最新数据挖掘考试题库1
数据挖掘考试题及答案
数据挖掘考试题及答案### 数据挖掘考试题及答案#### 一、选择题(每题2分,共20分)1. 数据挖掘的目的是发现数据中的:- A. 错误- B. 模式- C. 异常- D. 趋势答案:B2. 以下哪项不是数据挖掘的常用算法:- A. 决策树- B. 聚类分析- C. 线性回归- D. 神经网络答案:C3. 关联规则挖掘中,Apriori算法用于发现:- A. 频繁项集- B. 异常值- C. 趋势- D. 聚类答案:A4. K-means算法是一种:- A. 分类算法- B. 聚类算法- C. 预测算法- D. 关联规则挖掘算法答案:B5. 以下哪个指标用于评估分类模型的性能:- A. 准确率- B. 召回率- C. F1分数- D. 所有以上答案:D#### 二、简答题(每题10分,共30分)1. 描述数据挖掘中的“过拟合”现象,并给出避免过拟合的策略。
答案:过拟合是指模型对训练数据拟合得过于完美,以至于失去了泛化能力。
避免过拟合的策略包括:使用交叉验证、正则化技术、减少模型复杂度、获取更多的训练数据等。
2. 解释什么是“数据清洗”以及它在数据挖掘中的重要性。
答案:数据清洗是指从原始数据中识别并纠正(或删除)错误、重复或不完整的数据的过程。
它在数据挖掘中至关重要,因为脏数据会导致分析结果不准确,影响最终的决策。
3. 描述“特征选择”在数据挖掘中的作用。
答案:特征选择是数据挖掘中用来降低数据维度、提高模型性能和减少计算成本的过程。
通过选择最有信息量的特征,可以去除冗余或无关的特征,从而提高模型的准确性和效率。
#### 三、应用题(每题25分,共50分)1. 假设你正在分析一个电子商务网站的用户购买行为,描述你将如何使用数据挖掘技术来识别潜在的营销机会。
答案:首先,我会使用聚类分析来识别不同的用户群体。
然后,通过关联规则挖掘来发现不同用户群体的购买模式。
接着,利用分类算法来预测用户可能感兴趣的产品。
数据挖掘与分析考试试题
数据挖掘与分析考试试题一、选择题(每题 3 分,共 30 分)1、以下哪个不是数据挖掘的主要任务?()A 分类B 聚类C 数据清洗D 关联规则挖掘2、在数据挖掘中,以下哪种方法常用于处理缺失值?()A 直接删除包含缺失值的记录B 用平均值填充缺失值C 用中位数填充缺失值D 以上方法都可以3、决策树算法中,用于选择最佳分裂特征的指标通常是()A 信息增益B 基尼系数C 准确率D 召回率4、以下哪个不是聚类算法?()A KMeans 算法B 层次聚类算法C 朴素贝叶斯算法D DBSCAN 算法5、数据挖掘中的关联规则挖掘,常用的算法是()A Apriori 算法B C45 算法C KNN 算法D SVM 算法6、以下哪种数据预处理方法可以用于将连续型特征转换为离散型特征?()A 标准化B 归一化C 分箱D 主成分分析7、在构建分类模型时,如果数据集存在类别不平衡问题,以下哪种方法可以解决?()A 过采样B 欠采样C 调整分类阈值D 以上方法都可以8、以下哪个指标常用于评估分类模型的性能?()A ROC 曲线下面积B 均方误差C 平均绝对误差D 决定系数9、对于高维数据,以下哪种方法可以进行降维?()A 因子分析B 线性判别分析C 主成分分析D 以上方法都可以10、以下关于数据挖掘的描述,错误的是()A 数据挖掘可以发现隐藏在数据中的模式和关系B 数据挖掘需要大量的数据C 数据挖掘的结果一定是准确无误的D 数据挖掘是一个反复迭代的过程二、填空题(每题 3 分,共 30 分)1、数据挖掘的一般流程包括:________、________、________、________、________和________。
2、分类算法中,常见的有________、________、________等。
3、聚类算法中,KMeans 算法的基本思想是:________。
4、关联规则挖掘中,常用的度量指标有________、________等。
数据挖掘考试题库及答案
数据挖掘考试题库及答案一、选择题1. 数据挖掘是从大量数据中提取有价值信息的过程,以下哪项不是数据挖掘的主要任务?A. 预测B. 分类C. 聚类D. 数据可视化答案:D2. 以下哪种技术不属于数据挖掘的常用方法?A. 决策树B. 支持向量机C. 关联规则D. 数据仓库答案:D3. 数据挖掘中,以下哪项技术常用于分类和预测?A. 神经网络B. K-均值聚类C. 主成分分析D. 决策树答案:D4. 在数据挖掘中,以下哪个概念表示数据集中的属性?A. 数据项B. 数据记录C. 数据属性D. 数据集答案:C5. 数据挖掘中,以下哪个算法用于求解关联规则?A. Apriori算法B. ID3算法C. K-Means算法D. C4.5算法答案:A二、填空题6. 数据挖掘的目的是从大量数据中提取______信息。
答案:有价值7. 在数据挖掘中,分类任务分为有监督学习和______学习。
答案:无监督8. 决策树是一种用于分类和预测的树形结构,其核心思想是______。
答案:递归划分9. 关联规则挖掘中,支持度表示某个项集在数据集中的出现频率,置信度表示______。
答案:包含项集的记录中同时包含结论的记录的比例10. 数据挖掘中,聚类分析是将数据集划分为若干个______的子集。
答案:相似三、判断题11. 数据挖掘只关注大量数据中的异常值。
()答案:错误12. 数据挖掘是数据仓库的一部分。
()答案:正确13. 决策树算法适用于处理连续属性的分类问题。
()答案:错误14. 数据挖掘中的聚类分析是无监督学习任务。
()答案:正确15. 关联规则挖掘中,支持度越高,关联规则越可靠。
()答案:错误四、简答题16. 简述数据挖掘的主要任务。
答案:数据挖掘的主要任务包括预测、分类、聚类、关联规则挖掘、异常检测等。
17. 简述决策树算法的基本原理。
答案:决策树算法是一种自顶向下的递归划分方法。
它通过选择具有最高信息增益的属性进行划分,将数据集划分为若干个子集,直到满足停止条件。
最新《数据挖掘》试题与答案资料
一、解答题(满分30分,每小题5分)1. 怎样理解数据挖掘和知识发现的关系?请详细阐述之首先从数据源中抽取感兴趣的数据,并把它组织成适合挖掘的数据组织形式;然后,调用相应的算法生成所需的知识;最后对生成的知识模式进行评估,并把有价值的知识集成到企业的智能系统中。
知识发现是一个指出数据中有效、崭新、潜在的、有价值的、一个不可忽视的流程,其最终目标是掌握数据的模式。
流程步骤:先理解要应用的领域、熟悉相关知识,接着建立目标数据集,并专注所选择的数据子集;再作数据预处理,剔除错误或不一致的数据;然后进行数据简化与转换工作;再通过数据挖掘的技术程序成为模式、做回归分析或找出分类模型;最后经过解释和评价成为有用的信息。
2. 时间序列数据挖掘的方法有哪些,请详细阐述之时间序列数据挖掘的方法有:1)、确定性时间序列预测方法:对于平稳变化特征的时间序列来说,假设未来行为与现在的行为有关,利用属性现在的值预测将来的值是可行的。
例如,要预测下周某种商品的销售额,可以用最近一段时间的实际销售量来建立预测模型。
2)、随机时间序列预测方法:通过建立随机模型,对随机时间序列进行分析,可以预测未来值。
若时间序列是平稳的,可以用自回归(Auto Regressive,简称AR)模型、移动回归模型(Moving Average,简称MA)或自回归移动平均(Auto Regressive Moving Average,简称ARMA)模型进行分析预测。
3)、其他方法:可用于时间序列预测的方法很多,其中比较成功的是神经网络。
由于大量的时间序列是非平稳的,因此特征参数和数据分布随着时间的推移而变化。
假如通过对某段历史数据的训练,通过数学统计模型估计神经网络的各层权重参数初值,就可能建立神经网络预测模型,用于时间序列的预测。
3. 数据挖掘的分类方法有哪些,请详细阐述之分类方法归结为四种类型:1)、基于距离的分类方法:距离的计算方法有多种,最常用的是通过计算每个类的中心来完成,在实际的计算中往往用距离来表征,距离越近,相似性越大,距离越远,相似性越小。
数据挖掘知识竞赛题库及答案
数据挖掘知识竞赛题库及答案一、选择题1. 数据挖掘的目的是从大量的数据中发现有价值的信息和知识。
以下哪个不是数据挖掘的主要任务?A. 分类B. 聚类C. 预测D. 图像识别答案:D2. 在数据挖掘过程中,特征工程是指什么?A. 选择与目标变量相关的特征B. 对特征进行标准化处理C. 特征降维D. 以上都是答案:D3. K-近邻算法是一种基于什么的分类方法?A. 决策树B. 支持向量机C. 神经网络D. 实例匹配答案:D4. 在数据挖掘中,什么是衡量分类器性能的主要指标?A. 准确率B. 召回率C. F1值D. AUC值答案:D5. 在关联规则挖掘中,最小支持度是指什么?A. 出现在至少一半的事务中的项集B. 出现在至少一定比例的事务中的项集C. 出现在至少一个事务中的项集D. 出现在至少多数事务中的项集答案:B6. 以下哪种技术不属于聚类分析?A. K-均值B. 层次聚类C. 密度聚类D. 决策树聚类答案:D7. 在时间序列分析中,什么是时间序列的前向扩散?A. 过去的信息对当前信息的影响B. 当前的信息对过去信息的影响C. 未来的信息对当前信息的影响D. 当前的信息对未来信息的影响答案:C8. 在数据挖掘中,什么是基于模型的预测方法?A. 利用已有数据建立模型,对新数据进行预测B. 直接对原始数据进行预测C. 利用专家经验进行预测D. 利用机器学习算法进行预测答案:A9. 在数据挖掘中,什么是维度归一化?A. 将特征值缩放到一个固定范围B. 减少特征的数量C. 特征选择D. 特征提取答案:A10. 在数据挖掘中,什么是过拟合?A. 模型在训练集上的性能很好,但在测试集上的性能较差B. 模型在训练集上的性能较差,但在测试集上的性能很好C. 模型在训练集和测试集上的性能都很好D. 模型在训练集和测试集上的性能都较差答案:A二、填空题1. 数据挖掘的主要任务包括分类、聚类、预测和__________。
数据挖掘课程模拟考试题库
数据挖掘课程模拟考试题库一、选择题(每题 5 分,共 30 分)1、以下哪项不是数据挖掘的主要任务?()A 数据清洗B 分类C 聚类D 关联规则挖掘2、数据挖掘中的分类算法不包括()A 决策树B 朴素贝叶斯C 支持向量机D 主成分分析3、在数据挖掘中,以下哪种方法常用于处理缺失值?()A 直接删除包含缺失值的记录B 用平均值填充缺失值C 用中位数填充缺失值D 以上方法都可以4、数据挖掘中的聚类算法中,KMeans 算法的基本思想是()A 基于密度的聚类B 基于层次的聚类C 基于划分的聚类D 基于模型的聚类5、以下哪项不是关联规则挖掘中的常用指标?()A 支持度B 置信度C 提升度D 准确率6、数据挖掘在以下哪个领域应用较少?()A 医疗保健B 市场营销C 天文学D 物理学二、填空题(每题 5 分,共 20 分)1、数据挖掘的流程通常包括、、、、和。
2、常见的数据预处理方法有、、、。
3、决策树算法在进行分裂时,通常依据来选择特征。
4、聚类分析中,评估聚类效果的指标通常有、。
三、简答题(每题 10 分,共 30 分)1、简述数据挖掘与数据分析的区别。
2、解释什么是过拟合,并说明如何避免过拟合。
3、请简要介绍 Apriori 算法的基本思想和步骤。
四、应用题(20 分)假设有一个电商网站的销售数据集,包含用户 ID、商品 ID、购买时间和购买金额等字段。
请使用关联规则挖掘算法,找出经常一起被购买的商品组合,并给出相应的支持度和置信度。
请详细描述你的分析过程和结果。
以下是对上述模拟考试题库的详细解析:选择题解析:1、数据清洗虽然是数据预处理的重要步骤,但不是数据挖掘的主要任务。
数据挖掘的主要任务包括分类、聚类、关联规则挖掘等。
所以选择 A 选项。
2、主成分分析主要用于数据降维,而不是分类算法。
决策树、朴素贝叶斯和支持向量机都是常见的分类算法。
所以选择 D 选项。
3、处理缺失值的方法有多种,直接删除包含缺失值的记录可能会导致数据量减少,影响分析结果;用平均值或中位数填充缺失值是常见的处理方式。
数据挖掘测试题及答案
数据挖掘测试题及答案一、选择题1. 数据挖掘的目的是:A. 数据清洗B. 数据转换C. 模式发现D. 数据存储答案:C2. 以下哪项不是数据挖掘的常用算法?A. 决策树B. 聚类分析C. 线性回归D. 关联规则答案:C二、填空题1. 数据挖掘中的_________是指在大量数据中发现的有意义的模式。
答案:知识2. 一种常用的数据挖掘技术是_________,它用于发现数据中隐藏的分组。
答案:聚类三、简答题1. 简述数据挖掘与数据分析的区别。
答案:数据挖掘是一种自动或半自动的过程,旨在从大量数据中发现模式和知识。
数据分析通常涉及更具体的查询和问题,使用统计方法来理解数据。
2. 描述什么是关联规则挖掘,并给出一个例子。
答案:关联规则挖掘是一种用于发现变量之间有趣关系的技术,特别是变量之间的频繁模式、关联或相关性。
例如,在市场篮子分析中,关联规则挖掘可以用来发现顾客购买行为中的模式,如“购买面包的顾客中有80%也购买了牛奶”。
四、计算题1. 给定以下数据集,计算支持度和置信度:| 事务ID | 购买的商品 |||-|| 1 | A, B || 2 | A, C || 3 | B, C || 4 | A, B, C || 5 | B, D |(1) 计算项集{A}的支持度。
(2) 计算规则A => B的置信度。
答案:(1) 项集{A}的支持度为4/5,因为A出现在4个事务中。
(2) 规则A => B的置信度为3/4,因为A和B同时出现在3个事务中,而A出现在4个事务中。
五、论述题1. 论述数据挖掘在电子商务中的应用,并给出至少两个具体的例子。
答案:数据挖掘在电子商务中的应用非常广泛,包括:- 客户细分:通过数据挖掘技术,商家可以识别不同的客户群体,为每个群体提供定制化的服务或产品。
- 推荐系统:利用关联规则挖掘,电商平台可以推荐用户可能感兴趣的商品,提高用户满意度和购买率。
- 欺诈检测:通过分析交易模式,数据挖掘可以帮助识别异常行为,预防信用卡欺诈等风险。
数据挖掘测试题及答案
数据挖掘测试题及答案一、单项选择题(每题2分,共10题,共20分)1. 数据挖掘中,用于发现数据集中的关联规则的算法是:A. K-meansB. AprioriC. Naive BayesD. Decision Tree答案:B2. 以下哪个选项不是数据挖掘的步骤之一:A. 数据预处理B. 数据探索C. 数据收集D. 数据分析答案:C3. 在分类问题中,以下哪个算法属于监督学习:A. 聚类B. 决策树C. 关联规则D. 异常检测答案:B4. 数据挖掘中,用于发现数据集中的频繁项集的算法是:A. K-meansB. AprioriC. Naive BayesD. Decision Tree5. 在数据挖掘中,以下哪个选项不是数据预处理的步骤:A. 数据清洗B. 数据集成C. 数据变换D. 数据分类答案:D6. 以下哪个算法主要用于聚类问题:A. K-meansB. AprioriC. Naive BayesD. Decision Tree答案:A7. 在数据挖掘中,以下哪个选项不是数据挖掘的应用领域:A. 市场分析B. 医疗诊断C. 社交网络分析D. 视频游戏开发答案:D8. 以下哪个算法主要用于异常检测:A. K-meansB. AprioriC. Naive BayesD. One-Class SVM答案:D9. 在数据挖掘中,以下哪个选项不是数据挖掘的输出结果:B. 规则C. 趋势D. 软件答案:D10. 以下哪个算法主要用于分类问题:A. K-meansB. AprioriC. Naive BayesD. Decision Tree答案:D二、多项选择题(每题3分,共5题,共15分)1. 数据挖掘中,以下哪些算法可以用于分类问题:A. K-meansB. Decision TreeC. Naive BayesD. Logistic Regression答案:BCD2. 在数据挖掘中,以下哪些步骤属于数据预处理:A. 数据清洗B. 数据集成C. 数据变换D. 数据分类答案:ABC3. 以下哪些算法可以用于聚类问题:A. K-meansB. AprioriC. Hierarchical ClusteringD. DBSCAN答案:ACD4. 在数据挖掘中,以下哪些步骤属于数据探索:A. 数据可视化B. 数据摘要C. 数据分类D. 数据变换答案:AB5. 以下哪些算法可以用于异常检测:A. K-meansB. One-Class SVMC. Isolation ForestD. Apriori答案:BC三、简答题(每题5分,共3题,共15分)1. 简述数据挖掘中关联规则挖掘的主要步骤。
数据挖掘口算练习题及答案2023
数据挖掘口算练习题及答案2023一、单选题(每题2分)1. 数据挖掘是一种从大量数据中提取模式、关系和知识的技术。
以下哪个选项不是数据挖掘的应用领域?A. 金融风险管理B. 医疗诊断C. 网络安全D. 地球科学研究答案:D2. 在数据挖掘任务中,分类是指将样本划分到已知类别中的一种方法。
以下哪种算法不属于分类算法?A. 决策树B. 聚类C. 支持向量机D. 朴素贝叶斯答案:B3. 在数据挖掘中,关联规则是指描述数据项之间的关联关系的一种方法。
以下哪个指标用来衡量关联规则的强度?A. 支持度B. 准确度C. 置信度D. 压缩度答案:C4. 数据挖掘中的聚类算法用于将相似的数据项划分到同一个簇中。
以下哪种算法不属于聚类算法?A. K-meansB. 傅立叶变换C. DBSCAND. 层次聚类答案:B5. 在数据挖掘中,预测建模是指通过已有的数据建立一个模型,用于对未知数据进行预测。
以下哪个算法不适用于预测建模?A. 线性回归B. 决策树C. 马尔可夫链D. 神经网络答案:C二、填空题(每题2分)1. ______是数据挖掘的最基本任务,其目的是发现数据中隐藏的模式和关系。
答案:模式发现2. 负责对数据进行采集、清洗和预处理的环节称为______。
答案:数据预处理3. ______用于评估分类模型的性能,包括准确率、召回率和F1值等指标。
答案:分类效果评估4. 在聚类算法中,用于计算数据项之间相似度的度量称为______。
答案:距离度量5. 在数据挖掘中,用于发现异常和离群点的方法称为______。
答案:异常检测三、解答题1. 请简要说明数据挖掘的主要步骤。
答案:数据挖掘的主要步骤包括数据收集和预处理、数据转换与变换、模型选择和建立、模型评估与优化等环节。
首先,需要采集、清洗和预处理数据,确保数据质量。
然后,对数据进行转换和变换,以适应数据挖掘算法的要求。
接下来,选择适合的模型,并利用已有的数据建立模型。
数据挖掘导论期末考试试题
数据挖掘导论期末考试试题# 数据挖掘导论期末考试试题## 一、选择题(每题2分,共20分)1. 数据挖掘的常用技术不包括以下哪一项?A. 决策树B. 聚类分析C. 神经网络D. 线性回归2. 在数据挖掘中,以下哪个算法主要用于分类问题?A. K-meansB. KNNC. AprioriD. ID33. 以下哪个术语与数据挖掘中的关联规则挖掘无关?A. 支持度(Support)B. 置信度(Confidence)C. 准确度(Precision)D. 先行项(Antecedent)4. 数据挖掘中的“过拟合”是指模型:A. 过于简单,不能捕捉数据的复杂性B. 过于复杂,不能很好地泛化到新数据C. 与数据完全一致,没有误差D. 只适用于特定类型的数据5. 在数据预处理中,数据清洗的目的是什么?A. 增加数据量B. 提高数据质量C. 降低数据的维度D. 转换数据格式## 二、简答题(每题10分,共30分)1. 简述数据挖掘中的“异常检测”是什么,并给出一个实际应用的例子。
2. 解释什么是“特征选择”,并说明它在数据挖掘中的重要性。
3. 描述数据挖掘中的“集成学习”概念,并举例说明其优势。
## 三、计算题(每题25分,共50分)1. 给定一组数据集,包含以下属性:年龄、收入、购买产品。
使用Apriori算法找出频繁项集,并计算相应的支持度和置信度。
(假设最小支持度阈值为0.5,最小置信度阈值为0.7)| 交易ID | 年龄 | 收入 | 购买产品 ||||||| 1 | 25 | 50000| 手机 || 2 | 30 | 60000| 手机,电脑 || 3 | 35 | 70000| 电脑 || ... | ... | ... | ... |2. 假设你有一个客户数据库,包含客户的性别、年龄、年收入和购买历史。
使用决策树算法建立一个模型,预测客户是否会购买新产品。
请描述决策树的构建过程,并给出可能的决策树结构。
数据挖掘及应用考试试题及答案
数据挖掘及应用考试试题及答案一、选择题(每题2分,共20分)1. 以下哪项不属于数据挖掘的主要任务?A. 分类B. 聚类C. 关联规则挖掘D. 数据清洗答案:D2. 数据挖掘中,以下哪项技术不属于关联规则挖掘的方法?A. Apriori算法B. FP-growth算法C. ID3算法D. 决策树算法答案:C3. 以下哪个算法不属于聚类算法?A. K-means算法B. DBSCAN算法C. Apriori算法D. 层次聚类算法答案:C4. 数据挖掘中,以下哪个属性类型不适合进行关联规则挖掘?A. 连续型属性B. 离散型属性C. 二进制属性D. 有序属性答案:A5. 数据挖掘中,以下哪个评估指标用于衡量分类模型的性能?A. 准确率B. 精确度C. 召回率D. 所有以上选项答案:D二、填空题(每题3分,共30分)6. 数据挖掘的目的是从大量数据中挖掘出有价值的________和________。
答案:知识;模式7. 数据挖掘的主要任务包括分类、聚类、关联规则挖掘和________。
答案:预测分析8. Apriori算法中,最小支持度(min_support)和最小置信度(min_confidence)是两个重要的参数,它们分别用于控制________和________。
答案:频繁项集;强规则9. 在K-means聚类算法中,聚类结果的好坏取决于________和________。
答案:初始聚类中心;迭代次数10. 数据挖掘中,决策树算法的构建过程主要包括________、________和________三个步骤。
答案:选择最佳分割属性;生成子节点;剪枝三、判断题(每题2分,共20分)11. 数据挖掘是数据库技术的一个延伸,它的目的是从大量数据中提取有价值的信息。
()答案:√12. 数据挖掘过程中,数据清洗是必不可少的步骤,用于提高数据质量。
()答案:√13. 数据挖掘中,分类和聚类是两个不同的任务,分类需要训练集,而聚类不需要。
数据挖掘试题(150道)
单选题1. 某超市研究销售纪录数据后发现,买啤酒的人很大概率也会购买尿布,这种属于数据挖掘的哪类问题?(A)A. 关联规则发现B. 聚类C. 分类D. 自然语言处理2. 以下两种描述分别对应哪两种对分类算法的评价标准?(A)(a)警察抓小偷,描述警察抓的人中有多少个是小偷的标准。
(b)描述有多少比例的小偷给警察抓了的标准。
A. Precision, RecallB. Recall, PrecisionA. Precision, ROC D. Recall, ROC3. 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C)A. 频繁模式挖掘B. 分类和预测C. 数据预处理D. 数据流挖掘4. 当不知道数据所带标签时,可以使用哪种技术促使带同类标签的数据与带其他标签的数据相分离?(B)A. 分类B. 聚类C. 关联分析D. 隐马尔可夫链5. 什么是KDD?(A)A. 数据挖掘与知识发现B. 领域知识发现C. 文档知识发现D. 动态知识发现6. 使用交互式的和可视化的技术,对数据进行探索属于数据挖掘的哪一类任务?(A)A. 探索性数据分析B. 建模描述C. 预测建模D. 寻找模式和规则7. 为数据的总体分布建模;把多维空间划分成组等问题属于数据挖掘的哪一类任务?(B)A. 探索性数据分析B. 建模描述C. 预测建模D. 寻找模式和规则8. 建立一个模型,通过这个模型根据已知的变量值来预测其他某个变量值属于数据挖掘的哪一类任务?(C)A. 根据内容检索B. 建模描述C. 预测建模D. 寻找模式和规则9. 用户有一种感兴趣的模式并且希望在数据集中找到相似的模式,属于数据挖掘哪一类任务?(A)A. 根据内容检索B. 建模描述C. 预测建模D. 寻找模式和规则11.下面哪种不属于数据预处理的方法?(D)A变量代换B离散化 C 聚集 D 估计遗漏值12. 假设12个销售价格记录组已经排序如下:5, 10, 11, 13, 15, 35, 50, 55, 72, 92, 204, 215 使用如下每种方法将它们划分成四个箱。
数据挖掘期末考试题库
数据挖掘期末考试题库第一部分:单项选择题(每题2分,共20分)1. 数据挖掘的主要任务是:A. 数据清洗B. 数据可视化C. 数据预处理D. 信息提取2. 下列哪种算法不属于分类算法?A. 决策树B. K均值聚类C. 朴素贝叶斯D. 支持向量机3. 以下哪种评估指标适合用于回归模型的评价?A. 准确率B. 精确率C. 均方误差D. 召回率4. 什么是过拟合?A. 欠拟合B. 模型泛化能力差C. 训练数据效果好,测试数据效果差D. 模型对训练数据过于复杂5. 数据挖掘中最常用的算法之一是:A. 关联规则挖掘B. 地理聚类算法C. PCA主成分分析D. 神经网络6. 在K均值聚类算法中,K的取值是:A. 随机指定B. 需要提前确定C. 可以根据数据自动调整D. 由数据量来决定7. 数据不平衡问题常见的解决方法是:A. 降采样B. 升采样C. 阈值移动D. 过采样8. 常用的数据变换方法包括:A. 标准化B. 特征选择C. 特征抽取D. 以上都是9. 以下哪个不是决策树算法?A. CARTB. SVMC. ID3D. C4.510. 数据挖掘的任务包括:A. 分类B. 预测C. 聚类D. 以上都是第二部分:简答题(每题5分,共25分)1. 请简要介绍数据挖掘的相关概念及主要任务。
2. 什么是数据清洗?数据预处理的主要步骤有哪些?3. 请简要描述K均值聚类算法的原理及应用场景。
4. 什么是特征选择?为什么特征选择在数据挖掘中很重要?5. 请解释模型评估中的ROC曲线及AUC指标的含义。
第三部分:分析题(每题10分,共30分)1. 请根据提供的数据集,使用决策树算法进行分类预测,并对算法进行评估。
2. 请使用K均值聚类算法对特定数据进行聚类,并解释聚类结果的含义。
3. 请选择一个自己感兴趣的数据集,设计一个数据挖掘项目,并说明项目的背景、目的、方法及预期结果。
第四部分:应用题(每题15分,共30分)1. 请根据给定的销售数据,利用关联规则挖掘算法找出频繁项集和关联规则,并分析其规则含义及实际应用。
数据挖掘考试题库及答案
数据挖掘考试题库及答案一、单项选择题1. 数据挖掘的主要任务不包括以下哪一项?A. 分类B. 聚类C. 预测D. 数据清洗答案:D2. 以下哪个算法不是用于分类的?A. 决策树B. 支持向量机C. K-均值D. 神经网络答案:C3. 在数据挖掘中,哪个指标用于衡量分类模型的性能?A. 准确率B. 召回率C. F1分数D. 所有以上答案:D4. 以下哪个不是数据挖掘中的聚类算法?A. K-均值B. DBSCANC. AprioriD. 层次聚类答案:C5. 在关联规则挖掘中,哪个算法是最著名的?A. AprioriB. FP-GrowthC. EMD. K-均值答案:A二、多项选择题6. 数据挖掘过程中可能需要进行的预处理步骤包括哪些?A. 缺失值处理B. 异常值检测C. 数据标准化D. 特征选择答案:ABCD7. 以下哪些是监督学习算法?A. 线性回归B. 逻辑回归C. 决策树D. K-均值答案:ABC8. 在数据挖掘中,以下哪些是评估模型性能的指标?A. 精确度B. 召回率C. 混淆矩阵D. ROC曲线答案:ABCD9. 以下哪些是无监督学习算法?A. K-均值B. 主成分分析C. 自动编码器D. 支持向量机答案:ABC10. 在数据挖掘中,以下哪些是特征工程的步骤?A. 特征提取B. 特征选择C. 特征转换D. 特征降维答案:ABCD三、填空题11. 数据挖掘中的________是指从大量数据中提取模式或知识的过程。
答案:知识发现12. 在分类问题中,________是指模型预测正确的样本数量占总样本数量的比例。
答案:准确率13. 在聚类分析中,________是一种基于密度的聚类算法,它将具有足够高密度的区域划分为一个簇。
答案:DBSCAN14. 在关联规则挖掘中,________算法通过减少候选项集来提高挖掘效率。
答案:FP-Growth15. 在数据挖掘中,________是指通过算法自动从数据中学习并构建模型的过程。
数据挖掘考试题及答案
数据挖掘考试题及答案一、单项选择题(每题2分,共20分)1. 数据挖掘的主要任务不包括以下哪一项?A. 分类B. 聚类C. 预测D. 数据清洗答案:D2. 以下哪个算法不是用于分类的?A. 决策树B. 支持向量机C. K-meansD. 神经网络答案:C3. 在数据挖掘中,关联规则挖掘主要用于发现以下哪种类型的模式?A. 频繁项集B. 异常检测C. 聚类D. 预测答案:A4. 以下哪个指标用于评估分类模型的性能?A. 准确率B. 召回率C. F1分数D. 以上都是答案:D5. 在数据挖掘中,过拟合是指模型:A. 过于复杂,无法泛化到新数据B. 过于简单,无法捕捉数据的复杂性C. 无法处理缺失值D. 无法处理异常值答案:A6. 以下哪个算法是用于异常检测的?A. AprioriB. K-meansC. DBSCAND. ID3答案:C7. 在数据挖掘中,哪个步骤是用于减少数据集中的噪声和不相关特征?A. 数据预处理B. 数据探索C. 数据转换D. 数据整合答案:A8. 以下哪个是时间序列分析中常用的模型?A. 线性回归B. ARIMAC. 决策树D. 神经网络答案:B9. 在数据挖掘中,哪个算法是用于处理高维数据的?A. 主成分分析(PCA)B. 线性回归C. 逻辑回归D. 随机森林答案:A10. 以下哪个是文本挖掘中常用的技术?A. 词袋模型B. 决策树C. 聚类分析D. 以上都是答案:D二、多项选择题(每题3分,共15分)11. 数据挖掘过程中可能涉及的步骤包括哪些?A. 数据清洗B. 数据转换C. 数据探索D. 模型训练答案:ABCD12. 以下哪些是数据挖掘中常用的数据预处理技术?A. 缺失值处理B. 特征选择C. 特征缩放D. 数据离散化答案:ABCD13. 在数据挖掘中,哪些因素可能导致模型过拟合?A. 训练数据量过少B. 模型过于复杂C. 训练数据噪声过多D. 训练数据不具代表性答案:ABCD14. 以下哪些是评估聚类算法性能的指标?A. 轮廓系数B. 戴维斯-邦丁指数C. 兰德指数D. 互信息答案:ABCD15. 在数据挖掘中,哪些是常用的特征工程方法?A. 特征选择B. 特征提取C. 特征构造D. 特征降维答案:ABCD三、简答题(每题10分,共30分)16. 简述数据挖掘中的“挖掘”过程通常包括哪些步骤。
数据挖掘考试题库——2024年整理
1.何谓数据挖掘?它有哪些方面的功能?从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程称为数据挖掘。
相关的名称有知识发现、数据分析、数据融合、决策支持等。
数据挖掘的功能包括:概念描述、关联分析、分类与预测、聚类分析、趋势分析、孤立点分析以及偏差分析等。
2.何谓粒度?它对数据仓库有什么影响?按粒度组织数据的方式有哪些?粒度是指数据仓库的数据单位中保存数据细化或综合程度的级别。
粒度影响存放在数据仓库中的数据量的大小,同时影响数据仓库所能回答查询问题的细节程度。
按粒度组织数据的方式主要有:1简单堆积结构2轮转综合结构3简单直接结构4连续结构3.简述数据仓库设计的三级模型及其基本内容。
概念模型设计是在较高的抽象层次上的设计,其主要内容包括:界定系统边界和确定主要的主题域。
逻辑模型设计的主要内容包括:分析主题域、确定粒度层次划分、确定数据分割策略、定义关系模式、定义记录系统。
物理数据模型设计的主要内容包括:确定数据存储结构、确定数据存放位置、确定存储分配以及确定索引策略等。
在物理数据模型设计时主要考虑的因素有:I/O存取时间、空间利用率和维护代价等。
提高性能的主要措施有划分粒度、数据分割、合并表、建立数据序列、引入冗余、生成导出数据、建立广义索引等。
4.在数据挖掘之前为什么要对原始数据进行预处理?原始业务数据来自多个数据库或数据仓库,它们的结构和规则可能是不同的,这将导致原始数据非常的杂乱、不可用,即使在同一个数据库中,也可能存在重复的和不完整的数据信息,为了使这些数据能够符合数据挖掘的要求,提高效率和得到清晰的结果,必须进行数据的预处理。
为数据挖掘算法提供完整、干净、准确、有针对性的数据,减少算法的计算量,提高挖掘效率和准确程度。
5.简述数据预处理方法和内容。
1数据清洗:包括填充空缺值,识别孤立点,去掉噪声和无关数据。
2数据集成:将多个数据源中的数据结合起来存放在一个一致的数据存储中。
数据挖掘技术考核模拟测试卷
数据挖掘技术考核模拟测试卷一、选择题(共 20 题,每题 3 分)1、以下不属于数据挖掘任务的是()A 数据分类B 数据清洗C 关联规则挖掘D 聚类分析2、在数据挖掘中,用于发现数据中隐藏模式的技术是()A 预测建模B 关联分析C 异常检测D 以上都是3、以下哪种算法常用于分类问题?()A KMeansB 决策树C AprioriD EM 算法4、数据挖掘中的预处理步骤不包括()A 数据清洗B 数据集成C 模型训练D 数据变换5、决策树算法中,用于选择最佳分裂属性的指标通常是()A 信息增益B 基尼系数C 准确率D 召回率6、以下哪种数据挖掘技术可以用于市场篮分析?()A 分类B 聚类C 关联规则挖掘D 预测7、对于高维数据,以下哪种降维方法较为常用?()A 主成分分析(PCA)B 线性判别分析(LDA)C 因子分析D 以上都是8、在聚类分析中,KMeans 算法的初始聚类中心通常是()A 随机选择B 根据数据分布选择C 用户指定D 以上都可以9、以下哪种评估指标常用于评估分类模型的性能?()A 均方误差B 准确率和召回率C 轮廓系数D 调整兰德系数10、数据挖掘中的过拟合现象是指()A 模型在训练集上表现良好,但在测试集上表现差B 模型在训练集和测试集上表现都差C 模型在训练集和测试集上表现都好D 模型无法训练11、以下哪种方法可以用于处理数据中的缺失值?()A 直接删除含缺失值的记录B 用均值或中位数填充C 基于其他变量进行预测填充D 以上都是12、逻辑回归是一种()A 线性分类算法B 非线性分类算法C 聚类算法D 关联规则挖掘算法13、以下关于支持向量机(SVM)的说法,错误的是()A 可以处理线性可分和非线性可分问题B 核函数的选择对模型性能影响较大C 训练速度较快,适用于大规模数据D 目标是找到一个最优的分类超平面14、在关联规则挖掘中,最小支持度和最小置信度的作用是()A 控制规则的数量和质量B 提高挖掘效率C 降低计算复杂度D 以上都是15、以下哪种数据结构常用于存储频繁项集?()A 数组B 链表C 哈希表D 二叉树16、对于不平衡数据集,以下哪种方法可以提高分类效果?()A 过采样B 欠采样C 生成合成样本D 以上都是17、以下哪种数据挖掘技术可以用于发现异常值?()A 聚类分析B 分类C 关联规则挖掘D 以上都不是18、随机森林是由多个()组成的集成学习算法。
数据挖掘试题及答案
数据挖掘试题及答案### 数据挖掘试题及答案#### 一、选择题1. 数据挖掘的最终目标是什么?- A. 数据清洗- B. 数据集成- C. 数据分析- D. 发现知识答案:D2. 以下哪个算法不属于聚类算法?- A. K-means- B. DBSCAN- C. Apriori- D. Hierarchical Clustering答案:C3. 在数据挖掘中,关联规则挖掘主要用于发现什么? - A. 异常值- B. 频繁项集- C. 趋势- D. 聚类答案:B4. 决策树算法中的剪枝操作是为了解决什么问题?- A. 过拟合- B. 欠拟合- C. 数据不平衡- D. 特征选择答案:A5. 以下哪个是时间序列分析的常用方法?- A. 逻辑回归- B. 线性回归- C. ARIMA模型- D. 支持向量机答案:C#### 二、简答题1. 简述数据挖掘中的分类和聚类的区别。
答案:分类是监督学习过程,它使用标记的训练数据来预测数据的类别。
聚类是无监督学习过程,它将数据分组,使得同一组内的数据点相似度较高,不同组之间的数据点相似度较低。
2. 解释什么是异常检测,并给出一个实际应用的例子。
答案:异常检测是一种识别数据集中异常或不寻常模式的方法。
它通常用于识别欺诈行为、网络安全问题或机械故障。
例如,在信用卡交易中,异常检测可以用来识别潜在的欺诈行为。
3. 描述决策树的工作原理。
答案:决策树通过一系列的问题(通常是二元问题)来对数据进行分类。
从根节点开始,数据被分割成不同的子集,然后每个子集继续被分割,直到达到叶节点,叶节点代表最终的分类结果。
#### 三、应用题1. 给定一组客户数据,包括年龄、收入和购买历史。
使用数据挖掘技术来识别哪些客户更有可能购买新产品。
答案:可以使用决策树或逻辑回归等分类算法来分析客户数据,识别影响购买行为的关键特征。
通过训练模型,可以预测哪些客户更有可能购买新产品。
2. 描述如何使用关联规则挖掘来发现超市中商品的购买模式。
数据挖掘练习题.doc
一、填空题1、 数据预处理对于数据挖掘是一个重要问题,主要包括 _______________ 、数 据集成、 ____________ 和数据归约。
2、 多维数据模型的星形模式中,主要依靠事实表中 __________ 的与维表联系在一起。
3、 __________ 允许从多个维对数据建模和观察,它由维和事实定义。
}的中位数为 _______ , 4、 数据集{5, 10, 11, 13, 15, 15, 35, 50, 55, 72, 92, 204, 215众数为 _________ o5、 在多个抽象层上挖掘数据产生的关联规则称为 _____________ o6、 将物理或抽象对象的集合分成相似的对象类(或簇)的过程称为 ___________O7、 分类和预测是两种数据分析形式,可以用来建立模型,预测数据未来的趋势,其中 _____________ 用来预测类别标号, ___________ 用来建立连续函数 模型。
),两个对象8、 给定两个对象,分别表示为(22, 1, 42, 10), (20, 0, 36, 8之间的曼哈顿距离为 _______________o9、 通常数据仓库与0LAP工具是基于 ___________ 模型进行设计的。
10、 涉及两个或多个维的关联规则称为 ______________o二、单项选择题1、 S PSS作为通用的统计软件包不仅被广泛地用于经济、管理、工业等领域的数据统计处理,而且在()中得到了应用。
A、数据挖掘领域B、数据仓库领域C、信息管理领域D、系统管理领域2、 下列度量中,哪一个度量不属于集中趋势度量:()。
A、中位数B、中列数C、众数D、极差3、 OLAP技术的核心是:( )。
A、在线性B、对用户的快速响应C、互操作性D、多维分析4、 关于OLAP和OLTP的说法,下列不正确的是:()A、 OLTP事务量大,但事务内容比较简单且重复率高B、 OLAP的数据来源与OLTP不完全一样C、 OLTP面对的是决策人员和高层管理人员D、 OLTP以应用为核心,是应用驱动的5、 下列哪种操作可以使用户更加直观地从不同角度观察数据立方体中不同维之间的关系:()0A、上卷B、下钻C、切片D、旋转6、数据挖掘的经典案例“啤酒与尿布试验”最主要是应用了哪种数据挖掘方法: ()0A、分类B、预测C、关联分析D、聚类7、 利用信息增益方法作为属性选择度量建立决策树时,已知某训练样本集的四个属性的信息增益分别为:Gain(收入戶0.940位,Gain(职业)=0.151位,Gain(年龄)=0.780位,Gain(信誉)=0.048位,则应该选择哪个属性作为决策树的测试属 性:()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.何谓数据挖掘?它有哪些方面的功能?从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程称为数据挖掘。
相关的名称有知识发现、数据分析、数据融合、决策支持等。
数据挖掘的功能包括:概念描述、关联分析、分类与预测、聚类分析、趋势分析、孤立点分析以及偏差分析等。
2.何谓粒度?它对数据仓库有什么影响?按粒度组织数据的方式有哪些?粒度是指数据仓库的数据单位中保存数据细化或综合程度的级别。
粒度影响存放在数据仓库中的数据量的大小,同时影响数据仓库所能回答查询问题的细节程度。
按粒度组织数据的方式主要有:①简单堆积结构②轮转综合结构③简单直接结构④连续结构3.简述数据仓库设计的三级模型及其基本内容。
概念模型设计是在较高的抽象层次上的设计,其主要内容包括:界定系统边界和确定主要的主题域。
逻辑模型设计的主要内容包括:分析主题域、确定粒度层次划分、确定数据分割策略、定义关系模式、定义记录系统。
物理数据模型设计的主要内容包括:确定数据存储结构、确定数据存放位置、确定存储分配以及确定索引策略等。
在物理数据模型设计时主要考虑的因素有: I/O存取时间、空间利用率和维护代价等。
提高性能的主要措施有划分粒度、数据分割、合并表、建立数据序列、引入冗余、生成导出数据、建立广义索引等。
4.在数据挖掘之前为什么要对原始数据进行预处理?原始业务数据来自多个数据库或数据仓库,它们的结构和规则可能是不同的,这将导致原始数据非常的杂乱、不可用,即使在同一个数据库中,也可能存在重复的和不完整的数据信息,为了使这些数据能够符合数据挖掘的要求,提高效率和得到清晰的结果,必须进行数据的预处理。
为数据挖掘算法提供完整、干净、准确、有针对性的数据,减少算法的计算量,提高挖掘效率和准确程度。
5.简述数据预处理方法和内容。
①数据清洗:包括填充空缺值,识别孤立点,去掉噪声和无关数据。
②数据集成:将多个数据源中的数据结合起来存放在一个一致的数据存储中。
需要注意不同数据源的数据匹配问题、数值冲突问题和冗余问题等。
③数据变换:将原始数据转换成为适合数据挖掘的形式。
包括对数据的汇总、聚集、概化、规范化,还可能需要进行属性的重构。
④数据归约:缩小数据的取值范围,使其更适合于数据挖掘算法的需要,并且能够得到和原始数据相同的分析结果。
6.简述数据清理的基本内容。
①尽可能赋予属性名和属性值明确的含义;②统一多数据源的属性值编码;③去除无用的惟一属性或键值(如自动增长的id);④去除重复属性(在某些分析中,年龄和出生日期可能就是重复的属性,但在某些时候它们可能又是同时需要的)⑤去除可忽略字段(大部分为空值的属性一般是没有什么价值的,如果不去除可能造成错误的数据挖掘结果)⑥合理选择关联字段(对于多个关联性较强的属性,重复无益,只需选择其中的部分用于数据挖掘即可,如价格、数据、金额)⑦去掉数据中的噪音、填充空值、丢失值和处理不一致数据。
7.简述处理空缺值的方法。
①忽略该记录;②去掉属性;③手工填写空缺值;④使用默认值;⑤使用属性平均值;⑥使用同类样本平均值;⑦预测最可能的值。
8.常见的分箱方法有哪些?数据平滑处理的方法有哪些?分箱的方法主要有:①统一权重法(又称等深分箱法)②统一区间法(又称等宽分箱法)③ 最小熵法 ④ 自定义区间法数据平滑的方法主要有:平均值法、边界值法和中值法。
9.何谓数据规范化?规范化的方法有哪些?写出对应的变换公式。
将数据按比例缩放(如更换大单位),使之落入一个特定的区域(如0.0~1.0),称为规范化。
规范化的常用方法有:(1) 最大-最小规范化:(2) 零-均值规范化:(3) 小数定标规范化:x =x 0/10α10. 数据归约的方法有哪些?为什么要进行维归约?① 数据立方体聚集 ② 维归约 ③ 数据压缩 ④ 数值压缩 ⑤ 离散化和概念分层维归约可以去掉不重要的属性,减少数据立方体的维数,从而减少数据挖掘处理的数据量,提高挖掘效率。
11. 何谓聚类?它与分类有什么异同?聚类是将物理或抽象对象的集合分组成为多个类或簇(cluster)的过程,使得在同一个簇中的对象之间具有较高的相似度,而不同簇中的对象差别较大。
聚类与分类不同,聚类要划分的类是未知的,分类则可按已知规则进行;聚类是一种无指导学习,它不依赖预先定义的类和带类标号的训练实例,属于观察式学习,分类则属于有指导的学习,是示例式学习。
12. 举例说明聚类分析的典型应用。
①商业:帮助市场分析人员从客户基本库中发现不同的客户群,并且用不同的购买模式描述不同客户群的特征。
②生物学:推导植物或动物的分类,对基于进行分类,获得对种群中固有结构的认识。
③WEB 文档分类④其他:如地球观测数据库中相似地区的确定;各类保险投保人的分组;一个城市中不同类型、价值、地理位置房子的分组等。
⑤聚类分析还可作为其他数据挖掘算法的预处理:即先进行聚类,然后再进行分类等其他的数据挖掘。
聚类分析是一种数据简化技术,它把基于相似数据特征的变量或个案组合在一起。
13. 聚类分析中常见的数据类型有哪些?何谓相异度矩阵?它有什么特点?常见数据类型有区间标度变量、比例标度型变量、二元变量、标称型、序数型以及混合类型等。
相异度矩阵是用于存储所有对象两两之间相异度的矩阵,为一个nn 维的单模矩阵。
其特点是d(i,j)=d(j,i),d(i,i)=0,d(j,j)=0。
如下所示:14. 分类知识的发现方法主要有哪些?分类过程通常包括哪两个步骤?分类规则的挖掘方法通常有:决策树法、贝叶斯法、人工神经网络法、粗糙集法和遗传算法。
分类的过程包括2步:首先在已知训练数据集上,根据属性特征,为每一种类别找到一个合理的描述或模型,即分类规则;然后根据规则对新数据进行分类。
15. 什么是决策树?如何用决策树进行分类?决策树是用样本的属性作为结点,用属性的取值作为分支的树结构。
它是利用信息论原理对大量样本的属性进行分析和()()0000max minx x min minmax min -=-+-0XXx x σ-=0d(2,1)0d(3,1)d(3,2)0d(n,1)d(n,2)......0⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦归纳而产生的。
决策树的根结点是所有样本中信息量最大的属性。
树的中间结点是以该结点为根的子树所包含的样本子集中信息量最大的属性。
决策树的叶结点是样本的类别值。
决策树用于对新样本的分类,即通过决策树对新样本属性值的测试,从树的根结点开始,按照样本属性的取值,逐渐沿着决策树向下,直到树的叶结点,该叶结点表示的类别就是新样本的类别。
决策树方法是数据挖掘中非常有效的分类方法。
16.简述ID3算法的基本思想及其主算法的基本步骤。
首先找出最有判别力的因素,然后把数据分成多个子集,每个子集又选择最有判别力的因素进一步划分,一直进行到所有子集仅包含同一类型的数据为止。
最后得到一棵决策树,可以用它来对新的样例进行分类。
主算法包括如下几步:①从训练集中随机选择一个既含正例又含反例的子集(称为窗口);②用“建树算法”对当前窗口形成一棵决策树;③对训练集(窗口除外)中例子用所得决策树进行类别判定,找出错判的例子;④若存在错判的例子,把它们插入窗口,重复步骤②,否则结束。
17.简述ID3算法的基本思想及其建树算法的基本步骤。
首先找出最有判别力的因素,然后把数据分成多个子集,每个子集又选择最有判别力的因素进一步划分,一直进行到所有子集仅包含同一类型的数据为止。
最后得到一棵决策树,可以用它来对新的样例进行分类。
建树算法的具体步骤如下:①对当前例子集合,计算各特征的互信息;②选择互信息最大的特征A k;③把在A k处取值相同的例子归于同一子集,A k取几个值就得几个子集;④对既含正例又含反例的子集,递归调用建树算法;⑤若子集仅含正例或反例,对应分枝标上P或N,返回调用处。
18.设某事务项集构成如下表,填空完成其中支持度和置信度的计算。
19.从基本特征:①多输入、单输出;②突触兼有兴奋和抑制两种性能;③可时间加权和空间加权;④可产生脉冲;⑤脉冲可进行传递;⑥非线性,有阈值。
M-P方程:()i ij j jjS f W Sθ=-∑,W ij是神经元之间的连接强度,jθ是阈值,f(x)是阶梯函数。
20.遗传算法与传统寻优算法相比有什么特点?①遗传算法为群体搜索,有利于寻找到全局最优解;②遗传算法采用高效有方向的随机搜索,搜索效率高;③遗传算法处理的对象是个体而不是参变量,具有广泛的应用领域;④遗传算法使用适应值信息评估个体,不需要导数或其他辅助信息,运算速度快,适应性好;⑤遗传算法具有隐含并行性,具有更高的运行效率。
21.写出非对称二元变量相异度计算公式(即jaccard系数),并计算下表中各对象间的相异度。
22.简述K-平均算法的输入、输出及聚类过程(流程)。
输入:簇的数目k和包含n个对象的数据集。
输出:k个簇,使平方误差准则最小。
步骤:①任意选择k个对象作为初始的簇中心;②计算其它对象与这k个中心的距离,然后把每个对象归入离它“最近”的簇;③计算各簇中对象的平均值,然后重新选择簇中心(离平均值“最近”的对象值);④重复第2第3步直到簇中心不再变化为止。
23.简述K-中心点算法的输入、输出及聚类过程(流程)。
输入:结果簇的数目k,包含n个对象的数据集输出:k个簇,使得所有对象与其最近中心点的相异度总和最小。
流程:①随机选择k个对象作为初始中心点;②计算其它对象与这k个中心的距离,然后把每个对象归入离它“最近”的簇;③随机地选择一个非中心点对象Orandom,并计算用Orandom代替Oj的总代价S;④如果S<0,则用Orandom代替Oj,形成新的k个中心点集合;⑤重复迭代第3、4步,直到中心点不变为止。
24.何谓文本挖掘?它与信息检索有什么关系(异同)。
文本挖掘是从大量文本数据中提取以前未知的、有用的、可理解的、可操作的知识的过程。
它与信息检索之间有以下几方面的区别:①方法论不同:信息检索是目标驱动的,用户需要明确提出查询要求;而文本挖掘结果独立于用户的信息需求,是用户无法预知的。
②着眼点不同:信息检索着重于文档中字、词和链接;而文本挖掘在于理解文本的内容和结构。
③目的不同:信息检索的目的在于帮助用户发现资源,即从大量的文本中找到满足其查询请求的文本子集;而文本挖掘是为了揭示文本中隐含的知识。
④评价方法不同:信息检索用查准率和查全率来评价其性能。
而文本挖掘采用收益、置信度、简洁性等来衡量所发现知识的有效性、可用性和可理解性。
⑤使用场合不同:文本挖掘是比信息检索更高层次的技术,可用于信息检索技术不能解决的许多场合。
一方面,这两种技术各有所长,有各自适用的场合;另一方面,可以利用文本挖掘的研究成果来提高信息检索的精度和效率,改善检索结果的组织,使信息检索系统发展到一个新的水平。