北京丰台区第二中学数学三角形填空选择(篇)(Word版 含解析)

合集下载

北京市丰台第二中学教育集团2023-2024学年八年级下学期期中数学试题(含答案)

北京市丰台第二中学教育集团2023-2024学年八年级下学期期中数学试题(含答案)

丰台二中教育集团2023~2024学年度第二学期期中考试初二年级数学试题一、选择题(本题共24分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的1)A.B .C .D .2.以下列长度的三条线段为边长,能组成直角三角形的是( )A .2、3、4B .3、4、6C .6、7、8D .6、8、103.如图,在△ABC 中,∠ACB =90°,点D 为AB 的中点,若AB =4,则CD 的长为()第3题图A .2B .3C .4D .54.如图,在菱形ABCD 中,AB =4,∠ABC =60°,则菱形的面积为()第4题图A .16B .C .D .85.正方形ABCD 的对角线AC 的长是12cm ,则边长AB 的长是()A .B .C .6D .86.矩形、菱形、正方形都具有的性质是()A .对角线相等B .对角线互相平分C .对角线互相垂直D .对角线平分对角7.如图,一只蚂蚁从棱长为1的正方体纸箱的A 点沿纸箱表面爬到B 点,那么它所爬行的最短路线的长是( )第7题图ABCD .8.如图,“赵爽弦图”是由四个全等的直角三角形与一个小正方形拼成的大正方形,若小正方形的边长为3,大正方形边长为15,则一个直角三角形的周长是( )第8题图A .45B .36C .25D .18二、填空题(本题共24分,每小题3分)9______.10.在△ABC 中,D 、E 分别为AB 、AC 的中点,若BC =10,则DE 的长为______.11.如图,在平面直角坐标系xOy 中,若A 点的坐标为,则OA 的长为______.第11题图12.如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边中点,OH =4,则菱形ABCD 的周长等于______.=(第12题图13.一帆船从某处出发时受风向影响,先向正西航行8千米,然后向正南航行15千米,这时它离出发点有______千米.14.若有一个三角形的三边长分别为2、5、n的结果为______.15.《九章算术》卷九“勾股”中记载:今有立木,系索其末,委地三尺.引索却行,去本八尺而索尽,问索长几何?译文:今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺.牵着绳索(绳索头与地面接触)退行,在距木根部8尺处时绳索用尽.问绳索长是多少?设绳索长为x 尺,可列方程为______.16.如图,△ABC 中,线段AD是BC 边上的高,已知BD =1,AD =CD =2,BC 上方有一动点P ,且点P到A 、D 两点的距离相等,则△BCP周长的最小值为______.第16题图三、解答题(本题共36分,每小题6分)17.计算:1819.如图,中,E 、F 是直线BD 上两点,且BE =DF ,连接AF 、CE .求证:AF =CE .20.如图,中,以B 为圆心,BA 的长为半径画弧,交BC 于点F ,作∠ABF 的角平分线,交AD 于n -))2221++ABCD ABCD点E ,连接EF .①依题意补全图形(尺规作图,保留作图痕迹);②求证:四边形ABFE 是菱形.21.如图,正方形ABCD 的对角线交于点O ,点E 、F 分别在AB 、BC 上(AE <BE ),且∠EOF =90°,OE 、DA 的延长线交于点M ,OF 、AB 的延长线交于点N ,连接MN .求证:OM =ON .22.如图,已知,延长AD 到C ,使得AD =DC ,若AB =BC ,连接BC 、CE ,BC 交DE 于点F .求证:①四边形BECD 是矩形;②连接AE ,若∠BAC =60°,AB =4,求AE 的长.四、解答题(本题共16分,第23题5分,第24题6分,第25题5分)23.如图,在5×4的方形网格中,每个小格的顶点叫做格点,设小正方形的边长为1,以格点为顶点按下列要求画图.ABED(1)在图①中画一条线段AB ,使,线段AB 的端点在格点上;(2)在图②中画一个斜边长为的等腰直角三角形DCE ,其中∠DCE =90°,三角形的顶点均在格点上.24.已知在等腰直角△ABC 中,∠BAC =90°,点D 是BC 的中点,作正方形DEFG .(1)若点A 、C 分别在DG 和DE 上,如图1,连接AE 、BG .试猜想线段BG 和AE 的数量关系是______;(不要求证明,直接写答案)(2)将正方形DEFG 绕点D 逆时针方向旋转α(0°<α≤360°)角度,①请判断(1)中的结论是否仍然成立?请利用图2证明你的结论.②若BC =DE =4,当AE 取到最大值时,求此时AF 的值.25.在平面直角坐标系xOy 中,A (0,2),B (4,2),C (4,0).若P 为矩形ABCO 内(不包括边界)一点,过点P 分别作x 轴和y 轴的平行线,这两条平行线分矩形ABCO 为四个小矩形,若这四个小矩形中有一个矩形的周长等于OA 的长,则称P 点为矩形ABCO 的矩宽点.例如:下图中的点为矩形ABCO的一个矩宽点.AB=32,55P ⎛⎫ ⎪⎝⎭(1)在点,E (2,1),中,矩形ABCO 的矩宽点是______;(2)若点为矩形ABCO 的矩宽点,求m 的值.初二期中考试答案一、选择题BDACABCB二、填空题910.5 11.2 12.32 13.17 14.5 15. 16.三、解答题17.18.19.得到∠FDA =∠EBC得到全等再给3分,最后得出结论1分20.画出图形2分;证出ABFE 是平行四边形2分证出平行四边形ABFE 是菱形再给2分21.(1)证明:∵四边形ABCD 是正方形,∴OA =OB ,∠DAO =45°,∠OBA =45°,∴∠OAM =∠OBN =135°,∵∠EOF =90°,∠AOB =90°,∵∠AOM =∠BON ,11,22D ⎛⎫⎪⎝⎭137,44F ⎛⎫ ⎪⎝⎭2,3G m ⎛⎫ ⎪⎝⎭()22283x x +-=35-在△OAM 和△OBN 中,∴△OAM ≌△OBN (ASA ),∴OM =ON .22.四、解答题23.①②24.【解答】解:(1).理由:如图1,是等腰直角三角形,,.四边形DEFG 是正方形,.在和中,,.故答案为:;(2)①成立.理由:如图2,连接AD,OAM OBN OA OBAOM BON ∠=∠⎧⎪=⎨⎪∠=∠⎩BG AE =ABC △,AD BC BD CD ∴⊥=90ADB ADC ∴∠=∠=︒ DE DG ∴=BDG △ADE △,BD AD BDG ADE GD ED =⎧⎪∠=∠⎨⎪=⎩(SAS)ADE BDG ∴≌△△BG AE ∴=BG AE =BG AE =在中,为斜边BC 中点,,.四边形EFGD 为正方形,,且,∴,∴.在和中,,;(2),当BG 取得最大值时,AE 取得最大值.如图3,当旋转角为时,.,..在中,由勾股定理,得.25.(1),点是矩形ABCO 的矩宽点,,点是矩形ABCO的矩宽点.故答案为:和; Rt BAC △D ,AD BD AD BC ∴=⊥90ADG GDB ∴∠+∠=︒ DE DG ∴=90GDE ∠=︒90ADG ADE ∠+∠=︒BDG ADE ∠=∠BDG △ADE △,BD AD BDG ADE GD ED =⎧⎪∠=∠⎨⎪=⎩(SAS)BDG ADE ∴≌△△BG AE ∴=BG AE = ∴270︒BG AE =4BC DE == 246BG ∴=+=6AE ∴=Rt AEF △AF ==AF ∴=11122+= ∴D 137314214444⎛⎫⎛⎫-+-=+= ⎪ ⎪⎝⎭⎝⎭ ∴F D F(2)若为矩形ABCO 的矩宽点,或或或,解得或或,因为为矩形内的点,和不合题意,舍去,的值为或.2,3G m ⎛⎫ ⎪⎝⎭22223m ∴+⨯=222223m ⎛⎫+⨯-= ⎪⎝⎭22(4)223m -+⨯=22(4)2223m ⎛⎫-+⨯-= ⎪⎝⎭13m =±113133G 13m ∴=-133m =m ∴13113。

北京丰台区第二中学必修第一册第五单元《三角函数》检测(有答案解析)

北京丰台区第二中学必修第一册第五单元《三角函数》检测(有答案解析)

一、选择题1.下列函数中既是奇函数,又在区间[]1,1-上单调递减的是( ) A .()sin f x x = B .lg y x = C .()f x x =-D .()cos f x x =2.若角α的终边过点(3,4)P -,则cos2=α( ) A .2425-B .725C .2425D .725-3.已知()tan f x x =,x ∈Z ,则下列说法中正确的是( ) A .函数()f x 不为奇函数 B .函数()f x 存在反函数 C .函数()f x 具有周期性D .函数()f x 的值域为R4.已知函数()()2sin ,0,2f x x x x π=∈⎛⎫⎡⎤ ⎪⎢⎥⎣⎦⎝⎭,则()f x 的单调递增区间是( ) A .06,π⎡⎤⎢⎥⎣⎦B .0,4⎡⎤⎢⎥⎣⎦π C .0,3π⎡⎤⎢⎥⎣⎦D .0,2π⎡⎤⎢⎥⎣⎦5.已知函数()()sin 20,2f x A x A πϕϕ⎛⎫=+>< ⎪⎝⎭满足03f π⎛⎫=⎪⎝⎭,则()f x 图象的一条对称轴是( ) A .6x π=B .56x π=C .512x π=D .712x π=6.已知函数()22sin cos f x x x x ωωω=-,且()f x 图象的相邻对称轴之间的距离为4π,则当0,4x π⎡⎤∈⎢⎥⎣⎦时,()f x 的最小值为( ) A .1-B.C.D.-7.已知函数()()ππ36sin 0f x A x A ⎛⎫=>⎪⎝⎭+在它的一个最小正周期内的图像上,最高点与最低点的距离是5,则A 等于( ). A .1B .2C .2.5D .48.若22cos()4θθπθ=-,则sin 2θ=( )A .13B .23C .23-D .13-9.已知函数()()π2tan 010,2f x x ωϕωϕ⎛⎫=+<<<⎪⎝⎭,()2303f =,π,012⎛⎫ ⎪⎝⎭为()f x 图象的一个对称中心.现给出以下四种说法:①π6ϕ=;②2ω=;③函数()f x 在区间5ππ,243⎛⎫⎪⎝⎭上单调递增;④函数()f x 的最小正周期为π4.则上述说法正确的序号为( ) A .①④B .③④C .①②④D .①③④10.已知函数()y f x =的图象如图所示,则此函数可能是( )A .sin 6()22x x x f x -=- B .sin 6()22x x x f x -=- C .cos6()22x xx f x -=- D .cos6()22x x xf x -=-11.函数()()cos f x A x ωϕ=+(其中0A >,0>ω,2πϕ<)的图象如图所示.为了得到()cos g x A x ω=-的图象,只需把()y f x =的图象上所有的点( )A .向右平移12π个单位长度 B .向右平移512π个单位长度 C .向左平移12π个单位长度D .向左平移512π个单位长度 12.已知函数()()log 330,1a y x a a =-+>≠的图象恒过点P ,若角α的终边经过点P ,则sin 2α的值等于( )A .2425-B .35C .2425D .35二、填空题13.已知函数()sin 2cos 2f x x a x =+,对x R ∀∈,|()|8f x f π⎛⎫≤⎪⎝⎭成立,则a =_______.14.田忌赛马是中国古代对策论与运筹思想的著名范例,故事中齐将田忌与齐王赛马,孙膑献策以下马对齐王上马,以上马对齐王中马,以中马对齐王下马,结果田忌一负两胜从而获胜,该故事中以局部的牺牲换取全局的胜利成为军事上一条重要的用兵规律,在比大小游戏中(大者为胜),已知我方的三个数为cos a θ=,sin cos b θθ=+,cos sin c θθ=-,对方的三个数以及排序如表:第一局 第二局 第三局对方 2tan θ sin θ当04πθ<<时,则我方必胜的排序是______.15.已知()tan 3πα+=,则2tan 2sin αα-的值为_______.16.某中学开展劳动实习,学生加工制作零件,零件的截面如图所示,1O 为圆孔及轮廓圆弧AB 所在圆的圆心,2O 为圆弧CD 所在圆的圆心,点A 是圆弧AB 与直线AC 的切点,点B 是圆弧AB 与直线BD 的切点,点C 是圆弧CD 与直线AC 的切点,点D 是圆弧CD 与直线BD 的切点,1218cm O O =,16cm AO =,215cm CO =,圆孔1O 的半径为3cm ,则图中阴影部分的的面积为______2cm .17.若()5sin 4513α︒+=,则()sin 225α︒+=________. 18.若()()2sin 03f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为4π,则()()tan 06g x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为______.19.设α、β都是锐角,且()53cos 5ααβ=+=,则cos β=____________. 20.若3sin 5αα=,是第二象限角,则sin 24πα⎛⎫+= ⎪⎝⎭__________. 三、解答题21.已知()()1sin 2cos 3παπα+--=(2παπ<<),求: (1)sin cos αα⋅; (2)sin cos αα-.22.如图为一个观览车示意图,该观览车圆半径为4.8m ,圆上最低点与地面距离为0.8m ,60秒转动一圈.图中OA 与地面垂直,以OA 为始边,逆时针转动θ到OB .设B 点与地面的距离为h .(1)求h 与θ的函数关系式;(2)设从OA 开始转动,经过10秒到达OB ,求h .23.已知向量31cos 2cos 2m x x x ⎛⎫=- ⎪ ⎪⎝⎭,311,sin cos 2n x x ⎛⎫=- ⎪ ⎪⎝⎭,设函数()f x m n =⋅.(1)求函数()f x 取得最大值时x 取值的集合;(2)设A ,B ,C 为锐角三角形ABC 的三个内角,若3cos 5B =,()14f C =-,求cos A 的值.24.已知()()sin23cos2f x x x x R =∈(1)求56f π⎛⎫⎪⎝⎭的值; (2)若0,4x π⎡⎤∈⎢⎥⎣⎦,求函数()f x 的取值范围. 25.已知函数2()cos sin 12cos f x a x x x =⋅+-,且(0)3f f π⎛⎫-= ⎪⎝⎭. (1)求函数()y f x =的最小正周期; (2)求()f x 在52,243ππ⎡⎤⎢⎥⎣⎦上的最大值和最小值. 26.如图,以Ox 为始边作角α与β(0)βαπ<<<),它们的终边分别与单位圆相交于点P 、Q ,已知点P 的标为34,55⎛⎫- ⎪⎝⎭(1)求sin 2cos 211tan ααα+++的值;(2)若0OP OQ ⋅=,求sin()αβ+的值【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据基本初等函数的性质,以及函数奇偶性的定义,逐项判定,即可求解. 【详解】对于A 中,函数()sin f x x =,根据正弦函数的性质,可得函数()sin f x x =在[]1,1-上单调递增,不符合题意;对于B 中,函数lg y x =,满足()()lg lg f x x x f x -=-==,所以函数lg y x =为偶函数,不符合题意;对于C 中,函数()f x x =-,根据一次函数的性质,可得函数()f x x =-为奇函数,且在[]1,1-上单调递减函数,符合题意;对于D 中,函数()cos f x x =,满足()()cos()cos f x x x f x -=-==,所以函数()cos f x x =为偶函数,不符合题意.故选:C.2.D解析:D 【分析】先利用任意角三角函数的定义求sin α和cos α,再利用二倍角的余弦公式计算即可. 【详解】由角α的终边过点(3,4)P -知,4sin 5α,3cos 5α=-,故229167cos 2cos sin 252525ααα=-=-=-. 故选:D.3.B解析:B 【分析】根据()tan f x x =,x ∈Z 图象与性质,逐一分析选项,即可得答案. 【详解】对于A :()f x 的定义域关于原点对称,且()tan()tan ()f x x x f x -=-=-=-,x ∈Z ,故()f x 为奇函数,故A 错误;对于B :()tan y f x x ==,x ∈Z 在定义域内一一对应,所以arctan =x y ,即()f x 的反函数为arctan y x =,故B 正确;对于C :因为()tan f x x =,x ∈Z ,故()f x 图象为孤立的点,不是连续的曲线,所以()f x 不具有周期性,故C 错误;对于D :因为()tan f x x =,x ∈Z ,所以()f x 图象为孤立的点,不是连续的曲线,所以()f x 的值域为一些点构成的集合,不是R ,故D 错误.故选:B4.A解析:A 【分析】根据三角恒等变换公式化简()f x ,结合x 的范围,可得选项. 【详解】因为()()2sin ,0,2f x x xx π=+∈⎛⎫⎡⎤ ⎪⎢⎥⎣⎦⎝⎭,所以()()222sin sin cos +3cos f x x xx x x x +==222cos +12cos 2+22sin 2+26x x x x x π⎛⎫=+=+=+ ⎪⎝⎭,因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以72+,666x πππ∈⎡⎤⎢⎥⎣⎦,所以由2+662x πππ≤≤,解得06x π≤≤, 所以()f x 的单调递增区间是06,π⎡⎤⎢⎥⎣⎦, 故选:A.5.D解析:D 【分析】利用三角函数的性质,2()sin()033f A ππϕ=+=,求ϕ,然后,令()f x A =,即可求解 【详解】根据题意得,2()sin()033f A ππϕ=+=,得23k πϕπ+=,k z ∈又因为2πϕ<,进而求得,3πϕ=,所以,()sin(2)3f x A x π=+,令()f x A =,所以,sin(2)13x π+=,所以,2,32x k k z πππ+=+∈,解得,k x k z 122ππ=+∈,当1k =时,712x π=,所以,()f x 图象的一条对称轴是712x π= 故选D 【点睛】关键点睛:求出ϕ后,令()f x A =,所以,sin(2)13x π+=,进而求解,属于中档题 6.D解析:D 【分析】先将函数化简整理,根据相邻对称轴之间距离求出周期,确定2ω=,再根据正弦函数的性质,结合给定区间,即可求出最值. 【详解】因为()21cos 22sin cos sin 22xf x x x x x ωωωωω+=-=- πsin 222sin 23x x x ωωω⎛⎫=-=-- ⎪⎝⎭由题意知()f x 的最小正周期为ππ242⨯=,所以2ππ22ω=,即2ω=,所以()π2sin 43f x x ⎛⎫=-⎪⎝⎭当π0,4x ⎡⎤∈⎢⎥⎣⎦时,ππ2π4,333x ⎡⎤-∈-⎢⎥⎣⎦,所以π2sin 423x ⎛⎫⎡⎤-∈ ⎪⎣⎦⎝⎭,因此()π2sin 423f x x ⎛⎫⎡=-- ⎪⎣⎝⎭,所以函数()f x的最小值为-. 故选:D.7.B解析:B 【分析】根据正弦型函数图象性质确定函数()f x 的最小正周期T ,再根据最高点与最低点的距离是55=,从而解得A 的值. 【详解】解:函数()()ππ36sin 0f x A x A ⎛⎫=> ⎪⎝⎭+的最小正周期2263T πππω=== 函数()()ππ36sin 0f x A x A ⎛⎫=> ⎪⎝⎭+在它的一个最小正周期内的图像上,最高点与最低点的距离是5,5=,解得2A =.故选:B. 【点睛】对于三角函数,求最小正周期和最值时可先把所给三角函数式化为()sin y A ωx φ=+或()cos y A x ωϕ=+的形式,则最小正周期为2T ωπ=,最大值为A ,最小值为A -;奇偶性的判断关键是解析式是否为sin y A x ω=或cos y A x ω=的形式.8.B解析:B 【分析】由二倍角公式和差的余弦公式化简得出()2cos sin 2θθθ-=,再平方即可求出. 【详解】)22cos sin 2cos()coscos sinsin 444θθθπππθθθ-=-+()cos sin cos sin 2cos sin θθθθθθ+-==-,()2cos sin 2θθθ∴-=,两边平方得()241sin 23sin 2θθ-=,解得sin 22θ=-(舍去)或2sin 23θ=. 故选:B. 【点睛】关键点睛:本题考查三角恒等变换的化简问题,解题的关键是能正确利用二倍角公式和差的余弦公式将已知等式化简为()2cos sin 2θθθ-=,再平方求解.9.D解析:D 【分析】根据()0f =,代入数据,结合ϕ的范围,即可求得ϕ的值,即可判断①的正误;根据对称中心为π,012⎛⎫⎪⎝⎭,代入公式,可解得ω的表达式,结合ω的范围,即可判断②的正误;根据()f x 解析式,结合x 的范围,即可验证③的正误;根据正切函数的周期公式,即可判断④的正误,即可得答案. 【详解】对于①:由()0f =知2tan ϕ=,即tan ϕ=π2ϕ<,解得π6ϕ=.故①正确;对于②:因为π,012⎛⎫⎪⎝⎭为()f x 图象的一个对称中心,故πππ,1262k k Z ω+=∈,解得62,k k Z ω=-∈,因为010ω<<,所以4ω=,故②错误;对于③:当5ππ,243x ⎛⎫∈⎪⎝⎭时,π3π4π,62x ⎛⎫+∈ ⎪⎝⎭,故函数()f x 在区间5ππ,243⎛⎫⎪⎝⎭上单调递增,故③正确;对于④:因为4ω=,所以()f x 的最小正周期π4T =,故④正确. 综上,正确的序号为①③④. 故选:D .10.D解析:D 【分析】由函数图象可得()y f x =是奇函数,且当x 从右趋近于0时,()0f x >,依次判断每个函数即可得出. 【详解】由函数图象可得()y f x =是奇函数,且当x 从右趋近于0时,()0f x >,对于A ,当x 从右趋近于0时,sin60x >,22x x -<,故()0f x <,不符合题意,故A 错误; 对于B ,()()sin 6sin 6()2222x x x xx xf x f x ----===--,()f x ∴是偶函数,不符合题意,故B 错误; 对于C ,()()cos 6cos 6()2222x x x xx xf x f x ----===--,()f x ∴是偶函数,不符合题意,故C 错误; 对于D ,()()cos 6cos 6()2222x x x xx xf x f x ----===---,()f x ∴是奇函数,当x 从右趋近于0时,cos60x >,22x x ->,()0f x ∴>,符合题意,故D 正确. 故选:D. 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.11.B解析:B 【分析】先根据图象求出,,A ωϕ的值即可得()f x 和()g x 的解析式,再利用函数图象的平移变换即可得正确选项. 【详解】 由图知:1A =,74123T πππ⎛⎫=-= ⎪⎝⎭,所以22T πω==,()()cos 2f x x φ=+,当712x π=时,()()cos 2f x x φ=+有最小值,所以()72212k k Z πϕππ⨯+=+∈, 所以()26k k Z πϕπ=-+∈,又因为2πϕ<,所以0,6k πϕ==-,所以()cos 26f x x π⎛⎫=- ⎪⎝⎭,()()cos2cos 2g x x x π=-=-,所以只需要把()cos 26f x x π⎛⎫=- ⎪⎝⎭图象上所有的点向右平移512π个单位长度得()()5cos 2cos 2cos 2126x x x g x πππ⎡⎤⎛⎫--=-=-= ⎪⎢⎥⎝⎭⎣⎦,故选:B 【点睛】关键点点睛:本题的关键点是由函数的部分图象求出,,A ωϕ的值,进而求出()f x 和()g x 的解析式,()()cos2cos 2g x x x π=-=-,由平移变换的规律求解,注意左右平移指一个x 变化多少,此点容易出错,属于中档题.12.C解析:C 【分析】由已知求出点P 的坐标,再利用三角函数的定义求出sin ,cos αα的值,进而可得到sin 2α的值 【详解】解:因为函数()()log 330,1a y x a a =-+>≠的图象恒过(4,3), 所以点P 的坐标为(4,3) 因为角α的终边经过点P , 所以34sin ,cos 55αα====, 所以3424sin 22sin cos 25525ααα==⨯⨯=, 故选:C二、填空题13.1【分析】利用辅助角公式和为的形式:根据已知可得是f(x)的图象的对称轴进而求得利用的关系和诱导公式求得的值【详解】解:其中∵对成立∴是f(x)的图象的对称轴即∴故答案为:1【点睛】本题考查三角函数解析:1 【分析】利用辅助角公式和为()Asin x ωϕ+的形式:()sin 2cos2)f x x a x x ϕ=+=+,根据已知可得π8x =是f(x)的图象的对称轴,进而求得ϕ,利用,a ϕ的关系tan a ϕ=和诱导公式求得a 的值. 【详解】解:()sin 2cos2)f x x a x x ϕ=+=+, 其中sin tan a ϕϕϕ===.∵对x R ∀∈,|()|8f x f π⎛⎫≤ ⎪⎝⎭成立, ∴π8x =是f(x)的图象的对称轴,即π2,82k k Z πϕπ⨯+=+∈, ∴,4k k Z πϕπ=+∈,tan 1a ϕ==,故答案为:1. 【点睛】本题考查三角函数的图象和性质,涉及辅助角公式化简三角函数,利用辅助角化简是前提,理解,a ϕ的关系是基础,由对x R ∀∈,|()|8f x f π⎛⎫≤ ⎪⎝⎭成立,得出π8x =是f(x)的图象的对称轴是关键.14.【分析】由三角函数值的大小比较得:当时结合田忌赛马的事例进行简单的推理即可得答案【详解】因为当时故答案为:【点睛】关键点点睛:本题的关键点是当时比较出以及的大小关系利用田忌赛马的事例进行推理即可解析:c ,b ,a【分析】由三角函数值的大小比较得:当04πθ<<时,cos sin cos cos sin θθθθθ-<<+,sin tan θθ<<,结合田忌赛马的事例进行简单的推理,即可得答案. 【详解】因为当04πθ<<时,cos sin cos cos sin θθθθθ-<<+,sin tan θθ<<,tan sin cos θθθ<+,sin cos θθ<. 故答案为:c ,b ,a 【点睛】关键点点睛:本题的关键点是当04πθ<<时,比较出sin tan θθ<<,以及a 、b 、c 的大小关系,利用田忌赛马的事例进行推理即可.15.【分析】利用诱导公式求出再利用二倍角公式求出以及同角三角函数的基本关系求出即可得解;【详解】解:由题意所以所以所以故答案为: 解析:3320-【分析】利用诱导公式求出tan α,再利用二倍角公式求出tan2α,以及同角三角函数的基本关系求出2sin α,即可得解; 【详解】解:由题意()tan 3πα+=,所以tan 3α=,所以22tan 3tan 21tan 4ααα==--,222222sin tan 9sin sin cos tan 110αααααα===++,所以23933tan 2sin 41020αα-=--=-. 故答案为:3320-16.【分析】根据图形的割补思想可得阴影部分的面积为:两个直角梯形的面积减去一个扇形面积减去圆的面积再加上小扇形的面积即可得答案;【详解】如图所示:则故答案为:【点睛】利用割补思想发现图形间的关系结合直角 解析:189372π-【分析】根据图形的割补思想可得阴影部分的面积为:两个直角梯形的面积减去一个扇形面积,减去圆的面积,再加上小扇形的面积,即可得答案; 【详解】如图所示:12O M CO ⊥,则21219,18,93O M OO O M ===, ∴1221233O O M CO D AO B ππ∠=⇒∠=∠=,1121221O AO O C BO O D CO D AO B S S S S S S =+--+圆梯形梯形扇形扇形,∴222112122(615)93153618937222323S ππππ=⨯⨯+⨯⨯⨯-⨯+⨯⨯=,故答案为:189372π. 【点睛】利用割补思想发现图形间的关系,结合直角梯形的面积公式、扇形的面积公式,是求解本题的关键.17.【分析】直接利用诱导公式计算可得;【详解】解:因为故答案为: 解析:513-【分析】直接利用诱导公式计算可得; 【详解】解:因为()5sin 4513α︒+=,()()()5sin 225sin 45180sin 4513ααα︒+=︒++︒=-︒+=-⎡⎤⎣⎦ 故答案为:513-18.【分析】先由的最小正周期求出的值再由的最小正周期公式求的最小正周期【详解】的最小正周期为即则所以的最小正周期为故答案为:解析:8π 【分析】 先由()f x 的最小正周期,求出ω的值,再由()tan y x ωϕ=+的最小正周期公式求()g x 的最小正周期. 【详解】()()2sin 03f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为4π,即24ππω=,则8ω=所以()tan 86g x x π⎛⎫=+ ⎪⎝⎭的最小正周期为8T π=故答案为:8π 19.【分析】由α是锐角求出的值再由β是锐角得出的值将角转化成利用两角和差的余弦公式化简计算并验证即可【详解】因为α是锐角所以因为β是锐角所以又所以所以当时此时即与矛盾舍去当时符合要求故答案为:【点睛】本【分析】由α是锐角,cos α=求出sin α的值,再由β是锐角,()3sin 5αβ+=得出()cos αβ+的值,将β角转化成()αβα+-,利用两角和差的余弦公式化简计算,并验证即可. 【详解】因为α是锐角,cos 5α=,所以sin α==, 因为β是锐角,所以0αβ<+<π,又()3sin 5αβ+=,所以()4cos 5αβ+==±, 所以()()()cos cos cos cos sin sin βαβααβααβα=+-=+++当()4cos 5αβ+=时, 43cos +55555β=⨯⨯=,此时cos sin βα=,即2παβ+=,与()3sin 5αβ+=矛盾,舍去,当()4cos 5αβ+=-时, 43cos 55β=-=.【点睛】本题主要考查了两角和与差的正余弦公式以及同角三角函数基本关系,属于中档题,熟练掌无公式并应用是解题的关键.20.【分析】根据条件分别求再代入求两角和的正弦【详解】且是第二象限角故答案为:解析:【分析】根据条件分别求cos α,sin 2α,cos2α,再代入求两角和的正弦 【详解】3sin 5α=,且α是第二象限角,4cos 5α∴==- 27cos 22cos 125αα∴=-=,3424sin 22sin cos 25525ααα⎛⎫==⨯⨯-=- ⎪⎝⎭,)sin 2sin 2cos 24250πααα⎛⎫+=+=-⎪⎝⎭.故答案为:50-三、解答题21.(1)49-;(2. 【分析】(1)用诱导公式化简已知式为1sin cos 3αα+=,已知式平方后可求得sin cos αα; (2)已知式平方后减去4sin cos αα,再考虑到sin cos αα>就可求得sin cos αα-. 【详解】(1)由()()1sin 2cos 3παπα+--=可得1sin cos 3αα+=,所以()2221sin cos sin 2sin cos cos 12sin cos 9αααααααα+=++=+=, 所以4sin cos 9αα=-; (2)()()221417sin cos sin cos 4sin cos 4999αααααα⎛⎫-=+-=-⨯-= ⎪⎝⎭, 又因为,2παπ⎛⎫∈⎪⎝⎭,所以sin 0cos αα>>,sin cos 0αα->, 所以17sin cos 3αα-=. 【点睛】关键点点睛:本题解题的关键是熟记诱导公式,以及sin cos αα+,sin cos αα,sin cos αα-之间的联系即()2sin cos 12sin cos αααα+=+,()2sin cos 12sin cos αααα-=-.22.(1) 5.6 4.8cos h θ=-;(2)3.2m.【分析】(1)建立平面直角坐标系,结合条件求出点B 的坐标后可得h 与θ间的函数关系式; (2)由60秒转动一圈,易得点A 在圆上转动的角速度是/30rad s π,再计算出经过10秒后转过的弧度数为3π,然后代入(1)中所求函数解析式计算即可得到答案. 【详解】(1)以圆心O 原点,建立如图所示的坐标系,如下图所示,则以Ox 为始边,OB 为终边的角为2πθ-,故点B 坐标为 4.8cos ,4.8sin 22ππθθ⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,∴ 5.6 4.8sin 5.6 4.8cos 2h πθθ⎛⎫=+-=- ⎪⎝⎭; (2)点A 在圆O 上逆时针运动的角速度是/30rad s π,∴经过t 秒后转过的角度30t πθ=,则经过10秒后转过的角度为3πθ=,∴ 5.6 4.8cos 5.6 2.4 3.23h π=-=-=(m ).【点睛】关键点点睛:本题考查的知识点是在实际问题中建立三角函数模型,在建立函数模型的过程中,以圆心O 为原点,以水平方向为x 轴方向,以竖直方向为y 轴方向建立平面直角坐标系,是解决本题的关键.23.(1)|,12x x k k Z ππ⎧⎫=-∈⎨⎬⎩⎭;(2)310【分析】(1)利用三角函数公式和平面向量数量积对函数简化,再根据三角函数的性质求得函数取得最大值时x 取值的集合;(2)根据已知条件求得的B ,C 大小,然后利用()cos cos A B C =-+展开即可求解. 【详解】(1)21()cos 2cos 2f x m n x x x ⎫=⋅=+-⎪⎪⎝⎭2231cos 2sin cos sin cos 442x x x x x =++-31cos 211cos 2cos 224242x x x x -+=+⨯+⨯-311cos 2224223x x x π⎛⎫=+=- ⎪⎝⎭, 要使函数()f x 取得最大值,需要满足sin 23x π⎛⎫- ⎪⎝⎭取得最小值, 所以()2232x k k Z πππ-=-+∈,所以12x k ππ=-()k Z ∈,所以当()f x 取得最大值时x 取值的集合为|,12x x k k Z ππ⎧⎫=-∈⎨⎬⎩⎭, (2)因为A ,B ,C 为锐角三角形ABC 的三个内角,3cos 5B =所以4sin 5B ==,由()112234f C C π⎛⎫=-=- ⎪⎝⎭,得sin 23C π⎛⎫-=⎪⎝⎭, 因为22333C πππ-<-<所以233C ππ-=,解得3C π=,所以()3143cos cos cos cos sin sin 525210A B C B C B C =-+=-+=-⨯+⨯=所以3cos 10A -=. 【点睛】关键点点睛:本题的关键点是熟记两角和差的正弦余弦公式,辅助角公式,诱导公式,同角三角函数基本关系,向量的数量积的坐标表示,注意三角形是锐角三角形以确定角的范围.24.(1)0;(2)[]1,2. 【分析】(1)本题可直接将56x π=代入函数()f x 中,通过计算即可得出结果; (2)本题首先可根据两角和的正弦公式将函数()f x 转化为()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,然后根据0,4x π⎡⎤∈⎢⎥⎣⎦得出52,336x πππ⎡⎤+∈⎢⎥⎣⎦,最后根据正弦函数的性质即可得出结果. 【详解】(1)555sin 0633f πππ⎛⎫===⎪⎝⎭,(2)()sin 222sin 23f x x x x π⎛⎫=+=+ ⎪⎝⎭, 当0,4x π⎡⎤∈⎢⎥⎣⎦时,52,336x πππ⎡⎤+∈⎢⎥⎣⎦, 则1sin 2,132x π⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦,函数()f x 的取值范围为[]1,2.25.(1)π;(2)min ()1f x =-,max ()2f x =. 【分析】(1)利用倍角公式降幂,求得()sin 2cos 22af x x x =-,再利用(0)3f f π⎛⎫-= ⎪⎝⎭,得到等量关系式,求得a = (2)由x 的范围,得到相应整体角的范围,进一步求得()f x 在52,243ππ⎡⎤⎢⎥⎣⎦上的最大值和最小值.【详解】(1)2()cos sin 12cos sin 2cos 22af x a x x x x x =⋅+-=-, ∵(0)3f f π⎛⎫-= ⎪⎝⎭,∴22sin cos sin 0cos 02332a aππ⎛⎫⎛⎫---=- ⎪ ⎪⎝⎭⎝⎭,解得a =∴()2cos 22sin 26f x x x x π⎛⎫=-=- ⎪⎝⎭,∴函数()y f x =的最小正周期为22ππ=.(2)∵52,243x ππ⎡⎤∈⎢⎥⎣⎦,∴72,646x πππ⎡⎤-∈⎢⎥⎣⎦,∴[]()2sin 21,26f x x π⎛⎫=-∈- ⎪⎝⎭.∴当7266x ππ-=,即23x π=时,min ()1f x =-,当226x ππ-=,即3x π=时,max ()2f x =.【点睛】思路点睛:该题考查的是有关三角函数的问题,解题思路如下:(1)利用正、余弦倍角公式降幂,利用条件求相应参数值,利用辅助角公式化简函数解析式;(2)利用函数的性质,得到其最小正周期;(3)根据自变量x 的范围,求得整体角的范围,结合正弦函数的性质,求得函数的最值. 26.(1)1825;(2)725. 【分析】(1)根据终边上点的坐标,利用三角函数定义得到角α的正弦值与余弦值,利用二倍角的正弦公式、二倍角法余弦公式,切化弦,把要求的式子化简,约分整理,将所求三角函数值代入求解即可;(2)以向量的数量积为0为条件,可得2παβ-=,从而可得3sin 5β=,进而得4cos 5β=,利用两角和的正弦公式可得结果. 【详解】 (1)由三角函数定义得3cos 5α=-, 4sin 5α= ∴原式()222cos sin cos 2sin cos 2cos 2cos sin sin cos 1cos cos αααααααααααα++===++2=·235⎛⎫- ⎪⎝⎭=1825(2)0OP OQ ⋅=,∴2παβ-=,∴2πβα=-,∴3sin sin cos 25πβαα⎛⎫=-=-= ⎪⎝⎭ 4cos cos sin 25πβαα⎛⎫=-== ⎪⎝⎭,∴()sin sin cos cos sin αβαβαβ+=+44337555525⎛⎫=⋅+-⋅= ⎪⎝⎭.。

北京丰台区第二中学初中数学八年级下期末经典习题(含解析)

北京丰台区第二中学初中数学八年级下期末经典习题(含解析)

一、选择题1.(0分)[ID:10229]如图,将正方形OABC放在平面直角坐标系中,O是原点,点A的坐标为(1,√3),则点C的坐标为()A.(-√3,1) B.(-1,√3) C.(√3,1) D.(-√3,-1)2.(0分)[ID:10224]直角三角形两直角边长为a,b,斜边上高为h,则下列各式总能成立的是()A.ab=h2B.a2+b2=2h2C.111a b h+=D.222111a b h+=3.(0分)[ID:10214]要使函数y=(m﹣2)x n﹣1+n是一次函数,应满足()A.m≠2,n≠2B.m=2,n=2C.m≠2,n=2D.m=2,n=0 4.(0分)[ID:10139]已知y=(k-3)x|k|-2+2是一次函数,那么k的值为()A.3±B.3C.3-D.无法确定5.(0分)[ID:10192]如图2,四边形ABCD的对角线AC、BD互相垂直,则下列条件能判定四边形ABCD为菱形的是()A.BA=BC B.AC、BD互相平分C.AC=BD D.AB∥CD6.(0分)[ID:10189]为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码统计如下表:尺码(厘米)2525.52626.527购买量(双)12322则这10双运动鞋尺码的众数和中位数分别为()A.25.5厘米,26厘米B.26厘米,25.5厘米C.25.5厘米,25.5厘米D.26厘米,26厘米7.(0分)[ID :10183]下列结论中,错误的有( )①在Rt △ABC 中,已知两边长分别为3和4,则第三边的长为5;②△ABC 的三边长分别为AB ,BC ,AC ,若BC 2+AC 2=AB 2,则∠A =90°; ③在△ABC 中,若∠A :∠B :∠C =1:5:6,则△ABC 是直角三角形; ④若三角形的三边长之比为3:4:5,则该三角形是直角三角形; A .0个 B .1个 C .2个 D .3个 8.(0分)[ID :10181]若一个直角三角形的两边长为12、13,则第三边长为( ) A .5B .17C .5或17D .5或√3139.(0分)[ID :10176]如图(1),四边形ABCD 中,AB ∥CD ,∠ADC =90°,P 从A 点出发,以每秒1个单位长度的速度,按A →B →C →D 的顺序在边上匀速运动,设P 点的运动时间为t 秒,△PAD 的面积为S ,S 关于t 的函数图象如图(2)所示,当P 运动到BC 中点时,△APD 的面积为( )A .4B .5C .6D .710.(0分)[ID :10171]二次根式()23-的值是( )A .﹣3B .3或﹣3C .9D .311.(0分)[ID :10158]下列运算正确的是( )A .235+=B .32﹣2=3C .236⨯=D .632÷=12.(0分)[ID :10157]如图,一个工人拿一个2.5米长的梯子,底端A 放在距离墙根C 点0.7米处,另一头B 点靠墙,如果梯子的顶部下滑0.4米,梯子的底部向外滑( )米A .0.4B .0.6C .0.7D .0.813.(0分)[ID :10154]在平面直角坐标系中,将函数3y x =的图象向上平移6个单位长度,则平移后的图象与x 轴的交点坐标为( ) A .(2,0)B .(-2,0)C .(6,0)D .(-6,0)14.(0分)[ID :10151]如图,已知△ABC 中,AB=10 ,AC=8 ,BC = 6 ,DE 是AC 的垂直平分线,DE 交AB 于点D ,交AC 于点E ,连接CD ,则CD 的长度为( )A .3B .4C .4.8D .515.(0分)[ID :10150]如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .80二、填空题16.(0分)[ID :10326]在函数4x y -=x 的取值范围是______. 17.(0分)[ID :10310]4x -x 的取值范围是__________. 18.(0分)[ID :10289]在平面直角坐标系中,已知一次函数21y x =-+的图象经过()()111222P x y P x y ,,,两点.若12x x <,则1y ______2y (填“>”“<”或“=”).19.(0分)[ID :10288]某公司欲招聘一名公关人员,对甲、乙两位候选人进行了面试和笔试,他们的成绩如表: 候选人甲 乙 测试成绩(百分制)面试8692笔试9083如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权。

2023-2024学年北京丰台区二中初二(上)期中数学试题及答案

2023-2024学年北京丰台区二中初二(上)期中数学试题及答案

2023北京丰台二中初二(上)期中数 学一、选择题(每题3分,共30分)1. 下列标志是轴对称图形的是( )A. B. C. D. 2. 在ABC 中作AB 边上的高,下列画法正确的是( )A. B.C. D.3. 下列长度的三条线段能组成三角形的是( )A. 2cm ,3cm ,6cmB. 5cm ,8cm ,11cmC. 3cm ,3cm ,6cmD. 4cm ,7cm ,11cm4. 若等腰三角形的两边长分别为3cm 和8cm ,则它的周长为( )A. 14cmB. 14cm 或19cmC. 19cmD. 11cm5. 若ABC ∆≌DEF ∆,则根据图中提供的信息,可得出x 的值为( )A. 30B. 27C. 35D. 406. 如图,点F ,B ,E ,C 在同一条直线上,点A ,D 在直线BE 的两侧,//AC DF ,CE FB =,添加下列哪个条件后,仍不能判定出ABC DEF ∆≅∆( )A.AB DE =B. //AB DEC. A D ∠=∠D. AC DF =7. 如图,把ABC 沿线段DE 折叠,使点A 落在点F 处,BC DE ∥;若50B ∠=︒,则BDF ∠的度数为( )A. 40︒B. 80︒C. 50︒D. 100︒8. 如图,在ABE 中,AE 的垂直平分线MN 交BE 于点C ,连接AC .若AB AC =,5CE =,6BC =,则ABC 的周长等于( )A. 16B. 17C. 18D. 209. 如图所示的正方形网格中,网格线的交点称为格点.已知A 、B 是两格点,如果C 也是图中的格点,且使得△ABC 为等腰三角形,则点C 的个数是( )A. 6B. 7C. 8D. 910. 如图,AD 是ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连接BF ,CE ,下列说法:①ABD △和ACD 面积相等;②BAD CAD ∠=∠;BDF CDE ≌;④BF CE ∥;⑤CE AE =.其中正确的是( )A. ①②B. ①③C. ①④⑤D. ①③④二、填空题(每题2分,共16分)11. 点()2,1A −关于x 轴对称的点的坐标是_____.12. 一个多边形的内角和是其外角和的2倍,这是一个________边形.13. 如图,把手机放在一个支架上面,就可以非常方便地使用,这是因为手机支架利用了三角形的_________性.14. 如图,在△ABC 和△DBC ,BA =BD 中,请你添加一个条件使得△ABC ≌△DBC ,这个条件可以是________(写出一个即可).15. 如图,D 在BC 边上,△ABC ≌△ADE ,∠EAC =40°,则∠B 的度数为_____.16. 如图,点P 是∠BAC 的平分线上一点,PB ⊥AB 于点B ,且PB =5cm ,AC =12cm ,则△APC 的面积是__________cm 2.17. “三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA ,OB 组成,两根棒在O 点相连并可绕O 转动,C 点固定,OC CD DE ==,点D 、E 可在槽中滑动.若75BDE ∠=︒,则CDE ∠的度数是______.18. 如图,在长方形ABCD 中,4AB =,6AD =.延长BC 到点E 使2CE =,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC CD DA −−向终点A 运动,设点Р的运动时间为t 秒,当t 的值为___________秒时,ABP 和DCE △全等.三、解答题(19-20题各5分,21-25题各6分,26-27题各7分,共54分)19. 如图,已知:AO CO =,BO DO =,求证:△≌△AOB COD .20. 如图,点D 在AB 上,点E 在AC 上, AB =AC ,∠B =∠C .求证:AD =AE .21. 如图,AD ∥BC ,BD 平分∠ABC .求证:AB=AD .22. 如图,点A 、C 、B 、D 在同一条直线上,BE DF ∥,A F ∠=∠,AB FD =.(1)求证:AE FC =.(2)若25FCD ∠=︒,110A ∠=︒,求EBD ∠的度数.23. 下面是小东设计的尺规作图过程.已知:如图,在Rt ABC △中,90ABC ∠=︒.求作:点D ,使得点D 在BC 边上,且到AB 和AC 的距离相等.作法:①如图,以点A 为圆心,任意长为半径画弧,分别交AB ,AC 于点M ,N ;②分别以点M ,N 为圆心,大于12MN 为半径画弧,两弧交于点P ; ③画射线AP ,交BC 于点D .所以点D 即为所求.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:过点D 作DE AC ⊥于点E ,连接MP ,NP . 在AMP 和ANP 中,∵AM AN =,MP NP =,AP AP =.∴(SSS)AMP ANP ≌△△.∴∠ =∠ .∵90ABC ∠=︒,∴DB AB ⊥.∵DE AC ⊥,∴DB DE =( ).24. 如图,在平面直角坐标系中,ABC 的顶点()1,4A −,()2,1B −,()4,3C −.(1)ABC 的面积是 ;(2)已知ABC 与111A B C △关于y 轴对称,111A B C △与222A B C △关于x 轴对称,请在坐标系中画出111A B C △和222A B C △.25. 如图,90A D ∠=∠=︒,AB DC =,AC 与DB 交于点E ,F 是BC 中点.求证:BEF CEF ∠=∠.26. 已知:90AOB ∠=︒,OM 是∠AOB 的平分线,将三角板的直角顶点P 在射线OM 上滑动,两直角边分别与OA 、OB 交于C 、D .(1)PC 和PD 的数量关系是__________.(2)请你证明(1)得出的结论.27. 如图,在ABC 中,=110BAC ∠︒,AC AB =,射线AD ,AE 的夹角为55︒,过点B 作BF AD ⊥于点F ,直线BF 交AE 于点G ,连接CG .(1)如图1,射线AD ,AE 都在BAC ∠的内部.①设BAD ∠=α,则CAG ∠= (用含有α的式子表示);②作点B 关于直线AD 的对称点B ',则线段B G '与图1中已有线段 的长度相等;(2)如图2,射线AE 在BAC ∠的内部,射线AD 在BAC ∠的外部,其他条件不变,用等式表示线段BF ,BG ,CG 之间的数量关系,并证明.参考答案一、选择题(每题3分,共30分)1. 【答案】B【分析】如果一个图形沿着某条直线对折后,直线两旁的部分能够重合,则称这个图形是轴对称图形,这条直线叫做对称轴;根据这个概念判断即可.【详解】由题意知,A,C,D三个选项中的图形均不是轴对称图形,只有选项B中的图形是轴对称图形.故选:B.【点睛】本题考查了轴对称图形的识别,掌握轴对称图形的概念是关键.2. 【答案】C【分析】作哪一条边上的高,即从所对的顶点向这条边或这条边的延长线作垂线段即可.三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段.【详解】解:过点C作边AB的垂线段,即画AB边上的高CD,所以画法正确的是C选项故选:C.【点睛】本题考查了本题考查了三角形的高的概念,解题的关键是正确作三角形一边上的高.3. 【答案】B【分析】根据三角形三边关系进行判断即可.+<,不能组成三角形,故本选项不符合题意;【详解】解:A、236+>,能组成三角形,故本选项符合题意;B、5811+=,不能组成三角形,故本选项不符合题意;C、336+=,不能组成三角形,故本选项不符合题意;D、4711故选:B.【点睛】本题考查了三角形的三边关系:熟知:两边之和大于第三边;两边只差小于第三边;是解本题的关键.4. 【答案】C【分析】根据等腰三角形的定义及周长公式即可求解.【详解】解:当等腰三角形的腰为3cm时,+<,∴不能构成三角形,则此时等腰三角形的三边分别为:3cm,3cm,8cm,∵338当等腰三角形的腰为8cm时,+>,∴能构成三角形,则此时等腰三角形的三边长分别为:3cm,8cm,8cm,∵388++=(cm),则周长为:88319故它的周长为: 19cm,故选:C.【点睛】本题考查了等腰三角形的定义及周长,熟练掌握等腰三角形的定义是解题的关键.5. 【答案】A【分析】在△ABC 中利用三角形内角和可求得∠A=70°,则可得∠A 和∠D 对应,则EF=BC ,可得到答案.【详解】∵∠B=50°,∠C=60°,∴∠A=70°,∵△ABC ≌△DEF ,∴∠A 和∠D 对应,∴EF=BC=30,∴x=30,故选:A .【点睛】本题主要考查全等三角形的性质,掌握全等三角形的对应边、对应角相等是解题的关键. 6. 【答案】A【分析】先根据平行线的性质得到∠C =∠F ,再证明CB =FE ,然后根据全等三角形的判定方法对各选项进行判断.【详解】解://AC DF ,C F ∠=∠∴, CE FB =,CE EB FB BE ∴+=+,即CB FE =,∴当添加ABC DEF ∠=∠,即//AB DE 时,可根据“ASA ”判断ABC DEF ∆≅∆;当添加A D ∠=∠时,可根据“AAS ”判断ABC DEF ∆≅∆;当添加AC DF =时,可根据“SAS ”判断ABC DEF ∆≅∆.故选:A .【点睛】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法,选用哪一种方法,取决于题目中的已知条件.7. 【答案】B【分析】根据折叠的性质可得ADE FDE ∠=∠,再结合“两直线平行,同位角相等”可得50B ADE ∠=∠=︒,易得50ADE FDE ,然后根据180BDF ADE FDE ∠=︒−∠−∠,即可获得答案. 【详解】解:根据折叠的性质,可得ADE FDE ∠=∠,∵BC DE ∥,50B ∠=︒,∴50B ADE ∠=∠=︒,∴50ADE FDE ,∴180180505080BDF ADE FDE ∠=︒−∠−∠=︒−︒−︒=︒.故选:B .【点睛】本题主要考查了平行线的性质、折叠的性质,熟练掌握折叠的性质是解题关键.8. 【答案】A【分析】根据垂直平分线的性质可得5CA CE ==,然后结合AB AC =可得5AB =,即可获得答案.【详解】解:∵MN 是AE 的垂直平分线,5CE =,∴5CA CE ==,∵AB AC =,6BC =,∴5AB AC ==,∴ABC 的周长55616AB AC BC =++=++=.故选:A .【点睛】本题主要考查了垂直平分线的性质,熟练掌握相关知识是解题关键.9. 【答案】C【分析】当AB 为腰时,分别以点A 、点B 为圆心,AB 长为半径画圆,观察此时满足条件的格点数;当AB 为底边时,作线段AB 的垂直平分线,观察此时满足条件的格点数,由此得到答案.【详解】解:如下图:当AB 为腰时,分别以点A 、点B 为圆心,AB 长为半径画圆,观察可知满足条件的格点共4个;当AB 为底边时,作线段AB 的垂直平分线,观察可知满足条件的格点共4个,所以C 是图中的格点,且使得△ABC 为等腰三角形的点数共8个.故选C .【点睛】本题考查格点图中寻找可与已知两点构成等腰三角形的点,熟练掌握分类讨论思想是解题的关键. 10. 【答案】D【分析】根据三角形中线的定义可得BD CD =,根据等底等高的三角形的面积相等判断出①正确,然后利用“边角边”证明BDF CDE ≌,根据全等三角形对应边相等可得CE BF =;由条件不能得出CE AE =,BAD CAD ∠=∠.【详解】解:∵AD 是ABC 的中线,∴BD CD =,∴ABD △和ACD 面积相等,故①正确;在BDF 和CDE 中,BD CD BDF CDE DF DE =⎧⎪∠=∠⎨⎪=⎩,∴()SAS BDF CDE ≌,故③正确;∵BDF CDE ≌,∴BF CE =,故④正确;∵由条件不能得出CE AE =,BAD CAD ∠=∠,故②⑤错误.∴正确的结论为:①③④.故选:D .【点睛】本题主要考查了三角形中线的性质以及全等三角形的判定与性质,熟练掌握利用“边角边”判定三角形全等是解题关键.二、填空题(每题2分,共16分)11. 【答案】()2,1【分析】根据关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反,即可得到答案.【详解】解:点()2,1A −关于x 轴对称的点的坐标是()2,1,故答案为:()2,1.【点睛】本题主要考查了关于x 轴对称点的坐标特点,关键是掌握点的坐标的变化规律.12. 【答案】六【分析】设这个多边形是n 边形,根据题意列出方程求解即可.【详解】解:设这个多边形是n 边形,根据题意,得()21803602n −⨯︒=︒⨯,解得: 6n =,故答案为:六.【点睛】本题考查了多边形的内角和定理和外角和.能够根据多边形的内角和定理和外角和的特征,把求边数的问题就可以转化为解方程的问题是解题的关键.13. 【答案】稳定【分析】根据三角形具有稳定性可直接得出答案.【详解】解:把手机放在一个支架上面,就可以非常方便地使用,这是因为手机支架利用了三角形的稳定性,故答案为稳定.【点睛】本题考查了三角形的稳定性,解题的关键是了解三角形具有稳定性,属于基础题,难度不大. 14. 【答案】CA CD =(答案不唯一)【分析】由已知有BA =BD ,BC 边公共,由三角形全等的判定定理,可以添加这两边的夹角相等或第三边相等,均可使得△ABC≌△DBC.【详解】添加CA=CD,则由边边边的判定定理即可得△ABC≌△DBC故答案为:CA=CD(答案不唯一)【点睛】本题考查了全等三角形的判定,熟悉全等三角形的几个判定定理是解题的关键.15. 【答案】70°.【分析】根据全等三角形的性质得出AB=AD,∠BAC=∠DAE,求出∠BAD=∠EAC=40°,根据等腰三角形的性质得出∠B=∠ADB,即可求出答案.【详解】解:∵△ABC≌△ADE,∴AB=AD,∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC,∵∠EAC=40°,∴∠BAD=40°,∵AB=AD,∴∠B=∠ADB=12(180°﹣∠BAD)=70°,故答案为:70°.【点睛】本题考查了全等三角形的性质,等腰三角形的性质和三角形内角和定理等知识点,能根据全等三角形的性质得出AB=AD和求出∠BAD=∠EAC是解此题的关键.16. 【答案】30【分析】如图,过点P作PD⊥AC于D,根据角平分线的性质可得PD=PB,利用三角形面积公式即可得答案.【详解】如图,过点P作PD⊥AC于D,∵点P是∠BAC的平分线上一点,PB⊥AB于点B,PB=5cm,∴PD=PB=5cm,∵AC=12cm,∴S△APC=12AC PD⋅=11252⨯⨯=30cm2.故答案为:30【点睛】本题考查角平分线性质和三角形的面积的应用,熟练掌握角平分线上的点到角两边的距离相等的性质是解题关键.17. 【答案】80︒【分析】根据等腰三角形等边对等角、三角形外角的性质以及三角形内角和定理进行求解即可.【详解】解:设O x ∠=︒,∵OC CD DE ==,∴O CDO x ∠=∠=︒,2DCE DEC x ∠=∠=︒,∴2375BDE O DEC x x x ∠=∠+∠=︒+︒=︒=︒,∴25x ︒=︒,∴22100DCE DEC x x ∠+∠=︒+︒=︒,∴18010080CDE ∠=︒−︒=︒,故答案为:80︒.【点睛】本题考查了等腰三角形的性质、三角形外角的性质以及三角形内角和定理等知识点,熟练掌握等腰三角形等边对等角以及三角形的一个外角等于与它不相邻的两个内角的和是解本题的关键.18. 【答案】1或7【分析】分两种情况进行讨论,根据题意得出22BP t ==和1622AP t =−=,即可求得答案.【详解】解:∵四边形ABCD 长方形,∴AB CD =,90ABP BCD BAD ∠=∠=∠=︒,∴90DCE ∠=︒,若90ABP DCE ∠=∠=︒,2BP CE ==,根据SAS 可得ABP DCE △≌△,由题意得22BP t ==,解得1t =;∵AB CD =,若90BAP DCE ∠=∠=︒,2AP CE ==,根据SAS 可得BAP DCE ≌,由题意得1622AP t =−=,解得7t =.∴当t 的值为1或7秒时,ABP 和DCE △全等.故答案为:1或7.【点睛】本题主要考查了全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题的关键.三、解答题(19-20题各5分,21-25题各6分,26-27题各7分,共54分)19.【答案】见详解【分析】根据“SAS ”证明两三角形全等即可.【详解】证明:在AOB 和COD △中,∵AO CO AOB COD BO DO =⎧⎪∠=∠⎨⎪∠=⎩,∴(SAS)AOB COD ≌△△.【点睛】本题主要考查了对顶角相等以及全等三角形的判定,理解并掌握全等三角形的判定条件是解题关键.20. 【答案】见解析【分析】先根据“ASA ”证明△ABE ≌△ACD ,然后根据全等三角形的性质即可得证.【详解】证明:在△ABE 和△ACD 中,B C AB AC A A ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABE ≌△ACD (ASA ),∴AD =AE .【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定方法是本题的关键.21. 【答案】见解析【分析】根据AD ∥BC ,可求证∠ADB=∠DBC ,利用BD 平分∠ABC 和等量代换可求证∠ABD=∠ADB ,然后即可得出结论.【详解】证明:∵AD ∥BC ,∴∠ADB=∠DBC .∵BD 平分∠ABC ,∴∠ABD=∠DBC .∴∠ABD=∠ADB .∴AB=AD .22. 【答案】(1)见解析 (2)135︒【分析】(1)根据BE DF ∥,可得ABE D ∠=∠,再证ABE 和FDC △全等即可;(2)利用全等三角形的性质,求出E ∠,根据EBD E A ∠=∠+∠即可解决问题.【小问1详解】证明:∵BE DF ∥,∴ABE D ∠=∠,在ABE 和FDC △中,ABE D AB FD A F ∠=∠=∠=∠,,∴ABE FDC ≌,∴AE FC =;【小问2详解】解:∵ABE FDC ≌, ∴25E FCD ∠=∠=︒,∴25110135EBD E A ∠=∠+∠=︒+︒=︒.【点睛】本题考查全等三角形的判定和性质,解题的关键是熟练掌握全等三角形的判定和性质,属于中考常考题型.23. 【答案】(1)见详解 (2)MAP ,NAP ,角的平分线上的点到角的两边的距离相等【分析】(1)按照要求补全图形即可;(2)读懂证明中的每一个步骤及推理的依据,即可完成.【小问1详解】解:补画图形如下;【小问2详解】证明:过点D 作DE AC ⊥于点E ,连接MP ,NP ,在AMP 和ANP 中,∵AM AN =,MP NP =,AP AP =.∴(SSS)AMP ANP ≌△△.∴MAP NAP ∠=∠.∵90ABC ∠=︒,∴DB AB ⊥.∵DE AC ⊥,∴DB DE =(角的平分线上的点到角的两边的距离相等).故答案为:MAP ,NAP ,角的平分线上的点到角的两边的距离相等.【点睛】本题主要考查了用尺规作角平分线、三角形全等的判定与性质、角平分线的性质定理等知识,灵活运用相关知识是解题关键.24. 【答案】(1)4 (2)见详解【分析】(1)用矩形的面积分别减去三个直角三角形的面积去计算ABC 的面积即可;(2)利用关于y 轴对称的点的坐标特征得到111A B C 、、的坐标,再描点得到111A B C △;然后利用关于x轴对称的点的坐标特征得到222A B C 、、的坐标,再描点得到222A B C △即可.【小问1详解】 解:111332213134222ABC S =⨯−⨯⨯−⨯⨯−⨯⨯=△. 故答案为:4;【小问2详解】如下图,111A B C △和222A B C △即为所求.【点睛】本题主要考查了坐标与图形、作图-轴对称变换等知识,熟练掌握关于坐标轴对称的点的坐标特征是解决本题的关键.25. 【答案】见解析【分析】先证明Rt Rt (HL)ABC DCB ≌得出EBC ECB ∠=∠,再根据等腰三角形三线合一即可证明结论;【详解】证明:∵90A D ∠=∠=︒∴ABC 、DCB △是直角三角形在Rt ABC △和Rt DCB △中AB DC BC BC=⎧⎨=⎩ ∴Rt Rt (HL)ABC DCB ≌∴EBC ECB ∠=∠∴EB EC =∴EBC 是等腰三角形又∵F 是BC 中点∴BEF CEF ∠=∠【点睛】本题考查了全等三角形的判定与性质,等腰三角形的性质等知识点;熟练掌握等腰三角形三线合一的性质是解题的关键.26. 【答案】(1)PC PD =;(2)见解析【分析】(1)(2)过P 分别作PE ⊥OB 于E ,PF ⊥OA 于F ,由角平分线的性质易得PE =PF ,然后由同角的余角相等证明∠1=∠2,即可由ASA 证明△CFP ≌△DEP ,从而得证.【详解】解:(1)PC PD =.(2)过P 分别作PE ⊥OB 于E ,PF ⊥OA 于F ,∴90CFP DEP ∠=∠=︒,∵OM 是∠AOB 的平分线,∴PE PF =,∵190FPD ∠+∠=︒,且90AOB ∠=︒,∴90FPE ∠=︒,∴290FPD ∠+∠=︒,∴12∠=∠,在△CFP 和△DEP 中12CPF DEP PF PE∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△CFP ≌△DEP (ASA ),∴PC PD =.【点睛】此题主要考查角平分线的性质和全等三角形的判定和性质,难度中等,作辅助线很关键. 27. 【答案】(1)①55α︒−;②CG(2)2CG BG BF =+,证明见详解【分析】(1)①根据55BAD CAG ∠+∠=︒,即可获得答案;②连接AB ',证明(SAS)CAG B AG '≌,即可获得答案;(2)作点B 关于直线AD 的对称点P ,连接AP ,设BAD PAD β∠=∠=,证明(SAS)CAG PAG ≌,由全等三角形的性质可得CG PG =,即可获得结论.【小问1详解】解:①∵=110BAC ∠︒,55DAE ∠=︒,∴55BAD CAG BAC DAE ∠+∠=∠−∠=︒,∵BAD ∠=α,∴55CAG α∠=︒−;②如下图,连接AB ',由对称的性质可得AB AB '=,BAD B AD '∠=∠,∵AB AC =,∴AB AC '=,∵55DAG ∠=︒,=110BAC ∠︒,∴BAF CAG B AD GAB ''∠+∠=∠+∠,∴CAG GAB '∠=∠,在CAG 和B AG '△中,AG AG CAG B AG AC AB =⎧⎪∠=∠⎨⎪='⎩',∴(SAS)CAG B AG '≌,∴CG B G '=.故答案为:①55α︒−;②CG ;【小问2详解】2CG BG BF =+,证明如下:作点B 关于直线AD 的对称点P ,连接AP ,如下图,由对称的性质可得AB AP =,BAD PAD ∠=∠,BF PF =,∵AB AC =,∴AP AC =,设BAD PAD β∠=∠=,∵55DAG ∠=︒,∴55BAG DAG BAF β∠=∠−∠=︒−,∴55PAG PAD BAD BAG β∠=∠+∠+∠=︒+,∵=110BAC ∠︒,∴55CAG BAC BAF DAG β∠=∠+∠−∠=︒+,∴CAG PAG ∠=∠,在CAG 和PAG △中,AG AG CAG PAG AC AP =⎧⎪∠=∠⎨⎪=⎩,∴(SAS)CAG PAG ≌,∴CG PG =.∵2PG PF BF BG BF BG =++=+,∴2CG BG BF =+.【点睛】本题主要考查了轴对称的性质、全等三角形的判定与性质等知识,熟练掌握相关知识是解题关键.。

北京丰台区第二中学八年级数学上册第二单元《全等三角形》检测(有答案解析)

北京丰台区第二中学八年级数学上册第二单元《全等三角形》检测(有答案解析)

一、选择题1.如图,AB ∥CD ,BE 和CE 分别平分∠ABC 和∠BCD ,AD 过点E ,且AD ⊥AB ,点P 为线段BC 上一动点,连接PE .若AD =14,则PE 的最小值为( )A .7B .10C .6D .52.如图,在ABC 中,8AB AC ==厘米,6BC =厘米,点D 为AB 的中点.如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上,由C 点向A 点运动,为了使BPD CPQ △≌△,点Q 的运动速度应为( )A .1厘米/秒B .2厘米/秒C .3厘米/秒D .4厘米/秒 3.如图,AB 是线段CD 的垂直平分线,则图中全等三角形的对数有( )A .2对B .3对C .4对D .5对4.如图,在ABC 中,B C ∠=∠,BD CE =,BF CD =,则EDF ∠等于( )A .90A ︒-∠B .1802A ︒-∠C .1902A ︒-∠D .11802A ︒-∠ 5.如图,在△ABC 中,AB=5,AC=3,AD 是BC 边上的中线,AD 的取值范围是( )A .1<AD <6B .1<AD <4C .2<AD <8 D .2<AD <4 6.如图,AB =AC ,AD =AE ,∠A =105°,∠D =25°,则∠ABE 等于( )A .65°B .60°C .55°D .50°7.下列命题中,真命题是( )A .有两边和一角对应相等的两个三角形全等B .有两边和第三边上的高对应相等的两个三角形全等C .有两边和其中一边上的高对应相等的两个三角形全等D .有两边和第三边上的中线对应相等的两个三角形全等8.到ABC 的三条边距离相等的点是ABC 的( )A .三条中线的交点B .三条边的垂直平分线的交点C .三条高的交点D .三条角平分线的交点 9.如图,点D 在线段BC 上,若1802ACE ABC x ∠=︒-∠-︒,且BC DE =,AC DC =,AB EC =,则下列角中,大小为x ︒的角是( )A .EFC ∠B .ABC ∠ C .FDC ∠D .DFC ∠ 10.如图,在△ABC 中,点E 和F 分别是AC ,BC 上一点,EF ∥AB ,∠BCA 的平分线交AB 于点D ,∠MAC 是△ABC 的外角,若∠MAC =α,∠EFC =β,∠ADC =γ,则α、β、γ三者间的数量关系是( )A .β=α+γB .β=2γ﹣αC .β=α+2γD .β=2α﹣2γ 11.如图,在下列条件中,不能判断△ABD ≌△BAC 的条件是( )A .∠D=∠C , ∠BAD=∠ABCB .BD=AC , ∠BAD=∠ABC C .∠BAD=∠ABC , ∠BAD=∠ABCD .AD=BC ,BD=AC12.如图,已知,CAB DAE ∠=∠,AC AD =.下列五个选项:①AB AE =,②BC ED =,③C D ∠=∠,④B E ∠=∠,⑤12∠=∠,从中任选一个作为已知条件,其中能使ABC AED ≌△△的条件有( )A .2个B .3个C .4个D .5个二、填空题13.如图,△ABC 中,∠ACB =90°,点D 在边AC 上,DE ⊥AB 于点E ,DC =DE ,∠A =32°,则∠BDC 的度数为________.14.如图,已知在四边形ABCD 中,∠BCD =90°,BD 平分∠ABC ,AB =12,BC =18,CD =8,则四边形ABCD 的面积是____.15.如图,ABC ADE ≅,延长BC ,分别交AD ,ED 于点F ,G ,若120EAB ∠=︒,30B ∠=︒,10CAD ∠=︒,则CFD ∠=________︒.16.如图,线段AB ,CD 相交于点O ,AO=BO ,添加一个条件, 能使AOC BOD ≅,所添加的条件的是___________________________.17.如图,在ABC 中,90C ∠=︒,AD 平分BAC ∠,交BC 边于点D ,若12AB =,4CD =,则ABD △ 的面积为__________.18.如图,AB =8cm ,AC =5cm ,∠A =∠B ,点P 在线段AB 上以2cm/s 的速度由点A 向B 运动,同时,点Q 以x cm/s 的速度从点B 出发在射线BD 上运动,则△ACP 与△BPQ 全等时,x 的值为_____________19.如图,在ABC 中,AD 平分BAC ∠,P 为线段AD 上的一个动点,PE AD ⊥交直线BC 于点E .若35B ∠=︒,85ACB ∠=︒,则E ∠的度数为______.20.如图,//AD BC ,ABC ∠的角平分线BP 与BAD ∠的角平分线AP 相交于点P ,作PE AB ⊥于点E .若9PE =,则两平行线AD 与BC 间的距离为_______.三、解答题21.作图题:已知∠α,线段m 、n ,请按下列步骤完成作图(不需要写作法,保留作图痕迹)(1)作∠MON =∠α(2)在边OM 上截取OA =m ,在边ON 上截取OB =n .(3)作直线AB .22.如图,在平面直角坐标系中,AC CD =,已知()3,0A ,()0,3B ,()0,5C ,点D 在第一象限内,90DCA ∠=︒,AB 的延长线与DC 的延长线交于点M ,AC 与BD 交于点N .(1)OBA ∠的度数为________.(2)求点D 的坐标.(3)求证:AM DN =.23.如图,在ABC ∆中,90,C ∠=︒点D 在BC 上,过点D 作DE AB ⊥于点,E 点F 是AC 边上一点,连接DF .若,BD DF CF EB ==,求证:AD 平分BAC ∠.24.如图,在五边形ABCDE 中,AB DE =,AC AD =.(1)请你添加一个与角有关的条件,使得ABC DEA ≌,并说明理由;(2)在(1)的条件下,若65CAD ∠=︒,110B ∠=︒,求BAE ∠的度数.25.如图,,AD BF 相交于点,//,O AB DF AB DF =,点E 与点C 在BF 上,且BE CF =.(1)求证:ABC DFE ∆≅∆;(2)求证:点О为BF 的中点.26.如图,AB CB ⊥,DC CB ⊥,点E 、F 在BC 上,BE CF =,再添加一个什么条件后可推出AF DE =,写出添加的条件并完成证明.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】当EP ⊥BC 时,EP 最短,根据角平分线的性质,可知EP=EA=ED=12AD ,由AD =14,求出即可.【详解】解:当EP ⊥BC 时,EP 最短,∵AB ∥CD ,AD ⊥AB ,∴AD ⊥CD ,∵BE 平分∠ABC ,AE ⊥AB ,EP ⊥BC ,∴EP=EA ,同理,EP=ED ,此时,EP=12AD=12×14=7, 故选A .【点睛】本题考查了角平分线的性质和垂线段最短,熟练找到P 点位置并应用角平分线性质求EP 是解题关键. 2.D解析:D【分析】根据三角形全等的性质与路程、速度、时间的关系式求解.【详解】解:设△BPD ≌△CPQ 时运动时间为t ,点Q 的运动速度为v ,则由题意得:BP CP BD CQ=⎧⎨=⎩,即3634t tvt=-⎧⎨=⎩,解之得:14 tv=⎧⎨=⎩,∴点Q的运动速度为4厘米/秒,故选D .【点睛】本题考查三角形全等的综合应用,熟练掌握三角形全等的判定与性质、路程、速度、时间的关系式及方程的思想方法是解题关键.3.B解析:B【分析】根据线段垂直平分线的性质得到,AC=AD,BC=BD,OC=OD,然后根据”HL”可判断Rt△AOC≌Rt△AOD,Rt△BOC≌Rt△BOD;根据“SSS”可判断△ABC≌△ABD.【详解】解:∵AB是线段CD的垂直平分线,∴AC=AD,BC=BD,OC=OD,∴Rt△AOC≌Rt△AOD(HL),Rt△BOC≌Rt△BOD(HL),△ABC≌△ABD(SSS).故选:B.【点睛】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”“HL”;全等三角形的对应边相等.也考查了线段垂直平分线的性质.4.C解析:C【分析】根据∠B=∠C,BD=CE,BF=CD,可证出△BFD≌△CDE,继而得出∠BFD=∠EDC,再根据三角形内角和定理及平角等于180︒,即可得出∠B=∠EDF,进而得到答案.【详解】解:∵∠B=∠C,BD=CE,BF=CD,∴△BFD≌△CDE,∴∠BFD=∠EDC,∴∠B+∠BFD+∠BDF=∠BDF+∠EDF+∠EDC,∴∠B=∠EDF,又∵∠B=∠C=18019022AA ︒-∠=︒-∠,∴∠EDF=1902A︒-∠,故选:C.【点睛】本题考查全等三角形的判定与性质、等腰三角形的性质以及三角形内角和定理,根据全等三角形的性质找出∠BFD=∠EDC 是解题的关键.5.B解析:B【分析】先延长AD 到E ,且AD DE =,并连接BE ,由于ADC BDE ∠=∠,BD DC =,利用SAS 易证ADC EDB ≌,从而可得AC BE =,在ABE △中,再利用三角形三边的关系,可得28AE <<,从而易求14AD <<.【详解】解:延长AD 到E ,使AD DE =,连接BE ,则AE=2AD ,∵AD DE =,ADC BDE ∠=∠,BD DC =,∴ADC EDB ≌()SAS ,3BE AC ∴==,在AEB △中,AB BE AE AB BE -<<+,即53253AD -<<+,∴14AD <<.故选:B .【点睛】此题主要考查三角形三边关系:两边之和大于第三边,两边之差小于第三边.6.D解析:D【分析】依据SAS 即可得判定△ABE ≌△ACD ,再根据全等三角形的性质,得出∠D =∠E =25°,由三角形内角和定理可求出答案.【详解】解:在△ABE 和△ACD 中,AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (SAS ),∴∠D =∠E ,∵∠D =25°,∴∠E =25°,∴∠ABE =180°﹣∠A ﹣∠E =180°﹣105°﹣25°=50°.故选:D .【点睛】本题考查了全等三角形的判定与性质,三角形内角和定理,熟练掌握全等三角形的判定与性质是解题的关键.7.D解析:D【分析】根据三角形全等的判定方法对A 、D 进行判断;利用三角形高的位置不同可对B 、C 进行判断.【详解】A 、有两边和它们的夹角对应相等的两个三角形全等,所以A 选项错误;B 、有两边和第三边上的高对应相等的两个锐角三角形全等,所以B 选项错误;C 、有两边和其中一边上的高对应相等的两个锐角三角形全等,所以C 选错误;D 、有两边和第三边上的中线对应相等的两个三角形全等,所以D 选项正确; 故选:D .【点睛】本题考査了判断命题真假,以及全等三角形的判定,熟练掌握全等三角形的判定,仔细分类讨论是解题关键.8.D解析:D【分析】由于角平分线上的点到角的两边的距离相等,而已知一点到ABC 的三条边距离相等,那么这样的点在这个三角形的三条角平分线上,由此即可作出选择.【详解】解:∵到ABC 的三条边距离相等,角平分线上的点到角的两边的距离相等, ∴这点在这个三角形三条角平分线上,即这点是三条角平分线的交点,故选:D.【点睛】此题主要考查了三角形的角平分线的性质:三条角平分线交于一点,并且这一点到三边的距离相等.9.C解析:C【分析】先证明()ABC CED SSS ∆≅∆得到B E ∠=∠、FCD FDC ∠=∠,再根据1802ACE ABC x ∠=︒-∠-︒可得2CFE x ∠=︒;然后根据外角的性质可得2EFC FDC FCD FDC ∠=∠+∠=∠即可解答.【详解】解:在ABC ∆和CED ∆中,AC CD AB CE BC ED =⎧⎪=⎨⎪=⎩,()ABC CED SSS ∴∆≅∆,B E ∴∠=∠,FCD FDC ∠=∠1802180ACE ABC x E CFE ∠=︒-∠-︒=︒-∠-∠,2CFE x ∴∠=︒,2EFC FDC FCD FDC ∠=∠+∠=∠=2x ︒,FDC x ∴∠=︒.故答案为C .【点睛】本题主要考查全等三角形的判定和性质、三角形的外角的性质等知识,弄清题意、理清角之间的关系是解答本题的关键.10.B解析:B【分析】根据平行线的性质得到∠B=∠EFC=β,由角平分线的定义得到∠ACB=2∠BCD ,根据∠ADC 是△BDC 的外角,得到∠ADC=∠B+∠BCD ,由三角形外角的性质得到∠MAC=∠B+∠ACB ,于是得到结果.【详解】解:∵EF ∥AB ,∠EFC=β,∴∠B=∠EFC=β,∵CD 平分∠BCA ,∴∠ACB=2∠BCD ,∵∠ADC 是△BDC 的外角,∴∠ADC=∠B+∠BCD ,∵∠ADC=γ,∴∠BCD=γ-β,∵∠MAC 是△ABC 的外角,∴∠MAC=∠B+∠ACB ,∵∠MAC=α,∴α=β+2(γ-β),∴β=2γ-α,故选:B .【点睛】本题考查了三角形外角的性质,角平分线的定义,平行线的性质,正确的识别图形是解题的关键.11.B解析:B【分析】本题已知条件是两个三角形有一公共边,只要再加另外两边对应相等或有两角对应相等即可,如果所加条件是一边和一角对应相等,则所加角必须是所加边和公共边的夹角对应相等才能判定两个三角形全等;【详解】A 、符合AAS ,能判断两个三角形全等,故该选项不符合题意;B 、符合SSA ,∠BAD 和∠ABC 不是两条边的夹角,不能判断两个三角形全等,故该选项符合题意;C 、符合AAS ,能判断两个三角形全等,故该选项不符合题意;D 、符合SSS ,能判断两个三角形全等,故该选项不符合题意;故选:B .【点睛】本题考查了全等三角形的判定方法,三角形判定定理中,最容易出错的是“边角边”定理,这里强调的是夹角,不是任意角;12.B解析:B【分析】添加条件①可以用“SAS”证明,添加条件③可以用“ASA”证明,添加条件④可以用“AAS”证明.【详解】解:①在ABC 和AED 中,AC AD CAB DAE AB AE =⎧⎪∠=∠⎨⎪=⎩,∴()ABC AED SAS ≅△△;②不可以;③在ABC 和AED 中,C D AC ADCAB DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()ABC AED ASA ≅;④在ABC 和AED 中,B E CAB DAE AC AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ABC AED AAS ≅;⑤不可以;故选:B .【点睛】本题考查全等三角形的判定,解题的关键是掌握全等三角形的所有判定定理.二、填空题13.61°【分析】首先利用直角三角形的性质求得∠ABC 的度数然后利用角平分线的判定方法得到BD 为∠ABC 的平分线再求出∠ABD 的度数根据三角形外角的性质进而求得结论【详解】解:∵∠A=32°∠ACB=9解析:61°【分析】首先利用直角三角形的性质求得∠ABC 的度数,然后利用角平分线的判定方法得到BD 为∠ABC 的平分线,再求出∠ABD 的度数,根据三角形外角的性质进而求得结论.【详解】解:∵∠A=32°,∠ACB =90°,∴∠CBA=58°,∵DE ⊥AB ,DC ⊥BC ,DC=DE ,∴BD 为∠ABC 的平分线,∴∠CBD=∠EBD ,∴∠CBD=12∠CBA=12×58°=29°, ∴∠BDC=∠A+∠ABD=32°+29°=61°.故答案为:61°.【点睛】本题考查了角平分线的判定与性质,解题的关键是根据已知条件得到BD 为∠ABC 的平分线,难度不大.14.【分析】过点D 作DE ⊥BA 的延长线于点E 利用角平分线的性质可得出DE =DC =8再利用三角形的面积公式结合S 四边形ABCD =S △ABD +S △BCD 可求出四边形ABCD的面积【详解】解:过点D作DE⊥B解析:120【分析】过点D作DE⊥BA的延长线于点E,利用角平分线的性质可得出DE=DC=8,再利用三角形的面积公式结合S四边形ABCD=S△ABD+S△BCD,可求出四边形ABCD的面积.【详解】解:过点D作DE⊥BA的延长线于点E,如图所示.又∵BD平分∠ABC,∠BCD=90°,∴DE=DC=8,∴S四边形ABCD=S△ABD+S△BCD,=12AB•DE+12BC•CD,=12×12×8+12×18×8,=120.故答案为:120.【点睛】本题考查了角平分线的性质以及三角形的面积,利用角平分线的性质,找出DE=8是解题的关键.15.95【分析】根据全等三角形的性质得∠BAC=∠DAE结合三角形外角的性质和三角形内角和定理即可求解【详解】解:∵∴∴∴∴故答案为:【点睛】本题主要考查全等三角形的性质三角形外角的性质和三角形内角和定解析:95【分析】根据全等三角形的性质,得∠BAC=∠DAE,结合三角形外角的性质和三角形内角和定理,即可求解.【详解】解:∵ABC ADE≅,∴()12010255BAC DAE∠=∠=-÷=,∴85ACF BAC B∠=∠+∠=,∴18085CFA ACF CAD∠=-∠-∠=,∴1808595CFD ∠=-=.故答案为:95.【点睛】本题主要考查全等三角形的性质,三角形外角的性质和三角形内角和定理,熟练掌握上述定理和性质,是解题的关键.16.或或或【分析】先根据对顶角相等可得再根据三角形全等的判定定理即可得【详解】由对顶角相等得:当时由定理可证当时由定理可证当时由定理可证当时则由定理可证故答案为:或或或【点睛】本题考查了对顶角相等三角形 解析:CO DO =或A B ∠=∠或C D ∠=∠或//AC BD【分析】先根据对顶角相等可得AOC BOD ∠=∠,再根据三角形全等的判定定理即可得.【详解】由对顶角相等得:AOC BOD ∠=∠,AO BO =,∴当CO DO =时,由SAS 定理可证AOC BOD ≅,当A B ∠=∠时,由ASA 定理可证AOC BOD ≅,当C D ∠=∠时,由AAS 定理可证AOC BOD ≅,当//AC BD 时,则A B ∠=∠,由ASA 定理可证AOC BOD ≅,故答案为:CO DO =或A B ∠=∠或C D ∠=∠或//AC BD .【点睛】本题考查了对顶角相等、三角形全等的判定定理等知识点,熟练掌握三角形全等的判定定理是解题关键.17.24【分析】过D 作DE ⊥AB 垂足为E 根据角平分线定理可得DE=CD=4然后根据三角形的面积公式计算即可【详解】解:如图:过D 作DE ⊥AB 垂足为E ∵AD 平分交BC 边于点D ∴DE=CD=4∴的面积为AB解析:24【分析】过D 作DE ⊥AB 垂足为E ,根据角平分线定理可得DE=CD=4,然后根据三角形的面积公式计算即可.【详解】解:如图:过D 作DE ⊥AB 垂足为E ,∵90C ∠=︒,AD 平分BAC ∠,交BC 边于点D ,∴DE=CD=4,∴ABD △ 的面积为12AB·DE=12×12×4=24. 故答案为:24.【点睛】本题主要考查了角平分线的性质定理,正确作出辅助线、构造角平分线定理所需条件成为解答本题的关键. 18.2或【分析】由∠A =∠B 可知△ACP 与△BPQ 全等时CP 和PQ 是对应边则分AP =BQ 和AP =PB 两种情况进行讨论即可【详解】设动点的运动时间为t 秒则AP =2tBP =AB -AP =8-2tBQ =xt ∵∠解析:2或52 【分析】由∠A =∠B ,可知△ACP 与△BPQ 全等时,CP 和PQ 是对应边,则分AP =BQ 和AP =PB 两种情况进行讨论即可.【详解】设动点的运动时间为t 秒,则AP =2t ,BP =AB -AP =8-2t ,BQ =xt ,∵∠A =∠B ,∴CP 和PQ 是对应边,当△ACP 与△BPQ 全等时,①AP =BQ ,即:2t = xt ,解得:x =2,②AP =PB ,即:2t =8-2t ,解得:t =2,此时,BQ =AC ,xt =5,即:2x =5,解得:x =52故填:2或52. 【点睛】本题考查全等三角形的性质,“分类讨论”的数学思想是关键.19.25°【分析】利用三角形内角和定理得出∠BAC 的度数进而得出∠ADC 的度数再利用三角形内角和定理和外角性质得出即可【详解】解:∵∠B=35°∠ACB=85°∴∠BAC=60°∵AD 平分∠BAC ∴∠B解析:25°【分析】利用三角形内角和定理得出∠BAC 的度数,进而得出∠ADC 的度数,再利用三角形内角和定理和外角性质得出即可.【详解】解:∵∠B=35°,∠ACB=85°,∴∠BAC=60°,∵AD平分∠BAC,∴∠BAD=30°,∴∠ADC=35°+30°=65°,∵∠EPD=90°,∴∠E的度数为:90°-65°=25°.故答案为:25°.【点睛】此题主要考查了三角形内角和定理以及角平分线的性质和三角形外角的性质,根据已知得出∠BAD度数是解题关键.20.;【分析】过点P作MN⊥AD根据角平分线的性质以及平行线的性质即可得出PM=PE=2PE=PN=2即可得出答案【详解】过点P作MN⊥AD∵AD∥BC∠ABC的角平分线BP与∠BAD的角平分线AP相交解析:18;【分析】过点P作MN⊥AD,根据角平分线的性质以及平行线的性质即可得出PM=PE=2,PE=PN=2,即可得出答案.【详解】过点P作MN⊥AD∵AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,PE⊥AB于点E∴AP⊥BP,PN⊥B C∴PM=PE=9,PE=PN=9∴MN=9+9=18故答案为18.【点睛】此题主要考查了角平分线的性质以及平行线的性质,根据题意作出辅助线是解决问题的关键.三、解答题21.(1)见解析;(2)见解析;(3)见解析【分析】(1)先画一条射线ON ,以∠α的顶点为圆心,任意长度为半径画弧,交∠α的两个边于两个点,这两个点的距离记为a ,接着以点O 为圆心,同样的长度为半径画弧,交ON 于一个点,以这个点为圆心,a 为半径画弧,与刚刚画的弧有一个交点,连接这个点和点O ,得到射线OM ,即可得到∠MON =∠α;(2)以点O 为圆心,m 为半径画弧,交OM 于点A ,以点O 为圆心,n 为半径画弧,交ON 于点B ;(3)连接AB ,线段AB 所在的直线即直线AB .【详解】解:(1)如图所示,(2)如图所示,(3)如图所示,【点睛】本题考查尺规作图,解题的关键是掌握作已知角度的方法,截取线段和画直线的方法. 22.(1)45°;(2)()5,8D ;(3)见解析.【分析】(1)根据点A,点B 的坐标,得OA=OB,从而得到等腰直角三角形OAB 依此计算即可;(2) 过点D 作DE y ⊥轴,垂足为E ,证明DEC COA △△≌即可;(3)通过证明CDB CAB ∠=∠,实现DCN ACM △△≌的目标,问题得证.【详解】(1)∵()3,0A ,()0,3B ,∴OA=OB ,∴△AOB 是等腰直角三角形,∴∠OBA=45°,故填45°.(2)∵()0,5C ,∴5OC =.如图,过点D 作DE y ⊥轴,垂足为E ,∴90DEC AOC ∠=∠=︒.∵90DCA ∠=︒,AC CD =,∴90ECD BCA ECD EDC ∠+∠=∠+∠=︒,∴BCA EDC ∠=∠,∴()AAS DEC COA ≌△△, ∴5DE OC ==,3EC OA ==,∴8OE OC EC =+=,∴()5,8D .(3)证明:∵835BE OE OB =-=-=,∴BE DE =,∴DBE 是等腰直角三角形,∴45DBE ∠=︒. ∵45OBA ∠=︒,∴90DBA ∠=︒,∴90BAN ANB ∠+∠=︒.∵90DCA ∠=︒,∴90CDN DNC ∠+∠=︒.∵DNC ANB ∠=∠,∴CDB CAB ∠=∠.∵90DCA ∠=︒,∴90ACM DCN ∠=∠=︒.∵AC CD =,∴()ASA DCN ACM ≌△△, ∴AM DN =.【点睛】本题考查了等腰直角三角形的判定和性质,一线三直角全等模型,坐标与线段的关系,三角形的全等,解答时,能准确找到合适的全等三角形是解题的关键.23.证明见解析【分析】由已知可得RT △DCF ≌RT △DEB ,从而得到DC=DE ,又由已知可得DC ⊥AC ,DE ⊥AB ,所以由角平分线的判定定理即可得解.【详解】证明:由题意可得,在Rt DCF ∆和Rt DEB ∆中,CF EB BD DF =⎧⎨=⎩Rt DCF Rt DEB ∴∆≅∆,DC DE ∴=90,C ∠=︒,DC AC ∴⊥,DE AB ⊥AD ∴平分BAC ∠.【点睛】本题考查角平分线与直角三角形的综合运用,熟练掌握角平分线的判定与直角三角形的判定和性质是解题关键.24.(1)添加一个角有关的条件为BAC EDA ∠=∠,使得ABC DEA ≌,理由见解析;(2)BAE ∠的度数为135︒.【分析】(1)根据已知条件,选择SAS 原理,可确定添加的角;(2)利用三角形全等,∠B 的度数,可求∠BAC+∠DAE ,问题可解.【详解】(1)添加一个角方面的条件为BAC EDA ∠=∠,使得ABC DEA ≌.在ABC 和DEA △中∵AB DE =,BAC EDA ∠=∠,AC DA =,∴()SAS ABC DEA ≌△△; (2)在(1)的条件下∵ABC DEA ≌, ∴ACB DAE ∠=∠,若65CAD ∠=︒,110B ∠=︒,则18070ACB BAC B ∠+∠=︒-∠=︒,∴70DAE BAC ACB BAC ∠+∠=∠+∠=︒,∴7065135BAE DAE BAC CAD ∠=∠+∠+∠=︒+︒=︒,即BAE ∠的度数为135︒.【点睛】本题考查了三角形全等,熟练掌握全等三角形判定原理和性质是解题的关键.25.(1)见解析;(2)见解析【分析】(1)由已知可证∠B=∠F ,BC=EF ,然后根据SAS 可以得到结论;(2)同(1)有∠B=∠F ,再结合已知条件和对顶角相等可以证得ΔA BO ≅ΔDFO ,从而得到OB=OF ,所以点O 为BF 中点 .【详解】证明:(1)∵AB//DF ,∴∠B=∠F ,∵BE=CF ,∴BE+CE=CF+CE ,即BC=EF ,∴在ΔABC 和ΔDFE 中,AB DF B F BC EF =⎧⎪∠=∠⎨⎪=⎩,∴ΔABC ≅ΔDFE (SAS );(2)与(1)同理有∠B=∠F ,∴在ΔABO 和ΔDFO 中,AOB DOF B F AB DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ΔABO ≅ΔDFO (AAS ),∴OB=OF ,∴点O 为BF 中点 .【点睛】本题考查三角形全等的应用,熟练掌握三角形全等的判定与性质并灵活应用是解题关键. 26.添加AB=CD ;证明见解析.【分析】根据线段的和差关系可得BF=CE ,故添加AB=CD 即可利用SAS 证明△ABF ≌△DCE ,根据全等三角形的性质即可得出AF=DE .【详解】可添加AB=CD ,理由如下:∵BE=CF ,∴BE+EF=CF+EF ,即BF=CE ,∵AB CB ⊥,DC CB ⊥,∴∠B=∠C=90°,在△ABF 和△DCE 中,AB CD B C BF CE =⎧⎪∠=∠⎨⎪=⎩,∴△ABF ≌△DCE ,∴AF=DE .【点睛】本题考查全等三角形的判断与性质,全等三角形的判定方法有:SSS 、SAS 、AAS 、ASA 、HL 等;注意:AAA 、SSA 不能判定两个三角形全等,当利用SAS 判定两个三角形全等时,角必须是两边的夹角;熟练掌握并灵活运用适当判定方法是解题关键.。

北京丰台区第二中学八年级数学上册第一单元《三角形》检测(有答案解析)

北京丰台区第二中学八年级数学上册第一单元《三角形》检测(有答案解析)

一、选择题1.如图,在ABC 中,AB 边上的高为( )A .CGB .BFC .BED .AD2.将一副三角板和一张对边平行的纸条按图中方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则1∠的度数是( )A .10°B .15°C .20°D .25°3.如图,//,40,50,AB CD B C ∠=︒∠=︒则E ∠的度数为( )A .70︒B .80︒C .90︒D .100︒ 4.如图,AD 是ABC 的外角CAE ∠的平分线,35B ∠=︒,60=︒∠DAC ,则ACD∠的度数为( )A .25︒B .85︒C .60︒D .95︒5.已知,D 是ABC ∠的边BC 上一点,//DE BA ,CBE ∠和CDE ∠的平分线交于点F ,若F α∠=,则ABE ∠的大小为( )A .αB .52αC .2αD .32α 6.如图,在ABC 中,AD 是角平分线,AE 是高,已知2BAC B ∠=∠,2B DAE ∠=∠,那么C ∠的度数为( )A .72°B .75°C .70°D .60° 7.若多边形的边数由3增加到n (n 为大于3的正整数),则其外角和的度数( ) A .不变B .减少C .增加D .不能确定 8.一个多边形的内角和是外角和的4倍,则这个多边形的边数为( )A .10B .8C .6D .4 9.如图,△ABC 中AC 边上的高是哪条垂线段.( )A .AEB .CDC .BFD .AF10.如图,已知,,90,//AD BC FG BC BAC DE AC ⊥⊥∠=︒.则结论①//FG AD ;②DE 平分ADB ;③B ADE ∠=∠;④CFG BDE ∠+∠90=︒.正确的是( )A .①②③B .①②④C .①③④D .②③④ 11.以下列各组线段为边,能组成三角形的是( ) A .1,2,3 B .2,3,4 C .2,5,8 D .6,3,3 12.如图,105DBA ∠=︒,125ECA ∠=︒,则A ∠的度数是( )A .75°B .60°C .55°D .50°二、填空题13.若等腰三角形两边的长分别为3cm 和6cm ,则此三角形的周长是______________cm .14.过n 边形的一个顶点有9条对角线,则n 边形的内角和为______.15.一个正多边形的每个内角为108°,则这个正多边形所有对角线的条数为_____. 16.已知ABC 的高为AD ,65BAD ∠=︒,25CAD ∠=︒,则BAC ∠的度数是_______.17.一个三角形的两边长分别是3和7,且第三边长为奇数,这样的三角形的周长最大值是___________,最小值是___________.18.已知等腰三角形的一边长等于11cm ,一边长等于5cm ,它的周长为______. 19.已知//AB CD ,点P 是平面内一点,若30,20BPD PBA ∠=︒∠=︒,则CDP ∠=___________度.20.一副分别含有30°和45°的直角三角板,拼成如图,则BFD ∠的度数是______.三、解答题21.阅读下面内容,并解答问题在学习了平行线的性质后,老师请学们证明命题:两条平行线被第三条直线所截,一组同旁内角的平分线互相垂直.小颖根据命题画出图形并写出如下的已知条件.已知:如图1,//AB CD ,直线EF 分别交AB ,CD 于点E ,F ,BEF ∠的平分线与DFE ∠的平分线交于点G .(1)直线EG ,FG 有何关系?请补充结论:求证:“__________”,并写出证明过程; (2)请从下列A 、B 两题中任选一题作答,我选择__________题,并写出解答过程. A .在图1的基础上,分别作BEG ∠的平分线与DFG ∠的平分线交于点M ,得到图2,求EMF ∠的度数.B .如图3,//AB CD ,直线EF 分别交AB ,CD 于点E ,F .点O 在直线AB ,CD 之间,且在直线EF 右侧,BEO ∠的平分线与DFO ∠的平分线交于点P ,请猜想EOF ∠与EPF ∠满足的数量关系,并证明它.22.如图1,已知线段AB 、CD 相交于点O ,连接AC 、BD ,则我们把形如这样的图形称为“8字型”.(1)在图1中,请直接写出∠A 、∠B 、∠C 、∠D 之间的数量关系: ;(2)如图2,若∠CAB 和∠BDC 的平分线AP 和DP 相交于点P ,且与CD 、AB 分别相交于点M 、N .①以线段AC 为边的“8字型”有 个,以点O 为交点的“8字型”有 个; ②若∠B =100°,∠C =120°,求∠P 的度数;③若角平分线中角的关系改为“∠CAP =13∠CAB ,∠CDP =13∠CDB”,请直接写出∠P 与∠B 、∠C 之间存在的数量关系.23.如图,已知在ABC 中,90C ∠=︒,BE 平分ABC ∠,且//BE AD ,20BAD ∠=︒,求AEB ∠的度数.24.如图,//AE DF ,BE DF ⊥于点G ,190B ∠+∠=︒.(1)判断CD 与AB 的位置关系,并说明理由.(2)若50A ∠=︒,求出DEG ∠的度数.25.如图,是A 、B 、C 三个村庄的平面图,已知B 村在A 村的南偏西65°方向,C 村在A 村的南偏东15°方向,C 村在B 村的北偏东85°方向,求从C 村观测A 、B 两村的视角ACB ∠的度数.26.如图,在ABC 中,40B ∠=,80C ∠=.(1)求BAC ∠的度数;(2)AE 平分BAC ∠交BC 于E ,AD BC ⊥于D ,求EAD ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】在ABC 中,过C 点向AB 所在的直线作垂线,顶点与垂足之间的线段是AB 上的高,由此可得答案.【详解】解:ABC 中,AB 边上的高为:.CG故选:.A【点睛】本题考查的是三角形的高的含义,掌握钝角三角形的高是解题的关键.2.B解析:B【分析】延长两三角板重合的边与直尺相交,根据两直线平行,内错角相等求出∠2,再利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:如图,由平行线的性质可得∠2=30°,∠1=∠3-∠2=45°-30°=15°.故选:B .【点睛】本题考查了平行线的性质及三角形外角的性质,三角板的知识,熟记平行线的性质,三角板的度数是解题的关键.3.C解析:C【分析】根据平行线的性质求出140∠=︒,根据三角形内角和定理计算,得到答案.【详解】解:∵//AB CD ,40B ∠=︒,50C ∠=︒,∴140B ∠=∠=︒,∴ 1801180405090E C ∠=︒-∠-∠=︒-︒-︒=︒.故选:C【点睛】本题考查的是平行线的性质、三角形内角和定理,掌握两直线平行,同位角相等是解题的关键.4.D解析:D【分析】根据角平分线的定义可得∠DAC =∠DAE ,根据三角形的一个外角等于与它不相邻的两个内角的和可得∠D ,然后利用三角形的内角和定理列式计算即可得解.【详解】解:∵AD 是∠CAE 的平分线,60=︒∠DAC ,∴∠DAC =∠DAE =60°,又∵35B ∠=︒由三角形的外角性质得,∠D =∠DA E−∠B =60°−35°=25°,∴在△ACD 中,∠ACD =180°−∠DAC -∠D =180°−60°−25°=95°.故选:D .【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和,三角形的内角和定理,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.5.C解析:C【分析】先利用角平分线和三角形外角的性质可得2BED α∠=,再根据平行线的性质定理即可得出ABE ∠的大小.【详解】解:如下图所示,∵CBE ∠和CDE ∠的平分线交于点F ,∴21,22C CBE DE ∠∠==∠∠,∵12F ∠+∠=∠,F α∠=,∴21α∠-∠=,∵EBD BED EDC ∠+∠=∠,∴22212ED D C BE EBD α∠∠-∠=∠-==∠,∵//DE BA ,∴2ABE BED α∠==∠,故选:C .【点睛】本题考查三角形外角的性质,平行线的性质定理,与角平分线有关的计算.正确理解三角形外角等于与它不相邻的两个内角之和是解题关键.6.A解析:A【分析】利用角平分线的定义和三角形内角和定理,余角即可计算.【详解】由图可知DAE DAC EAC ∠=∠-∠,∵AD 是角平分线.∴12DAC BAC ∠=∠, ∴12DAE BAC EAC ∠=∠-∠, ∵90EAC C ∠=︒-∠, ∴1(90)2DAE BAC C ∠=∠-︒-∠ ∵2BAC B ∠=∠,2B DAE ∠=∠, ∴14(90)2DAE DAE C ∠=⨯∠-︒-∠, ∴90DAE C ∠=︒-∠∵180C B BAC ∠=︒-∠-∠, ∴18024C DAE DAE ∠=︒-∠-∠,∴1802(90)4(90)C C C ∠=︒-︒-∠-︒-∠,∴72C ∠=︒.故选:A .【点睛】本题主要考查了角平分线的定义和三角形的内角和定理以及余角.根据题意找到角之间的数量关系是解答本题的关键.7.A解析:A【分析】利用多边形的外角和特征即可解决问题.【详解】解:因为多边形外角和固定为360°,所以外角和的度数是不变的.故选:A .【点睛】此题考查多边形内角与外角的性质,容易受误导,注意多边形外角和等于360°. 8.A解析:A【分析】设这个多边形的边数为n ,根据内角和公式以及多边形的外角和为360°即可列出关于n 的一元一次方程,解方程即可得出结论.【详解】解:设这个多边形的边数为n ,则该多边形的内角和为(n-2)×180°,依题意得:(n-2)×180°=360°×4,解得:n=10,∴这个多边形的边数是10.故选:A【点睛】本题考查了多边形内角与外角,解题的关键是根据多边形内角和公式得出方程(n-2)×180°=360°×4.9.C解析:C【分析】根据三角形的高的定义,△ABC 中AC 边上的高是过B 点向AC 作的垂线段,即为BF .【详解】解:∵BF ⊥AC 于F ,∴△ABC 中AC 边上的高是垂线段BF .故选:C .【点睛】本题考查了三角形的高的定义,关键是根据从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高解答.10.C解析:C【分析】根据,,AD BC FG BC ⊥⊥得到FG ∥AD ,判断①正确;根据∠ADE+∠BDE=90°,∠B+∠BDE=90°,得到③正确;根据//DE AC , 证明∠BDE=∠C ,进行角的代换证明∠BDE+∠CFG=90°,得到④正确; 证明∠ADE+∠BDE=90°,判断②不正确.【详解】解:∵,,AD BC FG BC ⊥⊥∴∠FGB=∠ADB=90°,∴FG ∥AD ,∠ADE+∠BDE=90°,故①正确;∵DE ∥AC ,∴∠DEB=∠CAB=90°,∴∠B+∠BDE=90°,∴B ADE ∠=∠,∴③正确;∵//DE AC ,∴∠BDE=∠C ,∵∠FGC=90°,∴∠C+∠CFG=90°,∴∠BDE+∠CFG=90°,∴④正确;∵∠ADB=90°,∴∠ADE+∠BDE=90°,∴②不正确;故选:C .【点睛】本题考查了直角三角形两锐角互余,同角(等角)的余角相等,平行线的判定等知识,熟知相关定理是解题关键.11.B解析:B【分析】根据三角形的三边关系定理:两边之和大于第三边,即两条较短的边的长大于最长的边即可.【详解】A 、1+2=3,不能构成三角形, A 错误;B 、2+3=5>4可以构成三角形,B 正确;C 、2+5=7<8,不能构成三角形, C 错误;D 、3+3=6,不能构成三角形,D 错误.故答案选:B .【点睛】本题主要考查三角形的三边关系,比较简单,熟记三边关系定理是解决本题的关键. 12.D解析:D【分析】根据邻补角的定义可求得ABC ∠和ACB ∠,再根据三角形内角和为180°即可求出A ∠.【详解】解:105DBA ∠=︒,125ECA ∠=︒,18010575ABC ∴∠=︒-︒=︒,18012555ACB ∠=︒-︒=︒.180755550A ∴∠=︒-︒-︒=︒.故选D .【点睛】 本题考查了邻补角和三角形内角和定理,识记三角形内角和为180°是解题的关键.二、填空题13.15【分析】题中没有指出哪个底哪个是腰故应该分情况进行分析以3为腰6为底以6为腰3为底;然后应用三角形三边关系进行验证能否组成三角形即可【详解】当3cm 是腰时3+3=6不符合三角形三边关系故舍去;当解析:15【分析】题中没有指出哪个底哪个是腰,故应该分情况进行分析,以3为腰6为底,以6为腰3为底;然后应用三角形三边关系进行验证能否组成三角形即可.【详解】当3cm是腰时,3+3=6,不符合三角形三边关系,故舍去;当6cm是腰时,6+6=12>3,6-6=0<3,能组成三角形;∴周长=6+6+3=15cm.故它的周长为15cm.故答案为:15.【点睛】此题主要考查等腰三角形的性质及三角形三边关系的运用;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.14.1800°【分析】根据n边形从一个顶点出发可引出(n-3)条对角线可得n-3=9求出n的值最后根据多边形内角和公式可得结论【详解】解:由题意得:n-3=9解得n=12则该n边形的内角和是:(12-2解析:1800°【分析】根据n边形从一个顶点出发可引出(n-3)条对角线,可得n-3=9,求出n的值,最后根据多边形内角和公式可得结论.【详解】解:由题意得:n-3=9,解得n=12,则该n边形的内角和是:(12-2)×180°=1800°,故答案为:1800°.【点睛】本题考查了多边形的对角线和多边形的内角和公式,掌握n边形从一个顶点出发可引出(n-3)条对角线是解题的关键.15.【分析】先根据多边形的内角度数得出每个外角的度数再根据外角和为360°求出多边形的边数最后根据n边形多角线条数为求解即可【详解】∵一个正多边形的每个内角为108°∴每个外角度数为180°﹣108°=解析:【分析】先根据多边形的内角度数得出每个外角的度数,再根据外角和为360°求出多边形的边数,最后根据n边形多角线条数为(3)2n n-求解即可.【详解】∵一个正多边形的每个内角为108°,∴每个外角度数为180°﹣108°=72°,∴这个正多边形的边数为360°÷72°=5,则这个正多边形所有对角线的条数为(3)2n n-=5(53)2⨯-=5,故答案为:5.【点睛】本题主要考查多边形内角与外角、多边形的对角线,解题的关键是掌握多边形外角和度数为360°,n边形多角线条数为()32n n-.16.90°或40°【分析】画出图形可知有两种情况:∠BAC=∠BAD+∠CAD和∠BAC=∠BAD−∠CAD【详解】:如图:∠BAC=∠BAD+∠CAD=65°+25°=90°;如图:∠BAC=∠BAD解析:90°或40°.【分析】画出图形可知有两种情况:∠BAC=∠BAD+∠CAD和∠BAC=∠BAD−∠CAD.【详解】:如图:∠BAC=∠BAD+∠CAD=65°+25°=90°;如图:∠BAC=∠BAD−∠CAD=65°−25°=40°.故答案为:90°或40°.【点睛】本题考查了三角形的高线的概念:可能在三角形内部,也可能在三角形的外部.注意本题要分两种情况讨论.17.15【分析】记三角形的第三边为c先根据三角形的三边关系确定c的取值范围进而可得三角形第三边的最大值与最小值进一步即可求出答案【详解】解:记三角形的第三边为c则7-3<c<7+3即4<c<10因为第三解析:15【分析】记三角形的第三边为c,先根据三角形的三边关系确定c的取值范围,进而可得三角形第三边的最大值与最小值,进一步即可求出答案.【详解】解:记三角形的第三边为c,则7-3<c<7+3,即4<c<10,因为第三边长为奇数,所以三角形第三边长的最大值是9,最小值是5,所以三角形的周长最大值是3+7+9=19;最小值是3+7+5=15;故答案为:19,15.【点睛】本题考查了三角形的三边关系与不等式组的整数解,属于基础题型,正确理解题意、掌握解答的方法是关键.18.【分析】题目给出等腰三角形有两条边长为11和5而没有明确腰底分别是多少所以要进行讨论还要应用三角形的三边关系验证能否组成三角形【详解】分两种情况:当腰为11时11+11>511-11<5所以能构成三解析:27cm【分析】题目给出等腰三角形有两条边长为11和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】分两种情况:当腰为11时,11+11>5,11-11<5,所以能构成三角形,周长是:11+11+5=27cm;当腰为5时,5+5<11,所以不能构成三角形,故答案为:27cm.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.19.10或50【分析】分点P在AB的上方点P在AB与CD的中间点P在CD的下方三种情况再分别根据平行线的性质三角形的外角性质求解即可得【详解】由题意分以下三种情况:(1)如图点P在AB的上方;(2)如图解析:10或50【分析】分点P在AB的上方、点P在AB与CD的中间、点P在CD的下方三种情况,再分别根据平行线的性质、三角形的外角性质求解即可得.【详解】由题意,分以下三种情况:(1)如图,点P在AB的上方,∠=︒∠=︒,30,20BPD PBA∴∠=∠+∠=︒,150BPD PBA//AB CD ,150CDP ∴∠=∠=︒;(2)如图,点P 在AB 与CD 的中间,延长BP ,交CD 于点E ,//,20AB CD PBA ∠=︒,20BED PBA ∴∠=∠=︒,30BPD ∠=︒,10CDP BPD BED ∴∠=∠-∠=︒;(3)如图,点P 在CD 的下方,//,20AB CD PBA ∠=︒,120PBA ∴∠=∠=︒,30BPD ∠=︒,13030CDP BPD CDP ∴∠=∠+∠=∠+︒>︒与120∠=︒不符,即点P 不可能在CD 的下方;综上,10CDP ∠=︒或50CDP ∠=︒,故答案为:10或50.【点睛】本题考查了平行线的性质、三角形的外角性质,依据题意,正确分三种情况讨论是解题关键.20.15°【分析】先根据直角三角板的性质得出∠B 及∠CDE 的度数再由补角的定义得出∠BDF 的度数根据三角形内角和定理即可得出结论【详解】解:∵图中是一副直角三角板∴∠B=45°∠CDE=60°∴∠BDF解析:15°【分析】先根据直角三角板的性质得出∠B 及∠CDE 的度数,再由补角的定义得出∠BDF 的度数,根据三角形内角和定理即可得出结论.【详解】解:∵图中是一副直角三角板,∴∠B=45°,∠CDE=60°,∴∠BDF=180°-60°=120°,∴∠BFD=180°-45°-120°=15°.故答案为:15°.【点睛】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.三、解答题21.(1)EG ⊥FG ,证明见解析;(2)A .45;B .2EOF EPF ∠=∠(在A 、B 两题中任选一题即可)【分析】(1)由AB ∥CD ,可知∠BEF 与∠DFE 互补,由角平分线的定义可得90GEF GFE ∠+∠=︒,由三角形内角和定理可得∠G =90︒,则EG FG ⊥; (2)A .由(1)可知90BEG DFG ∠+∠=︒,根据角平分线的定义可得45MEG MFG ∠+∠=︒,故135MEF MFE ∠+∠=︒,根据三角形的内角和即可求出EMF ∠=45︒;B .设OEF α∠=,OFE β∠=,故EOF ∠=180αβ︒--,再得到180BEO DFO αβ∠+∠=--︒,根据角平分线的定义可得190122PEO PFO αβ︒-∠+∠=-,则119022PEF PFE αβ∠+∠=︒++,再求出EPF ∠,即可比较得到结论.【详解】解:(1)由题意可得,求证:“EG ⊥FG”,证明过程如下∵//AB CD∴∠BEF +∠EFD=180° EG 平分BEF ∠,FG 平分DFE ∠,12GEF BEF ∴∠=∠,12GFE DFE ∠=∠, 1111()180902222GEF GFE BEF DFE BEF DFE ∴∠+∠=∠+∠=∠+⨯︒∠==︒. 在EFG 中,180GEF GFE G ∠+∠+∠=︒,180()1809090G GEF GFE ∴∠=-∠+∠=-︒=︒︒︒,EG FG ∴⊥.(2)A .由(1)可知=90BEG DFG GEF GFE ∠+∠=∠+∠︒,∵BEG ∠的平分线与DFG ∠的平分线交于点M∴∠MEG=12∠BEG ,∠MFG=12∠DFG ∴()111190452222MEG MFG BEG DFG BEG DFG ∠+∠=∠+∠=∠+∠=⨯︒=︒ 则4591350MEF MFE ︒+∠︒=+∠=︒, ∴EMF ∠=180135︒-︒=45︒故答案为:A ,45;B.设OEF α∠=,OFE β∠=,∴EOF ∠=180αβ︒--,∵//AB CD∴∠BEF +∠EFD=180°则180BEO DFO αβ∠+∠=--︒∵BEO ∠的平分线与DFO ∠的平分线交于点P ∴190122PEO PFO αβ︒-∠+∠=-, ∴111190902222PEF PFE αβαβαβ∠+∠=︒--++=︒++, ∴EPF ∠=111809022αβ⎛⎫︒-︒++ ⎪⎝⎭=121902αβ︒--, ∵EOF ∠=1118029022αβαβ⎛⎫︒--=︒-- ⎪⎝⎭, 故2EOF EPF ∠=∠故答案为:B ,2EOF EPF ∠=∠.(在A 、B 两题中任选一题即可)【点睛】本题考查了平行线的性质、角平分线的定义、三角形内角和定理,熟练掌握平行线的性质和角平分线的定义是解题的关键.22.(1)∠A+∠C =∠B+∠D ;(2)①3,4;②110°;③3∠P=∠B+2∠C .【分析】(1)根据三角形的内角和即可得到结论;(2)①以线段AC 为边的“8字型”有3个,以点O 为交点的“8字型”有4个; ②根据角平分线的定义得到∠CAP=∠BAP ,∠BDP=∠CDP ,再根据三角形内角和定理得到∠CAP+∠C=∠CDP+∠P ,∠BAP+∠P=∠BDP+∠B ,两等式相减得到∠C-∠P=∠P-∠B ,即∠P=12(∠C+∠B ),然后把∠C=120°,∠B=100°代入计算即可; ③与②的证明方法一样得到3∠P=∠B+2∠C .【详解】(1)证明:在图1中,有∠A+∠C=180°-∠AOC,∠B+∠D=180°-∠BOD,∵∠AOC=∠BOD,∴∠A+∠C=∠B+∠D;(2)解:①以线段AC为边的“8字型”有3个:以点O为交点的“8字型”有4个:故答案为:3,4;②以M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP∴2∠P+∠BAP+∠CDP=∠B+∠C+∠CAP+∠BDP,∵AP、DP分别平分∠CAB和∠BDC,∴∠BAP=∠CAP,∠CDP=∠BDP,∴2∠P=∠B+∠C,∵∠B=100°,∠C=120°,∴∠P=12(∠B+∠C)=12(100°+120°)=110°;③3∠P=∠B+2∠C,其理由是:∵∠CAP=13∠CAB,∠CDP=13∠CDB,∴∠BAP=23∠CAB,∠BDP=23∠CDB,以M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP∴∠C-∠P=∠CDP-∠CAP=13(∠CDB-∠CAB ), ∠P-∠B=∠BDP-∠BAP=23(∠CDB-∠CAB ). ∴2(∠C-∠P )=∠P-∠B ,∴3∠P=∠B+2∠C .【点睛】本题考查了三角形内角和定理:三角形内角和是180°.也考查了角平分线的定义. 23.110°【分析】根据平行线的性质和三角形外角的性质即可得到结论.【详解】∵BE ∥AD ,∴∠ABE=∠BAD=20°,∵BE 平分∠ABC ,∴∠EBC=∠ABE=20°,∵∠C=90°,∴∠AEB=∠C+∠CBE=90°+20°=110°.【点睛】考查了三角形的外角的性质、平行线的性质和角平分线的定义,解题关键是正确识别图形得出图中角之间的关系.24.(1)//CD AB ,证明见解析;(2)40°【分析】(1)先求证D DFB ∠=∠,再根据平行线判定得到//CD AB ;(2)先求出B 的度数,再根据平行线的性质得到DEG ∠的度数.【详解】(1)//CD AB ;理由如下:∵BE DF ⊥,∴90FGB ∠=︒,∴18090DFB B FGB ∠+∠=︒-∠=︒,∵190B ∠+∠=︒,∴1DFB ∠=∠,∵//AE DF ,∴1D ∠=∠,∴D DFB ∠=∠,∴//CD AB .(2)∵//AE DF ,50A ∠=︒,∴50DFB A ∠=∠=︒,∵90DFB B ∠+∠=︒,∴40B ∠=︒,∵//CD AB ,∴40DEG B ∠=∠=︒.【点睛】考查平行线的判定和性质,掌握平行线的判定和性质是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行,④a ∥b ,b ∥c ⇒a ∥c .25.80ACB ∠=︒【分析】根据平行线的性质以及三角形内角和定理即可得到结论.【详解】解:由已知,265∠=︒,315∠=︒,85DBC ∠=︒∵//BD AE∴1265∠=∠=︒∴41856520DBC ∠=∠-∠=︒-︒=︒在ABC 中18018065152080ACB ABC BAC ∠=︒-∠-∠=︒-︒-︒-︒=︒【点睛】本题考查的是方向角的概念,平行线的性质以及三角形内角和定理,熟练掌握三角形的内角和是解答此题的关键.26.(1)60BAC ∠=;(2)20EAD ∠=【分析】(1)根据三角形的内角和定理求解即可;(2)根据垂直定义和三角形内角和定理求得∠DAC=10°,再根据角平分线的定义求得∠CAE=30°,两角作差即可求解.【详解】解:(1)∵180B BAC C ∠+∠+∠=,40B ∠=,80C ∠=,∴180408060BAC ∠=--=;(2)∵AD BC ⊥,∴90ADC ∠=,∵180,80DAC ADC C C ∠=-∠-∠∠=,∴180908010DAC ∠=--=,∵AE 平分BAC ∠, ∴1302BAE CAE BAC ∠=∠=∠=, ∵EAD CAE DAC ∠=∠-∠,∴20EAD ∠=.【点睛】本题考查了三角形的内角和定理、角平分线的定义、垂直定义,熟练掌握角平分线的定义和三角形的内角和定理是解答的关键.。

北京丰台区第二中学九年级数学下册第二十八章《锐角三角函数》经典习题(含解析)

北京丰台区第二中学九年级数学下册第二十八章《锐角三角函数》经典习题(含解析)

一、选择题1.如图,为方便行人推车过天桥,市政府在10m 高的天桥两端分别修建了50m 长的斜道.用科学计算器计算这条斜道的倾斜角,下列按键顺序正确的是( )A .sin0.2=B .2ndF sin0.2=C .tan0.2=D .2ndF tan0.2= 2.如图,在正方形方格纸中,每个小方格边长为1,A ,B ,C ,D 都在格点处,AB 与CD相交于点O ,则sin ∠BOD 的值等于( )A .1010B .31010C .2105D .1053.菱形的周长为8cm ,高为1cm ,则该菱形两邻角度数比为( )A .5:1B .4:1C .3:1D .2:1 4.如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC 的正切值是( )A .2B .255C .55D .125.如图,在Rt △ABC 中,斜边AB 的长为m ,∠A=35°,则直角边AC 的长是( )A .m·sin35°B .cos35m ︒C .sin 35m ︒D .m·cos35°6.在△ABC 中,∠C=90º,AC=3,AB=4,则下列结论正确的是( )A .34sinA =B .34cos A =C .34tan A =D .34cot A = 7.如图,在矩形ABCD 中,AB =6,BC =62,点E 是边BC 上一动点,B 关于AE 的对称点为B ′,过B ′作B ′F ⊥DC 于F ,连接DB ′,若△DB ′F 为等腰直角三角形,则BE 的长是( )A .6B .3C .32D .62﹣6 8.在△ABC 中,若cosA=22,tanB=3,则这个三角形一定是( ) A .锐角三角形 B .直角三角形C .钝角三角形D .等腰三角形 9.如图,在Rt △ABC 中,∠C=90°,AC=4,BC=3,则sinB 的值等于( )A .43B .34C .45D .3510.在Rt △ABC 中,∠C =90°,如果∠A =α,BC =a ,那么AC 等于( ) A .a•tanαB .a•cotαC .a•sinαD .a•cosα 11.如图,ABC 中,6AB AC AE AC DE ==⊥,,垂直平分AB 于点D ,则EC 的长为( )A .23B .43C .22D .4212.如图,若将四根木条钉成的矩形木框变形为平行四边形ABCD 的形状,并使得其面积变为原矩形面积的一半,则平行四边形ABCD 的内角BCD ∠的大小为( )A .100°B .120°C .135°D .150°13.在Rt △ABC 中,若∠ACB =90°,tanA =12,则sinB =( ) A .12 B .32 C .55 D .25514.如图,等边ABC 边长为a ,点O 是ABC 的内心,120FOG ∠=︒,绕点O 旋转FOG ∠,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①ODE 形状不变;②ODE 的面积最小不会小于四边形ODBE 的面积的四分之一;③四边形ODBE 的面积始终不变;④BDE 周长的最小值为1.5a .上述结论中正确的个数是( )A .4B .3C .2D .115.在课外实践中,小明为了测量江中信号塔A 离河边的距离AB ,采取了如下措施:如图在江边D 处,测得信号塔A 的俯角为40︒,若55DE =米,DE CE ⊥,36CE =米,CE 平行于AB ,BC 的坡度为1:0.75i =,坡长140BC =米,则AB 的长为( )(精确到0.1米,参考数据:sin 400.64︒≈,cos400.77︒≈,tan 400.84︒≈)A .78.6米B .78.7米C .78.8米D .78.9米二、填空题16.如图是一个地铁站入口的双翼闸机.它的双翼展开时,双翼边缘的端点A 与B 之间的距离为10cm ,双翼的边缘AC =BD =54cm ,且与闸机侧立面夹角∠PCA =∠BDQ =30°.当双翼收起时,可以通过闸机的物体的最大宽度为________cm .17.如图,矩形ABCD 中,1AB =,3BC =B 为圆心,BD 为半径画弧,交BC 延长线于M 点,以D 为圆心,CD 为半径画弧,交AD 于点N ,则图中阴影部分的面积是________.18.如图,在Rt ABC 中,90C ∠=︒,30BAC ∠=︒,4AB =.将ABC 以点A 为中心,逆时针旋转60°,得到AB C ''△,连接BC '.则BC '=_____.19.如图ABC 的内接圆于O ,45C ∠=︒,4AB =,则O 的半径为______.20.如图所示,ABO 中,AB OB ⊥,OA=2,AB=1,把ABO 绕点O 旋转150°后得到11A B O ,则点1A 的坐标为_______21.在平面直角坐标系xOy 中,已知一次函数y =kx +b (k ≠0)的图象过点P (1,1),与x 轴交于点A ,与y 轴交于点B ,且tan ∠ABO =2,那么点A 的坐标是_____.22.计算:tan60°﹣cos30°=________;如果∠A 是锐角,且sinA=12,那么∠A=________゜.23.如图 1 的矩形ABCD 中,有一点E 在AD 上,现以BE 为折线将点A 往右折,如图2所示,再过点A 作 AF CD ⊥于点F ,如图3所示,若 123,26,60AB BC BEA ︒∠===, 则图3中AF 的长度为____.24.如图,已知直线l :33y x =,过点()0,1A 作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点1A ;过点1A 作y 轴的垂线交直线l 于点1B ,过点1B 作直线l 的垂线交y 轴于点2A ;…;按此作法继续下去,则点2020A 的坐标为__________.25.计算:112tan 6032()2-+---____. 26.如图,△ABC 是等边三角形,AB =3,点E 在AC 上,AE 23=AC ,D 是BC 延长线上一点,将线段DE 绕点E 逆时针旋转90°得到线段FE ,当AF ∥BD 时,线段AF 的长为____.三、解答题27.如图,在等腰△ABC 中,AB =BC ,∠A =30°,O 为线段AC 上一点,以O 为圆心,线段OC 的长为半径画圆恰好经过点B ,与AC 的另一个交点为D .(1)求证:AB 是圆O 的切线;(2)若⊙O 的半径为1,求图中阴影部分的面积.28.在平面直角坐标系xOy 中,O 的半径为1.对于图形M ,给出如下定义:P 为图形M 上任意一点,Q 为O 上任意一点,如果,P Q 两点之间的距离有最大值,那么称这个最大值为图形M 的“圆距”,记作()d M .如图,已知点()2,0A .(1)直接写出d (点A )的值;(2)设T 是直线24y x =-+上一点,以为T 圆心,1长为半径作T .若()d T 满足()612d O ≤≤,求圆心T 的横坐标x 的取值范围;(3)过点A 画直线2y kx k =-与y 轴交于点B ,当d (线段AB )取最小值时,直接写出k 的取值范围.29.(1)计算:2127-2cos 30132-⎛⎫+-- ⎪⎝⎭(2)解方程:2216124x x x --=+- 30.计算(1)cos 451-sin60︒︒(2)(12)-2-(π-3.14)0-│tan60°-2│。

北京丰台区第二中学数学圆 几何综合(篇)(Word版 含解析)

北京丰台区第二中学数学圆 几何综合(篇)(Word版 含解析)

北京丰台区第二中学数学圆 几何综合(篇)(Word 版 含解析)一、初三数学 圆易错题压轴题(难)1.如图,∠ABC=45°,△ADE 是等腰直角三角形,AE=AD ,顶点A 、D 分别在∠ABC 的两边BA 、BC 上滑动(不与点B 重合),△ADE 的外接圆交BC 于点F ,点D 在点F 的右侧,O 为圆心.(1)求证:△ABD ≌△AFE(2)若AB=42,82<BE ≤413,求⊙O 的面积S 的取值范围.【答案】(1)证明见解析(2)16π<S ≤40π【解析】试题分析:(1)利用同弧所对的圆周角相等得出两组相等的角,再利用已知AE=AD ,得出三角形全等;(2)利用△ABD ≌△AFE ,和已知条件得出BF 的长,利用勾股定理和2<BE 13EF,DF 的取值范围,24S DE π=,所以利用二次函数的性质求出最值.试题解析:(1)连接EF ,∵△ADE 是等腰直角三角形,AE=AD ,∴∠EAD=90°,∠AED=∠ADE=45°,∵AE AE = , ∴∠ADE=∠AFE=45°,∵∠ABD=45°,∴∠ABD=∠AFE ,∵AF AF =,∴∠AEF=∠ADB ,∵AE=AD ,∴△ABD ≌△AFE ;(2)∵△ABD ≌△AFE ,∴BD=EF ,∠EAF=∠BAD ,∴∠BAF=∠EAD=90°,∵42AB =,∴BF=2cos cos45AB ABF =∠=8, 设BD=x ,则EF=x ,DF=x ﹣8,∵BE 2=EF 2+BF 2, 82<BE ≤413 , ∴128<EF 2+82≤208,∴8<EF ≤12,即8<x ≤12,则()222844S DE x x ππ⎡⎤==+-⎣⎦=()2482x ππ-+, ∵2π>0, ∴抛物线的开口向上,又∵对称轴为直线x=4,∴当8<x ≤12时,S 随x 的增大而增大,∴16π<S ≤40π.点睛:本题的第一问解题关键是找到同弧所对的圆周角,第二问的解题关键是根据第一问的结论计算得出有关线段的长度,由于出现线段的取值范围,所以在这个问题中要考虑勾股定理的问题,还要考虑圆的面积问题,得出二次函数,利用二次函数的性质求出最值.2.如图所示,CD 为⊙O 的直径,点B 在⊙O 上,连接BC 、BD ,过点B 的切线AE 与CD 的延长线交于点A ,OE//BD ,交BC 于点F ,交AB 于点E.(1)求证:∠E=∠C ;(2)若⊙O 的半径为3,AD=2,试求AE 的长;(3)在(2)的条件下,求△ABC 的面积.【答案】(1)证明见解析;(2)10;(3)485. 【解析】 试题分析:(1)连接OB ,利用已知条件和切线的性质证明:OE∥BD,即可证明:∠E=∠C;(2)根据题意求出AB 的长,然后根据平行线分线段定理,可求解;(3)根据相似三角形的面积比等于相似比的平方可求解.试题解析:(1)如解图,连接OB,∵CD为⊙O的直径,∴∠CBD=∠CBO+∠OBD=90°,∵AB是⊙O的切线,∴∠ABO=∠ABD+∠OBD=90°,∴∠ABD=∠CBO.∵OB、OC是⊙O的半径,∴OB=OC,∴∠C=∠CBO.∵OE∥BD,∴∠E=∠ABD,∴∠E=∠C;(2)∵⊙O的半径为3,AD=2,∴AO=5,∴AB=4.∵BD∥OE,∴=,∴=,∴BE=6,AE=6+4=10(3)S △AOE==15,然后根据相似三角形面积比等于相似比的平方可得S△ABC= S△AOE==3.我们把“有两条边和其中一边的对角对应相等的两个三角形”叫做“同族三角形”,如图1,在△ABC和△ABD中,AB=AB,AC=AD,∠B=∠B,则△ABC和△ABD是“同族三角形”.(1)如图2,四边形ABCD内接于圆,点C是弧BD的中点,求证:△ABC和△ACD是同族三角形;(2)如图3,△ABC内接于⊙O,⊙O的半径为32AB=6,∠BAC=30°,求AC的长;(3)如图3,在(2)的条件下,若点D在⊙O上,△ADC与△ABC是非全等的同族三角形,AD>CD,求ADCD的值.【答案】(1)详见解析;(2)3;(3)ADCD=6226【解析】【分析】(1)由点C是弧BD的中点,根据弧与弦的关系,易得BC=CD,∠BAC=∠DAC,又由公共边AC,可证得:△ABC和△ACD是同族三角形;(2)首先连接0A,OB,作点B作BE⊥AC于点E,易得△AOB是等腰直角三角形,继而求得答案;(3)分别从当CD=CB时与当CD=AB时进行分析求解即可求得答案.【详解】(1)证明:∵点C是弧BD的中点,即BC CD=,∴BC=CD,∠BAC=∠DAC,∵AC=AC,∴△ABC和△ACD是同族三角形.(2)解:如图1,连接OA,OB,作点B作BE⊥AC于点E,∵OA=OB=32,AB=6,∴OA2+OB2=AB2,∴△AOB是等腰直角三角形,且∠AOB=90°,∴∠C=∠AOB=45°,∵∠BAC=30°,∴BE=AB=3,∴AE=22-=33,AB BE∵CE=BE=3,∴AC=AE+CE=33+3.(3)解:∵∠B=180°﹣∠BAC﹣∠ACB=180°﹣30°﹣45°=105°,∴∠ADC=180°﹣∠B=75°,如图2,当CD=CB时,∠DAC=∠BAC=30°,∴∠ACD=75°,∴AD=AC=33+3,CD=BC=2BE=32,∴AD 333CD 32+==622+; 如图3,当CD=AB 时,过点D 作DF ⊥AC ,交AC 于点F ,则∠DAC=∠ACB=45°,∴∠ACD=180°﹣∠DAC ﹣∠ADC=60°,∴DF=CD•sin60°=6×3=33, ∴AD=2DF=36,∴AD 36CD 6==62. 综上所述:AD CD =62+或62. 【点睛】本题考查圆的综合应用问题,综合运用弧与弦的关系,等腰三角形的性质结合图形作辅助线进行分析证明以及求解,难度较大.4.如图①、②、③是两个半径都等于2的⊙O 1和⊙O 2,由重合状态沿水平方向运动到互相外切过程中的三个位置,⊙O 1和⊙O 2相交于A 、B 两点,分别连结O 1A 、O 1B 、O 2A 、O 2B 和AB .(1)如图②,当∠AO 1B =120°时,求两圆重叠部分图形的周长l ;(2)设∠AO 1B 的度数为x ,两圆重叠部分图形的周长为y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围;(3)在(2)中,当重叠部分图形的周长时,则线段O 2A 所在的直线与⊙O 1有何位置关系?请说明理由.除此之外,它们是否还有其它的位置关系?如果有,请直接写出其它位置关系时的x 的取值范围.【答案】(1)83(2)(0≤x≤180)(3)O2A与⊙O1相切;当0≤x≤90和0≤x≤180时,线段O2A所在的直线与⊙O1相交【解析】试题分析:(1)解法一、依对称性得,∠AO2B=∠AO1B=120°,∴解法二、∵O1A=O1B=O2A=O2B∴AO1BO2是菱形∴∠AO2B=∠AO1B=120°∴l=2׈A=(2)∵由(1)知,菱形AO1BO2中∠AO2B=∠AO1B=x度,∴重叠图形的周长, 即(0≤x≤180)(3) 当时,线段O2A所在的直线与⊙O1相切!理由如下:∵,由(2)可知:,解之x=90度∴AO1B=90°,因此菱形AO1BO2是正方形,∴O1AO2=90°,即O2A⊥O1A,而O1A是⊙O1的半径,且A为半径之外端;∴O2A与⊙O1相切.还有如下位置关系:当0≤x≤90和0≤x≤180时,线段O2A所在的直线与⊙O1相交考点:直线与圆的位置关系点评:本题主要考查直线与圆的位置关系,掌握判定直线与圆的位置关系是解本题的关键,会求函数的解析式,本题难度比较大5.如图1,△ABC内接于⊙O,直径AD交BC于点E,延长AD至点F,使DF=2OD,连接FC并延长交过点A的切线于点G,且满足AG∥BC,连接OC,若cos∠BAC=13,BC=8.(1)求证:CF是⊙O的切线;(2)求⊙O的半径OC;(3)如图2,⊙O的弦AH经过半径OC的中点F,连结BH交弦CD于点M,连结FM,试求出FM的长和△AOF的面积.【答案】(1)见解析;(2)32332232【解析】【分析】(1)由DF=2OD,得到OF=3OD=3OC,求得13OE OCOC OF==,推出△COE∽△FOE,根据相似三角形的性质得到∠OCF=∠DEC=90°,于是得到CF是⊙O的切线;(2)利用三角函数值,设OE=x,OC=3x,得到CE=3,根据勾股定理即可得到答案;(3)连接BD,根据圆周角定理得到角相等,然后证明△AOF∽△BDM,由相似三角形的性质,得到FM为中位线,即可求出FM的长度,由相似三角形的性质,以及中线分三角形的面积为两半,即可求出面积.【详解】解:(1)∵DF=2OD,∴OF=3OD=3OC,∴13 OE OCOC OF==,∵∠COE=∠FOC,∴△COE∽△FOE,∴∠OCF=∠DEC=90°,∴CF是⊙O的切线;(2)∵∠COD=∠BAC,∴cos∠BAC=cos∠COE=13 OEOC=,∴设OE=x,OC=3x,∵BC=8,∴CE=4,∵CE⊥AD,∴OE2+CE2=OC2,∴x2+42=9x2,∴x2(负值已舍去),∴OC =3x =32,∴⊙O 的半径OC 为32;(3)如图,连结BD ,由圆周角定理,则∠OAF=∠DBM ,2AOF ADC ∠=∠,∵BC ⊥AD ,∴AC AB =,∴∠ADC=∠ADB ,∴2AOF ADC BDM ∠=∠=∠,∴△AOF ∽△BDM ;∵点F 是OC 的中点,∴AO :OF=BD :DM=2,又∵BD=DC ,∴DM=CM ,∴FM 为中位线,∴322, ∴S △AOF : S △BDM =(326 2 34=; ∵111118(322)4222222BDM BCD S S BC DE ∆∆==⨯•=⨯⨯⨯= ∴S △AOF =3424=32 【点睛】本题考查了圆的综合问题,圆周角定理,切线的判定和性质,相似三角形的判定和性质,利用勾股定理求边长,以及三角形中线的性质,解题的关键是熟练掌握所学的定理和性质,运用属性结合的思想进行解题.6.如图,在Rt △ABC 中,∠B=90°,∠BAC 的平分线交BC 于点D ,以D 为圆心,D 长为半径作作⊙D .⑴求证:AC 是⊙D 的切线.⑵设AC 与⊙D 切于点E ,DB=1,连接DE ,BF ,EF.①当∠BAD= 时,四边形BDEF为菱形;②当AB= 时,△CDE为等腰三角形.【答案】(1)见解析;(2)①30°,②2+1【解析】【分析】(1) 作DE⊥AC于M,由∠ABC=90°,进一步说明DM=DB,即DB是⊙D的半径,即可完成证明;(2)①先说明△BDF是等边三角形,再运用直角三角形的内角和定理解答即可;②先说明DE=CE=BD=1,再设AB=x,则AE=x,分别表示出AC、BC、AB的长,然后再运用勾股定理解答即可.【详解】⑴证明:如图:作DE⊥AC于M,∵∠ABC=90°,∠BAC的平分线交BC于点D,∴DE=DB.∴DM是⊙D的半径,∴AC是⊙D的切线;⑵①如图:∵四边形BDEF为菱形;∴△BDF是等边三角形∴∠ADB=60°∴∠BAD=90°-60°=30°∴当∠BAD=30°时,四边形BDEF为菱形;②∵△CDE为等腰三角形.∴DE=CE=BD=1,∴DC=2设AB=x,则AE=x∴在Rt△ABC中,AB=x,AC=1+x,BC=1+2∴()222++=+,解得x=2+1(12)1x x∴当AB=2+1时,△CDE为等腰三角形.【点睛】本题考查的是切线的判定、菱形的性质和判定、等腰三角形的判定与性质以及勾股定理的灵活运用;熟练掌握切线的判定方法和灵活应该勾股定理是解答本题的关键.7.如图,四边形ABCD内接于⊙O,AC为直径,AC和BD交于点E,AB=BC.(1)求∠ADB的度数;(2)过B作AD的平行线,交AC于F,试判断线段EA,CF,EF之间满足的等量关系,并说明理由;(3)在(2)条件下过E,F分别作AB,BC的垂线,垂足分别为G,H,连接GH,交BO 于M,若AG=3,S四边形AGMO:S四边形CHMO=8:9,求⊙O的半径.【答案】(1)45°;(2)EA2+CF2=EF2,理由见解析;(3)62【解析】【分析】(1)由直径所对的圆周角为直角及等腰三角形的性质和互余关系可得答案;(2)线段EA,CF,EF之间满足的等量关系为:EA2+CF2=EF2.如图2,设∠ABE=α,∠CBF=β,先证明α+β=45°,再过B作BN⊥BE,使BN=BE,连接NC,判定△AEB≌△CNB (SAS)、△BFE≌△BFN(SAS),然后在Rt△NFC中,由勾股定理得:CF2+CN2=NF2,将相关线段代入即可得出结论;(3)如图3,延长GE,HF交于K,由(2)知EA2+CF2=EF2,变形推得S△ABC=S矩形BGKH,S△BGM=S四边形COMH,S△BMH=S四边形AGMO,结合已知条件S四边形AGMO:S四边形CHMO=8:9,设BG=9k,BH=8k,则CH=3+k,求得AE的长,用含k的式子表示出CF和EF,将它们代入EA2+CF2=EF2,解得k的值,则可求得答案.【详解】解:(1)如图1,∵AC为直径,∴∠ABC=90°,∴∠ACB+∠BAC=90°,∵AB=BC,∴∠ACB=∠BAC=45°,∴∠ADB=∠ACB=45°;(2)线段EA,CF,EF之间满足的等量关系为:EA2+CF2=EF2.理由如下:如图2,设∠ABE=α,∠CBF=β,∵AD∥BF,∴∠EBF=∠ADB=45°,又∠ABC=90°,∴α+β=45°,过B作BN⊥BE,使BN=BE,连接NC,∵AB =CB ,∠ABE =∠CBN ,BE =BN , ∴△AEB ≌△CNB (SAS ),∴AE =CN ,∠BCN =∠BAE =45°,∴∠FCN =90°.∵∠FBN =α+β=∠FBE ,BE =BN ,BF =BF ,∴△BFE ≌△BFN (SAS ),∴EF =FN ,∵在Rt △NFC 中,CF 2+CN 2=NF 2,∴EA 2+CF 2=EF 2;(3)如图3,延长GE ,HF 交于K ,由(2)知EA 2+CF 2=EF 2,∴12EA 2+12CF 2=12EF 2, ∴S △AGE +S △CFH =S △EFK ,∴S △AGE +S △CFH +S 五边形BGEFH =S △EFK +S 五边形BGEFH ,即S △ABC =S 矩形BGKH ,∴12S △ABC =12S 矩形BGKH , ∴S △GBH =S △ABO =S △CBO ,∴S △BGM =S 四边形COMH ,S △BMH =S 四边形AGMO ,∵S 四边形AGMO :S 四边形CHMO =8:9,∴S △BMH :S △BGM =8:9,∵BM 平分∠GBH ,∴BG :BH =9:8,设BG =9k ,BH =8k ,∴CH =3+k ,∵AG =3,∴AE =2,∴CF 2(k+3),EF 2(8k ﹣3),∵EA 2+CF 2=EF 2,∴222(32)2(3)]2(83)]k k ++=-,整理得:7k 2﹣6k ﹣1=0,解得:k 1=﹣17(舍去),k 2=1. ∴AB =12,∴AO =2AB =62, ∴⊙O 的半径为62.【点睛】本题属于圆的综合题,考查了圆的相关性质及定理、全等三角形的判定与性质、多边形的面积公式、勾股定理及解一元二次方程等知识点,熟练运用相关性质及定理是解题的关键.8.已知:AB 为⊙O 直径,弦CD ⊥AB ,垂足为H ,点E 为⊙O 上一点,AE BE =,BE 与CD 交于点F .(1)如图1,求证:BH =FH ;(2)如图2,过点F 作FG ⊥BE ,分别交AC 、AB 于点G 、N ,连接EG ,求证:EB =EG ; (3)如图3,在(2)的条件下,延长EG 交⊙O 于M ,连接CM 、BG ,若ON =1,△CMG 的面积为6,求线段BG 的长.【答案】(1)见解析;(2)见解析;(3)10 .【解析】【分析】(1)连接AE ,根据直径所对圆周角等于90°及弧与弦的关系即可得解;(2)根据题意,过点C 作CQ FG CS FB ⊥⊥,,连接CE BC 、,通过证明Rt CGQ Rt CBS ∆≅∆,CBE CGE ∆≅∆即可得解;(3)根据题意,过点G 作GT CD ⊥于T ,连接CN ,设CAB α∠=,证明()CMG CNG AAS ∆≅∆,再由面积法及勾股定理进行计算求解即可.【详解】解:(1)如下图,连接AE∵AB 为直径∴90AEB =︒∠∵AE BE =∴AE BE =∴45B ∠=︒又∵CD AB ⊥于H ∴45HFB ∠=︒∴HF HB =;(2)如下图,过点C 作CQ FG CS FB ⊥⊥,,连接CE BC 、AB 为直径,∴90ACB QCS ∠=∠=︒∴GCQ BCS ∠=∠∴()Rt CGQ Rt CBS AAS ∆≅∆∴CG CB =同理()CBE CGE SAS ∆≅∆∴EG EB =;(3)如下图,过点G 作GT CD ⊥于T ,连接CN设CAB α∠=由(2)知:CM CB =∴CM CB =∵HB HF =∴45HBF HFB ∠=∠=︒∵GF BE ⊥∴45NFH NH BH CN BC ∠=︒∴=∴=,,∴CM CB CN ==则:2MEB α∠=902AEG α∠=︒-∴45EAG EGA α∠=∠=︒+∴45M MGC α∠=∠=︒+∴()CMG CNG AAS ∆≅∆∵CMG ∆面积为6∴6CAN GAN S S -=设2122BH NH x OA OB x AN x ====+=+,,则()CGT BCH AAS ∆≅∆∴C BH x ==∴6AN CH AN TH ⋅-⋅=∴1(22)62x CT +⋅= 解得:2x =∵2BC BH BA =⋅∴2210BC =⨯,则25BC =∴2210BG BC ==.【点睛】本题主要考查了圆和三角形的综合问题,熟练掌握圆及三角形的各项重要性质及判定方法是解决本题的关键.9.△ABC 内接于⊙O ,AB=AC ,BD ⊥AC ,垂足为点D ,交⊙O 于点E ,连接AE .(1)如图1,求证:∠BAC=2∠CAE ;(2)如图2,射线AO 交线段BD 于点F ,交BC 边于点G ,连接CE ,求证:BF=CE ;(3)如图3,在(2)的条件下,连接CO 并延长,交线段BD 于点H ,交⊙O 于点M ,连接FM ,交AB 边于点N ,若BH=DH ,四边形BHOG 的面积为2,求线段MN 的长.【答案】(1)见详解;(2)见详解;(3)6MN =【解析】【分析】(1)先依据等腰三角形的性质和三角形的内角和定理证明∠BAC+2∠C=180°,然后得到2∠CAE+2∠E=180°,然后根据同弧所对的圆周角相等得到∠E=∠C,即可得到结论;(2)连接OB、OC.先依据SSS证明△ABO≌△ACO,从而得到∠BAO=∠CAO,然后在依据ASA证明△ABF≌△ACE,最后根据全等三角形的性质可证明BF=CE;(3)连接HG、BM.由三线合一的性质证明BG=CG,从而得到HG是△BCD的中位线,则∠FHO=∠AFD=∠HFO,于是可得到HO=OF,然后得到∠OGH=∠OHG,从而得到OH=OG,则OF=OG,接下来证明四边形MFGB是矩形,然后由MF∥BC证明△MFH∽△CBH,从而可证明HF=FD.接下来再证明△ADF≌△GHF,由全等三角形的性质的到AF=FG,然后再证明△MNB≌△NAF,于是得到MN=NF.设S△OHF=S△OHG=a,则S△FHG=2a,S△BHG=4a,然后由S四边形BHOG=52,可求得a=2,设HF=x,则BH=2x,然后证明△GFH∽△BFG,由相似三角形的性质可得到HG=2x,然后依据S△BHG=12BH•HG=42,可求得x=2,故此可得到HB、GH的长,然后依据勾股定理可求得BG的长,于是容易求得MN的长.【详解】解:(1)∵AB=AC,∴∠ABC=∠ACB.∴∠BAC+2∠C=180°.∵BD⊥AC,∴∠ADE=90°.∴∠E+∠CAE=90°.∴2∠CAE+2∠E=180°.∵∠E=∠ACB,∴2∠CAE+2∠ACB=180°.∴∠BAC=2∠CAE.(2)连接OB、OC.∵AB=AC,AO=AO,OB=OC,∴△ABO≌△ACO.∴∠BAO=∠CAO.∵∠BAC=2∠CAE,∴∠BAO=∠CAE.在△ABF和△ACE中,ABF ACEAB ACBAF CAE∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABF≌△ACE.∴BF=CE.(3)连接HG、BM.∵AB=AC,∠BAO=∠CAO,∴AG⊥BC,BG=CG.∵BH=DH,∴HG是△BCD的中位线.∴HG∥CD.∴∠GHF=∠CDE=90°.∵OA=OC,∴∠OAC=∠OCA.∵∠OAC+∠AFD=90°,∠OCA+∠FHO=90°,∴∠FHO=∠AFD=∠HFO.∴HO=OF.∵∠HFO+∠OGH=90°,∠OHF+∠OHG=90°,∴∠OGH=∠OHG.∴OH=OG.∴OF=OG.∵OM=OC,∴四边形MFCG是平行四边形.又∵MC是圆O的直径,∴∠CBM=90°.∴四边形MFGB是矩形.∴MB=FG,∠FMB=∠AFN=90°.∵MF∥BC,∴△MFH∽△CBH.∴12HF MFBH CB==.∴HF:HD=1:2.∴HF=FD .在△ADF 和△GHF 中,AFD GFH ADF GHF FH FD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△GHF .∴AF=FG .∴MB=AF .在△MNB 和△NAF 中,90BMF AFN ANF BNM MB AF ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△MNB ≌△NAF .∴MN=NF .设S △OHF =S △OHG =a ,则S △FHG =2a ,S △BHG =4a ,∴S 四边形BHOG.∴.设HF=x ,则BH=2x .∵∠HHG=∠GFB ,∠GHF=∠FGB ,∴△GFH ∽△BFG . ∴HF GH HG BH =,即2x HG HG x=. ∴. ∴S △BHG =12BH•HG=12, 解得:x=2.∴HB=4,.由勾股定理可知:.∴.∴.【点睛】本题主要考查的是圆的综合应用,解答本题主要应用了圆周角定理、全等三角形的性质和判定、相似三角形的性质和判断、勾股定理的应用、矩形的性质和判定,找出图中相似三角形和全等三角形是解题的关键.10.如图,在梯形ABCD 中,AD//BC ,AB=CD=AD=5,cos 45B =,点O 是边BC 上的动点,以OB 为半径的O 与射线BA 和边BC 分别交于点E 和点M ,联结AM ,作∠CMN=∠BAM ,射线MN 与边AD 、射线CD 分别交于点F 、N .(1)当点E 为边AB 的中点时,求DF 的长;(2)分别联结AN 、MD ,当AN//MD 时,求MN 的长;(3)将O 绕着点M 旋转180°得到'O ,如果以点N 为圆心的N 与'O 都内切,求O 的半径长.【答案】(1)DF 的长为158;(2)MN 的长为5;(3)O 的半径长为258. 【解析】【分析】(1)作EH BM ⊥于H ,根据中位线定理得出四边形BMFA 是平行四边形,从而利用cos 45B =解直角三角形即可求算半径,再根据平行四边形的性质求FD 即可;(2)先证AMB CNM ∠=∠,再证MAD CNM ∠=∠,从而证明AFM NFD ∆~∆,得到AF MF AF DF NF MF NF DF=⇒=,再通过平行证明AFN DFM ∆~∆,从而得到AF NF AF MF NF DF DF MF=⇒=,通过两式相乘得出AF NF =再根据平行得出NF DF =, 从而得出答案.(3)通过图形得出MN 垂直平分'OO ,从而得出90BAM CMN ∠=∠=︒,再利用cos 45B =解三角函数即可得出答案. 【详解】 (1)如图,作EH BM ⊥于H :∵E 为AB 中点,45,cos 5AB AD DC B ====∴52AE BE == ∴cos 45BH B BE == ∴2BH = ∴2253222EH ⎛⎫=-= ⎪⎝⎭设半径为r ,在Rt OEH ∆中: ()222322r r ⎛⎫=-+ ⎪⎝⎭ 解得:2516r =∵,E O 分别为,BA BM 中点 ∴BAM BEO OBE ∠=∠=∠ 又∵CMN BAM ∠=∠∴CMN OBE ∠=∠∴//MF AB∴四边形BMFA 是平行四边形∴2528AF BM r ===∴2515588FD AD AF =-=-= (2)如图:连接MD AN ,∵,B C BAM CMN ∠=∠∠=∠ ∴AMB CNM ∠=∠又∵AMB MAD ∠=∠∴MAD CNM ∠=∠又∵AFM NFD ∠=∠∴AFM NFD ∆~∆∴AF MF AF DF NF MF NF DF=⇒=①又∵//MD AN∴AFN DFM ∆~∆∴AF NF AF MF NF DF DF MF=⇒=② 由①⨯②得; 22AF NF AF NF =⇒=∴NF DF =∴5MN AD ==故MN 的长为5; (3)作如图:∵圆O 与圆'O 外切且均与圆N 内切设圆N 半径为R ,圆O 半径为r∴'=NO R r NO -=∴N 在'OO 的中垂线上∴MN 垂直平分'OO∴90NMC ∠=︒∵90BAM CMN ∠=∠=︒∴A 点在圆上∴54cos 5AB B BM BM === 解得:254BM = O 的半径长为258【点睛】 本题是一道圆的综合题目,难度较大,掌握相似之间的关系转化以及相关线段角度的关系转化是解题关键.。

北京丰台区第二中学数学轴对称解答题(篇)(Word版 含解析)

北京丰台区第二中学数学轴对称解答题(篇)(Word版 含解析)

北京丰台区第二中学数学轴对称解答题(篇)(Word版含解析)一、八年级数学轴对称解答题压轴题(难)1.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,点E是BC延长线上的一点,且BD=DE.点G是线段BC的中点,连结AG,交BD于点F,过点D作DH⊥BC,垂足为H.(1)求证:△DCE为等腰三角形;(2)若∠CDE=22.5°,DC=2,求GH的长;(3)探究线段CE,GH的数量关系并用等式表示,并说明理由.【答案】(1)证明见解析;(22;(3)CE=2GH,理由见解析.【解析】【分析】(1)根据题意可得∠CBD=12∠ABC=12∠ACB,,由BD=DE,可得∠DBC=∠E=1 2∠ACB,根据三角形的外角性质可得∠CDE=12∠ACB=∠E,可证△DCE为等腰三角形;(2)根据题意可得CH=DH=1,△ABC是等腰直角三角形,由等腰三角形的性质可得BG=GC,2+1,即可求GH的值;(3)CE=2GH,根据等腰三角形的性可得BG=GC,BH=HE,可得GH=GC﹣HC=GC﹣(HE﹣CE)=12BC﹣12BE+CE=12CE,即CE=2GH【详解】证明:(1)∵AB=AC,∴∠ABC=∠ACB,∵BD平分∠ABC,∴∠CBD=12∠ABC=12∠ACB,∵BD=DE,∴∠DBC=∠E=12∠ACB,∵∠ACB=∠E+∠CDE,∴∠CDE=12∠ACB=∠E,∴CD=CE,∴△DCE是等腰三角形(2)∵∠CDE=22.5°,CD=CE2,∴∠DCH=45°,且DH⊥BC,∴∠HDC=∠DCH=45°∴DH=CH,∵DH2+CH2=DC2=2,∴DH=CH=1,∵∠ABC=∠DCH=45°∴△ABC是等腰直角三角形,又∵点G是BC中点∴AG⊥BC,AG=GC=BG,∵BD=DE,DH⊥BC∴BH=HE2+1∵BH=BG+GH=CG+GH=CH+GH+GH2+1∴1+2GH2+1∴GH=2 2(3)CE=2GH理由如下:∵AB=CA,点G是BC的中点,∴BG=GC,∵BD=DE,DH⊥BC,∴BH=HE,∵GH=GC﹣HC=GC﹣(HE﹣CE)=12BC﹣12BE+CE=12CE,∴CE=2GH【点睛】本题是三角形综合题,考查了角平分线的性质,等腰三角形的性质,灵活运用相关的性质定理、综合运用知识是解题的关键.2.如图,在△ABC 中,AB=BC=AC=20 cm .动点P ,Q 分别从A ,B 两点同时出发,沿三角形的边匀速运动.已知点P ,点Q 的速度都是2 cm/s ,当点P 第一次到达B 点时,P ,Q 两点同时停止运动.设点P 的运动时间为t (s ).(1)∠A=______度;(2)当0<t <10,且△APQ 为直角三角形时,求t 的值;(3)当△APQ 为等边三角形时,直接写出t 的值.【答案】(1)60;(2)103或203;(3)5或20 【解析】【分析】(1)根据等边三角形的性质即可解答;(2)需分∠APQ=90°和∠AQP=90°两种情况进行解答;(3)需分以下两种情况进行解答:①由∠A=60°,则当AQ=AP 时,△APQ 为等边三角形;②当P 于B 重合,Q 与C 重合时,△APQ 为等边三角形.【详解】解:(1)60°.(2)∵∠A=60°,当∠APQ=90°时,∠AQP=90°-60°=30°.∴QA=2PA .即2022 2.t t -=⨯解得 10.3t = 当∠AQP=90°时,∠APQ=90°-60°=30°.∴PA=2QA .即2(202)2.t t -=解得 20.3t = ∴当0<t <10,且△APQ 为直角三角形时,t 的值为102033或. (3)①由题意得:AP=2t ,AQ=20-2t∵∠A=60°∴当AQ=AP 时,△APQ 为等边三角形∴2t=20-2t ,解得t=5②当P于B重合,Q与C重合,则所用时间为:4÷2=20综上,当△APQ为等边三角形时,t=5或20.【点睛】本题考查了等边三角形和直角三角形的判定以及动点问题,解答的关键在于正确的分类讨论以及对所学知识的灵活应用.3.(问题情境)学习《探索全等三角形条件》后,老师提出了如下问题:如图①,△ABC 中,若AB=12,AC=8,求BC边上的中线AD的取值范围.同学通过合作交流,得到了如下的解决方法:延长AD到E,使DE=AD,连接BE.根据SAS可证得到△ADC≌△EDB,从而根据“三角形的三边关系”可求得AD的取值范围是.解后反思:题目中出现“中点”“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.(直接运用)如图②,AB⊥AC,AD⊥AE,AB=AC,AD=AE,AF是ACD的边CD上中线.求证:BE=2AF.(灵活运用)如图③,在△ABC中,∠C=90°,D为AB的中点,DE⊥DF,DE交AC于点E,DF交AB于点F,连接EF,试判断以线段AE、BF、EF为边的三角形形状,并证明你的结论.【答案】(1)2<AD<10;(2)见解析(3)为直角三角形,理由见解析.【解析】【分析】(1)根据△ADC≌△EDB,得到BE=AC=8,再根据三角形的构成三角形得到AE的取值,再根据D为AE中点得到AD的取值;(2)延长AF到H,使AF=HF,故△ADF≌△HCF,AH=2AF,由AB⊥AC,AD⊥AE,得到∠BAE+∠CAD=180°,又∠ACH+∠CAH+∠AHC=180°,根据∠D=∠FCH,∠DAF=∠CHF,得到∠ACH+∠CAD=180°,故∠BAE= ACH,再根据AB=AC,AD=AE即可利用SAS证明△BAE≌△ACH,故BE=AH,故可证明BE=2AF.(3)延长FD到点G,使DG=FD,连结GA,GE,证明△DBF≌△DAG,故得到FD=GD,BF=AG,由DE⊥DF,得到EF=EG,再求出∠EAG=90°,利用勾股定理即可求解.【详解】(1)∵△ADC≌△EDB,∴BE=AC=8,∵AB=12,∴12-8<AE<12+8,即4<AE<20,∵D为AE中点∴2<AD<10;(2)延长AF到H,使AF=HF,由题意得△ADF≌△HCF,故AH=2AF,∵AB⊥AC,AD⊥AE,∴∠BAE+∠CAD=180°,又∠ACH+∠CAH+∠AHC=180°,∵∠D=∠FCH,∠DAF=∠CHF,∴∠ACH+∠CAD=180°,故∠BAE= ACH,又AB=AC,AD=AE∴△BAE≌△ACH(SAS),故BE=AH,又AH=2AF∴BE= 2AF.(3)以线段AE、BF、EF为边的三角形为直角三角形,理由如下:延长FD到点G,使DG=FD,连结GA,GE,由题意得△DBF≌△ADG,∴FD=GD,BF=AG,∵DE⊥DF,∴DE垂直平分GF,∴EF=EG,∵∠C=90°,∴∠B+∠CAB=90°,又∠B=∠DAG,∴∠DAG +∠CAB=90°∴∠EAG=90°,故EG2=AE2+AG2,∵EF=EG, BF=AG∴EF2=AE2+BF2,则以线段AE、BF、EF为边的三角形为直角三角形.【点睛】此题主要考查全等三角形的判定与性质,解题的关键是根据题意作出辅助线,根据垂直平分线与勾股定理进行求解.4.(1)问题发现.如图1,ACB ∆和DCE ∆均为等边三角形,点A 、D 、E 均在同一直线上,连接BE .①求证:ADC BEC ∆∆≌.②求AEB ∠的度数.③线段AD 、BE 之间的数量关系为__________.(2)拓展探究.如图2,ACB ∆和DCE ∆均为等腰直角三角形,90ACB DCE ∠=∠=︒,点A 、D 、E 在同一直线上,CM 为DCE ∆中DE 边上的高,连接BE .①请判断AEB ∠的度数为____________.②线段CM 、AE 、BE 之间的数量关系为________.(直接写出结论,不需证明)【答案】(1)①详见解析;②60°;③AD BE =;(2)①90°;②2AE BE CM =+【解析】【分析】(1)易证∠ACD =∠BCE ,即可求证△ACD ≌△BCE ,根据全等三角形对应边相等可求得AD =BE ,根据全等三角形对应角相等即可求得∠AEB 的大小;(2)易证△ACD ≌△BCE ,可得∠ADC =∠BEC ,进而可以求得∠AEB =90°,即可求得DM =ME =CM ,即可解题.【详解】解:(1)①证明:∵ACB ∆和DCE ∆均为等边三角形,∴AC CB =,CD CE =,又∵60ACD DCB ECB DCB ∠+∠=∠+∠=︒,∴ACD ECB ∠=∠,∴()ADC BEC SAS ∆∆≌.②∵CDE ∆为等边三角形,∴60CDE ∠=︒.∵点A 、D 、E 在同一直线上,∴180120ADC CDE ∠=︒-∠=︒,又∵ADC BEC ∆∆≌,∴120ADC BEC ∠=∠=︒,∴1206060AEB ∠=︒-︒=︒.③AD BE =ADC BEC ∆∆≌,∴AD BE =.故填:AD BE =;(2)①∵ACB ∆和DCE ∆均为等腰直角三角形,∴AC CB =,CD CE =,又∵90ACB DCE ∠=∠=︒,∴ACD DCB ECB DCB ∠+∠=∠+∠,∴ACD ECB ∠=∠,在ACD ∆和BCE ∆中,AC CB ACD ECB CD CE =⎧⎪∠=∠⎨⎪=⎩,∴E ACD BC ∆∆≌,∴ADC BEC ∠∠=.∵点A 、D 、E 在同一直线上, ∴180********ADC BEC CDE ∠=∠=︒-∠=︒-︒=︒,∴1351354590AEB CED ∠=︒-∠=︒-︒=︒.②∵CDA CEB ∆∆≌,∴BE AD =.∵CD CE =,CM DE ⊥, ∴DM ME =.又∵90DCE ∠=︒,∴2DE CM =,∴2AE AD DE BE CM =+=+.故填:①90°;②2AE BE CM =+.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等、对应角相等的性质,本题中求证△ACD ≌△BCE 是解题的关键.5.如图,在等边ABC ∆中,线段AM 为BC 边上的中线.动点D 在直线AM 上时,以CD 为一边在CD 的下方作等边CDE ∆,连结BE .(1)求CAM ∠的度数;(2)若点D 在线段AM 上时,求证:ADC BEC ∆≅∆;(3)当动点D 在直线AM 上时,设直线BE 与直线AM 的交点为O ,试判断AOB ∠是否为定值?并说明理由.【答案】(1)30°;(2)证明见解析;(3)AOB ∠是定值,60AOB ∠=︒.【解析】【分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出AC AC =,DC EC =,,60ACB DCE ∠=∠=︒,由等式的性质就可以BCE ACD ∠=∠,根据SAS 就可以得出ADC BEC ∆≅∆;(3)分情况讨论:当点D 在线段AM 上时,如图1,由(2)可知ACD BCE ≅∆∆,就可以求出结论;当点D 在线段AM 的延长线上时,如图2,可以得出ACD BCE ≅∆∆而有30CBE CAD ∠=∠=︒而得出结论;当点D 在线段MA 的延长线上时,如图3,通过得出ACD BCE ≅∆∆同样可以得出结论.【详解】(1)ABC ∆是等边三角形,60BAC ∴∠=︒.线段AM 为BC 边上的中线,12CAM BAC ∴∠=∠, 30CAM ∴∠=︒.(2)ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,ACD DCB DCB BCE ∴∠+∠=∠+∠,ACD BCE ∠∠∴=.在ADC ∆和BEC ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆;(3)AOB ∠是定值,60AOB ∠=︒,理由如下:①当点D 在线段AM 上时,如图1,由(2)可知ACD BCE ≅∆∆,则30CBE CAD ∠=∠=︒,又60ABC ∠=︒,603090CBE ABC ∴∠+∠=︒+︒=︒,ABC ∆是等边三角形,线段AM 为BC 边上的中线AM ∴平分BAC ∠,即11603022BAM BAC ∠=∠=⨯︒=︒ 903060BOA ∴∠=︒-︒=︒.②当点D 在线段AM 的延长线上时,如图2,ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,ACB DCB DCB DCE ∴∠+∠=∠+∠,ACD BCE ∠∠∴=,在ACD ∆和BCE ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆,30CBE CAD ∴∠=∠=︒,同理可得:30BAM ∠=︒,903060BOA ∴∠=︒-︒=︒.③当点D 在线段MA 的延长线上时,ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,60ACD ACE BCE ACE ∴∠+∠=∠+∠=︒,ACD BCE ∠∠∴=,在ACD ∆和BCE ∆中AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS∴∆≅∆,CBE CAD∴∠=∠,同理可得:30CAM∠=︒150CBE CAD∴∠=∠=︒30CBO∴∠=︒,∵30BAM∠=︒,903060BOA∴∠=︒-︒=︒.综上,当动点D在直线AM上时,AOB∠是定值,60AOB∠=︒.【点睛】此题考查等边三角形的性质,全等三角形的判定及性质,等边三角形三线合一的性质,解题中注意分类讨论的思想解题.6.已知在△ABC中,AB=AC ,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求ABFACFSS的值.【答案】(1)①见解析;②见解析;(2)2【解析】【分析】(1)①只要证明∠2+∠BAF=∠1+∠BAF=60°即可解决问题;②只要证明△BFC≌△ADB,即可推出∠BFC=∠ADB=90°;(2)在BF上截取BK=AF,连接AK.只要证明△ABK≌CAF,可得S△ABK=S△AFC,再证明AF=FK=BK,可得S△ABK=S△AFK,即可解决问题;【详解】(1)①证明:如图1中,∵AB=AC,∠ABC=60°∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②证明:如图2中,在Rt△BFD中,∵∠FBD=30°,∴BF=2DF,∵BF=2AF,∴BF=AD,∵∠BAE=∠FBC,AB=BC,∴△BFC≌△ADB,∴∠BFC=∠ADB=90°,∴BF⊥CF(2)在BF上截取BK=AF,连接AK.∵∠BFE=∠2+∠BAF,∠CFE=∠4+∠1,∴∠CFB=∠2+∠4+∠BAC,∵∠BFE=∠BAC=2∠EFC,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB=AC,∴△ABK≌CAF,∴∠3=∠4,S△ABK=S△AFC,∵∠1+∠3=∠2+∠3=∠CFE=∠AKB,∠BAC=2∠CEF,∴∠KAF=∠1+∠3=∠AKF,∴AF=FK=BK,∴S△ABK=S△AFK,∴ABFAFCS2S∆∆=.【点睛】本题考查全等三角形的判定和性质、等边三角形的性质、等腰三角形的判定和性质、直角三角形30度角性质等知识,解题的关键是能够正确添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.7.已知△ABC.(1)在图①中用直尺和圆规作出B的平分线和BC边的垂直平分线交于点O(保留作图痕迹,不写作法).(2)在(1)的条件下,若点D、E分别是边BC和AB上的点,且CD BE=,连接OD OE、求证:OD OE=;(3)如图②,在(1)的条件下,点E、F分别是AB、BC边上的点,且△BEF的周长等于BC 边的长,试探究ABC ∠与EOF ∠的数量关系,并说明理由.【答案】(1)见解析;(2)见解析;(3)ABC ∠与EOF ∠的数量关系是2180ABC EOF ∠+∠=,理由见解析.【解析】【分析】(1)利用基本作图作∠ABC 的平分线;利用基本作图作BC 的垂直平分线,即可完成; (2)如图,设BC 的垂直平分线交BC 于G ,作OH ⊥AB 于H ,用角平分线的性质证明OH=OG ,BH=BG ,继而证明EH =DG ,然后可证明OEH ODG ∆≅∆,于是可得到OE=OD ;(3)作OH ⊥AB 于H ,OG ⊥CB 于G ,在CB 上取CD=BE ,利用(2)得到 CD=BE ,OEH ODG ∆≅∆,OE=OD ,EOH DOG ∠=∠,180ABC HOG ∠+∠=,可证明EOD HOG ∠=∠,故有180ABC EOD ∠+∠=,由△BEF 的周长=BC 可得到DF=EF,于是可证明OEF OGF ∆≅∆,所以有EOF DOF ∠=∠,然后可得到ABC ∠与EOF ∠的数量关系.【详解】解:(1)如图,就是所要求作的图形;(2)如图,设BC 的垂直平分线交BC 于G ,作OH ⊥AB 于H ,∵BO 平分∠ABC ,OH ⊥AB ,OG 垂直平分BC ,∴OH=OG ,CG=BG ,∵OB=OB,∴OBH OBG∆≅∆,∴BH=BG,∵BE=CD,∴EH=BH-BE=BG-CD=CG-CD=DG,在OEH∆和ODG∆中,90OH OGOHE OGDEH DG=⎧⎪∠=∠=⎨⎪=⎩,∴OEH ODG∆≅∆,∴OE=OD.(3)ABC∠与EOF∠的数量关系是2180ABC EOF∠+∠=,理由如下;如图 ,作OH⊥AB于H,OG⊥CB于G,在CB上取CD=BE,由(2)可知,因为 CD=BE,所以OEH ODG∆≅∆且OE=OD,∴EOH DOG∠=∠,180ABC HOG∠+∠=,∴EOD EOG DOG EOG EOH HOG∠=∠+∠=∠+∠=∠,∴180ABC EOD∠+∠=,∵△BEF的周长=BE+BF+EF=CD+BF+EF=BC∴DF=EF,在△OEF和△OGF中,OE ODEF FDOF OF=⎧⎪=⎨⎪=⎩,∴OEF OGF∆≅∆,∴EOF DOF∠=∠,∴2EOD EOF∠=∠,∴2180ABC EOF∠+∠=.【点睛】本题考查了角平分线的性质、垂直平分线的性质及全等三角形的判定与性质,还考查了基本作图.熟练掌握相关性质作出辅助线是解题关键,属综合性较强的题目,有一定的难度,需要有较强的解题能力.8.如图,已知ABC ∆()AB AC BC <<,请用无刻度直尺和圆规,完成下列作图(不要求写作法,保留作图痕迹):(1)在边BC 上找一点M ,使得:将ABC ∆沿着过点M 的某一条直线折叠,点B 与点C 能重合,请在图①中作出点M ;(2)在边BC 上找一点N ,使得:将ABC ∆沿着过点N 的某一条直线折叠,点B 能落在边AC 上的点D 处,且ND AC ⊥,请在图②中作出点N .【答案】(1)见详解;(2)见详解.【解析】【分析】(1)作线段BC 的垂直平分线,交BC 于点M ,即可;(2)过点B 作BO ⊥BC ,交CA 的延长线于点O ,作∠BOC 的平分线交BC 于点N ,即可.【详解】(1)作线段BC 的垂直平分线,交BC 于点M ,即为所求.点M 如图①所示:(2)过点B 作BO ⊥BC ,交CA 的延长线于点O ,作∠BOC 的平分线交BC 于点N ,即为所求.点N 如图②所示:【点睛】本题主要考查尺规作图,掌握尺规作线段的中垂线和角平分线,是解题的关键.9.定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段....叫做这个三角形的三分线.(1)图①是顶角为36︒的等腰三角形,这个三角形的三分线已经画出,请你在图②中用不同于图①的方法画出顶角为36︒的等腰三角形的三分线,并标注每个等腰三角形顶角的度数(若两种方法分得的三角形成3对全等三角形,则视为同一种);(2)图③是顶角为45︒的等腰三角形,请你在图③中画出顶角为45︒的等腰三角形的三分线,并标注每个等腰三角形顶角的度数.(3)ABC 中,30B ∠=︒,AD 和DE 是ABC 的三分线,点D 在BC 边上,点E 在AC 边上,且AD BD =,DE CE =,设c x ∠=︒,则x 所有可能的值为_________.【答案】(1)见详解;(2)见详解;(3)20或40.【解析】【分析】(1)作底角的平分线,再作底边的平行线,即可得到三分线;(2)过底角定点作对边的高,形成一个等腰直角三角形和一个直角三角形,然后再构造一个等腰直角三角形,即可.(3)根据题意,先确定30°角然后确定一边为BA ,一边为BC ,再固定BA 的长,进而确定D 点,分别考虑AD 为等腰三角形的腰和底边,画出示意图,列出关于x 的方程,即可得到答案.【详解】(1)如图所示:(2)如图所示:(3)①当AD=AE 时,如图4,∵DE CE =,c x ∠=︒,∴∠EDB=x °,∴∠ADE=∠AED=2x °,∵AD BD =,∴∠BAD=∠B=30°,∴30+30=2x+x ,解得:x=20;②当AD=DE 时,如图5,∵DE CE =,c x ∠=︒,∴∠EDB=x °,∴∠DAE=∠AED=2x °,∵AD BD =,∴∠BAD=∠B=30°,∴30+30+2x+x=180,解得:x=40.③当AE=DE 时,则∠EAD=∠EDA=1802(90)2x x -=-, ∴∠ADC=∠EDA+∠EDC=(90-x)+x=90°又∵∠ADC=30+30=60°,∴这种情况不存在.∴x 所有可能的值为20或40.故答案是:20或40图4 图5【点睛】本题主要考查等腰三角形的判定和性质定理的综合应用,分类讨论,画出图形,是解题的关键.10.如图,在△ABC 中,AB =AC =2,∠B =40°,点D 在线段BC 上运动(D 不与B 、C 重合),连接AD ,作∠ADE =40°,DE 交线段AC 于E 点.(1)当∠BDA =115°时,∠BAD =___°,∠DEC =___°;(2)当DC 等于多少时,△ABD 与△DCE 全等?请说明理由;(3)在点D 的运动过程中,△ADE 的形状可以是等腰三角形吗?若可以,请直接写出∠BDA 的度数;若不可以,请说明理由.【答案】(1) 25,115;(2)当DC =2时,△ABD ≌△DCE ,理由见解析;(3)可以;当∠BDA 的度数为110°或80°时,△ADE 的形状是等腰三角形.【解析】【分析】(1)根据三角形内角和定理,将已知数值代入即可求出BAD ∠,根据平角的定义,可求出EDC ∠的度数,根据三角形内和定理,即可求出DEC ∠.(2)当AB DC =时,利用AAS 可证明ABD DCE ∆≅∆,即可得出2AB DC ==. (3)假设ADE ∆是等腰三角形,分为三种情况讨论:①当AD AE =时,40ADE AED ∠=∠=︒,根据AED C ∠>∠,得出此时不符合;②当DA DE =时,求出70DAE DEA ∠=∠=︒,求出BAC ∠,根据三角形的内角和定理求出BAD ∠,根据三角形的内角和定理求出BDA ∠即可;③当EA ED =时,求出DAC ∠,求出BAD ∠,根据三角形的内角和定理求出ADB ∠.【详解】(1)在BAD 中,40B ∠= ,115BDA ∠=,1801804011525BAD ABD BDA ∴∠=︒-∠-∠=︒-︒-︒=︒,1801801154025EDC ADB ADE ∠=︒-∠-∠=︒-︒-︒=︒.AB AC =,40B ∠=,40B C ∴∠=∠=,1801804025115C E DC D E C ︒-∠-∠=︒-︒-︒=∠=︒.故答案为:25,115;(2)当2DC =时,ABD DCE ∆≅∆.理由如下:40C ∠=,140EDC DEC ∴∠+∠=︒,又40ADE ∠=,140ADB EDC ∴∠+∠=︒,ADB DEC ∴∠=∠.在ABD △和DCE ∆中,B C ∠=∠,ADB DEC ∠=∠,当AB DC =时,()ABD DCE AAS ∆≅∆,2AB DC ∴==;(3)AB AC =,40B C ∴∠=∠=︒,分三种情况讨论:①当AD AE =时,40ADE AED ∠=∠=︒,AED C ∠>∠,∴此时不符合; ②当DA DE =时,即1(18040)702DAE DEA ∠=∠=︒-︒=︒,1804040100BAC ∠=︒-︒-︒=︒,1007030BAD ∴∠=︒-︒=︒;1803040110BDA ∴∠=︒-︒-︒=︒;③当EA ED =时,40ADE DAE ∠=∠=︒,1004060BAD ∴∠=︒-︒=︒,180604080BDA ∴∠=︒-︒-︒=︒;∴当110ADB ∠=︒或80︒时,ADE ∆是等腰三角形.【点睛】本题考查了学生对等腰三角形的判定与性质,全等三角形的判定与性质,三角形内角和定理等知识点的理解和掌握,此题涉及到的知识点较多,综合性较强.。

2024北京丰台区初三二模数学试题及答案

2024北京丰台区初三二模数学试题及答案

2024北京丰台初三二模数 学2024.05第1-8题均有四个选项,符合题意的选项只有一个.1.榫卯(s ǔn m ǎo )是古代中国建筑、家具及其它器械的主要结构方式,是我国工艺文化精神的传承,凸出部分叫榫,凹进部分叫卯.如图是某个部件“榫”的实物图,它的主视图是2.芯片内部有数以亿计的晶体管,为追求更高质量的芯片和更低的电力功耗,需要设计体积更小的晶体管.某品牌手机自主研发了最新型号芯片,其晶体管栅极的宽度 为0.000000014米,将数据0.000000014用科学记数法表示为 A .B .C .D .3.如图,l 1∥l 2,点O 在直线l 2上,将三角板的直角顶点放在点O 处,三角板的两条直角边与l 1交于A ,B 两点,若∠1=46°,则∠2的大小为 A .34°B .44°C .46° D .54°4.实数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是 A. B . C . D .5.如图,△ABC 内接于⊙O ,∠A =45°,BC =,则的长为A .B .π CD .601410.−⨯71410−⨯81410.−⨯91410.−⨯||||a b <a b −>−11a b>22a b <BC π22π6.在平面直角坐标系xOy 中,点,在反比例函数的图象上,且,则下列结论正确的是A. B . C.D .7.某小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如图所示的折线统计图,则最符合这一结果的试验是A .在“石头、剪刀、布”的游戏中,随机出的是“剪刀”B .一副去掉大小王的普通扑克牌洗匀后,从中随机抽取一张牌的花色是红桃C .掷一个质地均匀的正六面体骰子,向上的面点数是4D .不透明的袋子中有红球和黄球各一个,它们除颜色外无其它差别,从中随机摸出一球是黄球8.如图,在平面直角坐标系xOy 中 ,已知y 关于x 的函数图象与x 轴有且只有三个公共点,坐标分别为(-3,0),(-1,0),(3,0).关于该函数的四个结论如下: ①当y >0时,-3<x <-1; ②当x >-3时,y 有最小值;③将该函数图象向右平移1个或3个单位长度后 得到的函数图象经过原点;④点P (m ,-m -1)是该函数图象上一点,则符合 要求的点P 只有两个. 其中正确的结论有A .1个B .2个C .3个D .4个二、填空题(共16分,每题2分)9.若代数式有意义,则实数x 的取值范围是 . 10.分解因式:ab 2﹣4ab +4a = . 11.方程的解为 .12.如图所示,第四套人民币中1角硬币边缘镌刻的图形是正九边形,其内角和为 .13.如图,在□ABCD 中,点E 在边DC 上,若DE ∶EC =1∶2,则BF ∶BE = .11(,)A x y 22(,)B x y 2y x=120x x <<120y y +<120y y +>120y y −<120y y −>4x −23x x =第13题图第14题图14.“机动车行驶到斑马线要礼让行人”等交通法规实施后,某校数学课外实践小组对这些交通法规的了解情况在全校随机调查了部分学生,调查结果分为四种:A .非常了解,B .比较了解,C .基本了解,D .不太了解,实践小组把此次调查结果整理并绘制成如图所示的条形统计图和扇形统计图.若该校共有3000名学生,结合图中的信息,估计全校“非常了解”交通法规的有 人. 15.如图,在△ABC 中,AB =AC =5,BC =6,AD 平分∠BA C 交BC 于D ,分别以点A ,C 为圆心,大于AC 的长为半径作弧,两弧交于点M 和点N ,作直线MN交AD 于点P ,则DP 的长为 .16.在正方形网格图形中,每个小正方形的边长为1,将其顶点称为格点.从一个格点运动到与之相距的另一个格点之间的一次移动,因类似中国象棋中马的“日”字型跳跃,故称为一次“跳马”变换. (1)如图1,在4×4的正方形网格图形中,从格点A 经过一次“跳马”变换可以到达的格点为(填“B ” “C ”或“D ”);(2)如图2,现有6×6的正方形网格图形,若从该正方形的格点M 经过三次“跳马变换到达格点N ,则共有 中不同的跳法.三、解答题(共68分,第17-22题,每题5分,第23 -26题,每题6分,第27-28题,每题7分)17.计算:.18.解不等式组: 19.已知22360a a −−=,求代数式(12)(12)3(12)a a a a +−−−的值.20.在Rt △ABC 中,∠BAC =90°,D 是BC 的中点,过点A 作AE ∥BC ,且AE = BD ,连接BE .(1)求证:四边形ADBE 是菱形;(2)连接CE ,若AB =2,∠AEB =60°,求CE 的长.125118|3|2sin 452()°−+−−−22345,.x x x x +⎧<⎪⎨⎪−<+⎩图1图221.为加快公共领域充电基础设施建设,某停车场计划购买甲、乙两种型号的充电桩.已知购买每台甲型充电桩比乙型充电桩少0.3万元,且用18万元购买甲型充电桩的数量与用24万元购买乙型充电桩的数量相等.求甲、乙两种型号每台充电桩的价格.22.在平面直角坐标系xOy 中,一次函数y =kx +b (k ≠0)的图象由函数y =2x 的图象平移得到,且经过点(1,1).(1)求该一次函数的解析式;(2)当x >-1时,对于x 的每一个值,函数y =mx +2(m ≠0)的值大于一次函数y =kx +b (k ≠0)的值,直接写出m 的取值范围.23.某校甲、乙两个班级各有23名学生进行校运动会入场式的队列训练,为了解这两个班级参加队列训练的学生的身高情况,测量并获取了这些学生的身高(单位:cm ),数据整理如下: a .甲班23名学生的身高:163,163,164,165,165,166,166,166,166,167,167,168,169,169,170,171,171,172,173,173,174,179,180 b .两班学生身高的平均数、中位数、众数如下表所示:(2)在甲班的23名学生中,高于平均身高的学生人数为p 1,在乙班的23名学生中,高于平均身高的学生人数为p 2,则p 1 p 2(填“>” “<”或“=”);(3)若每班只能有20人参加入场式队列表演,首先要求这20人与原来23人的身高平均数相同,其次要求这20人身高的方差尽可能小,则甲班未入选的3名学生的身高分别为________ cm .24.如图,AB 是⊙O 的直径,点C ,E 在⊙O 上,∠CAB =2∠EAB ,点F 在线段AB 的延长线上,且∠AFE =∠ABC . (1)求证:EF 与⊙O 相切; (2)若BF =1,,求BC 的长.4sin 5AFE =25.某实验室在10℃~12℃温度下培育一种植物幼苗,该种幼苗在此温度范围下的生长速度相同.现为了提高其生长速度,研究人员配制了一种营养素,在开始培育幼苗时添加到培育容器中,研究其对幼苗生长速度的影响.研究发现,使用一定量的营养素,会促进该种幼苗的生长速度,营养素超过一定 量时,则会抑制幼苗的生长速度,并且在10℃~12℃范围内的不同温度下,该种幼苗 所能达到的最大生长速度始终不变.经过进一步实验,获得了10℃和12℃温度下营养素用量与幼苗生长速度的部分数据如下表所示: 设营养素用量为x 毫克(0≤x ≤1.0),10℃温度下幼苗生长速度为y 1毫米/天,12℃温度下幼苗生长速度为y 2毫米/天.(2)根据表中数据,发现y 1,y 2都可近似看作x 的函数.在平面直角坐标系xOy 中,描出表中各组数值所对应的点(x ,y 2),并用平滑曲线连接这些点;(3)结合函数图象,回答下列问题:①在12℃温度下,使用约______毫克的营养素时,该种幼苗生长速度最快(结果保留小数点后两位);②当该种幼苗的生长速度在10℃和12℃温度下均不低于1.6毫米/天时,营养素用量x 的取值范围为________(结果保留小数点后两位).26.在平面直角坐标系xOy 中,已知,,是抛物线上的三个点.(1)求该抛物线的对称轴;11(,)A x y 22(,)B x y 33(,)C x y 2220()y ax ax a =−−>(2)若对于,,都有,求证:320a −=;(3)若对于,,都有,求的取值范围.27.如图,等边△ABC 中,过点A 在AB 的右侧作射线AP ,设∠BAP =α(60°<α<90°).点B 与点E 关于直线AP 对称,连接AE ,BE ,CE ,且BE ,CE 分别交射线AP 于点D ,F . (1)依题意补全图形;(2)求∠AFE 的大小;(3)用等式表示线段AF ,CF ,DF 之间的数量关系,并证明.28.在平面直角坐标系xOy 中,⊙O 的半径为2,对于点A 和⊙O 的弦BC ,给出如下定义:若∠BAC =90°,则称弦BC 是点A 的“关联弦”.(1)如图1,已知点(1,0)A ,点12(,0)B,11(C ,22(-,0)B,21(,C , 32(0,)B,31(-,C ,在弦B 1C 1,B 2C 2,B 3C 3中,点A 的“关联弦”是 ; (2)如图2,已知点B (-1),C,-1)在⊙O 上,弦BC 是点A 的“关联弦”,直接写出OA 长度的最大值;(3)如图3,已知点M (0,-2),N (,0),对于线段MN 上一点S ,存在⊙O 的弦BC ,使得弦BC 是点S 的“关联弦”,若对于每一个点S ,将其对应的“关联弦”BC 长度的最大值记为d ,则当点S 在线段MN 上运动时,直接写出d 的取值范围.121x −<<−223x <<120y y <223x <<31m x m <<+32y y >m参考答案一、选择题(共16分,每题2分)17.解:原式=22+3-2-2×22, ···························································· 4分 =22+3-2-2,=2+1. ··············································································· 5分18.解:解不等式①,得2<x , ··················································· 2分解不等式②,得21−>x , ·························································· 4分∴不等式组的解集为221<<−x . ·············································· 5分 19.解:原式=221436a a a −−+=2123a a +−. ························································ 3分∵22360a a −−=,∴2236a a −=. ···························································· 4分∴原式=16+,=7. ··················································································· 5分20.证明:(1)∵AE ∥BC 且AE =BD ,∴四边形ADBE 是平行四边形. ∵在Rt △ABC 中,∠BAC =90°, D 是BC 的中点, ∴AD =BD =DC =12BC . ∴四边形ADBE 是菱形. ······································ 2分 (2)过点E 作EF ⊥CB 交CB 的延长线于点F ,∵四边形ADBE 是菱形,∴AE =BE .∵∠AEB =60°,∴ △AEB 为等边三角形. ∵ AB =2, ∴BE =AB =2. ∴BD =DC =BE =2. ∵AE ∥BC ,∴∠EBF =∠AEB =60°.在Rt △BEF 中,∠F =90°,∠EBF=60°,BE =2. ∴BF =1,EF =3. ∴CF =5.在Rt △CEF 中,∠F =90°,CF =5,EF =3,∴CE =72. ····················································· 5分21.解:(1)设甲种型号充电桩每台x 万元,则乙种型号充电桩每台(x +0.3)万元. ······················ 1分 根据题意得:18240.3x x =+, ····································· 3分 解得:0.9x =. ···················································· 4分 经检验,0.9x =是所列方程的解,且符合实际问题的意义. 当0.9x =时,x +0.3=1.2.答:甲种型号充电桩每台0.9万元,乙种型号充电桩每台1.2万元. ··························· 5分22.解:(1)∵一次函数y =kx +b (k ≠0)的图象由函数y =2x 的图象平移得到,∴k =2. ∴y =2x +b .∵y =2x +b 的图象经过点(1,1), ∴2+b =1. ∴b =-1.∴一次函数解析式为21y x =−. ····································· 3分(2)25≤≤m . ························································· 5分23.解:(1)m =168,n =166. ······················································ 2分(2)p 1<p 2. ································································· 4分 (3)163,164,180. ···················································· 6分24.(1)证明:连接OE,∵AB是⊙O的直径,∴∠ACB=90°.∴∠CAB+∠ABC=90°.∵BE所对的圆心角为∠BOE,圆周角为∠EAB,∴∠BOE=2∠EAB.∵∠CAB=2∠EAB,∴∠BOE=∠CAB.∵∠AFE=∠ABC,∴∠BOE+∠AFE=90°.∴OE⊥EF.∴EF与⊙O相切. ··············································3分(2)解:设⊙O的半径为x,∴OE=OB=x.∵BF=1,∴OF=x+1.∵在Rt△OEF中,4 sin5AFE=∠,∴4 sin5OEAFE=OF∠=.∴415xx=+.∴x=4.∴AB=8.∵∠AFE=∠ABC,∴4 sin sin5ABC=AFE∠∠=.∵在Rt△ACB中,AB=8,∴4 sin5ACABC=AB∠=.∴AC=325.∴BC=245. ··············································6分25.解:(1)1.00;····································································1分(2)·················································································· 3分(3)①0.28; ······························································· 4分②0.17≤x ≤0.60. ··················································· 6分26.解:(1)∵二次函数解析式为y =ax 2-2ax -2(a >0), ∴抛物线的对称轴212a x a−=−=. ······························ 1分 (2)证明:设点22(,)B x y 关于对称轴的对称点为22B x y ''(,),∵抛物线的对称轴1,223x <<,∴210x '−<<.∵点A ,B′在对称轴左侧,a >0,且12210x x '−<<−<<,根据二次函数性质,x <1时,y 随x 的增大而减小,∴12y y >.∵120y y <,∴10y >,20y <.∴当x =-1时,y =0.把(-1,0)代入函数解析式得3a -2=0. ···················· 3分(3)∵抛物线的对称轴1x =,223x <<,∴点22(,)B x y 在对称轴右侧.(ⅰ)当点C 在对称轴右侧时,∵31m x m <<+时,32y y >,根据二次函数性质,x >1时,y 随x 的增大而增大,∴m ≥3.(ⅱ)当点C 在对称轴左侧时,设点C 关于对称轴的对称点为33C'x y '(,),∵31m x m <<+,∵-1=1-m ,-1=1-(m+1),∴312m x 'm −+<<−+.根据二次函数性质,x >1时,y 随x 的增大而增大,∴-m +1≥3,则m ≤-2.由(ⅰ)(ⅱ)可知,m ≤-2或m ≥3.····························· 6分 27.(1)依题意补全图形. ·························································· 1分(2)解:∵点B 与点E 关于直线AP 对称,∴∠BAD =∠EAD=α,AB =AE .∵∠CAE=∠BAD +∠EAD -∠BAC=2α-60°,∵AB=AC ,∴AC=AE .∴∠AEC =∠ACE =120°-α.∴∠AFE =180°-∠AEC -∠EAD = 60°. ··························· 3分(3)猜想:AF =2DF -CF . ··················································· 4分证明:连接BF ,在AP 上截取FG =FC ,连接CG .由(2)可知∠AFE = 60°.∵CF =FG ,∴△CFG 是等边三角形.∴CF =CG ,∠FCG=60°.∵△ABC 是等边三角形,∴AC =BC ,∠ACB=60°.∴∠BCF =∠ACG .∴△BCF ≌△ACG .∴BF =AG .∵点B 与点E 关于直线AP 对称,∴BF =EF ,AF ⊥BE .∵∠DEF =90°-∠DFE =30°,∴EF =2DF .∴BF =AG =2DF .∵AF =AG -FG ,∴AF =2DF -CF . ··························································· 7分 28.解:(1)B 1C 1,B 2C 2; ·························································· 2分 3x '3x '(2)1+ ····································································· 4分(3)4≤d . ····················································· 7分其它解法请参照评分标准酌情给分.。

北京丰台区第二中学数学分式填空选择(篇)(Word版 含解析)

北京丰台区第二中学数学分式填空选择(篇)(Word版 含解析)
需要的时间为:960÷24=40天
需要的总费用为:40×(120+15)=5400元
方案三:甲、乙两工厂合作完成此项任务,设共需要a天完成任务,则
16a+24a=960
∴a=24
∴需要的总费用为:24×(80+120+15)=5 160元
综上所述:甲、乙两工厂合作完成此项任务既省时又省钱.
【点睛】
本题主要考查分式方程的应用,解题的关键在于理解清楚题意,找出等量关系,列出方程求解.需要注意:①分式方程求解后,应注意检验其结果是否符合题意;②选择最优方案时,需将求各个方案所需时间和所需费用,经过比较后选择最优的那个方案.
北京丰台区第二中学数学分式填空选择(篇)(Word版 含解析)
一、八年级数学分式填空题(难)
1.已知关于x的分式方程 - =0无解,则a的值为____________.
【答案】-1或0或
【解析】
若关于x的分式方程 - =0无解,则最简公分母为零或所化成的整式方程无解.
解:去分母方程两边同乘 得,
当 即 时,整式方程无解,即分式方程无解;
方案一:前 米的道路由甲工程队改造,后 米的道路由乙工程队改造;
方案二:完成整个道路改造前一半时间由甲工程队改造,后一半时间由乙工程队改造.
根据上述描述,请你判断哪种改造方案所用时间少?并说明理由.
【答案】(1)甲工程队每天道路的长度为180米,乙工程队每天道路的长度为150米;(2)方案二所用的时间少
把x=3和x=-2分别代入2x+m=0中
得m=-6或m=4.
【点睛】
分式方程无解问题或增根问题可按如下步骤进行:①根据最简公分母确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.但也要注意,有时分式方程转化成的整式方程本身没有实数根,也是导致分式方程没有实数根的一种情况,所以要考虑全面,免得漏解.

北京丰台区第二中学八年级数学上册第十二章《全等三角形》经典习题(含解析)

北京丰台区第二中学八年级数学上册第十二章《全等三角形》经典习题(含解析)

一、选择题1.如图,△ACB ≌△A′C B′,∠ACB =70°,∠ACB′=100°,则∠BCA′度数是( )A .40°B .35C .30°D .45°2.如图,,,AB AD CB CD AC BD ==、相交于点O ,则下列说法中正确的个数是( ) ①OD OB =;②点O 到CB CD 、的距离相等;③BDA BDC ∠=∠;④BD AC ⊥A .4B .3C .2D .13.如图,点O 是△ABC 中∠BCA ,∠ABC 的平分线的交点,已知△ABC 的面积是12,周长是8,则点O 到边BC 的距离是( )A .1B .2C .3D .44.如图,在△ABC 中,∠B =∠C =50°,BD =CF ,BE =CD ,则∠EDF 的度数是( )A .40°B .50°C .60°D .30°5.如图,AB 是线段CD 的垂直平分线,则图中全等三角形的对数有( )A .2对B .3对C .4对D .5对6.如图,在ABC 中,B C ∠=∠,BD CE =,BF CD =,则EDF ∠等于( )A .90A ︒-∠B .1802A ︒-∠C .1902A ︒-∠D .11802A ︒-∠ 7.在平面直角坐标系xOy 中,以原点O 为圆心,任意长为半径作弧,分别交x 轴的负半轴和y 轴的正半轴于A 点,B 点,分别以点A ,点B 为圆心,AB 的长为半径作弧,两弧交于P 点,若点P 的坐标为(m ,n),则下列结论正确的是( )A .m =2nB .2m =nC .m =nD .m =-n 8.如图,AB =AC ,AD =AE ,∠A =105°,∠D =25°,则∠ABE 等于( )A .65°B .60°C .55°D .50°9.已知如图,AC ⊥BC ,DE ⊥AB ,AD 平分∠BAC ,下面结论错误的是( )A .BD +ED =BCB .DE 平分∠ADBC .AD 平分∠EDC D .ED +AC >AD10.下列命题的逆命题是假命题的是( )A .直角三角形两锐角互余B .全等三角形对应角相等C .两直线平行,同位角相等D .角平分线上的点到角两边的距离相等 11.如图,∠ACB=90°,AC=BC ,AD ⊥CE ,BE ⊥CE ,垂足分别是点D 、E ,AD=3,BE=1,则DE 的长是( )A .1.5B .2C .22D .1012.如图,在ABC 和△FED 中,AD FC =,AB FE =,下列条件中不能证明F ABC ED ≌△△的是( )A .BC ED =B .A F ∠=∠C .B E ∠=∠D .//AB EF 13.根据下列已知条件,能画出唯一的△ABC 的是( )A .AB =3,BC =4,∠C =40°B .∠A =60°,∠B =45°,AB =4C .∠C =90°,AB =6D .AB =4,BC =3,∠A =30° 14.如图,AD 平分∠BAC ,AB=AC ,连接BD ,CD 并延长,分别交AC ,AB 于点F ,E ,则图中全等三角形共有( ) A .2对B .3对C .4对D .5对 15.如图,△ACB ≌△A 'CB ',∠BCB '=25°,则∠ACA '的度数为( )A .35°B .30°C .25°D .20°二、填空题16.如图,AC=BC ,请你添加一个条件,使AE=BD .你添加的条件是:________.17.如图,四边形ABCD 中,180B D ∠+∠=︒,AC 平分DAB ∠,CM AB ⊥于点M ,若4cm AM =, 2.5cm BC =,则四边形ABCD 的周长为______cm .18.如图所示,在ABC 中,D 是BC 的中点,点A 、F 、D 、E 在同一直线上.请添加一个条件,使BDE CDF ≌(不再添其他线段,不再标注或使用其他字母),并给出证明.你添加的条件是______19.如图,已知//AD BC ,点E 为CD 上一点,AE ,BE 分别平分DAB ∠,CBA ∠.若3cm AE =,4cm BE =,则四边形ABCD 的面积是________.20.如图,AB =4cm ,AC =BD =3cm ,∠CAB =∠DBA ,点P 在线段AB 上以1cm/s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.设运动时间为t (s ),则当△ACP 与△BPQ 全等时,点Q 的运动速度为__cm/s .21.如图,AC//BD ,OA ,OB 分别平分BAC ∠和ABD ∠,OE AB ⊥,垂足为E ,如果OE 5=,那么AC 与BD 的距离是________22.如图,点P 是AOC ∠的角平分线上一点,PD OA ⊥,垂足为点D ,且5PD =,点M 是射线OC 上一动点,则PM 的最小值为__.23.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带第____块去,这利用了三角形全等中的____原理.24.如图,在四边形ABCD 中,90A ∠=︒,3AD =,连接BD ,BD CD ⊥,BD 平分ABC ∠.若P 是BC 边上一动点,则DP 长的最小值为______.25.如图,在直角坐标系中,AD 是Rt △OAB 的角平分线,已知点D 的坐标是(0,-3),AB 的长为12,则△ABD 的面积是_____26.如图,在△ABC 和△DBC 中,∠ACB=∠DBC=90°,E 是BC 的中点,DE ⊥AB ,垂足为F ,AB=DE .若BD=8cm ,则AC 的长为_________.三、解答题27.如图,已知在ABC 中,AB AC =,90BAC ∠=︒,别过B 、C 两点向过A 的直线作垂线,垂足分别为E 、F .求证:EF BE CF =+.28.已知在ABC 中,90ACB ∠=︒,AC BC =,直线l 绕点C 旋转,过点A 作AD l ⊥于D ,过点B 作BE l ⊥于E ,若6AD =,3BE =,画图并直接写出DE 的长. 29.如图,已知:AB =AD ,BC =DE ,AC =AE ,试说明:∠1=∠2.30.已知:如图,AB = AD .请添加一个条件使得△ABC ≌△ADC ,然后再加以证明.。

北京丰台区第二中学八年级数学上册第十一章《三角形》经典习题(含解析)

北京丰台区第二中学八年级数学上册第十一章《三角形》经典习题(含解析)

一、选择题1.下列长度的三条线段可以组成三角形的是( )A .1,2,4B .5,6,11C .3,3,3D .4,8,12 2.小李同学将10,12,16,22cm cm cm cm 的四根木棒首尾相接,组成一个凸四边形,若凸四边形对角线长为整数,则对角线最长为( )A .25cmB .27cmC .28cmD .31cm 3.将一副三角板的直角顶点重合按如图所示方式放置,得到下列结论,其中正确的结论有( )①13∠=∠;②180BAE CAD ∠+∠=︒;③若//BC AD ,则230∠=︒;④若150CAD ∠=︒,则4C ∠=∠.A .1个B .2个C .3个D .4个4.如图,//,40,50,AB CD B C ∠=︒∠=︒则E ∠的度数为( )A .70︒B .80︒C .90︒D .100︒ 5.下列每组数分别是三根小木棒的长度,不能用它们搭成三角形的是( ) A .1cm ,2cm ,3cmB .2cm ,3cm ,4cmC .3cm ,4cm ,5cmD .5cm ,6cm ,7cm 6.如图,AD 是ABC 的外角CAE ∠的平分线,35B ∠=︒,60=︒∠DAC ,则ACD∠的度数为( )A .25︒B .85︒C .60︒D .95︒7.在多边形的一边上任取一点(不是顶点),将这个点与多边形的各顶点连接起来,可以将多边形分割成8个三角形,则该多边形的边数为( )A .8B .9C .10D .118.如图,在ABC 中,B C ∠=∠,D 为BC 边上的一点,点E 在AC 边上,ADE AED ∠=∠,若10CDE ∠=︒,则BAD ∠的度数为( )A .20°B .15°C .10°D .30°9.如图,在ABC ∆中,AD 是ABC ∆的角平分线,DE AC ⊥,若40,60B C ︒︒∠=∠=,则ADE ∠的度数为( )A .30︒B .40︒C .50︒D .60︒ 10.下列长度的三条线段能组成三角形的是( ) A .3,3,4 B .7,4,2 C .3,4,8 D .2,3,5 11.已知直线//a b ,含30角的直角三角板按如图所示放置,顶点A 在直线a 上,斜边BC 与直线b 交于点D ,若135∠=︒,则2∠的度数为( )A .35︒B .45︒C .65︒D .75︒12.下列说法正确的有( )个①把一个角分成两个角的射线叫做这个角的角平分线;②连接C 、D 两点的线段叫两点之间的距离;③两点之间直线最短;④射线上点的个数是直线上点的个数的一半;⑤n 边形从其中一个顶点出发连接其余各顶点,可以画出()3n -条对角线,这些对角线把这个n 边形分成了()2n -个三角形.A .3B .2C .1D .013.现有两根木棒,长度分别为5cm 和13cm ,若不改变木棒的长度,要钉成一个三角形木架,则应在下列四根木棒中选取( )A .20cm 的木棒B .18cm 的木棒C .12cm 的木棒D .8cm 的木棒 14.下列长度的三条线段,能组成三角形的是( ) A .3,5,6 B .3,2,1 C .2,2,4 D .3,6,10 15.如图,在七边形ABCDEFG 中,AB ,ED 的延长线交于点O .若1,2,3,4∠∠∠∠的外角和于210°,则BOD ∠的度数为( )A .30°B .35°C .40°D .45°二、填空题16.如图,BD 是ABC 的中线,点E 、F 分别为BD 、CE 的中点,若AEF 的面积为23cm ,则ABC 的面积是______2cm .17.多边形每一个内角都等于108°,多边形一个顶点可引的对角线的条数是________条. 18.对于一个四边形的四个内角,下面四个结论中,①可以四个角都是锐角;②至少有两个角是锐角;③至少有一个角是钝角;④最多有三个角是钝角;所有正确结论的序号是______.19.从一个多边形的一个顶点出发,一共可作9条对角线,则这个多边形的内角和是_________度.20.如图,∠A +∠B +∠C +∠D +∠E +∠F +∠G +∠H 的度数为___________.21.如图,△ABC 的两条中线AD 、BE 相交于点G ,如果S △ABG =2,那么S △ABC =_____.22.如图,在ABC 中,CE AB ⊥于点E ,AD BC ⊥于点D ,且3AB =,6BC =,5CE =,则AD =_________.23.如图所示,△ABC 中,∠BAC 、∠ABC 、∠ACB 的四等分线相交于D 、E 、F (其中∠CAD =3∠BAD ,∠ABE =3∠CBE ,∠BCF =3∠ACF ),且△DFE 的三个内角分别为∠DFE =60°、∠FDE =53°、∠FED =67°,则∠BAC 的度数为_________°.24.ABC 中,,AB AC 边上的高,CE BD 相交于点F ,,ABC ACB ∠∠的角平分线交于点G ,若=125CGB ∠︒,则CFB ∠=______.25.一个三角形的三个内角的度数的比是1∶2∶3,这个三角形是_________________三角形.(填锐角、直角或钝角)26.一副分别含有30°和45°的直角三角板,拼成如图,则BFD ∠的度数是______.三、解答题27.如图,在ABC 中,A ACB ∠=∠,CD 为ABC 的角平分线,CE 是ABC 的高.(1)若15DCB ∠=︒,求CBD ∠的度数;(2)若36DCE ∠=︒,求ACB ∠的度数.28.如图,BM 是ABC 的中线,AB =5cm ,BC =3cm ,那么ABM 与BCM 的周长的差是多少?29.从7根长度都是1的牙签中选取部分或者全部来摆放三角形(牙签不可以折断),你能摆放出多少种形状不同的三角形(两个全等三角形视为一种三角形)?并请你一一写出每种三角形的三边长.30.如图,在ABC 中,60,80,BAC C AD ︒︒∠=∠=是ABC 的角平分线,点E 是边AC 上一点,且12ADE B ∠=∠,求CDE ∠的度数.。

北京第二中学分校八年级数学上册第十一章《三角形》(含答案)

北京第二中学分校八年级数学上册第十一章《三角形》(含答案)

一、选择题1.如图,在△ABC 中,∠ACB=90°,D 在AB 上,将△ABC 沿CD 折叠,点B 落在AC 边上的点B′处,若'20ADB ∠=︒,则∠A 的度数为( )A .25°B .30°C .35°D .40°2.将一副三角板的直角顶点重合按如图所示方式放置,得到下列结论,其中正确的结论有( ) ①13∠=∠;②180BAE CAD ∠+∠=︒; ③若//BC AD ,则230∠=︒; ④若150CAD ∠=︒,则4C ∠=∠.A .1个B .2个C .3个D .4个 3.若一个三角形的三边长分别为3,7,x ,则x 的值可能是( )A .6B .3C .2D .114.已知两条线段15cm a =,8cm b =,下列线段能和a ,b 首尾相接组成三角形的是( ) A .20cm B .7cmC .5cmD .2cm5.如图,AD 是ABC 的外角CAE ∠的平分线,35B ∠=︒,60=︒∠DAC ,则ACD∠的度数为( )A .25︒B .85︒C .60︒D .95︒6.用若干根等长的小木棍搭建等边三角形(三边相等的三角形),搭建1个等边三角形最少需要3根小木棍,搭建2个等边三角形最少需要5根小木棍,搭建4个等边三角形最少需要小木棍的根数是( ) A .12B .10C .9D .67.已知长度分别为3cm ,4cm ,xcm 的三根小棒可以摆成一个三角形,则x 的值不可能是( ) A .2.4 B .3 C .5 D .8.5 8.若一个多边形的每个内角都等于160°,则这个多边形的边数是( ) A .18 B .19 C .20 D .21 9.下列长度(单位:cm )的三条线段能组成三角形的是( )A .13,11,12B .3,2,1C .5,12,7D .5,13,5 10.在下列长度的四根木棒中,能与2m 、5m 长的两根木棒钉成一个三角形的是( ) A .2m B .3m C .5m D .7m 11.如果一个三角形的两边长分别为4和7,则第三边的长可能是( )A .3B .4C .11D .1212.长度分别为2,3,4,5的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为( ) A .8B .5C .6D .713.在ABC 中,若一个内角等于另两个内角的差,则( ) A .必有一个内角等于30° B .必有一个内角等于45° C .必有一个内角等于60° D .必有一个内角等于90° 14.设四边形的内角和等于a ,五边形的外角和等于b ,则a 与b 的关系是( ). A .a b = B .180a b =+° C .180b a =+︒ D .360b a =+︒ 15.以下列各组线段为边,能组成三角形的是( )A .1,2,3B .2,3,4C .2,5,8D .6,3,3二、填空题16.如图,点D 在ABC 的边BA 的延长线上,点E 在BC 边上,连接DE 交AC 于点F ,若3117DFC B ∠∠==︒,C D ∠=∠,则BED ∠=________.17.将正三角形、正四边形、正五边形按如图所示的位置摆放.如果147∠=︒,220∠=︒,那么3∠= __________.18.如图,点P 是三角形三条角平分线的交点,若∠BPC=100︒,则∠BAC=_________.19.如图,在ABC 中,点D 、E 、F 分别是边BC 、AD 、CE 上的中点,则6ABCS=,则BEF S =△______.20.一个正多边形的每个内角为108°,则这个正多边形所有对角线的条数为_____. 21.一副直角,三角板有一个角的顶点如图所示重合,则下列说法中正确的有_________.①如图 1,若 AB ⊥AE ,则∠BFC=75°; ②图 2 中 BD 过点C ,则有∠DAE+∠DCE=45°; ③图 3中∠DAE+∠DFC 等于 135°;④保持重合的顶点不变,改变三角板BAD 的摆放位置,使得D 在边AC 上,则∠BAE=105°.22.如图,已知∠A =47°,∠B =38°,∠C =25°,则∠BDC 的度数是______.23.如图,△ABC 中,D 为BC 边上的一点,BD :DC=2:3,△ABC 的面积为10,则△ABD 的面积是_________________24.如图,把正三角形、正四边形、正五边形按如图所示的位置摆放,若150,222∠=︒∠=︒,则3∠=_______.25.如图,AB BE ,分别是ABC 中,BC AC 边上的高,6cm BC ,4cm AC =,若3cm =AD ,则BE 的长为__________cm .26.如图,ABC 的角平分线OB 、OC 相交于点O ,40A ∠︒=,则BOC ∠=______.三、解答题27.已知一个多边形的内角和比它的外角和的2倍还大180°,求这个多边形共有多少条对角线.28.如图,在ABC 中,D 是AB 上一点,且AD AC =,连结CD .请在下面空格中用“>”,“<”或“=”填空. (1)AB________AC BC +; (2)2AD________CD ; (3)BDC ∠________A ∠.29.已知一个多边形的内角和比它的外角和的3倍还多180度. (1)求这个多边形的边数;(2)求这个多边形的对角线的总条数.30.如图,AD ,AE 分别是△ABC 的高和角平分线. (1)已知∠B =40°,∠C =60°,求∠DAE 的度数;(2)设∠B =α,∠C =β(α<β).请直接写出用α、β表示∠DAE 的关系式 .。

2023-2024学年北京市丰台区七年级(下)期末数学试卷及答案解析

2023-2024学年北京市丰台区七年级(下)期末数学试卷及答案解析

2023-2024学年北京市丰台区七年级(下)期末数学试卷一、选择题(共30分,每题3分)第1-10题均有四个选项,符合题意的选项只有一个。

1.(3分)如图是丰台区城市形象标识的图案,下列图案可以由如图平移得到的是()A.B.C.D.2.(3分)生物老师直观地介绍某种大麦穗长的分布情况,最适用的统计图是()A.条形统计图B.折线统计图C.扇形统计图D.频数分布直方图3.(3分)下列实数中是无理数的是()A.0.0101B.C.D.4.(3分)若是关于x,y的二元一次方程mx﹣y=3的解,则m的值为()A.1B.﹣1C.2D.﹣25.(3分)能说明命题“如果a>b,那么ac>bc”是假命题的c的值可以是()A.﹣1B.C.1D.6.(3分)用三角板过点A作BC所在直线的垂线,下列三角板的位置摆放正确的是()A.B.C.D.7.(3分)“燕几”是世界上最早的组合家具,由七张桌子(包括2张长桌、2张中桌和3张小桌)拼成,每张桌子高度、宽度均相同,只有桌面的长度不同,七张桌面可以拼成不同的图形.如图是《燕几图》中名为“回文”的桌面拼合方式.如果设长桌的长为x尺,中桌的长为y尺,小桌的长为z尺,那么下列关系式正确的是()A.x:y:z=4:3:2B.x:y:z=2:3:4C.x:y:z=4:2:1D.x:y:z=3:2:18.(3分)地铁是一个城市幸福指数的标配.途经丰台区的部分地铁线路如图所示.在图中分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下三个结论:①当表示新宫的点的坐标为(0,0),表示首经贸的点的坐标为(﹣5,1.5)时,表示西局的点的坐标为(﹣6,3);②当表示新宫的点的坐标为(0,0),表示首经贸的点的坐标为(﹣10,3)时,表示西局的点的坐标为(﹣12,6);③当表示新宫的点的坐标为(1,1),表示首经贸的点的坐标为(﹣4,2.5)时,表示西局的点的坐标为(﹣5,4).所有正确结论的序号是()A.①②B.①③C.②③D.①②③9.(3分)“低空经济”是以各种有人驾驶和无人驾驶航空器的各类低空飞行活动为牵引,辐射带动相关领域融合发展的综合性经济形态,作为新质生产力的代表,首次被写入2024年《政府工作报告》.如图是某研究院关于低空经济市场规模的统计图:根据上面统计图中的信息,下列推断错误的是()A.2021至2026年中国低空经济市场规模逐年上升B.2023年中国低空经济市场规模增量最多C.从2024年开始中国低空经济市场规模增长率变小D.2026年中国低空经济市场规模将突破万亿元10.(3分)为打造生态湿地滨水景观,园林绿化局在永定河两岸笔直且互相平行的景观道MN,PQ上分别放置A,B两盏激光灯.如图,A灯发出的光束AC自AM逆时针旋转至AN便立即回转,B灯发出的光束BD自BQ逆时针旋转至BP便立即回转,两灯不间断照射,A灯每秒转动15°,B灯每秒转动5°,B灯先转动2秒,A灯才开始转动,当B灯光束第一次到达BP之前,两灯的光束互相平行时A灯旋转的时间是()A.3或21秒B.3或19.5秒C.1或19秒D.1或17.5秒二、填空题(共24分,每题3分)11.(3分)16的平方根是.12.(3分)如图,数轴上表示的关于x的不等式的解集是.13.(3分)如图,将木条a,b与木条c钉在一起,∠1=70°,转动木条b,当∠2=°时,木条a与b平行.14.(3分)若x,y满足方程组,则x﹣2y的值是.15.(3分)若关于x的不等式组的解集是x<1,则a的值可以是(写出一个即可).16.(3分)如图,某施工队计划在小区A处修建一条通向公路CD的道路AB,要使路程最短,道路AB 应与公路CD垂直,依据的数学原理是.17.(3分)在平面直角坐标系xOy中,点A(1,1),B(4,3).将线段AB向左平移p(p>0)个单位长度,再向下平移q(q>0)个单位长度,当线段AB的两个端点同时落在坐标轴上时,p+q=.18.(3分)如果无理数T满足m<T<n(其中m是满足不等式的最大整数,n是满足不等式的最小整数),那么称(m,n)为无理数T的“相邻区间”.例如,,称(1,2)为的“相邻区间”.(1)无理数的“相邻区间”是;(2)如果,其中是关于x,y的二元一次方程mx﹣ny=c的一组整数解,那么c的值为.三、解答题(共46分,第19-22题每题5分,第23,25题每题6分,第24,26题每题7分)解答应写出文字说明、演算步骤或证明过程。

北京第二中学分校数学三角形填空选择单元培优测试卷

北京第二中学分校数学三角形填空选择单元培优测试卷

北京第二中学分校数学三角形填空选择单元培优测试卷一、八年级数学三角形填空题(难)1.如图,ABC ∆的面积为1,第一次操作:分别延长AB ,BC ,CA 至点111,,A B C ,使111,,A B AB B C BC C A CA ===,顺次连接111,,A B C ,得到111A B C ∆;第二次操作:分别延长111111,,A B B C C A 至点222,,A B C ,使2111A B A B =,2111B C B C =,2111C A C A =,顺次连接222,,A B C ,得到222A B C ∆,…;按此规律,要使得到的三角形的面积超过2020,最少需经过__________次操作.【答案】4【解析】【分析】连接111,,AC B A C B ,根据两个三角形等底同高可得111111111,C A B C AB A B C A BC B C A B CA ABC S S S S S S S ======从而得出第一次操作:11177A B C ABC S S ∆∆==<2020;同理可得第二次操作22211127749A B C A B C S S ∆∆===<2020……直至第四次操作4443334772401A B C A B C S S ∆∆===>2020,即可得出结论.【详解】解:连接111,,AC B A C B∵111,,A B AB B C BC C A CA ===根据等底同高可得:111111111,,C A B C AB ABC A B C A BC ABC B C A B CA ABC S S S S SS S S S ====== ∴111111111,C A B C AB A B C A BC B C A B CA ABC S S S S S S S ======∴第一次操作:11177A B C ABC S S ∆∆==<2020同理可得第二次操作22211127749A B C A B CS S∆∆===<2020第三次操作333222377343A B C A B CS S∆∆===<2020第四次操作4443334772401A B CA B CS S∆∆===>2020故要使得到的三角形的面积超过2020,最少需经过4次操作,故答案为:4.【点睛】此题考查的是三角形的面积关系和探索规律,掌握两个三角形等底同高时,面积相等是解决此题的关键.2.如图,已知:四边形ABCD中,对角线BD平分∠ABC,∠ACB=74°,∠ABC=46°,且∠BAD+∠CAD=180°,那么∠BDC的度数为_____.【答案】30°【解析】【分析】延长BA和BC,过D点作DE⊥BA于E点,过D点作DF⊥BC于F点,根据BD是∠ABC的平分线可得出△BDE≌△BDF,故DE=DF,过D点作DG⊥AC于G点,可得出△ADE≌△ADG,△CDG≌△CDF,进而得出CD为∠ACF的平分线,得出∠DCA=53°,再根据三角形内角和定理即可得出结论.【详解】解:延长BA和BC,过D点作DE⊥BA于E点,过D点作DF⊥BC于F点,∵BD是∠ABC的平分线在△BDE与△BDF中,ABD CBDBD BDAED DFC∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDE≌△BDF(ASA),∴DE=DF,又∵∠BAD+∠CAD=180°∠BAD+∠EAD=180°∴∠CAD=∠EAD,∴AD为∠EAC的平分线,过D点作DG⊥AC于G点,在Rt△ADE与Rt△ADG中,AD AD DE DG=⎧⎨=⎩,∴△ADE≌△ADG(HL),∴DE=DG,∴DG=DF.在Rt△CDG与Rt△CDF中,CD CD DG DF=⎧⎨=⎩,∴Rt△CDG≌Rt△CDF(HL),∴CD为∠ACF的平分线,∠ACB=74°,∴∠DCA=53°,∴∠BDC=180°﹣∠CBD﹣∠DCA﹣∠ACB=180°﹣23°﹣53°﹣74°=30°.故答案为:30°【点睛】本题考查了多边形的外角和内角,能熟记三角形的外角性质和三角形的内角和定理是解此题的关键,注意:三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角的和.3.如图,将一张三角形纸片 ABC 的一角折叠,使点 A 落在△ABC 外的 A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么α,β,γ 三个角的数量关系是__________ .【答案】γ=2α+β.【解析】【分析】根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.【详解】由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故答案为:γ=2α+β.【点睛】此题考查三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.4.一个多边形的内角和是外角和的72倍,那么这个多边形的边数为_______.【答案】9【解析】【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,然后求解即可.【详解】解:设这个多边形是n边形,根据题意得,(n-2)•180°=72×360°,解得:n=9.故答案为:9.【点睛】本题考查了多边形的内角和公式与外角和定理,多边形的外角和与边数无关,任何多边形的外角和都是360°.5.等腰三角形的三边长分别为:x+1,2x+3,9,则x=________.【答案】3【解析】①当x+1=2x+3时,解得x=−2(不合题意,舍去);②当x+1=9时,解得x=8,则等腰三角形的三边为:9、19、9,因为9+9=18<19,不能构成三角形,故舍去;③当2x+3=9时,解得x=3,则等腰三角形的三边为:4、9、9,能构成三角形。

北京丰台区第二中学五年级下学期期末数学试题及答案

北京丰台区第二中学五年级下学期期末数学试题及答案

北京丰台区第二中学五年级下学期期末数学试题及答案一、选择题1.一根长方体木料长3m ,宽12cm ,高8cm ,把它截成相同的4段,表面积至少增加( )cm 2。

A .144B .216C .5762.观察下图,是怎样从图形A 得到图形B 的( )。

A .先顺时针旋转90°,再向右平移10格B .先逆时针旋转90°,再向右平移10格C .先顺时针旋转90°,再向右平移8格D .先逆时针旋转90°,再向右平移8格 3.下面说法中不正确的是( )。

A .偶数(0除外)都是2的倍数 B .99是质数C .120同时是2.3和5的倍数D .两个奇数的和一定是偶数4.因为120是10的倍数,也是12的倍数,所以120是10和12的( )。

A .公倍数B .最小公倍数C .最小公因数5.分母是8的所有最简真分数的和是( )。

A .1B .2C .3D .46.某书店上半年销售少儿图书7200本,下半年的销量比上半年增加了16。

下半年销量比上半年增加了( )册。

A .1200B .8400C .15600D .以上都不对7.小明要给爸爸沏杯茶,烧水8分钟,洗茶杯1分钟,接水1分钟,找茶叶1分钟,沏茶要1分钟,要让爸爸尽快喝到茶至少要( )分钟才能把茶沏好。

A .9B .10C .118.用27个大小一样的小正方体拼成一个大正方体后,把大正方体的表面涂上颜色,三面涂色的有( )个. A .8B .12C .6D .1二、填空题9.0.5立方米=(________)立方分米 6立方分米=(________)mL 1800立方厘米=(________)立方分米 710千克=(________)克 10.若13x是真分数,12x 是假分数,则x =(________)。

11.在8、25、45、90、17、28中,2的倍数有(________),3的倍数有(________),5的倍数有(________),2、3、5的公倍数有(________)。

北京丰台区第二中学八年级数学下册第二单元《勾股定理》检测(有答案解析)

北京丰台区第二中学八年级数学下册第二单元《勾股定理》检测(有答案解析)

一、选择题1.下列条件中不能确定ABC 为直角三角形的是( ).A .ABC 中,三边长的平方之比为1:2:3B .ABC 中,222AB BC AC +=C .ABC 中,::3:4:5A B C ∠∠∠=D .ABC 中,1,2,3AB BC AC ===2.有一圆柱高为12cm ,底面半径为5πcm ,在圆柱下底面点A 处有一只蚂蚁,它想吃到上底面上与点A 相对的点B 处的食物,则沿侧面爬行的最短路程是( )A .12cmB .13cmC .10cmD .16cm 3.已知锐角△ABC 的三边长恰为三个连续整数,AB >BC >CA ,若边BC 上的高为AD ,则BD ﹣DC =( )A .3B .4C .5D .64.如图,在△ABC 中,∠C=90°,∠B=30°,以A 为圆心,任意长为半径画弧,分别交AB 、AC 于点M 、N ,再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,下列结论:①AD 是BAC ∠的平分线;②∠ADB=120°;③DB=2CD ;④若CD=4,83AB =,则△DAB 的面积为20.其中正确的结论共有( )A .1个B .2个C .3个D .4个5.如图,以AB 为直径的半圆O 过点C ,4AB =,在半径OB 上取一点D ,使AD AC =,30CAB ∠=︒,则点O 到CD 的距离OE 是( )A .2B .1C .2D .226.如图,在△ABC 中,∠C =90°,点D 在边BC 上,AD =BD ,DE 平分∠ADB 交AB 于点E .若AC =12,BC =16,则AE 的长为( )A .6B .8C .10D .127.若实数m 、n 满足340m n -+-=,且m 、n 恰好是Rt ABC △的两条边长,则第三条边长为( ).A .5B .7C .5或7D .以上都不对 8.2002年8月在北京召开的国际数学家大会会标如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积是13,小正方形的面积是1,直角三角形的较长直角边为a ,较短直角边为b ,则2()a b +的值为( )A .25B .19C .13D .1699.如图,在等腰Rt △ABC ,90ABC ∠=︒,O 是ABC 内一点,10OA =,42OB =,6OC =,O '为ABC 外一点,且CBO ABO '≅△△,则四边形AO BO '的面积为( )A .10B .16C .40D .8010.如图,在△ABC 中,∠C =90°,点D 是线段AB 的垂直平分线与BC 的交点,连结AD .若CD =2,BD =4,则AC 的长为( )A .4B .3C .23D .311.如图,在Rt △ABC 中,∠C =90°,DE 是斜边AB 的垂直平分线,与BC 相交于点D 连接AD ,若AC =5,△ACD 的周长为17,则斜边AB 的长为( )A .11B .12C .13D .14 12.等腰三角形腰长10cm ,底边长16cm ,则等腰三角形面积是( )A .296cmB .248cmC .224cmD .232cm 二、填空题13.如图,圆柱形玻璃杯的高为12cm ,底面圆的周长为10cm ,在杯内离底4cm 的点N 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上2cm 与蜂蜜相对的点M 处,则蚂蚁到达蜂蜜所爬行的最短路程为________cm .14.长方形零件图ABCD 中,2BC AB =,两孔中心M ,N 到边AD 上点P 的距离相等,且MP NP ⊥,相关尺寸如图所示,则两孔中心M ,N 之间的距离为__________mm .15.如图,45,AOB AOB ∠=︒∠内有一定点P ,且1OP =,在OA 上有一动点Q ,OB 上有一动点R ,若PQR 周长最小,则最小周长是___________.16.如图,90MON ∠=︒,点A 、B 分别在射线OM ,ON 上,点C 是线段AB 的一点,且2BC AC OC ===,A OC '与AOC 关于直线OC 对称,A O '与AB 相交于点D ,当A DC ∆'是直角三角时2OB 等于__________.17.如图,在52⨯的正方形网格中,点A ,P ,B 为格点,则APB ∠=________.18.如图,点G 为△ABC 的重心.如果AG =CG ,BG =2,AC =4,那么AB 的长等于_________.19.有一个三角形的两边长是8和10,要使这个三角形成为直角三角形,则第三边长为_______.20.如图,在一棵树的10米高B 处有两只猴子,其中一只爬下树走向离树20米的池塘C ,而另一只爬到树顶D 后直扑池塘C ,结果两只猴子经过的距离相等,这棵树有的高是______________ .三、解答题21.如图,在ABC 中,2,1,20AB AC BAC AD BC ︒==∠=⊥于点D ,延长AD 至点E ,使DE AD =,连接BE 和CE .(1)补全图形;(2)若点F 是AC 的中点,请在BC 上找一点P 使AP FP +的值最小,并求出最小值. 22.如图,地面上放着一个小凳子,点A 距离墙面40cm ,在图①中,一根细长的木杆一OA=.在图②中,木杆的一端与点B重合,另端与墙角重合,木杆靠在点A处,50cm一端靠在墙上点C处.(1)求小凳子的高度;OC=,木杆的长度比AB长60cm,求木杆的长度和小凳子坐板的宽(2)若90cmAB.23.如图,长方体盒子(无盖)的长、宽、高分别是12cm,8cm,30cm,在AB中点C处有一滴蜜糖,一只小虫从D处爬到C处去吃,有无数种走法,则最短路程是多少?24.如图,一次“台风”过后,一根旗杆被台风从离地面9米处吹断,倒下的旗杆的顶端落在离旗杆底部12米处,那么这根旗杆被吹断前至少有多高?25.亲爱的同学们,在全等三角形中,我们见识了很多线段关系的论证题,下面请你用本阶段所学知识,分别完成下列题目.(1)如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.容易证明△ACD≌△BCE,则①∠AEB的度数为;②直接写出AE 、BE 、CM 之间的数量关系:(3)如图3,△ABC 中,若∠A =90°,D 为BC 的中点,DE ⊥DF 交AB 、AC 于E 、F ,求证:BE 2+CF 2=EF 2.26.定义:在边长为1的小正方形方格纸中,把顶点落在方格交点上的线段、三角形、四边形分别称为格点线段、格点三角形、格点四边形,请按要求画图:(1)在图1中画出一个面积为1的格点等腰直角三角形ABC ;(2)在图2中画出一个面积为13的格点正方形DEFG ;(3)在图3中画出一条长为5,且不与正方形方格纸的边平行的格点线段1H ; (4)在图4中画出一个周长为3210的格点直角三角形JKL .【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据三角形内角和定理和勾股定理进行判断即可.【详解】解:A 选项:ABC 中,三边长的平方之比为1:2:3,ABC ∴是直角三角形. B 选项:∵在ABC 中,222AB BC AC +=,ABC ∴是直角三角形.C 选项:ABC 中,::3:4:5A B C ∠∠∠=,∴设3,4,5A x B x C x ∠=∠=∠=, 又180A B C ︒∠+∠+∠=,12180x ︒∴=,345x ︒=,460x ︒=,575x ︒=,ABC ∴不是直角三角形.D 选项:在ABC 中,1,AB BC AC ===222AB BC AC ∴+=,ABC ∴是直角三角形.故选C .【点睛】本题考查了三角形内角和定理以及勾股定理,熟练掌握三角形内角和定理和勾股定理是本题的关键.2.B解析:B【分析】要想求得最短路程,首先要把A 和B 展开到一个平面内.根据两点之间,线段最短求出蚂蚁爬行的最短路程.【详解】解:展开圆柱的半个侧面是矩形, 矩形的长是圆柱的底面周长的一半,即52ππ=5cm ,矩形的宽是圆柱的高12cm . 根据两点之间线段最短,知最短路程是矩形的对角线AB 的长,即13==cm 故选:B .【点睛】此题考查最短路径问题,求两个不在同一平面内的两个点之间的最短距离时,一定要展开到一个平面内.根据两点之间,线段最短.确定要求的长,再运用勾股定理进行计算. 3.B解析:B【分析】根据勾股定理,因AD 为公共边可以得到AB 2﹣BD 2=AC 2﹣CD 2再把三边关系代入解答即可.【详解】解:设BC =n ,则有AB =n +1,AC =n ﹣1,AB 2﹣BD 2=AC 2﹣CD 2,∴ AB 2﹣AC 2=BD 2﹣CD 2∴ (n +1)2﹣(n ﹣1)2=(BD ﹣CD )n ,∴BD ﹣CD =4,故选:B .【点睛】此题主要考查了勾股定理,根据题意得出 BD ﹣CD 的长是解题关键.4.C解析:C【分析】连接PN 、PM .根据题意易证明APM APN ≅,即可证明①正确;根据三角形外角的性质即可求出=120ADB ∠︒,故②正确;由30BAD B ∠=∠=︒,可说明AD=BD ,再由AD=2CD ,即可证明BD=2CD ,故③正确;由④所给条件可求出AC 和DB 的长,即可求出=163DAB S ④错误.【详解】如图,连接PN 、PM .由题意可知AM=AN ,PM=PN ,AP=AP ,903060BAC ∠=︒-︒=︒.∴APM APN ≅, ∴1302CAD BAD BAC ∠=∠=∠=︒,即AD 是BAC ∠的平分线,故①正确; ∵=ADB C CAD ∠∠+∠,∴=9030=120ADB ∠︒+︒︒,故②正确;在Rt ACD △中,30CAD ∠=︒,∴AD=2CD ,又∵30BAD B ∠=∠=︒,∴AD=BD ,∴BD=2CD .故③正确;在Rt ABC 中,30B ∠=︒,∴3122BC AB ==, ∴=1248BD BC CD -=-=,又在Rt ACD △中,30CAD ∠=︒,∴343AC CD ==, ∴11==843=16322DAB S BD AC ⨯⨯,故④错误.故选:C .【点睛】本题考查三角形全等的判定和性质,三角形外角的性质,等腰三角形的判定和性质,角平分线的判定以及勾股定理.熟练掌握各个知识点是解答本题的关键.5.A解析:A【分析】在等腰ACD ∆中,顶角30A ∠=︒,易求得75ACD ∠=︒,根据等边对等角,可得30OCA A ∠=∠=︒,由此可得45OCD ∠=︒,即OCE ∆是等腰直角三角形,则2OE =【详解】∵AC AD =,30A ∠=︒,∴75ACD ADC ∠=∠=︒,∵AO OC =,∴30OCA A ∠=∠=︒,∴45OCD ∠=︒,即OCE ∆是等腰直角三角形. 在等腰Rt OCE ∆中,2OC =,因此 2OE =故选:A .【点睛】本题综合考查了等腰三角形的性质、三角形的内角和定理、解直角三角形等知识的应用. 6.C解析:C【分析】首先根据勾股定理求得斜边AB 的长度,然后结合等腰三角形的性质来求AE 的长度.【详解】解:如图,在△ABC 中,∠C=90°,AC=12,BC=16,由勾股定理知:20AB ===,∵AD=BD ,DE 平分∠ADB 交AB 于点E . ∴1102AE BE AB ===, 故选:C .【点睛】 本题主要考查了勾股定理和等腰三角形三线合一.在直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.7.C解析:C【分析】根据绝对值的非负性及算术平方根的非负性求出m=3,n=4,再分两种情况利用勾股定理求出第三边.【详解】∵30m -=,30m -≥≥,∴m-3=0,n-4=0,解得m=3,n=4,当3、4都是直角三角形的直角边长时,第三边长;当3是直角边长,4是斜边长时,第三边长=故选:C .【点睛】此题考查绝对值的非负性及算术平方根的非负性,勾股定理,根据绝对值的非负性及算术平方根的非负性求出m=3,n=4是解题的关键.注意:没有明确给出的是直角三角形直角边长还是斜边长时,应分情况求解第三边长.8.A解析:A【分析】根据正方形的面积及直角边的关系,列出方程组,然后求解.【详解】 解:由条件可得:22131131240a b ab a b ⎧+=⎪-⎪=⎨⎪>>⎪⎩,解之得:32a b =⎧⎨=⎩. 所以2()25a b +=,故选A【点睛】本题考查了正方形、直角三角形的性质及分析问题的推理能力和运算能力.9.C解析:C【分析】连结OO′.先由△CBO ≌△ABO′,得出OB=O′B=42,OC=O′A=10,∠OBC=∠O′BA ,根据等式的性质得出∠O′BO=90°,由勾股定理得到O′O 2=OB 2+O′B 2=32+32=64,则O′O=8.再利用勾股定理的逆定理证明OA 2+O′O 2=O′A 2,得到∠AOO′=90°,那么根据S 四边形AO′BO =S △AOO′+S △OBO′,即可求解.【详解】解:如图,连结OO′.∵△CBO ≌△ABO′,∴2OC=O′A=10,∠OBC=∠O′BA ,∴∠OBC+∠OBA=∠O′BA+∠OBA ,∴∠O′BO=90°,∴O′O 2=OB 2+O′B 2=32+32=64,∴O′O=8.在△AOO′中,∵OA=6,O′O=8,O′A=10,∴OA 2+O′O 2=O′A 2,∴∠AOO′=90°,∴S 四边形AO′BO =S △AOO′+S △OBO′=12×6×8+1222=24+16=40. 故选:C .【点睛】本题考查了等腰直角三角形、全等三角形的性质,勾股定理及其逆定理,四边形的面积,难度适中,正确作出辅助线是解题的关键. 10.C解析:C【分析】根据线段垂直平分线性质得出AD=BD,再用勾股定理即可求出AC.【详解】解:∵点D是线段AB的垂直平分线与BC的交点,BD=4,∴AD=BD=4,∴2222AC AD CD;4223故选:C.【点睛】本题考查了线段垂直平分线的性质,勾股定理的应用,掌握线段垂直平分线的性质是解题关键.11.C解析:C【分析】=,根据三角形的周长公式计算,得到答案.根据线段的垂直平分线的性质得到DA DB【详解】解:DE是AB的垂直平分线,∴=,DA DB∆的周长为17,ACD∴++=,17AC CD ADAC CD DB AC BC∴++=+=,17AC=,5∴=-=,17512BC由勾股定理得,13AB==,故选:C.【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.12.B解析:B【分析】如图:作AD⊥BC于D,先根据等腰三角形的性质求得BD,然后运用勾股定理求得AD,最后运用三角形的面积公式解答即可.【详解】解:如图:作AD⊥BC于D,∵AB=AC=10,∴BD=DC=1BC=8cm,2∴==6∴S△ABC=1BC·AD=48cm2.2故答案为B.【点睛】本题主要考查了等腰三角形“三线合一”的性质以及勾股定理的应用,掌握等腰三角形“三线合一”的性质是解答本题的关键.二、填空题13.【分析】过N作NQ⊥EF于Q作M关于EH的对称点M′连接M′N交EH于P连接MP则MP+PN就是蚂蚁到达蜂蜜的最短距离求出M′QNQ根据勾股定理求出M′N即可【详解】解:如图:沿过A的圆柱的高剪开得解析:55.【分析】过N作NQ⊥EF于Q,作M关于EH的对称点M′,连接M′N交EH于P,连接MP,则MP+PN就是蚂蚁到达蜂蜜的最短距离,求出M′Q,NQ,根据勾股定理求出M′N即可.【详解】解:如图:沿过A的圆柱的高剪开,得出矩形EFGH,过N作NQ⊥EF于Q,作M关于EH 的对称点M′,连接M′N交EH于P,连接MP,则MP+PN就是蚂蚁到达蜂蜜的最短距离,∵ME=M′E,M′P=MP,∴MP+PN=M′P+PN=M′N,∵NQ=1×10cm=5cm,M′Q=12cm-4cm+2cm=10cm,2在Rt△M′QN中,由勾股定理得:2251055+=.故答案为:55【点睛】本题考查了勾股定理,轴对称-最短路线问题的应用,关键是找出最短路线.14.【分析】作MQ ⊥BCNF ⊥AB 交于点O 作根据AAS 证明△得到由得出从而得出OMON 的长最后由勾股定理可求出MN 【详解】解:作MQ ⊥BCNF ⊥AB 交于点O 作MK ⊥AB 于点K 作∵四边形ABCD 是矩形∴M 解析:262【分析】作MQ ⊥BC ,NF ⊥AB 交于点O ,作MM AD '⊥,NN AD '⊥,根据AAS 证明△M PM N NP ''≅∆得到PN MM ''=,NN M P ''=,由2BC AB =得出24NN '=,从而得出OM ,ON 的长,最后由勾股定理可求出MN .【详解】解:作MQ ⊥BC ,NF ⊥AB 交于点O ,作MK ⊥AB 于点K ,作MM AD '⊥,NN AD '⊥,∵四边形ABCD 是矩形,∴MK//AD//BC∴∠90KMM KMQ '=∠=︒∴M '、M 、Q 三点共线,∵∠90MPN =︒,∴∠90M PM N PN ''+∠=︒,∠90N PN PNN ''+∠=︒∴∠M PM PNN ''=∠又∠90PM M PN N ''=∠=︒,MP PN =∴△M PM N NP ''≅∆∴10PN MM ''==,NN M P ''=又∵10ON M P N P N M N M N N ''''+='=+=+则11AB NN '=+,5054104(10)BC ON NN '=+-=-+又∵2BC AB =,即104(10)2(11)NN NN ''-+=+∴24NN '=∴1014OM NN '=-=,1034ON NN '=+=在Rt OMN ∆中,222214341352262()MN ON OM mm =+=+== 故答案为:2【点睛】此题主要考查了运用勾股定理示线段的长,作辅助线构造直角三角形是解答此题的关键.15.【分析】作点P 关于OA 的对称点关于OB 的对称点连接与OAOB 分别相交于点QR 根据轴对称的性质可得从而得到△PQR 的周长并且此时有最小值连接再求出为等腰直角三角形再根据等腰直角三角形的性质求解即可【详 解析:2【分析】作点P 关于OA 的对称点1P ,关于OB 的对称点2P ,连接12PP 与OA 、OB 分别相交于点Q 、R ,根据轴对称的性质可得1PQ PQ =,2PR P R =,从而得到△PQR 的周长12PP =,并且此时有最小值,连接12,PO P O ,再求出12POP△为等腰直角三角形,再根据等腰直角三角形的性质求解即可.【详解】解:如图,作点P 关于OA 的对称点1P ,关于OB 的对称点2P ,连接12PP 与OA 、OB 分别相交于点Q 、R ,所以,1PQ PQ =,2PR P R =, 所以,PQR 的周长1212PQ QR PR PQ QR P R PP ++=++=,由两点之间线段最短得,此时PQR 周长最小,连接12,PO P O , 则1122,,AOP AOP OP OP BOP BOP OP OP ∠=∠=∠=∠=,,所以,12121224590OP OP OP POP AOB ===∠=∠=⨯︒=︒,,所以,12POP △为等腰直角三角,所以,22121222PP OP OP ===, 即PQR 2.2.【点睛】本题考查了轴对称确定最短路线问题,轴对称的性质,等腰直角三角形的判定与性质,勾股定理的应用,难点在于作辅助线得到与PQR 周长相等的线段.16.4或【分析】分两种情况讨论:①当时和②当时分别利用轴对称性质和勾股定理求解即可【详解】解:分两种情况讨论:①当时如图1此时由折叠可知;②当时如图2过点作于点由折叠可知在中在中在中;综上或故答案为:4 解析:4或842-【分析】分两种情况讨论:①当90A DC '∠=︒时和②当90A CD '∠=︒时,分别利用轴对称性质和勾股定理求解即可.【详解】解:2BC AC OC ===,4AB BC AC ∴=+=.分两种情况讨论:①当90A DC '∠=︒时,如图1,此时90ADO ∠=︒,由折叠可知,CA CA '=,OC CA =,OC CA '∴=,COA CA O ''∴∠=∠,COA CAO ∠=∠,COA COA CAO '∴∠=∠=∠,90COA COA CAO '∠+∠+∠=︒,30COA COA CAO '∴∠=∠=∠=︒,∴114222OB AB ==⨯=, 24OB ∴=;②当90A CD '∠=︒时,如图2,过点O 作OH AB ⊥于点H .90A CA ∴='∠︒,由折叠可知,11(360)(36090)13522A CO ACO A CA ''∠=∠=︒-=︒-︒=︒, 1359045HCO A CO A CD ''∴∠=∠-∠=︒-︒=︒,45HOC ∴∠=︒,在Rt OHC ∆中,2OC =,222OH CH OC ∴===, 22AH CH CA ∴=+=+,在Rt OHA ∆中,22222(2)(22)842OA OH AH =+=++=+,在Rt AOB ∆中,22224(842)842OB AB OA -==-+=-;综上,24OB =或842-.故答案为:4或842-.【点睛】本题考查了轴对称的性质,正确利用勾股定理,能分类讨论是解题的关键.17.【分析】延长AP 交网格于点C 连接BC 利用勾股定理求出可得:即可判定△PBC 是等腰直角三角形那么∠BPC=45°再根据邻补角定义求出∠APB 【详解】解:如图延长AP 交网格于点C 连接BC ∵∴∴△PBC 是解析:135︒【分析】延长AP 交网格于点C ,连接BC .利用勾股定理求出2222125,125,PC BC =+==+=221310PB =+=,可得:222,,PC BC PC BC PB =+=即可判定△PBC 是等腰直角三角形,那么∠BPC=45°,再根据邻补角定义求出∠APB .【详解】解:如图,延长AP 交网格于点C ,连接BC .∵2222125,125,PC BC =+==+=221310PB +=,∴222,,PC BC PC BC PB =+=∴△PBC 是等腰直角三角形,∴∠BPC=45°,∴∠APB=180°-∠BPC=135°.故答案为:135°.【点睛】本题考查了勾股定理及其逆定理,作出辅助线,利用平方根的含义解方程,利用勾股定理的逆定理及等腰三角形的判定得出△PBC 是等腰直角三角形是解题的关键.18.【分析】先延长BG 交AC 与点D 再根据重心的性质得出BD=3;证∆ADG∆CDG 得出BD ⊥AC 再利用勾股定理求出AB 的长【详解】解:(如图)延长BG 交AC 与点D ∵点G 为△ABC 的重心BG=2∴AD=C 解析:13【分析】先延长BG 交AC 与点D ,再根据重心的性质得出BD =3;证∆ADG ≅∆CDG ,得出BD ⊥AC ,再利用勾股定理求出AB 的长.【详解】解:(如图)延长BG 交AC 与点D ,∵点G 为△ABC 的重心,BG =2,∴AD =CD ,BD =3,又∵AG =CG ,GD =GD ,∴∆ADG ≅∆CDG ,∴∠ADG =∠CDG ,∴BD ⊥AC ,∵AC =4,∴AD =2,∴AB 22AD BD +2223+1313【点睛】本题主要考查了三角形重心的性质,三角形全等和勾股定理,正确做出辅助线,求出BD 、AD 的长以及证明∆ADG ≅∆CDG 是解决本题的关键.19.或6【分析】分第三边是直角边与斜边两种情况进行讨论利用勾股定理即可求解【详解】设第三边长为x 当第三边是斜边时则x2=82+102=164;∴x=(负值舍去)当第三边是直角边时则斜边长为10∴x2+8解析:6【分析】分第三边是直角边与斜边两种情况进行讨论,利用勾股定理即可求解.【详解】设第三边长为x ,当第三边是斜边时,则x 2=82+102=164;∴x=当第三边是直角边时,则斜边长为10,∴x 2+82=102,解得:x=6,(负值舍去)故答案是:6【点睛】本题考查了勾股定理,直角三角形中,两条直角边的平方和等于斜边的平方;熟练掌握勾股定理并运用分类讨论的思想是解题关键关键.20.15米【分析】根据题意确定已知线段的长再根据勾股定理列方程进行计算【详解】设BD=米则AD=()米CD=()米∵∴解得即树的高度是10+5=15米故答案为:15米【点睛】本题主要考查了勾股定理的应用解析:15米【分析】根据题意确定已知线段的长,再根据勾股定理列方程进行计算.【详解】设BD=x 米,则AD=(10x +)米,CD=(30x -)米,∵222CD AD AC -=,∴()()222301020x x --+=, 解得5x =.即树的高度是10+5=15米.故答案为:15米.【点睛】本题主要考查了勾股定理的应用,把实际问题转化为数学模型,构造直角三角形,然后利用勾股定理解决.三、解答题21.(1)见解析;(2【分析】(1)根据题意补全图形即可;(2)连接EF 交BC 于点P ,根据两点之间线段最短结合等边三角形的性质求解即可.【详解】解:(1)补全图形如下:(2)连接EF 交BC 于点P ,此时AP FP +的值最小.DE AD AD BC =⊥,,BC ∴为AE 的垂直平分线.2,CA CE AP EP ∴===.AP FP EP PF ∴+=+.,120AB AC AD BC BAC ︒=⊥∠=,,60BAD CAD ∴∠=∠=︒.ACE ∴为等边三角形.∵点F 是AC 的中点,1EF AC AF CF ∴⊥==,.在Rt CEF △中,90,1,2CFE CF EC ∠=︒==,3EF ∴=. AP FP ∴+3【点睛】此题主要考查了等边三角形的判定与性质以及勾股定理等知识,熟练掌握相关性质和定理是解答此题的关键.22.(1)30cm ;(2)木杆长100cm ,AB =40 cm .【分析】(1)如图①,过A 作AM 垂直于墙面,垂足于点M ,由40cm AM =,利用勾股定理 在Rt AOM 中,2230(cm)OM AO AM =-=即可;(2)如图②,延长BA 交墙面于点N ,可得90BNC ∠=︒,利用勾股定理在Rt BCN △中,222BN CN BC +=构造方程222(40)60(60)x x ++=+求解即可.【详解】解:(1)如图①,过A 作AM 垂直于墙面,垂足于点M ,根据题意可得:40cm AM =,在Rt AOM 中, 2222504030(cm)OM AO AM =-=-=,即凳子的高度为30cm ;(2)如图②,延长BA 交墙面于点N ,可得90BNC ∠=︒,设AB xcm =,则60CB x =+,40BN x =+,903060CN =-=,在Rt BCN △中,222BN CN BC +=,222(40)60(60)x x ++=+,40x =,6040100(cm)BC =+=.【点睛】本题考查勾股定理的应用,掌握勾股定理应用的条件与结论,关键是构造出符合条件的图形是解题关键.23.25cm【分析】根据题意易知可分三种情况进行展开,如图所示,然后根据勾股定理求出最短路程,最后比较即可.【详解】解:由题意分三种情况:①如图展开,连接DC ,则DC 的长就是从点D 爬到C 处的最短路程,在Rt△ADC中,AD=12+8=20cm,130152AC=⨯=cm,∴由勾股定理得:2225DC AD AC=+=cm,②如图所示:在Rt△DFC中,DF=12cm,FC=8+15=23cm,∴根据勾股定理得:2267325DC DF FC cm cm=+=>,因为长方体盒子是无盖的,所以这种情况不符合题意;③把长方体盒子按照正面、底面、背面进行展开,如图所示:∴DF=12cm,FC=30+8+15=53cm,∴在Rt△DFC中,22295325DC DF FC cm cm+=>,综上所述:从点D爬到C处的最段路程是25cm.【点睛】本题主要考查几何图形的展开图及勾股定理,熟练掌握几何图形的展开图及勾股定理是解题的关键.24.22米【分析】先根据勾股定理求出BC的长,再由旗杆高度=AB+BC解答即可.【详解】解:如下图所示,∵旗杆剩余部分、折断部分与地面正好构成直角三角形,∴BC=222291215AB BC +=+=,∴旗杆的高=AB+BC=9+15=24m ,答:这根旗杆被吹断裂前有24米高.【点睛】本题考查勾股定理在实际生活中的应用,解答此题的关键是从题中抽象出勾股定理这一数学模型,再根据勾股定理进行解答.25.(1)见解析;(2)①90°,②2AE BE CM =+;(3)见解析【分析】(1)利用AAS 证明△ABD ≌△CAE ,得到BD=AE ,AD=CE ,即可得到结论成立;(2)①由等腰直角三角形的性质,得∠CDE=∠CED=45°,则∠ADC=135°,由全等三角形的性质,∠BEC=135°,即可求出∠AEB 的度数;②由全等三角形的性质和等腰直角三角形的性质,得到AD=BE ,CM=DM=EM ,即可得到AE=BE+2CM ;(3)延长ED 到点G ,使DG=ED ,连结GF ,GC ,证明△DBE ≌△DCG ,得到BE=CG ,根据勾股定理解答.【详解】解:(1)如图1,∵∠BAC =90°,BD ⊥直线m ,CE ⊥直线m ,∴∠ADB=∠AEC=90°,∴∠BAD+∠ABD=∠BAD+∠CAE=90°,∴∠ABD=∠CAE ,∵AB =AC ,∴△ABD ≌△CAE ,∴BD=AE ,AD=CE ,∵DE DA AE CE BD =+=+;(2)如图2,①∵△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°,∴∠CDE=∠CED=45°,∴∠ADC=180°-45°=135°,∵△ACD ≌△BCE ,∴AD=BE ,∠ADC=∠BEC=135°,∴∠AEB=∠BEC -∠CED=135°-45°=90°;②∵△DCE 均为等腰直角三角形,CM 为△DCE 中DE 边上的高,∴CM=DM=EM ,∵AD=BE ,∴AE=AD+DM+EM=BE+2CM ;故答案为:①90°;②2AE BE CM =+;(3)延长ED 到点G ,使DG=ED ,连结GF ,GC ,如图,∵ED ⊥DF ,DG=ED ,∴EF=GF ,∵D 是BC 的中点,∴BD=CD ,在△BDE 和△CDG 中,ED GD BDE GDC BD CD =⎧⎪∠=∠⎨⎪=⎩,∴△DBE ≌△DCG (SAS ),∴BE=CG ,∵∠A=90°,∴∠B+∠ACB=90°,∵△DBE ≌△DCG ,EF=GF ,∴BE=CG ,∠B=∠GCD ,∴∠GCD+∠ACB=90°,即∠GCF=90°,∴Rt △CFG 中,CF 2+GC 2=GF 2,∴BE 2+CF 2=EF 2.【点睛】本题考查的是全等三角形的判定和性质、等腰直角三角形的性质,以及勾股定理的应用,掌握全等三角形的判定定理和性质定理是解题的关键.26.(1)见详解;(2)见详解;(3)见详解;(4)见详解【分析】(1)根据等腰直角三角形的定义以及面积公式,即可求解;(2)根据勾股定理画出边长为13的正方形,即可; (3)根据勾股定理画出长为5的线段,即可; (4)根据勾股定理画出长为2,22,10的三角形,即可.【详解】(1)∵2121ABC S=⨯÷=,∴ABC 即为所求;(2)∵EF=FG=GD=DE=222313+=,∴正方形DEFG 的面积为13;(3)HI=22345+=;(4)∵KL=22112+=,JL=222222+=,JK=221310+=,且222(2)(22)(10)+=∴JKL 是直角三角形,且周长为3210+.【点睛】本题主要考查网格中的勾股定理,熟练掌握勾股定理是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:如图:AB=8,AC=2,延长 AD 至 M 使 DM=AD,连接 CM 在△ABD 和△CDM 中,
AD MD ADB MDC BD CD
∴△ABD≌△MCD(SAS), ∴CM=AB=8. 在△ACM 中:8-2<2x<8+2, 解得:3<x<5. 故答案为:3<x<5. 【点睛】 本题考查了三角形的三边关系,解答的关键在于画出图形,数形结合完成解答.
二、八年级数学三角形选择题(难)
11.已知△ABC,(1)如图①,若 P 点是∠ABC 和∠ACB 的角平分线的交点,则∠P=90°+
1 ∠A;(2)如图②,若 P 点是∠ABC 和外角∠ACE 的角平分线的交点,则∠P=90°-∠A; 2 (3)如图③,若 P 点是外角∠CBF 和∠BCE 的角平分线的交点,则∠P=90°- 1 ∠A.上述说
14.如图 P 为 ABC 内一点, BAC 700 , BPC 1200, BD 是 ABP 的平分线, CE 是 ACP 的平分线, BD 与 CE 交于 F ,则 BFC ( )
A. 850
【答案】C 【解析】
B. 900
C. 950
D.1000
∵ BAC 700 , BPC 1200,
a= 2S ;b= 2S ;c= 2S 4 12 h
∵a-b<c<a+b,
∴ 2S - 2S <c< 2S + 2S ,
4 12
4 12
即 S < 2S < 2S , 3h 3
解得 3<h<6,
∴h=4 或 h=5,
故选 D.
【点睛】
主要考查三角形三边关系;利用三角形面积的表示方法得到相关等式是解决本题的关键.
2
法正确的个数是( )
A.0 个
B.1 个
C.2 个
D.3 个
【答案】C
【解析】
【分析】
根据三角形的内角和外角之间的关系计算.
【详解】
解:(1)∵若 P 点是∠ABC 和∠ACB 的角平分线的交点,
∴∠ABP=∠PBC,∠ACP=∠PCB
∵∠A=180°-∠ABC-∠ACB=180°-2(∠PBC+∠PCB)
2
2
∴ ∠ FBC+∠ FCB=∠ FBP+∠ FCP+∠ PBC+∠ PCB=25°+60°=85°,
∴ BFC 180°-(∠ FBC+∠ FCB)=180°-85°=95°.
【解析】
【分析】
先设长度为 4、12 的高分别是 a、b 边上的,边 c 上的高为 h,△ABC 的面积是 S,根据三
角形面积公式,可求 a= 2S ;b= 2S ;c= 2S ,结合三角形三边的不等关系,可得关于 h 4 12 h
的不等式,解不等式即可.
【详解】
设长度为 4、12 的高分别是 a,b 边上的,边 c 上的高为 h,△ABC 的面积是 S,那么
∵ ∠ A1=α.
同理理可得∠A2=
1 2
∠Hale Waihona Puke A1=1 2α,∠
A3=
1 2

A2=
1 22
α,
……,


A2018=
22017

故答案为 22017

【点睛】
本题主要考查的是三角形内角和定理,熟知三角形的一个外角等于与它不相邻的两个内角
的和的性质,角平分线的定义是解题的关键.
5.等腰三角形的三边长分别为:x+1,2x+3,9,则 x=________. 【答案】3 【解析】 ①当 x+1=2x+3 时,解得 x=−2(不合题意,舍去); ②当 x+1=9 时,解得 x=8,则等腰三角形的三边为:9、19、9,因为 9+9=18<19,不能构成
∵ ∠ ACB=90°, ∴ ∠ CAB+∠ ABC=90° ∵AD,BE,分别是∠CAB 和∠ABC 的角平分线,
∴ ∠ FAB+∠ FBA= 1 ∠ CAB+ 1 ∠ ABC=45°.
2
2
故答案为 45.
【点睛】
此题主要考查了直角三角形的两锐角互余和三角形的外角的性质,关键是根据题意画出相
应的图形,利用三角形的相关性质求解.
∴∠B=90°﹣50°=40°, ∵折叠后点 A 落在边 CB 上 A′处, ∴∠CA′D=∠A=50°, 由三角形的外角性质得,∠A′DB=∠CA′D﹣∠B=50°﹣40°=10°. 故答案为:10°. 【点睛】 本题考查了翻折变换,直角三角形两锐角互余,三角形的一个外角等于与它不相邻的两个 内角的和的性质,翻折前后对应边相等,对应角相等.
【解析】
【分析】
根据角平分线的定义可得∠A1BC= 1 ∠ABC,∠A1CD= 1 ∠ACD,再根据三角形的一个外角
2
2
等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,整理即可
得解,同理求出∠A2,可以发现后一个角等于前一个角的 1 ,根据此规律即可得解. 2
【点睛】 本题考查了平行线的性质、三角形内角和定理,掌握两直线平行,同位角相等是解题的关 键.
9.如图,Rt△ABC 中,∠ACB=90°,∠A=50°,将其折叠,使点 A 落在边 CB 上 A′处,折 痕为 CD,则∠A′DB 的度数为_____.
【答案】10° 【解析】 【分析】 根据直角三角形两锐角互余求出∠B,根据翻折变换的性质可得∠CA′D=∠A,然后根据三 角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解. 【详解】 ∵∠ACB=90°,∠A=50°,
北京丰台区第二中学数学三角形填空选择(篇)(Word 版 含解 析)
一、八年级数学三角形填空题(难)
1.如图,BE 平分∠ABC,CE 平分外角∠ACD,若∠A=42°,则∠E=_____°.
【答案】21° 【解析】
根据三角形的外角性质以及角平分线的定义可得.
解:由题意得:∠E=∠ECD−∠EBC= 1 ∠ACD− 1 ∠ABC= 1 ∠A=21°.
本题主要考查了多边形的外角和定理,任何一个多边形的外角和都是 360°. 8.如图,直线 a∥b,∠l=60°,∠2=40°,则∠3=______.
【答案】80°. 【解析】 【分析】 根据平行线的性质求出∠4,再根据三角形内角和定理计算即可. 【详解】 ∵a∥b, ∴∠4=∠l=60°, ∴∠3=180°-∠4-∠2=80°, 故答案为 80°.
故选 C.
点睛:本题考查了三角形的面积,根据等底等高的三角形的面积相等求出一次倍长后所得 的三角形的面积等于原三角形的面积的 7 倍是解题的关键.
13.已知△ABC 的两条高分别为 4 和 12,第三条高也为整数,则第三条高所有可能值为
()
A.3 和 4
B.1 和 2
C.2 和 3
D.4 和 5
【答案】D
三角形,故舍去; ③当 2x+3=9 时,解得 x=3,则等腰三角形的三边为:4、9、9,能构成三角形。 所以 x 的值是 3. 故填 3.
6.已知 a、b、c 为△ABC 的三边,化简:|a+b﹣c|-|a﹣b﹣c|+|a﹣b+c|=______.
【答案】 3a b c
【解析】 【分析】 根据三角形的三边关系判断绝对值内式子的正负,然后利用绝对值的性质去掉绝对值,再 去括号合并同类项即可. 【详解】 解:∵a、b、c 为△ABC 的三边, ∴a+b>c,a-b<c,a+c>b, ∴a+b-c>0,a-b-c<0,a-b+c>0, ∴|a+b-c|-|a-b-c|+|a-b+c| =(a+b-c)+(a-b- c)+(a-b+c) =a+b-c+a-b- c+a-b+c =3a-b-c. 故答案为:3a-b-c. 【点睛】 本题主要考查了三角形的三边关系定理和利用绝对值的性质进行化简,利用三角形的三边 关系得出绝对值内式子的正负是解决此题的关键.
∠P=180°-(∠PBC+∠PCB)
∴∠P=90°+ 1 ∠A; 2
故(1)的结论正确;
(2)∵∠A=∠ACB-∠ABC=2∠PCE-2∠PBC=2(∠PCE-∠PBC)
∠P=∠PCE-∠PBC
∴2∠P=∠A
故(2)的结论是错误.
(3)∠P=180°-(∠PBC+∠PCB)
=180°- 1 (∠FBC+∠ECB) 2
=180°- 1 (∠A+∠ACB+∠A+∠ABC) 2
=180°- 1 (∠A+180°) 2
=90°- 1 ∠A. 2
故(3)的结论正确.
正确的为:(1)(3).
故选:C
【点睛】
主要考查了三角形的内角和外角之间的关系.
(1)三角形的外角等于与它不相邻的两个内角和;
(2)三角形的内角和是 180 度.求角的度数常常要用到三角形的内角和是 180°这一隐含
3.已知三角形的两边的长分别为 2cm 和 8cm,设第三边中线的长为 x cm,则 x 的取值范
围是_______ 【答案】3<x<5 【解析】 【分析】 延长 AD 至 M 使 DM=AD,连接 CM,先说明△ABD≌△CDM,得到 CM=AB=8,再求出 2AD 的范围,最后求出 AD 的范围. 【详解】
10.如图所示,请将 A、1、2 用“>”排列__________________.
【答案】 2>1>A
【解析】 【分析】 根据三角形的外角的性质判断即可. 【详解】 解:根据三角形的外角的性质得,∠2>∠1,∠1>∠A ∴∠2>∠1>∠A, 故答案为:∠2>∠1>∠A. 【点睛】 本题考查了三角形的外角的性质,掌握三角形的一个外角大于和它不相邻的任何一个内角 是解题的关键.
相关文档
最新文档