高中数学三角函数及数列

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二部分 三角函数

一、三角函数的基本概念

1.终边相同的角的表示方法(终边在x 轴上;终边在y 轴上;终边在直线y x =上;终边在第一象限等),理解弧度的意义,并能正确进行弧度和角度的换算; ⑴角度制与弧度制的互化:π弧度 180=,1801π

=

弧度,1弧度 )180

(

π

='1857 ≈

⑵弧长公式:R l θ=;扇形面积公式:Rl R S 2

1

212==θ。

2.任意角的三角函数的定义(三个三角函数)、三角函数的符号规律、特殊角的三角函数值、同角三角函数的关系式(三个:平方关系、商数关系、倒数关系)、诱导公式(奇变..

偶不变,符号看象限.........

πα-、πα+、α-、2πα-、2()k k Z πα+∈、2

π

α-)

; ⑴三角函数定义:角α中边上任意一点P 为),(y x ,设r OP =||则:

,cos ,sin r x r y ==

ααx

y =αtan ⑵三角函数符号规律:一全正,二正弦,三正切,四余弦; ⑶同角三角函数的基本关系:x x

x

x x tan cos sin ;1cos sin 22==+ 3.有用的结论 ⑴半角所在的象限:

⑵sin cos αα+和sin cos αα-的符号规律:

二、两角和与差的三角函数 1.和(差)角公式

①;sin cos cos sin )sin(βαβαβα±=±

②;sin sin cos cos )cos(βαβαβα =±③β

αβ

αβαtan tan 1tan tan )tan( ±=

±

2.二倍角公式

二倍角公式:①αααcos sin 22sin =;

②ααααα2222sin 211cos 2sin cos 2cos -=-=-=;③α

α

α2

tan 1tan 22tan -= 3.有用的公式

⑴升(降)幂公式:21cos 2sin 2αα-=

、21cos 2cos 2αα+=、1

sin cos sin 22

ααα=;

⑵辅助角公式:sin cos )a b αααϕ+=+(ϕ由,a b 具体的值确定); ⑶正切公式的变形:tan tan tan()(1tan tan )αβαβαβ+=+-⋅. 4.有用的解题思路

⑴“变角找思路,范围保运算”; ⑵“降幂——辅助角公式——正弦型函数”; ⑶巧用sin cos αα±与sin cos αα⋅的关系;⑷巧用三角函数线——数形结合. 三、三角函数的图象与性质

1.列表综合三个三角函数sin y x =,cos y x =,tan y x =的图象与性质,并挖掘: ⑴最值的情况;

⑵了解周期函数和最小正周期的意义.会求sin()y A x ωϕ=+的周期,或者经过简单的恒等变形可化为上述函数的三角函数的周期,了解加了绝对值后的周期情况.............; ⑶会从图象归纳对称轴和对称中心;

sin y x =的对称轴是2

x k π

π=+

()k Z ∈,对称中心是(,0)k π()k Z ∈;

cos y x =的对称轴是x k π=()k Z ∈,对称中心是(,0)2

k π

π+

()k Z ∈

tan y x =的对称中心是(

,0)()2

k k Z π

∈ ⑷写单调区间注意0ω>.

注意:单调区间不可以用并集符号!不能说正切函数在定义域上为增函数 2.了解正弦、余弦、正切函数的图象的画法,会用“五点法”画正弦、余弦函数和函数

sin()y A x ωϕ=+的简图,并能由图象写出解析式.

⑴“五点法”作图的列表方式;

⑵求解析式sin()y A x ωϕ=+时处相ϕ的确定方法:代(最高、低)点法、公式1x ϕω

=-

.

3.正弦型函数sin()y A x ωϕ=+的图象变换切记:

sin sin()y A x y A x ϕ

ω

ωωϕ=−−−→=+平移

注意图象变换有时用向量表达,注意两者之间的转译. 四、解三角形 Ⅰ.正、余弦定理 ⑴正弦定理

R C

c

B b A a 2sin sin sin ===(R 2是AB

C ∆外接圆直径) 注:①C B A c b a sin :sin :sin ::=;②C R c B R b A R a sin 2,sin 2,sin 2===;③

C

B A c

b a C

c B b A a sin sin sin sin sin sin ++++=

==。

⑵余弦定理:A bc c b a cos 22

2

2

-+=等三个;注:bc

a c

b A 2cos 2

22-+=等三个。

Ⅱ。几个公式: ⑴三角形面积公式:

))(2

1

(,))()((sin 2

1

21c b a p c p b p a p p C ab ah S ABC ++=

---===

∆; ⑵内切圆半径r=

c b a S ABC

++∆2;外接圆直径2R=

;sin sin sin C

c B b A a == ⑶在使用正弦定理时判断一解或二解的方法:⊿ABC 中,sin sin A B A B >⇔>第七部分

数列

一、数列的定义和基本问题

1.通项公式:)(n f a n =(用函数的观念理解和研究数列,特别注意其定义域的特殊性); 2.前n 项和:12n n S a a a ++⋯+=;

3.通项公式与前n 项和的关系(是数列的基本问题也是考试的热点):

11,

1,2

n n n S n a S S n -=⎧=⎨-≥⎩

注意:已知数列的前n 项和,求通项公式时常常会出现忘记讨论1=n 的情形而致错。 二、等差数列

1.定义和等价定义:1(2){}n n n a a d n a --=≥⇔是等差数列;

相关文档
最新文档