5 m .则此米尺以速度v =__________________________m ·s -1接近观察者. 8. α 粒子在加速器中被加速,当其质量为静止质量的5倍时,其动能为静止能量的_____倍.9. 玻尔氢原子理论中,电子轨道角动量最小值为____________;而量子力学理论中,电子轨道角动量最小值为____________.实验证明____________理论的结果是正确的.10. 根据泡利不相容原理,在主量子数n = 4的电子壳层上最多可能有的电子数为___________个.三.计算题(每题10分, 共40分)1. 某理想气体在p -V 图上等温线与绝热线相交于A 点,如图.已知A 点的压强p 1=2×105 Pa ,体积V 1=0.5×10-3 m 3,而且A 点处等温线斜率与绝热线斜率之比为0.714. 现使气体从A 点绝热膨胀至B 点,其体积V 2=1×10-3 m 3,求 (1) B 点处的压强;(2) 在此过程中气体对外作的功.2. 用每毫米300条刻痕的衍射光栅来检验仅含有属于红和蓝的两种单色成分的光谱.已知红谱线波长λR 在 0.63─0.76μm 范围内,蓝谱线波长λB 在0.43─0.49 μm 范围内.当光垂直入射到光栅时,发现在衍射角为24.46°处,红蓝两谱线同时出现. 在什么角度下红蓝两谱线还会同时出现?3. 用波长λ0 =1 Å的光子做康普顿实验.(1) 散射角φ=90°的康普顿散射波长是多少?(2) 反冲电子获得的动能有多大?(普朗克常量h =6.63×10-34 J ·s ,电子静止质量m e =9.11×10-31 kg)4. 求出实物粒子德布罗意波长与粒子动能E K 和静止质量m 0的关系,并得出: E K << m 0c 2时, K E m h 02/≈λ;E K >> m 0c 2时, K E hc /≈λ.06-07学年第1学期基础物理学(2)期末试卷A 卷参考答案一.选择题(每题3分, 共30分)1.[B]2.[D]3.[A]4.[B]5.[C]6.[D]7.[A]8.[A]9.[B] 10.[C]二.填空题(每题3分, 共30分) 1. 23kT 1分 25kT 1分 25MRT /M mol 1分 2. BM 、CM 各1分 CM 1分 3. 1.2 3分 4. 6 2分 第一级明(只填“明”也可以) 1分5. 632.6 或 633 3分6. 传播速度 2分 单轴 1分7. 2.60×108 3分8. 4 3分 9. h / (2π);0;量子力学 各1分 10. 32 3分三.计算题(每题10分, 共40分)1. 解:(1)由等温线 C pV =得 V pV pT -=)d d (1分 由绝热线C pV =γ得 V pV pQ γ-=)d d (1分 由题意知 714.01//)/d (d )/d (d ==--=γγV p V p V p V p Q T故 =γ1/0.714=1.42分 由绝热方程 γγ2211V p V p =可得 421121058.7)(⨯==γV V p p Pa3分 (2) V V V p V p W V V V V d )(d 2121211γ⎰⎰==5.6012211=--=γV p V p J3分 2. 解: ∵ a +b = (1 / 300) mm = 3.33 μm 1分 (a + b ) sin ψ =k λ 1分 ∴ k λ= (a + b ) sin24.46°= 1.38 μm ∵ λR =0.63─0.76 μm ;λB =0.43─0.49 μm对于红光,取k =2 , 则 λR =0.69 μm2分 对于蓝光,取k =3, λB =0.46 μm2分 红光最大级次 k max = (a + b ) / λR =4.8,2分 取k max =4则红光的第4级与蓝光的第6级还会重合.设重合处的衍射角为ψ' , 则∴ ψ'=55.9°2分 3. 解:(1) 康普顿散射光子波长改变:=-=∆)cos 1)((φλc hm e 0.024×10-10 m=+=∆λλλ0 1.024×10-10m5分 (2) 设反冲电子获得动能2)(c m m E e K -=,根据能量守恒:即 K E hc hc ++=∆)]/([/00λλλ故 )](/[00λλλλ∆∆+=hc E K =4.66×10-17 J =291 eV5分 4. 解:由 202c m mc E K -=20220])/(1/[c m c c m --=v2分 解出: 220/)(c c m E m K +=1分 )/(220202c m E c m E E c K K K ++=v1分 根据德布罗意波: )/(/v m h p h ==λ2分 把上面m ,v 代入得: 2022c m E E hcK K +=λ2分当 20c m E K << 时,上式分母中,2022c m E E K K <<,2K E 可略去.得 202/c m E hc K =λ02/m E h K ≈ 1分当 20c m E K >> 时,上式分母中,2022c m E E K K >>,202c m E K 可略去. 得 K E hc /≈λ 1分。
北航05-06大学基础物理期中试题

1分
2. (10 分) 解:人到达最高点时,只有水平方向速度 v = v 0 cos ,此人于最高点向后抛出物体 m.设抛 出后人的速度为 v 1 ,取人和物体为一系统,则该系统水平方向的动量守恒.即 4分 (M m)v Mv1 m(v1 u)
v1 v mu /( M m) 由于抛出物体而引起人在水平方向的速度增量为 v v1 v mu /( M m) t v0 s i n/ g 因为人从最高点落到地面的时间为 muv 0 sin 故跳的水平距离增加量为 x tv (m M ) g
2分 2分 2分
8
北京航空航天大学 05-06 大学基础物理期中试题
3. (10 分)
1 1 1 2 Mv 2 J 2 kx0 2 2 2 1 圆柱体无滑动的滚动, v R ,且 J MR 2 2 1 1 2 ∴ (3 / 2) Mv 2 kx0 2 2 1 1 2 平动动能 3分 E K Mv 2 kx0 0.04 J 2 3 1 1 1 J 2 MR 2 E K 0.02 J 转动动能 2分 EK 2 4 2 (2) 圆柱体仅在静摩擦力 f 作用下产生绕质心的转动,对质心轴用转动定律 1 则有 fR J MR 2 , 2 2f 质心加速度 a R M 1 ∴ 2分 f Ma 2 令弹簧力为 F, 由质心运动定理得: F f Ma , F Ma f 3Ma / 2 ∵ F kx , ∴ 3Ma / 2 kx , a 2kx / 3M (2k / 3M ) x 0 , 即 x 此式为简谐振动微分方程,可知圆柱体质心作简谐振动,其角频率 2k / 3M , T 2 / 2 3M / 2k 3分
北京航空航天大学基础物理学试卷 (2)

定理求出
.
[
]
7、点电荷-q 位于圆心 O 处,A、B、C、D 为同一圆周上的四点,
如图所示.现将一试验电荷从 A 点分别移动到 B、C、D 各点,
则
A
(A) 从 A 到 B,电场力作功最大.
(B) 从 A 到 C,电场力作功最大.
(C) 从 A 到 D,电场力作功最大.
(D) 从 A 到各点,电场力作功相等.
v F
A x
3、 质量为 m=0.5 kg 的质点,在 Oxy 坐标平面内运动,其运动方程为 x=5t,y=0.5t2(SI),
从 t=2 s 到 t=4 s 这段时间内,外力对质点作的功为
(A) 1.5 J.
(B) 3 J.
(C) 4.5 J.
(D) -1.5 J.
[]
4、如图所示,一个小物体,位于光滑的水平桌面上,与一绳的一端相连结,绳的另一端穿
向加速度,下列表达式中,
(1) dv / d t = a , (3) dS / d t = v ,
(2) (4)
ddrvv//ddtt
=v, = at .
(A) 只有(1)、(4)是对的.
(B) 只有(2)、(4)是对的.
(C) 只有(2)是对的.
(D) 只有(3)是对的.
[
]
2、质量分别为 m1 和 m2 的两滑块 A 和 B 通过一轻弹
大学航空航天专业《大学物理(上册)》期中考试试题 附答案

大学航空航天专业《大学物理(上册)》期中考试试题附答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、一个质点的运动方程为(SI),则在由0至4s的时间间隔内,质点的位移大小为___________,在由0到4s的时间间用内质点走过的路程为___________。
2、气体分子的最可几速率的物理意义是__________________。
3、从统计的意义来解释, 不可逆过程实质上是一个________________的转变过程, 一切实际过程都向着________________ 的方向进行。
4、两列简谐波发生干涉的条件是_______________,_______________,_______________。
5、一质点作半径为0.1m的圆周运动,其运动方程为:(SI),则其切向加速度为=_____________。
6、图示曲线为处于同一温度T时氦(原子量4)、氖(原子量20)和氩(原子量40)三种气体分子的速率分布曲线。
其中曲线(a)是________气分子的速率分布曲线;曲线(c)是________气分子的速率分布曲线。
7、一质点在OXY平面内运动,其运动方程为,则质点在任意时刻的速度表达式为________;加速度表达式为________。
8、质量为m的物体和一个轻弹簧组成弹簧振子,其固有振动周期为T.当它作振幅为A的自由简谐振动时,其振动能量E=__________。
9、某人站在匀速旋转的圆台中央,两手各握一个哑铃,双臂向两侧平伸与平台一起旋转。
当他把哑铃收到胸前时,人、哑铃和平台组成的系统转动角速度应变_____;转动惯量变_____。
10、质点在平面内运动,其运动方程为,质点在任意时刻的位置矢量为________;质点在任意时刻的速度矢量为________;加速度矢量为________。
大学航空航天专业《大学物理(下册)》期中考试试卷A卷 附答案

大学航空航天专业《大学物理(下册)》期中考试试卷A卷附答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、两个相同的刚性容器,一个盛有氧气,一个盛氦气(均视为刚性分子理想气体)。
开始他们的压强和温度都相同,现将3J的热量传给氦气,使之升高一定的温度。
若使氧气也升高同样的温度,则应向氧气传递的热量为_________J。
2、两个同振动方向、同频率、振幅均为A的简谐振动合成后振幅仍为A,则两简谐振动的相位差为_______ 。
3、动方程当t=常数时的物理意义是_____________________。
4、质量为的物体,初速极小,在外力作用下从原点起沿轴正向运动,所受外力方向沿轴正向,大小为。
物体从原点运动到坐标为点的过程中所受外力冲量的大小为_________。
5、一电子以0.99 c的速率运动(电子静止质量为9.11×10-31kg,则电子的总能量是__________J,电子的经典力学的动能与相对论动能之比是_____________。
6、质点p在一直线上运动,其坐标x与时间t有如下关系:(A为常数) (1) 任意时刻t,质点的加速度a =_______; (2) 质点速度为零的时刻t =__________.7、一圆盘正绕垂直于盘面的水平光滑固定轴O转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并留在盘内,则子弹射入后的瞬间,圆盘的角速度_____。
8、一个绕有500匝导线的平均周长50cm的细螺绕环,铁芯的相对磁导率为600,载有0.3A 电流时, 铁芯中的磁感应强度B的大小为___________;铁芯中的磁场强度H的大小为___________ 。
9、一弹簧振子系统具有1.OJ的振动能量,0.10m的振幅和1.0m/s的最大速率,则弹簧的倔强系数为_______,振子的振动频率为_______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A北京航空航天大学2005-2006 学年第 1学期期中《基础物理学-2(热学部分)》考 试 A 卷学号 姓名考试说明:考试为闭卷考试,考试时间为120分钟。
注意事项:1、 第一部分基础满分共30分。
2、 本部分试题共10题,每题3分。
3、 请用2B 铅笔在答题纸上规范填涂答案。
单项选择题(在每小题列出的四个备选项中只有一个是符合题目要求的,错选、多选或未选均无分。
1. 三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,而方均根速率之比为()()()2/122/122/12::CB A v v v =1∶2∶4,则其压强之比A p ∶B p ∶C p 为:(A) 1∶2∶4. (B) 1∶4∶8. (C) 1∶4∶16. (D) 4∶2∶1. [ ]2. 金属导体中的电子,在金属内部作无规则运动,与容器中的气体分子很类似.设金属中共有N个自由电子,其中电子的最大速率为 m v ,电子速率在v ~v + d v 之间的概率为⎩⎨⎧=0d d 2v v A N N 式中A 为常数.则该电子气电子的平均速率为 (A)33m A v . (B) 44m A v . (C) m v . (D) 23m A v . [ ]3. 按照麦克斯韦分子速率分布定律,具有最概然速率p v 的分子,其动能为:v0≤v ≤v mv > v m(A)RT 23. (B) kT 23. (C) kT . (D) RT 21. [ ]4. 关于温度的意义,有下列几种说法:(1) 气体的温度是分子平均平动动能的量度.(2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义.(3) 温度的高低反映物质内部分子运动剧烈程度的不同.(4) 从微观上看,气体的温度表示每个气体分子的冷热程度. 这些说法中正确的是(A) (1)、(2) 、(4). (B) (1)、(2) 、(3).(C) (2)、(3) 、(4). (D) (1)、(3) 、(4). [ ]5. 一定量的理想气体,开始时处于压强,体积,温度分别为p 1,V 1,T 1的平衡态,后来变到压强,体积,温度分别为p 2,V 2,T 2的终态.若已知V 2 >V 1,且T 2 =T 1,则以下各种说法中正确的是: (A) 不论经历的是什么过程,气体对外净作的功一定为正值. (B) 不论经历的是什么过程,气体从外界净吸的热一定为正值. (C) 若气体从始态变到终态经历的是等温过程,则气体吸收的热量最少.(D) 如果不给定气体所经历的是什么过程,则气体在过程中对外净作功和从外界净吸热的正负皆无法判断. [ ]6. 一定量的理想气体,其状态变化遵从多方过程方程pV n = 常量,已知其体积增大为原来的二倍时,温度相应降低为原来的四分之一,则多方指数n 为(A) 3. (B) 2.(C)21. (D) 31. [ ] 7. 一定量的理想气体,从a 态出发经过①或②过程到达b 态,acb 为等温线(如图),则①、②两过程中外界对系统传递的热量Q 1、Q 2是(A) Q 1>0,Q 2<0. (B) Q 1<0,Q 2<0.(C) Q 1>0,Q 2>0. (D) Q 1<0,Q 2>0. [ ]8. 一定量的理想气体,从p -V 图上初态a 经历(1)或(2)过程到达末态b ,已知a 、b 两态处于同一条绝热线上(图中虚线是绝热线),则气体在(A) (1)过程中放热,(2) 过程中吸热. (B) (1)过程中吸热,(2) 过程中放热.(C) 两种过程中都吸热.p VV(D) 两种过程中都放热. [ ]9. 一定量的理想气体经历acb 过程时吸热500 J .则经历acbda 过程时,吸热为(A) –1200 J . (B) –700 J .(C) –400 J . (D) 700 J . [ ]10. 理想气体卡诺循环过程的两条绝热线下的面积大小(图中阴影部分)分别为S 1和S 2,则二者的大小关系是:(A) S 1 > S 2. (B) S 1 = S 2.(C) S 1 < S 2. (D) 无法确定.[ ]11. 某理想气体分别进行了如图所示的两个卡诺循环:Ⅰ(abcda )和Ⅱ(a'b'c'd'a'),且两个循环曲线所围面积相等.设循环I的效率为η,每次循环在高温热源处吸的热量为Q ,循环Ⅱ的效率为η′,每次循环在高温热源处吸的热量为Q ′,则 (A) η > η′, Q < Q ′. (B) η > η′, Q > Q ′. (C) η < η′, Q < Q ′. (D) η < η′, Q > Q ′. [ ]12. 卡诺定理指出:工作于两个一定温度的高、低温热源之间的(A) 一切热机效率相等. (B) 一切可逆机效率相等. (C) 一切不可逆机的效率相等. (D) 一切不可逆机的效率一定高于可逆机的效率. [ ] 13. 关于热功转换和热量传递过程,有下面一些叙述: (1) 功可以完全变为热量,而热量不能完全变为功; (2) 一切热机的效率都只能够小于1; (3) 热量不能从低温物体向高温物体传递; (4) 热量从高温物体向低温物体传递是不可逆的. 以上这些叙述 (A) 只有(2)、(4)正确. (B) 只有(2)、(3) 、(4)正确. (C) 只有(1)、(3) 、(4)正确.(D) 全部正确. [ ]p (×105 Pa)-3 m 3)14. 如图所示:一定质量的理想气体,从同一状态A 出发,分别经AB (等压)、AC (等温)、AD (绝热)三种过程膨胀,使体积从V 1增加到V 2.问哪个过程中气体的熵增加最多?哪个过程中熵增加为零?正确的答案是:(A) 过程AC 熵增加最多,过程AD 熵增加为零.(B) 过程AB 熵增加最多,过程AC 熵增加为零.(C) 过程AB 熵增加最多,过程AD 熵增加为零.(D)过程AD 熵增加最多,过程AB 熵增加为零. [ ]15. 理想气体绝热地向真空自由膨胀,体积增大为原来的两倍,则始、末两态的温度T 1与T 2和始、末两态气体分子的平均自由程1λ与2λ的关系为(A) 212T T =,21λλ= . (B) 212T T =,2121λλ=. (C) 21T T =,21λλ=. (D) 21T T =,2121λλ= [ ]一.填空题(每题1分,共15分)1. 在容积为10-2 m 3 的容器中,装有质量100 g 的气体,若气体分子的方均根 速率为200 m • s -1,则气体的压强为________________.2. 一容器内储有某种气体,若已知气体的压强为 3×105 Pa ,温度为27℃,密 度为0.24 kg/m 3,则可确定此种气体是________气;并可求出此气体分子热运动 的最概然速率为_______________________m/s .3. 边长为1 m 的立方箱子内盛有处于标准状态下的 3×1025个氧分子,此时氧分子的平均速率=v __________________m/s .若已知在单位时间内撞击在容器器壁单位面积上的分子数是v n 41(其中n 为分子数密度),计算1秒钟内氧分子与箱子碰撞的次数N = _________________s -1.4. 在无外力场作用的条件下,处于平衡态的气体分子按速度分布的规律,可用 ________________分布律来描述.如果气体处于外力场中,气体分子在空间的分布规 律,可用__________分布律来描述.5. 某系统由两种理想气体A 、B 组成.其分子数分别为N A 、N B .若在某一温度下,A 、B 气体各自的速率分布函数为f A (v )、f B (v ),则在同一温度下,由A 、B 气体组成的系统的速率分布函数为f (v ) =__________________________________.6. 按照分子运动论的观点,气体中的扩散现象是由于分子热运动所引起的_____V12______输运;热传导现象是由于分子热运动所引起的___________输运;粘滞现象是由于分子热运动所引起的____________输运.7. 一定量的某种理想气体,先经过等体过程使其热力学温度升高为原来的4倍;再经过等温过程使其体积膨胀为原来的2倍,则分子的平均碰撞频率变为原来的____倍.8. 如图所示,已知图中画不同斜线的两部分的面积分别为S1和S2,那么(1)如果气体的膨胀过程为a─1─b,则气体对外做功W=________;(2)如果气体进行a─2─b─1─a的循环过程,则它对外做功W=_______________.9. 若用气体状态参量(p、V、T)来表述一定量气体的内能,则有:(1) 理想气体的内能是______________的单值函数;(2) 真实气体的内能是______________________________________的函数.10. 刚性双原子分子的理想气体在等压下膨胀所作的功为W,则传递给气体的热量为__________.11. 常温常压下,一定量的某种理想气体(其分子可视为刚性分子,自由度为i),在等压过程中吸热为Q,对外作功为W,内能增加为E∆,则E/_____________.W/Q=_____________.=∆Q12. 一理想卡诺热机在温度为300 K和400 K的两个热源之间工作.(1) 若把高温热源温度提高100 K,则其效率可提高为原来的________倍;(2) 若把低温热源温度降低100 K,则其逆循环的致冷系数将降低为原来的______倍.13. 有ν摩尔理想气体,作如图所示的循环过程acba ,其中acb 为半圆弧,b -a 为等压线,p c =2p a .令气体进行a -b 的等压过程时吸热Q ab ,则在此循环过程中气体净吸热量Q _______Q ab . (填入:>,<或=)14. 由绝热材料包围的容器被隔板隔为两半,左边是理想气体,右边真空.如果把隔板撤去,气体将进行自由膨胀过程,达到平衡后气体的温度__________(升高、降低或不变),气体的熵__________(增加、减小或不变).15. 1 mol 理想气体在气缸中进行无限缓慢的膨胀,其体积由V 1变到V 2.(1) 当气缸处于绝热情况下时,理想气体熵的增量∆S = _________________.(2) 当气缸处于等温情况下时,理想气体熵的增量∆S = _________________.p Vabp基础物理学II 试卷(热学部分)答案一.选择题(每题1分,共15分)1C 2B 3C 4B 5D 6A 7C 8A 9B 10B 11D 12B 13A 14C 15D二.填空题(每题1分,共15分)1. 1.33×105 Pa 1分2. 氢 0.5分; 1.58×103 0.5分3. 425 0.5分; 1.9×1028 0.5分4. 麦克斯韦 0.5分; 玻尔兹曼 0.5分5.BA B B A A N N f N f N ++)()(v v 1分6. 质量0.3分;动能0.3分;定向动量0.4分7. 1 1分8. S 1+ S 2 0.5分; - S 1 0.5分9. 温度T 0.5分; 温度T 和体积V (或温度T 和压强p ) 0.5分 10. W 271分 11. 22+i 0.5分; 2+i i 0.5分12. 1.6 0.5分; 310.5分13. < 1分14. 不变 0.5分; 增加 0.5分15. 0 0.5分; 12ln V V R 0.5分。