勾股定理应用整理(2017的整理)

合集下载

勾股定理的应用

勾股定理的应用

勾股定理的应用勾股定理的应用1.长方体(或正方体)面上的两点间的最短距离长方体(或正方体)是立体图形,但它的每个面都是平面.若计算同一个面上的两点之间的距离比较容易,若计算不同面上的两点之间的距离,就必须把它们转化到同一个平面内,即把长方体(或正方体)设法展开成为一个平面,使计算距离的两个点处在同一个平面中,这样就可以利用勾股定理加以解决了.所以立体图形中求两点之间的最短距离,一定要审清题意,弄清楚到底是同一平面中两点间的距离问题还是异面上两点间的距离问题.谈重点长方体表面上两点间最短距离因为长方体的展开图不止一种情况,故对长方体相邻的两个面展开时,考虑要全面,不要有所遗漏.不过要留意展开时的多种情况,虽然看似很多,但由于长方体的对面是相同的,所以归纳起来只需讨论三种情况——前面和右面展开,前面和上面展开,左面和上面展开,从而比较取其最小值即可.【例1-1】如图①是一个棱长为3 cm的正方体,它的6个表面都分别被分成了3×3的小正方形,其边长为1 cm.现在有一只爬行速度为2 cm/s的蚂蚁,从下底面的A点沿着正方体的表面爬行到右侧表面上的B点,小明把蚂蚁爬行的时间记录了下来,是2.5 s.经过简短的思考,小明先是脸上露出了惊讶的表情,然后又露出了欣赏的目光.你知道小明为什么会佩服这只蚂蚁的举动吗?解:如图②,在Rt△ABD中,AD=4 cm,BD=由勾股定理,AB2=BD2+AD2=32 +42=25,AB=5 cm,∴蚂蚁的爬行距离为又知道蚂蚁的爬行速度为2 cm/s,∴它从点A沿着正方体的表面爬行到点B处,需要时间为52=2小明通过思考、判断,发现蚂蚁爬行的时间恰恰就是选择了这种最优的方式,所以他感到惊讶和佩服.【例1-2】如图,一只蚂蚁从实心长方体的顶点A 出发,沿长方体的表面爬到对角顶点C1处(三条棱长如图所示),问怎样走路线最短?最短路线长为多少?解:蚂蚁由A点沿长方体的表面爬行到C1点,有三种方式,分别展成平面图形如下:如图①,在Rt△ABC1中,AC21=AB2+BC21=42+32=52=25.故AC1=5.如图②,在Rt△ACC1中,AC21=AC2+CC21=62+12=如图③,在Rt△AB1C1中,AC21=AB21+B1C21 =52+22=29.∵2 5<29<37,∴沿图①的方式爬行路线最短,最短的路线是5.点技巧巧展长方体求解此类问题时只需对长方体进行部分展开,画出局部的展开图,若将长方体全部展开,不仅没有必要反而会扰乱视线.2.圆柱体(或圆锥体)面上的两点间的最短距离圆柱体(或圆锥体)是立体图形,从其表面看两点之间的连线绝大部分是曲线,那么怎样确定哪一条是最短的呢?解决问题的方法是将圆柱(或圆锥)的侧面展开,转化为平面图形,应用勾股定理解决,而不能盲目地凭感觉来确定.【例2】如图①所示,一只蚂蚁在底面半径为20 cm,高为30πcm的圆柱下底的点A处,发现自己正上方圆柱上边缘的B处有一只小昆虫,便决定捕捉这只小昆虫,为了不引起这只小昆虫的注意,它故意不走直线,而绕着圆柱,沿一条螺旋路线,从背后对小昆虫进行突然袭击,结果蚂蚁偷袭成功,得到了一顿美餐.根据上述信息,请问蚂蚁至少爬行多少路程才能捕捉到小昆虫?分析:解此题的关键是把圆柱的侧面展开,利用两点之间线段最短和勾股定理作答.解:假设将圆柱体的侧面沿AB剪开铺平如图②,则对角线AB即为蚂蚁爬行的最短路线.在Rt△ACB中,AC=40πcm,BC=30π由勾股定理,得AB2=AC2+BC2=(40π)2+(30π)2=(50π)2,∴AB=50π∴蚂蚁至少爬行50πcm才能捕捉到小昆虫.谈重点圆柱体两点间的最短距离本题文字叙述较多,要求在阅读的基础上提炼有用的信息,具体解题时先将圆柱沿AB剪开,将侧面展开成一矩形,会发现对角线AB即为蚂蚁爬行的最短路线,再运用勾股定理即可求得.3.生活中两点间的最短距离用勾股定理解决实际问题的关键是从实际问题中构建数学模型——直角三角形,再正确利用两点之间线段最短解答.【例3】如图①是一个三级台阶,它的每一级的长、宽和高分别为5 dm,3 dm和1 dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物.请你想一想,这只蚂蚁从A点出发,沿着台阶面爬到B点的最短路程是多少?分析:由于蚂蚁是沿台阶的表面由A爬行到B,故需把三个台阶展开成平面图形(如图②).解:将台阶展开成平面图形后,可知AC=5 dm,BC=3×(3+1)=12 dm,∠C=90°.在Rt△ABC中,∵AB2=AC2+BC2,∴AB2=52+122=132,∴AB=13 dm.故蚂蚁爬到B点的最短路程是13 dm.4.如何正确利用勾股定理及其逆定理解决生活中的问题利用勾股定理及其逆定理解决生活中的实际问题,重要的是将实际问题转化成数学模型(直角三角形模型),将实际问题中的“数”转化为定理中的“形”,再转化为“数”.解题的关键是深刻理解题意,并画出符合条件的图形.解决几何体表面上两点之间的最短距离问题的关键是要设法把立体图形转化为平面图形,具体步骤是:(1)把立体图形展成平面图形;(2)确定点的位置;(3)确定直角三角形;(4)分析直角三角形的边长,用勾股定理求解.【例4】如图①,圆柱形玻璃容器的高为18 cm,底面周长为60 cm,在外侧距下底1 cm的点S处有一只蜘蛛,在与蜘蛛相对的圆柱形容器的上口外侧距上口1 cm的点F处有一只苍蝇,急于捕获苍蝇充饥的蜘蛛需要爬行的最短距离是__________cm.解析:将圆柱的侧面展开得到它的侧面展开图(如图②),CD∥AB,且AD=BC=12底面周长,BS=DF=1 cm.则蜘蛛所走的最短路线的长度即为线段SF的长度.过S点作SM⊥CD,垂足为M,由条件知,SM=AD=12×60=30 cm,MC=SB=DF=1 cm,所以MF=18-1-1=16 cm,在Rt△MFS中,由勾股定理得SF2=162+302=342,所以SF=34 cm.故蜘蛛需要爬行的最短距离是答案:345.勾股定理与方程相结合的应用方程思想是一种重要的数学思想.所谓方程思想是指从分析问题的数量关系入手,将问题中的已知量和未知量之间的数量关系通过适当设元建立起方程(组),然后通过解方程(组)使问题得到解决的思维方式.而勾股定理反映的直角三角形三边的关系正是构建方程的基础.故勾股定理的许多问题的解决都要跟方程相结合.方程思想是勾股定理中的重要思想.【例5】如图,有一张直角三角形状纸片ABC,两直角边AC=6 cm,BC=8 cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,你能求出CD的长吗?解:设CD=x cm,由题意知DE=x cm,BD=(8-x) cm,AE=AC=6 cm,在Rt△ABC中,由勾股定理得AB=AC2+BC2=10于是BE=10-6=在Rt△BDE中,由勾股定理得42+x2=(8-x)2,解得x=3.故CD的长为。

勾股定理知识点总结大全

勾股定理知识点总结大全

勾股定理知识点总结大全一、勾股定理的定义勾股定理又称毕达哥拉斯定理,它是指:在直角三角形中,直角边的平方等于其他两条边的平方和。

具体表达方式是:设直角三角形的两个直角边分别为a、b,斜边为c,则有a²+b²=c²。

这就是著名的毕达哥拉斯定理,也是勾股定理的核心概念。

二、勾股定理的证明1. 几何证明勾股定理有多种证明方法,其中有几何证明是最常见的。

几何证明主要通过图形的构造和变换,利用几何形状的属性,从而证明勾股定理。

常见的几何证明方法包括利用正方形、相似三角形、垂直平分线、圆的性质等,通过构造等辅助图形,最终得到a²+b²=c²的结论。

2. 代数证明另外,勾股定理也可以通过代数方法进行证明。

代数证明主要通过变换方程、化简运算,利用数学公式和规律,从而得到a²+b²=c²的结论。

通过几何和代数两种证明方法,可以更全面地理解勾股定理的内涵和外延,为后续的学习和应用打下坚实的基础。

三、勾股定理的性质1. 勾股三元数根据勾股定理,我们可以找到很多满足a²+b²=c²的整数解组,这样的整数解组叫做勾股三元数。

例如:3²+4²=5²、5²+12²=13²、9²+40²=41²等。

勾股三元数的性质是研究勾股定理的重要方面,它们具有很多有趣的特性和规律,对于数论的研究有着重要的意义。

2. 勾股定理的逆定理对于一个三元数组(a, b, c),如果它满足a²+b²=c²,则称它是勾股三元数。

而勾股定理的逆定理表明,每个整数对(a, b),都可以构成一个勾股三元数。

这个逆定理的证明非常复杂,它涉及到模运算、费马大定理、椭圆曲线等高深的数学知识,是数论和代数学研究的重要课题之一。

3. 勾股定理的推广在直角三角形外,勾股定理也有很多推广成立的情况。

17.2勾股定理的应用

17.2勾股定理的应用
AF 2 EF 2 AE 2
4
D 2 5 2 ?F 4 5 5 2
4
B
3
4
E1 C
AEF 是直角三角形
∴AF⊥EF.
例5:如图,在Rt△ABC中,∠C=90°,AD平 分∠BAC, AC=6cm,BC=8cm,(1)求线段CD 的长;(2)求△ABD的面积. 15
A
方程思想:直角三 角形中,已知一条 边,以及另外两条 6 边的数量关系时, 可利用勾股定理建 立方程求解. C x X=3
A
B 高 12cm A A
9cm
Bபைடு நூலகம்
长18cm (π的值取3)
∵ AB2=92+122=81+144=225= 152
∴ AB=15(cm) 蚂蚁爬行的最短路程是15厘米.
1、已知直角三角形的两边长分 别是3和4, 则第三边长 5 或 7 为 .
例1:数学综合实验课上,同学们在测量学校旗杆的高 度时发现:将旗杆顶端升旗用的绳子垂到地面还多 1米; 当把绳子的下端拉开5米后,下端刚好接触地面.根据 以上数据,同学们准确求出了旗杆的高度,你知道他 们是如何计算出来的吗?
定理:如果直角三角形两条直角边长分别为 a,b,斜边长为c, 那么a2 + b2 = c2 逆定理:如果三角形的三边长a、b、c满足 a2 + b2 = c2 那么这个三角形是直角三角形。
B
我怎 么走 会最 有一个圆柱,它的高等于12 近呢? 厘米,底面半径等于3厘米,在 圆柱下底面上的A点有一只 蚂蚁,它想从点A爬到点B , 蚂 蚁沿着圆柱侧面爬行的最短 路程是多少? (π的值取3)
A
A
D B C
4 2
D C

勾股定理的十五种应用题型梳理

勾股定理的十五种应用题型梳理

勾股定理知识点及其十五种应用归纳梳理知识点概括一:直角三角形与勾股定理直角三角形三边的性质:1、 直角三角形的两个锐角互余2、 直角三角形斜边的中线,等于斜边的一半3、 直角三角形中30°角所对的边是斜边的一半勾股定理概念:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=适用范围:勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,因而在应用勾股定理时,必须明了所考察的对象是直角三角形。

勾股定理的证明:勾股定理的证明方法很多,常见的是拼图的方法①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理二:勾股数勾股数概念:能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数。

常见的勾股数:如3,4,5;6,8,10;5,12,13;7,24,25等扩展:用含字母的代数式表示n 组勾股数1)221,2,1n n n -+(2,n ≥n 为正整数);2)2221,22,221n n n n n ++++(n 为正整数)3)2222,2,m n mn m n -+(,m n >m ,n 为正整数)。

注意:每组勾股数的相同整数倍,也是勾股数 应用1 勾股定理理解三角形例题1 在⊙O 中,直径AB =15,弦DE ⊥AB 于点C .若OC :OB =3 :5,则DE 的长为( ) A .6 B .9 C .12 D .15【解析】如图所示:∵直径AB =15,∴BO =7.5,∵OC :OB =3:5,∴CO =4.5∵DE ⊥AB ,∴DC 6,∴DE =2DC =12,选C变式1 如图,在Rt △ACB 中,900.5C sinB ∠=︒=,,若6AC =,则BC 的长为( )A .8B .12C .D .【解析】∵s i nB =AC AB=0.5,∴AB =2AC ,∵AC =6,∴AB =12,∴BC ,选C 变式2 如图,Rt △ABC 中,∠ACB = 90°,AB = 5,AC = 3,把Rt △ABC 沿直线BC 向右平移3个单位长度得到△A 'B 'C ' ,则四边形ABC 'A '的面积是 ( )A .15B .18C .20D .22【解析】在Rt △ACB 中,∠ACB =90°,AB =5,AC =3,由勾股定理可得: ∵Rt △A ’C ’B ’是由Rt △ACB 平移得来,A ’C ’=AC =3,B ’C ’=BC =4 ∴A'C'B 11S =A'C'B'C'=34622⋅⋅⨯⨯=△,又∵BB ’=3,A ’C ’= 3,∴ABB'A'S BB'A 'C'339=⨯=⨯=四边形 ∴A'C'B'ABC'A'ABB'A'S S S =96=15=++△四边形四边形,选A变式3 某几何体的三视图及相关数据(单位:cm )如图所示,则该几何体的侧面积是( )A .2652cm πB .260cm πC .265cm πD .2130cm π【解析】由三视图可判断出该几何体为圆锥,圆锥的高为12cm ,底部圆的半径为5cm ,∴圆锥母线长为:l cm ,又∵S =R l π⋅⋅圆锥侧,将R =5cm ,=13l cm 代入,∴2S ==65()R l cm ππ⋅⋅圆锥侧,选C应用2 勾股定理与网格问题例题2 如图,在3×3的网格中,每个小正方形的边长均为1,点A ,B ,C 都在格点上,若BD 是△ABC 的高,则BD 的长为( )A B C D【解析】由勾股定理得:AC S △ABC =3×3﹣111121323222⨯⨯-⨯⨯-⨯⨯=72∴1722AC BD ⋅=BD 7=,∴BD D . 变式4 如图,在45⨯的正方形网格中,每个小正方形的边长都是1,△ABC 的顶点都在这些小正方形的顶点上,那么sin ACB ∠的值为( ).A B C .35 D .45【解析】如图,过点A 作AD BC ⊥于点D ,则90ADC ∠=︒∴5AC ==,∴4sin 5AD ACB AC ∠==,选D 变式5 如图所示,ABC ∆的顶点在正方形网格的格点上,则tan A 的值为( )A .12B .2C .2D .【解析】如图,取格点E ,连接BE ,由题意得:90AEB =︒∠,BE =,AE ,∴1tan =2BE A AE ==,选A 应用3 利用勾股定理解决折叠问题例题3 如图,把某矩形纸片ABCD 沿EF ,GH 折叠(点E 、H 在AD 边上,点F ,G 在BC 边上),使点B 和点C 落在AD 边上同一点P 处,A 点的对称点为A '、D 点的对称点为D ,若90FPG ,A EP △为8,D PH △的面积为2,则矩形ABCD 的长为( )A.10 B .C .10 D .+【解析】∵四边形ABC 是矩形,∴AB =CD ,AD =BC ,设AB =CD =x ,由翻折可知:P A ′=AB =x ,PD ′=CD =x ,∵△A ′EP 的面积为8,△D ′PH 的面积为2,又∵90FPG ,∠A ′PF =∠D ′PG =90°,∴∠A ′P D ′=90°,则∠A ′PE +∠D ′PH =90°,∴∠A ′PE =∠D ′HP , ∴△A ′EP ∽△D ′PH ,∴A ′P 2:D ′H 2=8:2,∴A ′P :D ′H =2:1,∵A ′P =x ,∴D ′H =12x ,∵S △D ′PH =12D ′P ·D ′H =12A ′P ·D ′H ,即11222x x ⋅⋅=,∴x (负根舍弃),∴AB =CD D ′H =DH ,D ′P =A ′P =CD ,A ′E =2D ′P ,∴PE =PH =,∴AD =D变式6 如图,对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ;把纸片展平后再次折叠,使点A 落在EF 上的点A '处,得到折痕BM ,BM 与FF 相交于点N .若直线B A ’交直线CD 于点O ,BC =5,EN =1,则OD 的长为( )A B C D 【解析】∵EN =1,∴由中位线定理得AM =2由折叠的性质可得A ′M =2,∵AD ∥EF ,∴∠AMB =∠A ′NM∵∠AMB =∠A ′MB ,∴∠A ′NM =∠A ′MB ,∴A ′N =2,∴A ′E =3,A ′F =2过M 点作MG ⊥EF 于G ,∴NG =EN =1,∴A ′G =1(微信公众号:数学第六感)由勾股定理得MG =,∴BE =DF =MG∴OF :BE =2:3,解得OF OD B 变式7 如图,三角形纸片ABC ,点D 是BC 边上一点,连接AD ,把ABD △沿着AD 翻折,得到△AED ,DE 与AC 交于点G ,连接BE 交AD 于点F .若DG GE =,3AF =,2BF =,△ADG 的面积为2,则点F 到BC 的距离为( )A B C D【分析】首先求出△ABD 的面积.根据三角形的面积公式求出DF ,设点F 到BD 的距离为h ,根据12•BD •h =12•BF •DF ,求出BD 即可解决问题.∴S △ADG =S △AEG =2,∴S △ADE =4 由翻折可知,ADB ≌ADE ,BE ⊥AD ,∴S △ABD =S △ADE =4,∠BFD =90°,∴12•(AF +DF )•BF =4∴12•(3+DF )•2=4,∴DF =1,∴DB设点F 到BD 的距离为h ,则12•BD •h =12•BF •DF ,∴h ,选B 应用4 利用勾股定理证明线段的平方关系例题4 如图,在△ABC 中,AD ,BE 分别是BC ,AC 边上的中线,且AD ⊥BE ,垂足为点F ,设BC =a ,AC =b ,AB =c ,则下列关系式中成立的是( )A .a 2+b 2=5c 2B .a 2+b 2=4c 2C .a 2+b 2=3c 2D .a 2+b 2=2c 2【解析】设EF =x ,DF =y ,∵AD ,BE 分别是BC ,AC 边上的中线,∴点F 为△ABC 的重心,AF =AC =b ,BD =a ,∴AF =2DF =2y ,BF =2EF =2x ,∵AD ⊥BE ,∴∠AFB =∠AFE =∠BFD =90°,在Rt △AFB 中,4x 2+4y 2=c 2,①在Rt △AEF 中,4x 2+y 2=b 2,②;在Rt △BFD 中,x 2+4y 2=a 2,③②+③得5x 2+5y 2=(a 2+b 2),∴4x 2+4y 2=(a 2+b 2),④①﹣④得c 2﹣(a 2+b 2)=0,即a 2+b 2=5c 2.选A .变式8 对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD ,对角线AC BD 、交于点O .若24AD BC ==,,则22AB CD +=__________.【解析】∵四边形ABCD 是垂美四边形,∴AC ⊥BD∴∠AOD =∠AOB =∠BOC =∠COD =90°,由勾股定理得,AD 2+BC 2=AO 2+DO 2+BO 2+CO 2AB 2+CD 2=AO 2+BO 2+CO 2+DO 2,∴AD 2+BC 2=AB 2+CD 2,∵AD =2,BC =4∴22AB CD +=AD 2+BC 2=22+42=20变式9 如图,在△ABC 中,90,ACB AC BC ∠=︒=,点P 在斜边AB 上,以PC 为直角边作等腰直角三角形PCQ ,90PCQ ∠=︒,则222,,PA PB PC 三者之间的数量关系是_____.【解析】过点C 作CD ⊥AB ,交AB 于点D ,∵△ACB 为等腰直角三角形,CD ⊥AB ,∴CD =AD =DB ,∵P A 2=(AD -PD )2=(CD -PD )2=CD 2-2CD •PD +PD 2,PB 2=(BD +PD )2=(CD +PD )2=CD 2-2CD •PD +PD 2,∴P A 2+PB 2=2CD 2+2PD 2=2(CD 2+PD 2),在Rt △PCD 中,由勾股定理可得PC 2=CD 2+PD 2,∴P A 2+PB 2=2PC 2,应用5 利用勾股定理解决实际问题:求梯子滑落高度例题5 如图,一个梯子AB 长2.5米,顶端A 靠在墙AC 上,这时梯子下端B 与墙角C 距离为1.5米,梯子滑动后停在DE 的位置上,测得BD 长为0.5米,则梯子顶端A 下落了( )米.A .0.5B .1C .1.5D .2【解析】在Rt △ABC 中,AB =2.5米,BC =1.5米,故AC 米.在Rt △ECD 中,AB =DE =2.5米,CD =(1.5+0.5)米,故EC 米, 故AE =AC ﹣CE =2﹣1.5=0.5米.选A .变式10 如图所示,一架梯子AB 长2.5米,顶端A 靠在墙AC 上,此时梯子下端B 与墙角C 的距离为1.5米,当梯子滑动后停在DE 的位置上,测得BD 长为0.9米.则梯子顶端A 沿墙下移了______米.【解析】由题意得: 2.5AB =米, 1.5BC =米∴在Rt ACB ∆中,AC 2=AB 2-BC 2=2.52-1.52=4,∴AC =2米,∵BD =0.9米,∴CD =2.4米.∵ED AB =∴在Rt ECD ∆中,EC 2=ED 2-CD 2=2.52-2.42=0.49,∴EC =0.7米,∴AE =2-0.7=1.3米.变式11 如图,墙面AC 与地面BC 垂直,一个梯子AB 长2.5 米,顶端A 靠在墙AC 上,这时梯子下端B 与墙角C 距离为1.5米,梯子滑动后停在DE 的位置上,测得BD 长为0.9米,则梯子顶端A 下落了_____米.【分析】要求下滑的距离,显然需要分别放到两个直角三角形中,运用勾股定理求得AC 和CE 的长即可【解析】在Rt △ACB 中,AC 2=AB 2-BC 2=2.52-1.52=4,∴AC =2,∵BD =0.9,∴CD =2.4.在Rt △ECD 中,EC 2=ED 2-CD 2=2.52-2.42=0.49∴.EC =0.7∴AE =AC -EC =2-0.7=1.3应用6 利用勾股定理解决实际问题:求旗杆高度例题6 从电线杆离地面8米处拉一根长为10m 的缆绳,这条缆绳在地面的固定点距离电线杆底部有( ). A .2 B .4 C .6 D .8【分析】首先根据题意画出图形,得到一个直角三角形.根据勾股定理,即可解答.【解析】由题意得,在Rt △ABC 中,AC =8,AB =10,所以BC =6.选C变式12 如图,小华将升旗的绳子拉到竖直旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m 处,此时绳子末端距离地面2m ,则绳子的长度为____m .【解析】设绳子长度为xm ,则AC AD xm ==,(2)AB x m =-,8BC m =,在Rt ABC 中,222AB BC AC +=,即222(2)8x x -+=,解得:17x =,绳子的长度为17m .应用7 利用勾股定理解决实际问题:求蚂蚁爬行距离例题7 如图,圆柱的高为8cm ,底面半径为6πcm ,一只蚂蚁从点A 沿圆柱外壁爬到点B 处吃食,要爬行的最短路程是( )A .6cmB .8cmC .10cmD .12cm【解析】底面圆周长为6212ππ=cm ,底面半圆弧长为6cm ,展开图如图所示,连接AB ,∵BC =8cm ,AC =6cm ,∴22226810AB AC BC ,选C 变式13 如图,有一只小鸟从小树顶飞到大树顶上,它飞行的最短路程是( )A .13米B .12米C .5米D 米【解析】如图所示,过D 点作DE ⊥AB ,垂足为E ,∵AB =13,CD =8,又∵BE =CD ,DE =BC ,∴AE =AB −BE =AB −CD =13−8=5,∴在Rt △ADE 中,DE =BC =12,∴22222512169,AD AE DE =+=+= ∴AD =13(负值舍去) 故小鸟飞行的最短路程为13m ,选A应用8 利用勾股定理解决实际问题:求大树折断前的高度例题8“折竹抵地”问题源自《九章算术》中,即:今有竹高一丈,末折抵地,去本四尺,问折者高几何?意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺)()A.3B.5C.4.2D.4【解析】设折断处离地面的高度OA是x尺,根据题意可得:x2+42=(10-x)2解得:x=4.2,答:折断处离地面的高度OA是4.2尺,选C变式14《九章算术》是我国古代一部著名的数学专著,其中记载了一个“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何?其意思是:有一根与地面垂直且高一丈的竹子(1丈=10尺),现被大风折断成两截,尖端落在地面上,竹尖与竹根的距离为三尺.问折断处高地面的距离为()A.5.45尺B.4.55尺C.5.8尺D.4.2尺【分析】设折断后的竹子的高为x尺,根据勾股定理列出方程求解即可.【解析】设折断后的竹子高AC为x尺,则AB长为(10﹣x)尺,根据勾股定理得:AC2+BC2=AB2,即:x2+32=(10﹣x)2,解得:x=4.55,选B.变式15如图,一根竖直的木杆在离地面3.1m处折断,木杆顶端落在地面上,且与地面成38°角,则木杆折断之前高度约为__________.(参考数据:sin380.62,cos380.79,tan380.78︒≈︒≈︒≈)【解析】如图: 3.1,38AC B =∠=︒∴ 3.15sin 0.62AC AB B ===,∴木杆折断之前高度()3.158.1AC AB m =+=+=,故答案为8.1m 应用9 利用勾股定理解决实际问题:求水杯中筷子长度问题例题9 我国古代数学著作《九章算术》记载了一道有趣的问题.原文是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何.译为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,水的深度与这根芦苇的长度分别是多少?设芦苇的长度是x 尺.根据题意,可列方程为( )A .22210(1)x x +=+B .222(1)5x x -+=C .2225(1)x x +=+D .222(1)10x x -+=【解析】设芦苇的长度是x 尺,如下图,则()1OA x =-,5AB =,OB x =在Rt AOB 中,222OA AB OB +=,即()22215x x -+=,选B变式16如图,将一根长12cm的筷子置于底面半径为3cm,高为8cm的圆柱形杯子中,则筷子露在杯子外面的长度h至少为_______cm.【解析】如图所示,筷子、圆柱的高、圆柱的直径正好构成直角三角形,∵圆柱杯子的底面半径为3cm,高为8cm,∴筷子在圆柱里面的最大长度cm∴筷子露在杯子外面的长度至少为12-10=2cm变式17无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有__________cm.【解析】=15,则木筷露在杯子外面的部分至少有:20−15=5(cm).故答案为5.应用10利用勾股定理解决实际问题:解决航海问题例题10如图,快艇从A地出发,要到距离A地10海里的C地去,先沿北偏东70°方向走了8海里,到达B 地,然后再从B地走了6海里到达C地,此时快艇位于B地的().A.北偏东20°方向上B.北偏西20°方向上C.北偏西30°方向上D.北偏西40°方向上【解析】∵AC=10海里,AB=8海里,BC=6海里,根据勾股定理的逆定理可知222=AB BC AC +,∴∠ABC =90°,∵∠DAB =70°,AD ∥BE ,∴∠ABE =110°,则∠CBE =110°-90°=20°,即点C 在点B 的北偏西20°方向上,选B变式18 如图,海中有一小岛A ,它周围10.5海里内有暗礁,渔船跟踪鱼群由西向东航行.在B 点测得小岛A 在北偏东60°方向上,航行12海里到达D 点,这时测得小岛A 在北偏东30°方向上.如果渔船不改变航线继续向东航行,那么渔船还需航行_____海里就开始有触礁的危险.【解析】只要求出A 到BD 的最短距离是否在以A 为圆心,以10.5海里的圆内或圆上即可,如图,过A 作AC ⊥BD 于点C ,则AC 的长是A 到BD 的最短距离,∵∠CAD =30°,∠CAB =60°,∴∠BAD =60°﹣30°=30°,∠ABD =90°﹣60°=30°,∴∠ABD =∠BAD , ∴BD =AD =12海里,∵∠CAD =30°,∠ACD =90°,∴CD =12AD =6海里,由勾股定理得:AC (海里),如图,设渔船还需航行x 海里就开始有触礁的危险,即到达点D ′时有触礁的危险,在直角△AD ′C 中,由勾股定理得:(6﹣x )2+(2=10.52,解得x =4.5渔船还需航行 4.5海里就开始有触礁的危险.变式19 一艘轮船在小岛A 的北偏东60︒方向距小岛60海里的B 处,沿正西方向航行3小时后到达小岛的北偏西45︒的C 处,则该船行驶的速度为_____海里/小时.【解析】如图,过点A 作AD BC ⊥于点D ,由题意得:60,45BAD CAD ∠=︒∠=︒,60AB =海里, 在Rt ABD △中,9030B BAD ∠=︒-∠=︒,60AB =海里,1302AD AB ∴==海里,BD = 在Rt ACD △中,45CAD ∠=︒,Rt ACD ∴△是等腰直角三角形,30CD AD ∴==海里,(30BC CD BD ∴=+=+海里,则该船行驶的速度为(103BC =+海里/小时, 应用11 利用勾股定理解决实际问题:求河宽 例题11 如图,为了测量池塘的宽度DE ,在池塘周围的平地上选择了A 、B 、C 三点,且A 、D 、E 、C 四点在同一条直线上,90C ∠=︒,已测得100m AB =,60m BC =,20m AD =,10m EC =,则池塘的宽度DE ( )A .80mB .60mC .50mD .40m【解析】在Rt △ABC 中,AC 80m所以DE =AC −AD −EC =80−20−10=50m ,选C变式20 一条河的宽度处处相等,小强想从河的南岸横游到北岸去,由于水流影响,小强上岸地点偏离目标地点200m ,他在水中实际游了520m ,那么该河的宽度为( )A .440mB .460mC .480mD .500m【解析】根据已知数据,运用勾股定理求得AB 480m ,答:该河流的宽度为480m .选C变式21 如图,为了求出湖两岸A 、B 两点之间的距离,观测者从测点A 、B 分别测得90BAC ∠=︒,又量得9AC m =,15BC m =,则A 、B 两点之间的距离为( )A .10mB .11mC .12mD .13m【解析】90BAC ∠=︒,9AC m =,15BC m =,()12AB m ∴===,选C . 应用12 利用勾股定理解决实际问题:求台阶上的地毯长度例题12 地面上铺设了长为20cm ,宽为10cm 的地砖,长方形地毯的位置如图所示.那么地毯的长度最接近多少?( )A .50cmB .100cmC .150cmD .200cm【解析】观察图像可知,地毯长可以看做是10个等腰直角三角形的斜边长度之和则斜边=∴长方形地毯的长为:=≈141.4cm ,选C变式22 在高5m ,长13m 的一段台阶上铺上地毯,台阶的剖面图如图所示,地毯的长度至少需要( )A .13mB .5mC .12mD .17m【解析】由勾股定理,12AC ===,则地毯总长为12+5=17(m ),选D 变式23 一个三级台阶,它的每一级的长宽和高分别为20、3、2,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点最短路程为( )A B .25 C .30 D .35【解析】如图所示,∵三级台阶平面展开图为长方形,长为20,宽为(2+3)×3∴蚂蚁沿台阶面爬行到B 点最短路程是此长方形的对角线长AB .由勾股定理得:2AB =220+()2[233]+⨯=225,解得25AB =,选B 应用13 利用勾股定理解决实际问题:判断是否超速例题13 如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A 处的正前方30m 的C 处,过了2s 后,测得小汽车与车速检测仪间的距离为50m ,则这辆小汽车的速度是__m /s .【解析】在Rt △ABC 中,AC =30m ,AB =50m ,据勾股定理可得:BC (m ) 故小汽车的速度为v=402=20m /s 变式24 《中华人民共和国道路交通管理条例》规定,小汽车在城市街道上的行驶速度不得超过70km /h .如图所示,一辆小汽车在一条城市街道沿直道向B 处行驶.某一时刻刚好行驶到路对面车速检测仪A 正前方30m 处的点C ,过了2s 后,测得小汽车与车速检测仪之间的距离AB 为50m ,这辆小汽车________.(填“超速”或“不超速”)【解析】在Rt ABC ∆中,2222250301600BC AB AC =-=--,所以40m BC =. 因此,小汽车的速度为()4020m/s 2=.20m/s 72km/h 70km/h => 故这辆小汽车超速.变式25 如图,小明家(A )在小亮家(B )的正北方,某日,小明与小亮约好去图书馆(D ),一小明行走的路线是A →C →D ,小亮行走的路线是B →C →D ,已知3km AB =,4km BC =,5km CD =,90ABC ∠=︒,已知小明骑自行车速度为a km /分钟,小亮走路,速度为0.1km 分钟。

勾股定理的应用及方法

勾股定理的应用及方法

勾股定理的应用及方法勾股定理是数学中的一个重要定理,它描述了直角三角形中,直角边的平方和等于斜边的平方。

具体表述为:在一个直角三角形中,设直角边的长度分别为a 和b,斜边的长度为c,则有a²+ b²= c²。

勾股定理的应用非常广泛,在几何学、物理学和工程学等领域都有重要的应用。

下面我将介绍一些常见的勾股定理的应用及解题方法。

1. 求解三角形的边长和角度:勾股定理可以用于求解三角形的边长和角度。

当我们已知两条边长,可以利用勾股定理计算出第三条边长。

而已知两边长和夹角时,可以利用勾股定理计算出第三边长或者求解夹角的大小。

例如,已知直角三角形的斜边长为5,一条直角边长为3,我们可以利用勾股定理计算出另一条直角边的长度:3²+ b²= 5²9 + b²= 25b²= 16b = 4同样地,已知直角三角形的两条直角边长度为3和4,可以利用勾股定理计算斜边的长度:3²+ 4²= c²9 + 16 = c²c²= 25c = 52. 解决实际问题:勾股定理也可以应用于解决实际问题。

例如,在测量中,我们经常需要通过已知的边长计算其他未知边长的问题。

有一道经典的应用题是“房子问题”:如果一个房子的两堵墙的长度分别为6米和8米,房子的对角线长度是多少?根据勾股定理可知,对角线的长度即斜边的长度c,可以通过勾股定理求解:6²+ 8²= c²36 + 64 = c²c²= 100c = 10因此,房子的对角线长度为10米。

3. 判断三角形的形状:勾股定理还可以用来判断三角形的形状。

根据勾股定理,如果一个三角形的三条边满足a²+ b²= c²,那么这个三角形就是直角三角形。

例如,如果一个三角形的三条边长分别为3、4和5,我们可以通过勾股定理验证这个三角形是否为直角三角形:3²+ 4²= 5²9 + 16 = 2525 = 25由此可见,三角形的三条边满足勾股定理,所以这个三角形是一个直角三角形。

勾股定理综合应用题(包含答案)

勾股定理综合应用题(包含答案)

勾股定理综合应用题(包含答案)勾股定理综合应用题及答案1.一艘船从A地出发,向东航行20海里到达B地,再向XXX15海里到达C地。

求AC的长度。

答案:25海里2.一块长方形的地,长60米,宽40米。

现在要在这块地上建造一个正方形的花坛,使剩下的土地面积最大。

问这个花坛的边长和剩余土地的面积。

答案:花坛边长为20米,剩余土地面积为2400平方米或者3987.5平方米。

3.一架飞机以每小时600千米的速度飞行,从A地飞往B 地,飞行时间是5小时。

飞机从B地返回A地的途中,由于风向的影响,飞机的速度变为每小时400千米,飞行时间是6小时。

求AB两地的距离。

答案:10千米。

4.一列货车从A地出发,以每小时50千米的速度行驶,3小时后到达B地,再以每小时40千米的速度行驶,2小时后到达C地。

求AC两地的距离。

答案:20km。

5.一辆汽车从A地出发,向东行驶30海里到达B地,再向北行驶40海里到达C地。

已知汽车的速度为60千米/小时,求(1)AB、BC两段路程所需的时间;(2)从C地返回A地的汽车速度为50千米/小时,求从C地返回A地所需的时间。

答案:(1)AB段需要0.5小时,BC段需要0.67小时;(2)从C地返回A地需要1小时。

6.一条长方形的草坪长12米,宽8米,现在要在这条草坪上建造一个半径为3米的圆形花坛,请问这个花坛占用的草坪面积是多少?答案:96平方米。

7.已知一条边长为4米的正方形,将这个正方形绕其中心旋转45度,求旋转后正方形所在的圆的周长。

答案:2√3–4.8.一座高度为8米的房子前有一座高度为6米的灯杆,灯杆顶部离房顶的最短距离为2米。

求灯杆离房子底部的最短距离。

答案:10米。

9.甲乙两人同时从A地出发,甲向B地行驶,乙向C地行驶,两人相遇于D地,甲行驶了8天,乙行驶了12天。

已知AB、DC两段路程长度相等,求AD的长度。

答案:10天。

10.一条直角三角形的斜边长为13米,一条直角边长为5米,求另一条直角边的长度。

勾股定理实例及应用

勾股定理实例及应用

勾股定理实例及应用勾股定理,又称毕达哥拉斯定理,是古希腊数学家毕达哥拉斯在公元前6世纪提出的数学定理,是初中数学必学的重要内容之一。

它指出:直角三角形中,直角边的平方和等于斜边的平方。

勾股定理的表达形式为:在一个直角三角形中,设直角边的长度分别为a、b,斜边的长度为c,则有a^2 + b^2 = c^2。

勾股定理的实例:一个常见的勾股定理实例是3、4、5的三角形。

它是一个直角三角形,其中直角边的长度分别为3和4,斜边的长度为5。

根据勾股定理,3^2 + 4^2 = 5^2,即9 + 16 = 25,成立。

因此,3、4、5三边构成了一个满足勾股定理的直角三角形。

另一个实例是5、12、13的三角形。

同样地,根据勾股定理,5^2 + 12^2 = 13^2,即25 + 144 = 169,也成立。

因此,5、12、13三边构成了另一个满足勾股定理的直角三角形。

以上两个实例展示了勾股定理在直角三角形中的应用,它可以帮助我们判断一个三角形是否为直角三角形,或者求解直角三角形的边长关系。

勾股定理的应用:勾股定理是一个非常实用的数学定理,它在日常生活中有着广泛的应用。

下面我们将介绍一些常见的应用场景。

1. 土地测量在土地测量中,勾股定理可以帮助测量直角三角形的边长。

例如,在农业生产中,农民需要测量田地的面积,可以利用勾股定理来测算田地的对角线长度,从而确定田地的面积。

2. 建筑工程在建筑工程中,勾股定理也有着重要的应用。

建筑师在规划建筑布局时,经常需要考虑到建筑物之间的距离和角度关系。

利用勾股定理,可以准确计算建筑物之间的距离和角度,确保建筑布局的合理性和美观度。

3. 导弹制导在军事领域,导弹制导是一个重要的应用领域。

通过勾股定理,可以精确计算导弹的飞行路径和目标距离,从而实现导弹制导和精确打击目标。

4. 航海导航在航海领域,勾股定理也有着重要的应用。

船舶在航海过程中,需要计算船舶的航行方向和航程,以及测算船舶与陆地或其他船舶的距离。

勾股定理知识点总结及练习

勾股定理知识点总结及练习

第 课时第十八章 勾股定理一.基础知识点: 1:勾股定理直角三角形两直角边a 、b 的平方和等于斜边c 的平方。

(即:a 2+b 2=c 2) 要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a cb =-)(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题2:勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证3:勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)规律方法指导1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。

勾股定理的应用

勾股定理的应用
∵ 582 462 5480 742 5476
荧屏对角线大约为74厘米 ∴售货员没搞错
如图,在Rt△ABC中,BC=24,AC=7,求AB的长.
解:作如图所示 在Rt△ABC中 ,根据勾股定理 B
AB2 AC 2 BC 2
72 242 625
AB 25
25
24
上述解法正确吗?
A 274 C
BE C
= DE2- BE2 = (DE+BE)·( DE- BE) = (DE+CE)·( DE- BE)
=BD·CDຫໍສະໝຸດ 如图,∠ACB=∠ABD=90°,CA=CB,
∠DAB=30°,AD=8,求AC的长。
D
解:∵∠ABD=90°,∠DAB=30°
C
又AD=8
∴BD=
1
AD=4
2
A
8
30°
B
在Rt△ABD中 ,根据勾股定理
AC 2 AB2 BC2 12 22 5 D C
因此,AC= 5 ≈2.236 2m
因为AC__大__于__木板的宽,
所以木板__能__ 从门框内通过.
AB
1m
及时练
如图,盒内长,宽,高分别是30米,24米和18米, 盒内可放的棍子最长是多少米?
18
24
30
一个3m长的梯子AB,斜
靠在一竖直的墙AO上,
如图,池塘边有两
点A、B,点C是与BA
方向成直角的AC方向 上一点,现在测得
B
CB=60m,AC= 20m ,
请你求出A、B两点间
的距离。(结果保留整
数)
A
20 60
C
《九章算术》:有一个水池, 水面是一个边长为10尺的正方 E 形,在水池正中央有一根芦 苇,它高出水面1尺,如果把 这根芦苇拉向水池一边的中 点,它的顶端恰好到达池边 的水面,请问这个水的深度 与这根芦苇的长度各是多少?

《勾股定理的应用方法小结》[5篇范例]

《勾股定理的应用方法小结》[5篇范例]

《勾股定理的应用方法小结》[5篇范例]第一篇:《勾股定理的应用方法小结》谈谈勾股定理及其逆定理的应用绵竹市紫岩雨润中学岳关芬谈到勾股定理及它的逆定理,它是中学数学中最重要的定理之一,是几何学中的明珠,充满了魅力,我国把它又称为毕达哥拉斯定理。

这是由于,他们认为最早发现直角三角具有“勾²+股²=弦²”这一性质并且最先给出严格证明的是古希腊的数学家毕达哥拉斯。

勾股定理揭示了直角三角形三边的数量关系。

具体内容就是:在直角三角形中,两直角边的平方和等于斜边的平方。

逆定理揭示了从三角形三边的数量关系来判断三角形是否是直角三角形。

具体的内容是:在三角形中,如果较小两边的平方和等于第三边的平方,那么三角形是直角三角形。

它们不但是解直角三角形的重要依据,是每年中考的必考知识点之一,而且在实际生活中的应用十分的广泛。

我国伟大的数学家华罗庚将勾股定理称为茫茫宇宙星际交流的“语言”因为数学是一切有智慧生物的共同语言,所以我们有更多的理由要学好它。

学习勾股定理时,应抓住三大关键,一是勾股定理及其逆定理的证明方法,二是勾股定理及其逆定理的应用,三是怎样寻找勾股数。

对于第二个问题,又应抓住四个方面,一:是勾股定理在几何计算中的应用。

二:是勾股定理在几何证明中的应用。

三:是勾股定理及其逆定理的综合应用。

四:是勾股定理在代数证题中的应用。

在初中数学中常常提到的数学思想方法有数形结合思想、分类讨论思想、转化思想、方程思想、整体思想.在勾股定理的应用中,渗透了上述四种数学思想。

作为一名长期从事中学数学教学工作的教师,在教学的过程当中,我经常发现有许多学生在涉及到计算直角三角形中线段的长以及判断三角形的形状等问题时,还是不明白该如何入手解决问题。

在此,我主要想谈谈在这两类问题上,怎样正确快速的应用勾股定理和它的逆定理解决问题。

所以把自己总结的一些经验与大家一起分享,共同学习。

一:怎样应用勾股定理在直角三角形中求线段的长: 1:直接把勾股定理变式计算线段的长已知两条边的具体的值,求第三边。

第一章 第3节 勾股定理的应用

第一章 第3节 勾股定理的应用

第3节勾股定理的应用知识点一确定几何体上的最短路线长图形中,由于受物体和空间的阻隔,两点间的最短路径不一定是两点间的线段长,应将其展成平面图形,利用平面图形中线段的性质确定最短路线.【例1】如图,圆柱的底面周长为6cm,AC是底面的直径,高BC=6 ,点P是母线BC上一点,且PC=32BC,一只蚂蚁从A点出发沿着圆柱体的表面爬行到点P,求蚂蚁爬行的最短距离.特别提醒:在棱柱上确定不同面上的两点间的最短距离时,要把棱柱展开成平面图形,展成不同的面,可能得到不同的路线,要比较后再确定最短距离.拓展:在曲面上确定最短路线,一般沿着出发点或终止点所在的母线展开.解题模板:知识点二利用勾股定理的逆定理解决实际问题在实际生产、生活中常碰到两直线是否垂直的问题,即判断这两条直线构成的角是不是直角.若身边没有测量直角的工具,则可构造三角形,通过测量三边的长度,利用勾股定理的逆定理判断这个三角形是不是直角三角形,从而判断该角是不是直角.【例2】某校两个课外小组的同学到校外去采集植物标本,已知第一小组的行走速度为30 m/min ,第二小组的行走速度为40 m/min ,两组行走的路线为直线且为不同的路线,半小时后,两组同学同时停下来,这时两组同学正好相距1 500 m.请你判断一下两组同学行走的路线是否垂直,并说明理由.总结:勾股定理及其逆定理解决实际问题的两种思路思路1:若能抽象出直角三角形,可以直接利用勾股定理解决实际问题;思路2:若不能抽象出直角三角形,需要先运用勾股定理的逆定理来验证三角形是否为直角三角形,再利用勾股定理解决实际问题.题型一立体图形上的最短距离问题角度1、确定长方体(或正方体)上的最短路线长度如图,已知长方体的长AC =2 cm,宽BC =1cm,高AA'=4 cm一只蚂蚁如果沿长方体的表面从A 点爬到B'点,那么沿哪条路线爬行最近?最短路程是多少?c1.如图,一块长方体砖宽AN=5 cm 长ND=10cm,CD上的点B距地面的高BD = 8 cm,地面上A 处有一只蚂蚁到B处吃食,需要爬行的最短路程是多少?解后反思:对长方体来说,由于一般情况下,长、宽、高不相等,则展开得到的两定点的距离也不相同,故对此问题应把可能出现的情况考虑全,分别计算,经过比较求出最短距离.本题易出现只考虑其中的一种情形,而忽视了另外两种情形的错误角度2、立体图形中最短缠绕长度问题【例 2】我国古代有这样一个数学问题,其题意是:如示意图所示,把枯木看做一个圆柱体,该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,问葛藤的最短长度为多少.2.如图所示,有一根高为2 m 的木柱,它的底面周长为0.3 m,为了营造喜庆的气氛,老师要求小明将一根彩带从柱底向柱顶均匀地缠绕七圈,一直缠到起点的正上方为止.问:小明至少需要准备一根多长的彩带?方法技巧:应用勾股定理建模,求解最短缠绕问题立体图形中不论是路线长还是绳长问题,都需要将立体图形展开转化为平面图形,在平面图形上将“路线长”或“绳长”转化为两点间的距离,再借助直角三角形,利用勾股定理建模求解.题型二利用勾股定理解决实际问题【例3】如图1.3-9,某地方政府决定在相距50 km的A ,B 两站之间的公路旁E点修建一个土特产加工基地,且使C,D 两村到E点的距离相等.己知DA⊥AB 于点A ,CB⊥AB 于点B ,DA=30 km,CB=20km,那么基地E应建在离A站多少千米的地方?变式训练:3、一游泳池长为48 m,小方和小朱进行游泳比赛,从同一起点同时出发.小方的平均速度为3 m/s,小朱的平均速度为 3.1 m/s.小朱沿斜线游,而小方直游,俩人到达终点的位置相距14 m按各人的平均速度计算,谁先到达终点?规律总结:勾股定理及其逆定理的应用知多少(1)解决两点问距离问题:正确画出图形,已知直角三角形两边,利用勾股定理求第三边; (2)解决航海问题:理解方位角的概念,根据题意画出图形,利用勾股定理或逆定理解题; (3)解决实际问题中两线段是否垂直问题:以已知的三条边构造一个三角形,根据三边的长度,利用勾股定理的逆定理解题;(4)解决折叠问题:正确画出折叠前、后的图形,运用勾股定理及方程思想解题(5)解决梯子问题:梯子、墙、地面可构成直角三角形,利用 勾股定理的知识解题; (6)解决侧面展开问题:将立体图形的侧面展开成平面图形,利用勾股定理解决表面距离最短的问题.典型高频题1.如图1,一根垂直于地面的旗杆在离地面5 m 处撕裂折断,旗杆顶部落在离旗杆底部12 m 处, 旗杆折断之前的高度是( ) A. 5 m B.12 m C.13 m D.18 m图1 图22.如图 2,一轮船以 16 n mile/h 的速度从港 口 A 出发向东北方向航行,另一轮船以 12 n mile/h 的速度同时从港口 A 出发向东南方向航行,离开 港口2 h 后,则两船相距( ) A.25 n mile B.30 n mile C.40 n mile D.50 n mile3.图3是台阶的示意图.已知每个台阶的宽度 都是 30 cm ,每个台阶的高度都是15cm ,连接 AB ,则 AB 等于( )A. 195 cmB.200 cmC.205 cmD.210 cm图3 图4 4.如图4,一圆柱高为8 cm ,底面圆半径为6cm ,一只蚂蚁从点 A 爬到点B 处吃食,要爬行的最短路程是( )A.6cmB.8cmC.10cmD.12cm5.如图5是一个三级台阶,它的每一级的长,宽,高分别为100 cm,15 cm 和10 cm,A 和B 是这个台阶的两个相对的端点,A 点上有一只蚂蚁想到B 点去吃可口的食物,则它所走的最短路线长度为_________ cm.图5 图66.如图6所示,一个梯子AB长为2.5 m,顶端A 靠墙AC上,这时梯子下端B与墙角C的距离为1.5 m,梯子滑动后停在DE的位置上,测得BD 长为0.5 m,则梯子顶端A下落了_____m.7.如图7 是一个边长为6的正方体木箱,点Q 在上底面的棱上,AQ=2,一只蚂蚁从P点出发沿木箱表面爬行到点Q,求蚂蚁爬行的最短路程.8.将一根长为22 cm的筷子置于底面直径为5 cm ,高为12 cm 的圆柱形水杯中,设筷子露在杯子外面的长度为h cm,则h 的取值范围是__________(提示:圆柱的母线与底面直径都垂直).9..如图9、在一根长为90 cm的灯管上,缠满了彩色丝带,已知可近似地将灯管看做圆柱体,且底面周长为4 cm,影色丝带均匀地缠绕了30 圈,则彩色丝带的总长度为_______cm.图910.如图10,某沿海开放城市A接到台风警报,在该市正南方向100 km 的B 处有一台风中心,沿BC方向以20 km/ h 的速度向D 移动.巳知城市A到BC的距离AD=60 km,那么台风中心经过多长时间将从B点移到D点?如果在距台风中心30 km的圆形区域内都将有受到台风破坏的危险,正在D点休闲的游人在接到台风警报后的几小时内撤离才可脱离危险?图10。

勾股定理的应用

勾股定理的应用

勾股定理的应用勾股定理是数学中一项基础且重要的定理,它描述了直角三角形的边长关系。

在实际生活中,勾股定理被广泛应用于各个领域,例如建筑设计、测量、导航等。

本文将探讨勾股定理在不同领域的具体应用。

1. 建筑设计中的应用勾股定理在建筑设计中起到至关重要的作用。

例如,在设计房屋结构时,经常需要计算墙壁或屋顶的倾斜度。

利用勾股定理,我们可以通过测量两边的长度来计算斜边的长度,从而确保设计的斜度符合要求。

此外,在设计地基或者道路时,也可以利用勾股定理来计算坡度,确保施工的平稳性和稳定性。

2. 测量领域中的应用在测量领域,勾股定理是进行测量工作中常用的工具之一。

例如,在测量一座建筑物的高度时,我们可以利用勾股定理来计算施工仰角与测距的关系,从而推算出建筑物的高度。

此外,在进行地理测量时,勾股定理也可以用来计算两点之间的距离,为地图制作和导航提供便利。

3. 物理学领域中的应用在物理学中,勾股定理广泛应用于研究力学、光学和电磁学等领域。

例如,在力学中,勾股定理可以用来计算斜面上物体的滑动速度与斜度的关系。

在光学中,勾股定理可以用来计算光的传播路径或者反射角度。

在电磁学中,勾股定理可以用来计算电路中的电压、电流和电阻之间的关系。

4. 航空航天领域中的应用勾股定理在航空航天领域有着重要的应用。

例如,在飞机设计中,可以利用勾股定理来计算机翼与机身之间的夹角,以及机体结构的尺寸比例。

此外,在导弹制导系统中,勾股定理也可以用来计算弹道轨迹和目标的距离,从而精确控制导弹的飞行路径。

5. 数学教育中的应用勾股定理作为基础的数学知识,也在教育领域中得到广泛应用。

它被用于教授几何学和三角学等课程,并且可以通过数学问题和实际示例来加深学生对勾股定理的理解。

通过实际的案例分析和解决问题的能力训练,学生可以更好地应用勾股定理于实际和抽象的数学问题中。

综上所述,勾股定理是一项具有广泛应用的数学原理。

在建筑设计、测量、物理学、航空航天和教育等领域,勾股定理都发挥着重要的作用。

勾股定理的应用

勾股定理的应用

勾股定理的应用勾股定理,也称毕达哥拉斯定理,是数学中的基本定理之一。

它给出了一个直角三角形的斜边平方等于两个直角边平方之和的关系。

在数学领域中,勾股定理是一项重要的理论工具,但它的应用却不仅限于数学领域,更广泛地渗透到了自然科学、工程技术等领域。

本文将会逐步介绍勾股定理在不同领域的应用,从而展示它的重要性和广泛性。

一、建筑工程中的应用在建筑设计和施工中,勾股定理被广泛运用于测量和定位。

例如,在测量一片地块的面积时,可以利用勾股定理计算出两个相邻边的长度,再将其相乘得到面积。

此外,勾股定理还可用于确定建筑物的直线距离和角度,帮助工程师合理布局和设计建筑物,确保施工的准确性和安全性。

二、天文学中的应用勾股定理在天文学中的应用可以追溯到古代。

通过观测恒星的位置和太阳的高度角等信息,可以运用勾股定理计算出恒星距离地球的距离。

此外,星体的视差也可以利用勾股定理计算,从而推断出它们的物理属性和位置关系。

勾股定理在天文学中为测量宇宙中不同天体的距离和位置提供了重要的数学依据。

三、导航和地理测量中的应用在导航和地理测量中,勾股定理被广泛用于测量距离和方向。

例如,利用卫星定位系统(GPS)可以准确计算两个地点之间的直线距离,这就是运用了勾股定理。

此外,勾股定理还可以用于测量航海中的船舶位置,帮助海员确定船只的航向和航速。

四、物理学中的应用在物理学中,勾股定理是研究力学、热力学和电磁学等领域的基础工具。

例如,通过应用勾股定理,可以计算出一个物体在斜面上滑动的加速度和速度。

在电路分析中,可以运用勾股定理计算电压和电流之间的关系,从而理解和解决电路中的问题。

五、计算机图形学中的应用计算机图形学是一门研究如何在计算机上生成和操作图像的学科。

勾股定理在三维图形的建模和渲染中起着重要的作用。

计算机软件可以通过勾股定理计算出三维空间中各个点的位置和相对关系,从而形成逼真的图像和动画效果。

结语勾股定理作为一项基本定理,其应用范围和重要性远不止于数学领域。

勾股定理及应用

勾股定理及应用

勾股定理及应用勾股定理是数学中的一条经典定理,也是三角学中最重要的基本公式之一。

在几何学和物理学中,勾股定理被广泛应用于求解直角三角形的各类问题。

本文将详细介绍勾股定理的原理和常见应用。

一、勾股定理的原理勾股定理是指在直角三角形中,直角边的平方等于两个直角边的平方和。

用数学形式表示为:c² = a² + b²,其中c为斜边(即直角三角形的斜边),a、b为直角边。

勾股定理的证明可以通过几何方法和代数方法来完成。

其中一种常见的几何证明方法是利用面积关系,将直角三角形一分为二,形成两个直角三角形,再应用面积公式推导得出结果。

代数证明则是通过将直角三角形的三条边的长度代入勾股定理进行计算,验证等式成立。

二、勾股定理的应用1. 求解未知边长:勾股定理最基本的应用就是求解直角三角形中的边长。

通过已知两条边长,可以利用勾股定理计算出第三条边的长度。

例如,已知直角三角形的一条直角边长为3,另一条直角边长为4,可以通过勾股定理计算出斜边的长度,即c² = 3² + 4² = 9 + 16 = 25,开平方得c=5。

2. 检验三角形是否为直角三角形:当已知三条边长时,可以利用勾股定理判断三角形是否为直角三角形。

当c² = a² + b²成立时,即可证明三角形为直角三角形。

3. 求解角度:在已知两条边长的情况下,可以通过勾股定理计算出两条直角边之间的夹角。

例如,已知直角三角形的直角边长为3和4,可以计算出斜边与其中一条直角边的夹角的正弦、余弦和正切值,从而求得该角度的大小。

4. 应用于物理问题:勾股定理在物理学中也有着广泛的应用。

例如,在力学中,可以通过勾股定理计算出斜坡上物体的加速度、速度和位移等相关物理量。

在天文学中,可以利用勾股定理测算星体距离和角度,辅助观测和研究。

总结:勾股定理是数学中的重要定理之一,通过勾股定理可以求解直角三角形的各类问题。

勾股定理应用整理(2017的整理)

勾股定理应用整理(2017的整理)

AB≈3米
走进生活(2) 如图,要在河边修建一个水泵站,分别向A,B两个村庄送水, 已知A、B到河边的距离分别为AC=3km M,并且CD=10Km.问:水泵站建立在什么地方,可使所用的 水管最短?请在图中标出水泵站P的位置。
AB 10 2
变式:如图,要在河边修建一个水泵站,分别向A,B两个村庄送水,已知A、
F
·
B
A

练习:如图,有两棵树,一棵高8m,另一棵高2m, 两树相距8m,一只小鸟从一棵树的树梢飞到另一 棵树的树梢,至少要飞______m
A
8m
C
B
2m
8m
不规则图形的面积
如右图,每个小正 方形的边长为1,求 四边形ABCD的面积。
S四边形ABCD
5 5 1 1 5 1 2 4 1 1 2 1 1 1 4
2
2
2
2
14.5
在数轴上表示二次根数
在数轴上表示 17 的点?
17= 1+16= 12 +42
在数轴上表示 7 的点?
7= 16 9= 42 32
赵爽弦图
(4)
(3)
(2)
小明用电脑把四个全等的直角三角形拼成了一 个大正方形,已知大正方形的面积为13,中间 小正方形的面积为1,直角三角形的两条直角边 为a,b,求ab=?
部底面直径为5㎝,高为12㎝,吸管放进
杯里,杯口外面露出5㎝,问吸管要做多长?
吸管长 18cm
5㎝
13㎝

12㎝
5㎝
如图,将一根25㎝长的细木棒放入长、宽、
高分别为8㎝、6㎝和10㎝的长方体无盖盒
子中,则细木棒露在盒外面的最短长度

17.2.2勾股定理的应用(精讲)

17.2.2勾股定理的应用(精讲)

17.2.2勾股定理的应用题型1:勾股定理的应用-求树/旗杆的高度1如图,一棵直立的大树在一次强台风中被折断,折断处离地面2米,倒下部分与地面成30°角,这棵树在折断前的高度为( )A.米B.米C.4米D.6米【分析】根据直角三角形中30°角所对的直角边等于斜边的一半,求出折断部分的长度,再加上离地面的距离就是折断前树的高度.【解答】解:如图,根据题意BC=2米,∠BCA=90°,∵∠BAC=30°,∴AB=2BC=2×2=4米,∴2+4=6米.故选:D【变式1-1】如图,在离地面高度6m处引拉线固定电线杆,拉线和地面成60°角,则拉线AC的长是( )A.12m B.2m C.4m D.6m【分析】根据三角形的内角和定理得到∠DCA=30°,根据勾股定理即可得到结论.【解答】解:∵CD=6m,∠CDA=90°,∠CAD=60°,∴∠DCA=30°,∴AC=2AD,∵AC2=AD2+CD2,∴AC2=(AC)2+62,解得AC=4,故拉线AC的长是4m,故选:C【变式1-2】如图,某超市为了吸引顾客,在超市门口离地高4.5m的墙上,装有一个由传感器控制的门铃A,如①图所示,人只要移至该门铃5m及5m以内时,门铃就会自动发出语音“欢迎光临”.如②图所示,一个身高1.5m的学生走到D处,门铃恰好自动响起,则BD的长为( )A.3米B.4米C.5米D.7米【分析】根据题意构造出直角三角形,利用勾股定理即可解答.【解答】解:由题意可知.BE=CD=1.5m,AE=AB﹣BE=4.5﹣1.5=3m,AC=5m,由勾股定理得BD=CE==4(m),故离门4米远的地方,灯刚好打开.故选:B【变式1-3】如图,有两棵树,一棵高19米,另一棵高10米,两树相距12米.若一只小鸟从一棵树的树梢飞到另一棵树的树梢,则小鸟至少飞行( )A.10米B.15米C.16米D.20米【分析】根据“两点之间线段最短”可知:小鸟沿着两棵树的顶端进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.【解答】解:如图,建立数学模型,两棵树的高度差AC=19﹣10=9米,间距AB=DE=12米,根据勾股定理可得:小鸟至少飞行的距离BC==15米.故选:B题型2:勾股定理的实际应用-梯子问题2如图,一架2.5m长的梯子,斜立在一竖直的墙上,这时梯子的底部距墙底端0.7m,如果梯子的顶端沿墙下滑0.4m,那么梯子的底部将平滑( )A.0.9m B.1.5m C.0.5m D.0.8m【分析】先根据梯子的顶端下滑了0.4米求出A′C的长,再根据勾股定理求出B′C的长,进而可得出结论.【解答】解:∵梯子的顶端下滑了0.4米,∴A′C=2m,∵在Rt△A′B′C中,A′B′=2.5m,A′C=2m,∴B′C===1.5m,∴BB′=B′C﹣BC=1.5﹣0.7=0.8m.故选:D【变式2-1】如图,学校要把宣传标语挂到教学楼的顶部C处,已知楼顶C处离地面的距离CA为8m,为保证安全,梯子的底部和墙基的距离AB至少为4m,要使云梯的顶部能到达C处,估计云梯的长度至少为( )A.8m B.9m C.10m D.12m【分析】利用勾股定理求出BC的长度,估算后即可得到答案.【解答】解:在Rt△ABC中,∠BAC=90°,AC=8m,AB=4m,∴BC===(m),∵8<<9,∴云梯的长度至少9m,故选:B【变式2-2】如图,有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池边的中点,它的顶端恰好到达池边的水面,求水的深度是( )尺.A.8B.10C.13D.12【分析】找到题中的直角三角形,设水深为x尺,根据勾股定理列方程可解答.【解答】解:设水深x尺,则芦苇长(x+1)尺,由勾股定理得:52+x2=(x+1)2,解得:x=12,答:水的深度是12尺,故选:D【变式2-3】如图,淇淇在离水面高度为5m的岸边C处,用绳子拉船靠岸,开始时绳子BC的长为13m.(1)开始时,船距岸A的距离是 12 m;(2)若淇淇收绳5m后,船到达D处,则船向岸A移动 (12﹣) m.【分析】(1)在Rt△ABC中,利用勾股定理计算出AB长;(2)根据题意可得CD长,然后再次利用勾股定理计算出AD长,再利用BD=AB﹣AD可得BD长.【解答】解:(1)在Rt△ABC中,∠CAB=90°,BC=13m,AC=5m,∴(m),故答案为:12;(2)∵淇淇收绳5m后,船到达D处,∴CD=5(m),∴AD=(m),∴BD=AB﹣AD=(12﹣)m.故答案为:(12﹣)题型3:勾股定理的实际应用-九章算术3在《九章算术》中有一个问题(如图):今有竹高一丈,末折抵地,去本三尺,问折者高几何?它的意思是:一根竹子原高一丈(10尺),中部一处折断,竹梢触地面处离竹根3尺,试问折断处离地面( )尺.A.4B.3.6C.4.5D.4.55【分析】画出图形,设折断处离地面x尺,则AB=(10﹣x)尺,由勾股定理得出方程,解方程即可.【解答】解:如图,由题意得:∠ACB=90°,BC=3尺,AC+AB=10尺,设折断处离地面x尺,则AB=(10﹣x)尺,在Rt△ABC中,由勾股定理得:x2+32=(10﹣x)2,解得:x=4.55,即折断处离地面4.55尺.故选:D.【变式3-1】《九章算术》是我国古代的数学名著,书中的“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺.问折者高几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部3尺远,问折断处离地面的高度是多少?设折断后离地面的高度为x尺,则可列方程为( )A.x2﹣3=(10﹣x)2B.x2﹣32=(10﹣x)2C.x2+3=(10﹣x)2D.x2+32=(10﹣x)2【分析】竹子折断后刚好构成一直角三角形,设竹子折断处离地面x尺,则斜边为(10﹣x)尺,利用勾股定理解题即可.【解答】解:设竹子折断处离地面x尺,则斜边为(10﹣x)尺,根据勾股定理得:x2+32=(10﹣x)2.故选:D【变式3-2】《九章算术》中有一道“折竹”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意是:一根竹子原高一丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,则折断处离地面的高度为 尺.【分析】设折断处离地面的高度为x尺,则折断的长度为(10﹣x)尺,根据勾股定理列方程解方程即可.【解答】解:设折断处离地面的高度为x尺,则折断的长度为(10﹣x)尺,由勾股定理得x2+32=(10﹣x)2,解得x=4.55,∴折断处离地面的高度为4.55尺,故答案为:4.55题型4:勾股定理的实际应用-影响范围4如图,一艘船以40km/h的速度沿既定航线由西向东航行,途中接到台风警报,某台风中心正以20km/h 的速度由南向北移动,距台风中心200km的圆形区域(包括边界)都属台风影响区,当这艘轮船接到台风警报时,它与台风中心的距离BC=500km,此时台风中心与轮船既定航线的最近距离BA=300km,如果这艘轮船会受到台风影响,那么从接到警报开始,经过( )小时它就会进入台风影响区.A.10B.7C.6D.12【分析】首先假设轮船能进入台风影响区,进而利用勾股定理得出等式求出即可.【解答】解:如图所示:设x小时后,就进入台风影响区,根据题意得出:CE=40x千米,BB′=20x千米,∵BC=500km,AB=300km,∴AC=400(km),∴AE=400﹣40x,AB′=300﹣20x,∴AE2+AB′2=EB′2,即(400﹣40x)2+(300﹣20x)2=2002,解得:x1=15,x2=7,∴轮船经7小时就进入台风影响区.故选:B【变式4-1】今年第6号台风“烟花”登录我国沿海地区,风力强,累计降雨量大,影响范围大,有极强的破坏力.如图,台风“烟花”中心沿东西方向AB由A向B移动,已知点C为一海港,且点C与直线AB上的两点A、B的距离分别为AC=600km,BC=800km,又AB=1000km,以台风中心为圆心,周围500km以内为受影响区域.(1)求∠ACB的度数;(2)海港C受台风影响吗?为什么?(3)若台风中心的移动速度为28千米/时,则台风影响该海港持续的时间有多长?【分析】(1)利用勾股定理的逆定理得出△ABC是直角三角形,进而得出∠ACB的度数;(2)利用三角形面积得出CD的长,进而得出海港C是否受台风影响;(3)利用勾股定理得出ED以及EF的长,进而得出台风影响该海港持续的时间.【解答】解:(1)∵AC=600km,BC=800km,AB=1000km,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°;(2)海港C受台风影响,理由:过点C作CD⊥AB,∵△ABC是直角三角形,∴AC×BC=CD×AB,∴600×800=1000×CD,∴CD=480(km),∵以台风中心为圆心周围500km以内为受影响区域,∴海港C受台风影响;(3)当EC=500km,FC=500km时,正好影响C港口,∵ED==140(km),∴EF=280km,∵台风的速度为28千米/小时,∴280÷28=10(小时).答:台风影响该海港持续的时间为10小时.【变式4-2】如图,公路MN和公路PQ在P点处交汇,点A处有一所中学,AP=160米,∠NPQ=30°,拖拉机的速度是5米/秒,拖拉机行驶时周围100米以内会受到噪音影响,那么拖拉机在公路MN上沿PN方向行驶时学校是否会受到影响,请说明理由;若受到影响,那么学校受到的影响的时间为多少秒?【分析】作AH⊥MN于H,如图,利用含30度的直角三角形三边的关系得到AH=AP=80,则点A 到MN的距离小于100,从而可判断学校会受到影响;以A为圆心,100为半径画弧交MN于B、C,如图,则AB=AC=100,利用等腰三角形的性质得BH=CH,利用勾股定理计算出BH=60,得到BC=2BH =120,然后利用速度公式计算出学校受到的影响的时间.【解答】解:过A作AH⊥MN于H,如图,在Rt△APH中,∵∠HPA=30°,∴AH=AP=×160=80,∵80<100,∴拖拉机在公路MN上沿PN方向行驶时学校会受到影响;以A为圆心,100为半径画弧交MN于B、C,如图,则AB=AC=100,而AH⊥BC,∴BH=CH,在Rt△ABH中,BH===60,∴BC=2BH=120,∴=24(秒),答:学校受到的影响的时间为24秒.题型5:勾股定理的实际应用-速度问题5如图所示,甲渔船以8海里/时的速度离开港口O向东北方向航行,乙渔船以6海里/时的速度离开港口O向西北方向航行,他们同时出发,一个半小时后,甲、乙两渔船相距( )A.12海里B.13海里C.14海里D.15海里【分析】根据题意得出∠AOB=90°,根据勾股定理即可得到结论.【解答】解:由题意可得:BO=1.5×6=9(海里),AO=1.5×8=12(海里),∠1=∠2=45°,故∠AOB=90°,∴AB==15(海里),答:甲、乙两渔船相距15海里,故选:D.【变式5-1】在海面上有两个疑似漂浮目标.接到消息后,A舰艇以12海里/时的速度离开港口O,向北偏西50°方向航行.同时,B舰艇在同地以16海里/时的速度向北偏东方向行驶,如图所示,离开港口1.5小时后两船相距30海里,则B舰艇的航行方向是( )A.北偏东60°B.北偏东50°C.北偏东40°D.北偏东30°【分析】根据勾股定理的逆定理判断△AOB是直角三角形,求出∠BOD的度数即可.【解答】解:由题意得,OA=12×1.5=18(海里),OB=16×1.5=24(海里),又∵AB=30海里,∵182+242=302,即OB2+OA2=AB2∴∠AOB=90°,∵∠DOA=50°,∴∠BOD=40°,则另一艘舰艇的航行方向是北偏西40°,故选:C.【变式5-2】一帆船先向正西航行24千米,然后向正南航行10千米,这时它离出发点的直线距离有( )千米.A.26B.18C.13D.32【分析】根据题意可知两次航向的方向构成了直角.然后根据题意知两次航行的路程即是两条直角边,根据勾股定理就能计算AC的长.【解答】解:如图,根据题意得:△ABC是直角三角形,∵∠B=90°,AB=24km,BC=10km,根据勾股定理得AC2=AB2+BC2,∴AC2=242+102,∴AC=26km.故选:A【变式5-3】如图,某人划船横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B25m,结果他在水中实际划了65m,求该河流的宽度.【分析】从实际问题中找出直角三角形,利用勾股定理进行计算即可得到该河流的宽度.【解答】解:根据图中数据,由勾股定理可得:AB===60(米).∴该河流的宽度为60米题型6:勾股定理的实际应用-立体图形的最短路径问题6如图,三级台阶,每一级的长、宽、高分别为8dm、3dm、2dm.A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为( )A.15 dm B.17 dm C.20 dm D.25 dm【分析】先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.+´,【答案】解:三级台阶平面展开图为长方形,长为8dm,宽为(23)3dm则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.【变式6-1】如图,一圆柱高BC 为20cm ,底面周长是10cm ,一只蚂蚁从点A 爬到点P 处吃食,且35PC BC =,则最短路线长为( )A .20cm B .13cm C .14cm D .18cm【分析】根据题意画出图形,连接AP ,则AP 就是蚂蚁爬行的最短路线长,根据勾股定理求出AP 即可.【答案】解:如图展开,连接AP ,则AP 就是蚂蚁爬行的最短路线长,则90C Ð=°,11052AC cm cm =´=,20BC cm =Q ,35PC BC =,12CP cm \=,由勾股定理得:222251213()AP AC CP cm =+=+=,即蚂蚁爬行的最短路线长是13cm ,故选:BA .12cmB .11cmC .10cmD .9cm【分析】要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.【答案】解:将长方体展开,连接A 、B ¢,则13138()AA cm ¢=+++=,6A B cm ¢¢=,根据两点之间线段最短,228610AB cm ¢=+=.故选:C .【变式6-3】如图,桌上有一个圆柱形玻璃杯(无盖)高6厘米,底面周长16厘米,在杯口内壁离杯口1.5厘米的A 处有一滴蜜糖,在玻璃杯的外壁,A 的相对方向有一小虫P ,小虫离杯底的垂直距离为1.5厘米,小虫爬到蜜糖A 处的最短距离是( )A .73厘米B .10厘米C .82厘米D .8厘米【分析】由于小虫从外壁进入内壁,要先到杯子上沿,再进入杯子,故先求出到杯子沿的最短距离即可解答.【答案】解:如图所示:最短路径为:P A ¢®,将圆柱展开,2222(162)(6 1.5 1.5)10PA PE EA cm ¢¢=+=¸+-+=,最短路程为10PA cm ¢=.故选:B题型7:折叠问题7如图,矩形纸片ABCD 中,AB=8,将纸片折叠,使顶点B 落在边AD 的E 点上,BG=10,当折痕的另一端F 在AB 边上时,求△EFG 的面积.【答案】25.【解析】解:如图,过G 作GH ⊥AD 于H ,∵在Rt △GHE 中,∠GHE=90°,GE=BG=10,GH=8,∴EH=102―82=6,∴AE=10﹣6=4.设AF=x ,则EF=BF=8﹣x ,∵在Rt △GHE 中,∠A=90°,∴AF 2+AE 2=EF 2,即x 2+42=(8﹣x )2,解得:x=3,∴AF=3,BF=EF=5,∴△EFG 的面积=12EF•EG=12×5×10=25.【变式7-1】如图,矩形ABCD 中,AB =8,BC =4,将矩形沿AC 折叠,点D 落在点D ′处,则重叠部分△AFC 的面积为 .【分析】因为BC 为AF 边上的高,要求△AFC 的面积,求得AF 即可,求证△AFD ′≌△CFB ,得BF =D ′F ,设D ′F =x ,则在Rt △AFD ′中,根据勾股定理求x ,∴AF =AB ﹣BF .【解答】解:易证△AFD ′≌△CFB ,∴D ′F =BF ,设D ′F =x ,则AF =8﹣x ,在Rt △AFD ′中,(8﹣x )2=x 2+42,解之得:x =3,∴AF =AB ﹣FB =8﹣3=5,∴S △AFC =•AF •BC =10.故答案为:10【变式7-2】矩形纸片ABCD 中,AD =10cm ,AB =4cm ,按如图方式折叠,使点B 与点D 重合,折痕为EF ,则DE = cm .【分析】根据已知条件可以知道,DE=BE,若设DE=x,则DE=BE=x,AE=10﹣x,在Rt△ABE中可以利用勾股定理,列方程求出DE的长.【解答】解:设DE=x,则BE=DE=x,AE=10﹣x,又∵在Rt△ABE中AB2+AE2=BE2,即42+(10﹣x)2=x2,解得x=.故答案为:【变式7-3】如图,沿AE折叠长方形ABCD,使D点落在BC边的点F处,若AB=12cm,BC=13cm,则FC的长度是 .【分析】根据△ADE≌△AFE,得AD=AF,已知AB,AF根据勾股定理计算BF,FC=BC﹣BF.【解答】解:沿AE折叠后,有△ADE≌△AFE,AF=AD=13cm,在Rt△ABF中,AF=13cm,AB=12cm,∴BF==5cm∴FC=BC﹣BF=8cm.故答案为8cm。

勾股定理的应用

勾股定理的应用

勾股定理的应用勾股定理是数学中的一条重要定理,它描述了直角三角形中三边之间的关系。

在生活和实际应用中,勾股定理有着广泛的应用。

本文将介绍勾股定理在测量、建筑、导航和图形设计等领域的具体应用。

测量领域中,勾股定理被广泛应用于测量距离。

以建筑斜坡的测量为例,斜坡上升高度h与斜线的长度L之间的关系可以通过勾股定理来计算:L² = h² + d²,其中d表示水平距离。

因此,在实际测量中,我们可以通过测量这两个数据来计算斜坡的斜线长度,从而获得准确的测量结果。

在建筑领域中,勾股定理被用于计算斜坡的坡度。

例如,当我们需要在一座山坡上建造道路时,为了确保道路的安全和适宜度,需要计算坡度。

通过勾股定理,我们可以计算出山坡的斜率,从而决定道路的坡度是否符合要求。

这样,勾股定理为建筑师和工程师提供了重要的计算工具,使他们能够设计出符合规范的建筑物。

此外,勾股定理在导航和定位领域也有着广泛应用。

例如,在船舶导航中,通过测量船舶与目标之间的距离和角度,利用勾股定理可以计算出两者之间的直线距离。

这样一来,船舶的导航员可以更准确地确定目标位置,提高导航的准确性。

另外,在卫星定位系统(GPS)中,勾股定理也被用于计算卫星和接收器之间的距离,以确定接收器的准确位置。

在图形设计以及艺术创作中,勾股定理也扮演着重要的角色。

通过利用直角三角形的比例关系,设计师可以使用勾股定理来确定艺术作品的长宽比例。

这样可以保证作品的视觉效果和比例感,使其更加美观和谐。

另外,在绘画和摄影中,通过勾股定理,艺术家可以确定透视和景深效果,使作品更加立体和逼真。

总之,勾股定理作为数学中的基础定理,在生活和实际应用中发挥着重要的作用。

从测量到建筑,从导航到艺术创作,它的应用无处不在。

掌握勾股定理的应用,不仅能够提高我们的数学水平,还能够帮助我们更好地理解和应用数学知识,从而实现更高效、精确的工作和创作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F
·
B
A

精选ppt
20
练习:如图,有两棵树,一棵高8m,另一棵高2m, 两树相距8m,一只小鸟从一棵树的树梢飞到另一 棵树的树梢,至少要飞______m
A
8m
C
B
2m
8m
精选ppt
21
不规则图形的面积
如右图,每个小正 方形的边长为1,求 四边形ABCD的面积。
S四边形ABCD
551151241121114
题意是:
有一个边长为10尺的正方形池塘, 在水池正中央有一根新生的芦苇, 它高出水面1尺,如果把这根芦苇 沿与水池边垂直的方向拉向岸边, 它的顶端恰好到达岸边。请问这个 水池的深度和这根芦苇的长度各是 多少?
精选ppt
6
解:如图
BC为芦苇长, AB为水深,
AC为池中心点距岸边的距离。
5
设AB =x尺,则BC =(X+1)尺,
H
G
E
F
D A
40
120
C 30 B
精选ppt
16
(2)箱壁上的最短距离
如图,一圆柱高8cm,地面半径2cm,一只蚂蚁 从点A爬到点B处吃食,问蚂蚁要爬行的最短路 程是多少?
A
A
B
B
精选ppt
17
在图中,如果在正方体箱内的A处 有一只昆虫,它要在箱壁上爬行
. 到B处,至少要爬多远? B
.A
精选ppt
A
x
x+1
C
B
5
精选ppt
11
如图,有两根直杆隔河相对,一杆高30m,另一 杆高20m,两杆相距50m,现两杆上各有一只鱼 鹰,它们同时看到两杆之间的河面上浮起一条小 鱼(即E点),于是以同样的速度同时飞过来夺鱼, 结果两只鱼鹰同时到达,问:两杆底部距鱼处的 距离各是多少?
D
A
C
B
E
精选ppt
12
《九章算术》专设勾 股章来研究勾股问题, 共24个问题.按性质 可分为三组,其中第 一组的14个问题可以 直接利用勾股定理来 解决.很多是具有历 史地位的世界著名算 题.
精选ppt
5
探索(古题鉴赏)
“引葭赴岸”是《九章算术》中的一道题: “今有池方一 丈,葭生其中央,出水一尺,引葭赴岸,适与 岸齐。 问水深、葭长各几何?”
2
2
2
2
14.5
精选ppt
22
在数轴上表示二次根数
在数轴上表示 1 7 的点?
17=1+16=12+42
精选ppt
23
在数轴上表示 7 的点?
7=169=4232
精选ppt
24
赵爽弦图
(4)
(3)
(2)
小明用电脑把四个全等的直角三角形拼成了一
个大正方形,已知大正方形的面积为13,中间 小正方形的面积为1,直角三角形的两条直角边 为a,b,求ab=?
勾股定理的应用
精选ppt
1
勾股定理
直角三角形两直角边的平方和等于斜边的 平方
c


b
a2 + b2 = c2 a2 = c2 - b2
a勾
b2 = c2 - a2
精选ppt
2
练一练(数学就在我们身边)
A
90cm
?
B
120cm
C
精选ppt
3
持竿进城(课本P25例1) 摆梯子(例2)
精选ppt
4
“引葭赴岸”
周长=5+ 13
精选ppt
27
用方程思想解决图形 折叠问题
精选ppt
28
方程思想
直角三角形中,当无法已知两边求第三 边时,应采用间接求法:灵活地寻找题中 的等量关系,利用勾股定理列方程。
精选ppt
29
(应用)小刚准备测量河水的深度,他把一根竹竿插到离岸 边1.5m远的水底,竹竿高出水面0.5m,把竹竿的顶端拉向 岸边,竹竿和岸边的水平线刚好相齐,求河水深度。
ab=6
精选ppt
25
(4) (3)
(2)
变式一:小明用电脑把四个全等的直角三角形
拼成了一个大正方形,已知大正方形的面积为
13,中间小正方形的面积为1,直角三角形的两
条直角边为a,b,求(a+b)2=?
(a+b)2=25
精选ppt
26
(4) (3)
(2)
变式二、小明用电脑把四个全等的直角三角形拼 成了一个大正方形,已知大正方形的面积为13, 中间小正方形的面积为1,直角三角形的两条直 角边为a,b,求直角三角形的周长等于多少?


? 10㎝
精选ppt
10㎝? 8㎝
6㎝
14
如图是一个棱长为10cm的正方体盒子,小 明准备放入一些铅笔(要使铅笔完全放入 盒中),问最长能放入多长的铅笔?
H
G
E
F
D C
A
B
精选ppt
15
如图是一个40cm×30cm×120cm 的长方体空盒子。小明准备放入一些铅 笔(要使铅笔完全放入盒中),问最长 能放入多长的铅笔?
A
0.5
C
2
H

印度数学家什迦逻(?x 1141年-
1225年)曾提出过“荷花问
题”:
B 精选ppt
8
《九章算术》中的折竹问题:“今有竹
高一丈,末折抵地,去根六尺,问折高
者几何?”
题意是:有一根竹子原
A
高1丈(1丈=10尺), 中部有一处折断,竹梢
触地面处离竹根6尺,试
x
10-x 问折断处离地面多高?
根据勾股定理得:x2+52=(x+1)2
x
X+1
即:(x+1)2- x2 =52
解得:x=12
所以芦苇长为12+1=13(尺)
答:水深为12尺,芦苇长为13尺。
精选ppt
7Leabharlann 盛开的水莲 平静湖面清可鉴,面上半尺生红莲;
出泥不染亭亭立,忽被强风吹一边。 渔人观看忙向前,花离原位两尺远; 能算诸君请解题,湖水如何知深浅?
(1)吸管的长度
一种盛饮料的圆柱形杯(如图),测得内
部底面直径为5㎝,高为12㎝,吸管放进
杯里,杯口外面露出5㎝,问吸管要做多长?
吸管长 18cm
5㎝
13㎝

12㎝
精选ppt
5㎝
13
如图,将一根25㎝长的细木棒放入长、宽、
高分别为8㎝、6㎝和10㎝的长方体无盖盒
子中,则细木棒露在盒外面的最短长度
设:折断处离地面高x尺
B6
C
精选ppt
9
旗杆有多高
下图是学校的旗杆,旗杆上的绳 子垂到了地面,并多出了一段. 有一把卷尺你能想办法测量出 旗杆的高度吗? 请你与同伴交流设计方案?
精选ppt
10
小明发现旗杆上的绳子垂到地面还多 1米,当他们把绳子的下端拉开5米后, 发现下端刚好接触地面,你能帮他们把旗 杆的高度和绳子的长度计算出来吗?
18
在图中,如果在箱内的A处有一只昆虫,
它要在箱壁上爬行到G处,至少要爬多
远?
H
.G
E
F 120
.D
A
C
30
40
B
精选ppt
19
与方位相关
如图:A城气象台测得台风中心在A城正西方向320 km的B处,以每小时40 km的速度向北偏东60°的 BF方向移动,距离台风中心200 km的范围内是受 到台风影响的区域。 北 (1)A城是否会受到这次台风的影响?为什么? (2)若A城受到这次台风影响,那么A城受到这次 台风影响有多长时间?
相关文档
最新文档