重庆市2013年中考数学试卷(解析版)
2013重庆市中考数学试题及答案
![2013重庆市中考数学试题及答案](https://img.taocdn.com/s3/m/6e48c5c7da38376baf1fae36.png)
FED CBA2013年重庆市中考数学复习试卷(最新)一、选择题 (本大题12个小题,每小题4分,共48分) 1.在0,-2,1,3这四数中,最小的数是( )A .-2 B.0 C.1 D.3 2.下列计算中,结果正确的是( )A.236a a a =·B.()()26a a a =·3C.()326a a = D.623a a a ÷= 3.将一副三角板如图放置,使点A 在DE 上,∠B=45°, ∠E=30°,BC DE ∥,则AFC ∠的度数为( ) A.45° B. 50° C. 60° D. 75° 4.函数2-=x xy 的自变量x 取值范围是( ) 第3题图 A .x ≠2 B .x ≠0 C.x ≠0 且x ≠2 D .x>25.如图,已知AB 为⊙O 的直径,点C 在⊙O 上,∠C =15°,则∠BOC 的度数为( )A .15° B. 30° C. 45° D .60° 6.下列调查最适合普查的是( ) A.为了了解2011年重庆市初三学生体育考试成绩情况 B.为了了解一批节能灯泡的使用寿命C.为了了解我校初三某班每个学生某天睡眠时间D.为了了解我市中学老师的健康状况7.下列四个图形中,不是..轴对称图形的是A .B .C .D .8.已知 k 1<0<k 2,则函数 y =k 1x 和 y =k2x的图象大致是( )ABC D9.下图是一组有规律的图案,第1个 图案由4个基础图形组成,第2个图案由7个基础图形组成,第3个图案由10个基础图形组成……,第5个图案中基础图形的个数有( ).A.13B.14C.15D.1610.已知一直角三角形的两直角边的比为3:7,则最小角的正弦值是( )A.73B.58358 C .58758 D.7411.一列货运火车从重庆站出发,匀加速行驶一段时间后开始匀速行驶,过了一段时间,火车到达下一个车站停下,装完货以后,火车又匀加速行驶,一段时间后再次开始匀速行驶,那么可以近似地刻画出火车在这段时间内的速度变化情况的是( )12. 已知二次函数y=ax 2+bx+c 的图象如图所示,有以下结论:①a+b+c <0;②a-b+c >1;③abc >0;④4a-2b+c <0;⑤c-a >1.其中结论正确的个数是( ) A .1个 B .2个 C .3个 D .4个 二、填空题 (本大题6个小题,每小题4分,共24分)13.重庆每年煤炭生产量约4800万吨,将4800万用科学记数法表示为 ________________万.14则这个队队员年龄的中位数是_______________岁.15.小丽想用一张半径为5cm 的扇形纸片围成一个底面半径为4cm 的圆锥,接缝忽略不计, 则扇形纸片的面积是 cm 2.(结果用π表示)16.在平行四边形ABCD 中,E 在DC 上,若:1:2DE EC =,则A B F C E F S S ∆∆:= . 17.已知一个口袋中装有四个完全相同的小球,小球上分别标有-1,0,1,2四个数,搅匀后一次从中摸出两个小球,将小球上的数分别用a 、b 表示,将a 、b 代入方程组{1=-=+y ax b by x ,则方程组有解的概率是__________.18.已知AB 是一段只有3米宽的窄道路,由于一辆小汽车与一辆大卡车在AB 段相遇,必须倒车才能继续通行.如果小汽车在AB 段正常行驶需10分钟,大卡车在AB 段正常行驶需20分钟,小汽车在AB 段倒车的速度是它正常行驶速度的51,大卡车在AB 段倒车的速度是它正常行驶速度的81,小汽车需倒车的路程是大卡车需倒车的路程的4倍.问两车都通过AB 这段狭窄路面的最短时间是_____________分钟. 三、解答题 (本大题2个小题,每小题7分,共14分) 19. 计算:30264)2011(3)31(+---+--π +︒45tan 5421+D CAB FE(1) (2)(3) ……GHFEDCB A A B已入住公租房(套)型号图2A BC D 40%20%35%各型号竣工公租房套数占已竣工的公租房套数的百分数图120如图所示, 方格纸中的每个小方格都是边长为1个单位长度的正方形, ABC ∆的顶点均在格点上, 在建立平面直角坐标系后, 点C 的坐标为(4,1)-.(1) 画出ABC ∆以y 轴为对称轴的对称图形111A B C ∆, 并写出点1C 的坐标;(2) 以原点O 为对称中心, 画出111ABC ∆关于原点O 对称的222A B C ∆, 并写出点2C 的坐标; (3) 以2A 为旋转中心, 把222A B C ∆顺时针旋转90, 得到233A B C ∆, 并写出点3C 的坐标.四、解答题 (本大题3个小题,每小题10分,共40分)21.先化简,再求值:1)1212(2-÷+--+a a a a a ,其中a 是方程121=--x x x 的解.22.在一次数学测验中,甲、乙两校各有100名同学参加测试.测试结果显示,甲校男生的优分率为60%,女生的优分率为40%,全校的优分率为49.6%;乙校男生的优分率为57%,女生的优分率为37%.(男(女)生优分率=男(女)生优分人数男(女)生测试人数 ×100%,全校优分率=全校优分人数全校测试人数 ×100%)(1)求甲校参加测试的男、女生人数各是多少?(2)从已知数据中不难发现甲校男、女生的优分率都相应高于乙校男、女生的优分率,但最终的统计结果却显示甲校的全校优分率比乙校的全校的优分率低,请举例说明原因.23.重庆市公租房倍受社会关注,2010年竣工的公租房有A 、B 、C 、D 四种型号共500套,B 型号公租房的入住率为40%,A 、B 、C 、D 四种型号竣工的套数及入住的情况绘制了图1和图2两幅尚不完整的统计图. (1)2010年竣工的A 型号公租房套数是多少套; (2)请你将图1、图2的统计图补充完整;(3)在安置中,由于D 型号公租房很受欢迎,入住率很高,2010年竣工的D 型公租房中,仅有5套没有入住,其中有两套在同一单元同一楼层,其余3套在不同的单元不同的楼层。
重庆市2013年中考数学真题试题(A卷)(解析版)
![重庆市2013年中考数学真题试题(A卷)(解析版)](https://img.taocdn.com/s3/m/849e13d65022aaea998f0f3d.png)
2013年中考数学试题(重庆市A 卷)(本试卷满分150分,考试时间120分钟)参考公式:抛物线()2y ax bx c a 0=++≠的顶点坐标为2b 4ac b 2a 4a ⎛⎫-- ⎪⎝⎭,,对称轴为by 2a=-一.选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A .B .C .D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑(或将正确答案的代号填人答题卷中对应的表格内). 1.在3,-1,0,-2这四个数中,最大的数是【 】A .0B .6C .-2D .32.计算()232x y 的结果是【 】A .624x yB .628x yC .524x yD .528x y3.已知∠A=650,则∠A 的补角等于【 】A .1250B .1050C .1150D .950】4.分式方程210x 2x-=-的根是【 】 A .x 1= B .x 1=- C .x 2= D .x 2=-5.如图,AB∥CD,AD 平分∠BAC,若∠BAD=700,那么∠ACD 的度数为【 】A .400B .350C .500D .456.计算006tan 452cos60 的结果是【 】A .43B .4C .53D .57.某特警部队为了选拔“神枪手”,举行了1000米射击比赛,最后甲、乙两名战士进入决赛,在相同条件下,两人各射靶10次,经过统计计算,甲、乙两名战士的总成绩都是99.68环,甲的方差是0.28,乙的方差是是0.21。
则下列说法中,正确的是【 】A .甲的成绩比乙的成绩稳定B .乙的成绩比甲的成绩稳定C .甲、乙两人成绩的稳定性相同D .无法确定谁的成绩更稳定8.如图,PO 是⊙O 外一点,PA 是⊙O 的切线,PO=26cm ,PA=24 cm ,则⊙O 的周长为【 】A .18cm πB .16cm πC .20cm πD .24cm π9.如图,在平行四边形ABCD 中,点E 在AD 上,连接CE 并延长与BA 的延长线交于点F ,若AE=2ED ,CD=3cm ,则AF 的长为【 】A .5cmB .6cmC .7cmD .8cm10.下列图形都是由同样大小的矩形按一定规律组成,其中第(1)个图形的面积为22cm ,第(2)个图形的面积为82cm ,第(3)个图形的面积为182cm ,……,由第(1)个图形的面积为【 】A .1962cmB .2002cmC .2162cmD .2562cm11.万州某运输公司的一艘轮船在长江上航行,往返于万州、朝天门两地。
2013重庆市中考数学A卷
![2013重庆市中考数学A卷](https://img.taocdn.com/s3/m/f83a4f0eb52acfc788ebc909.png)
2013年重庆市中考试题A 卷数 学(满分150分,考试时间120分钟)参考公式:抛物线y =ax 2+bx +c (a ≠0)的顶点坐标为(a b 2-,ab ac 442-),对称轴公式为a b x 2-=.一、选择题:(本大题共12个小题,每小题4分,共48分)1.(2013重庆A 卷,1,4分)在3,0,6,-2这四个数中,最大的数是( ) A .0 B .6 C .-2 D .3 【答案】B2.(2013重庆A 卷,2, 4分)计算()232y x 的结果是( )A .264y xB .268y xC .254y xD .258y x 【答案】A3.(2013重庆A 卷,3,4分)已知∠A=65°,则∠A 的补角等于( ) A .125° B .105° C .115° D .95° 【答案】C【答案】D5.(2013重庆A 卷,5,4分)如图,AB ∥CD ,AD 平分∠BAC ,若∠BAD=70°,那么∠ACD 的度数为( ) A .40° B .35° C .50° D .45°【答案】A6.(2013重庆A 卷,6,4分)计算6tan45°-2cos60°的结果是( ) A .43 B .4 C .53 D .5 【答案】D7.(2013重庆A卷,7,4分)7.某特警部队为了选拔“神枪手”,举行了1000米射击比赛,最后由甲乙两名战士进入决赛,在相同条件下,两人各射靶10次,经过统计计算,甲乙两名战士的总成绩都是99.68环,甲的方差是0.28,乙的方差是0.21,则下列说法中,正确的是( B )A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲乙两人成绩的稳定性相同D.无法确定谁的成绩更稳定【答案】B8.(2013重庆A卷,8,4分)8.如图,P是⊙O外一点,PA是⊙O的切线,PO=26cm,PA=24cm,则⊙O的周长为()A.18πcm B.16πcm C.20πcm D.24πcm【答案】C9.(2013重庆A卷,9,4分)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为()A.5cm B.6cm C.7cm D.8cm【答案】B10.(2013重庆A卷,10,4分)10.下列图形都是由同样大小的矩形按一定的规律组成,其中第(1)个图形的面积为2cm2,第(2)个图形的面积为8cm2,第(3)个图形的面积为18cm2……,则(10)第个图形的面积为()A.196 cm2 B.200 cm2 C.216 cm2D.256 cm2【答案】B11.(2013重庆A卷,11,4分)万州某运输公司的一艘轮船在长江上航行,往返于万州、朝天门两地。
2013年重庆市中考数学试卷(B)及答案(Word解析版)
![2013年重庆市中考数学试卷(B)及答案(Word解析版)](https://img.taocdn.com/s3/m/1a01e5deb14e852458fb57db.png)
重庆市2013年中考数学试卷(B卷)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑(或将正确答案的代号填入答题卷中对应的表格内).1.(4分)(2013•重庆)在﹣2,0,1,﹣4这四个数中,最大的数是()A.﹣4 B.﹣2 C.0D.1考点:有理数大小比较分析:根据正数大于0,负数小于0,负数绝对值越大越小即可求解.解答:解:在﹣2、0、1,﹣4这四个数中,大小顺序为:﹣4<﹣2<0<1,所以最大的数是1.故选D.点评:此题主要考查了有理数的大小的比较,解题的关键利用正负数的性质及数轴可以解决问题.2.(4分)(2013•重庆)如图,直线a,b,c,d,已知c⊥a,c⊥b,直线b,c,d交于一点,若∠1=50°,则∠2等于()A.60°B.50°C.40°D.30°考点:平行线的判定与性质分析:先根据对顶角相等得出∠3,然后判断a∥b,再由平行线的性质,可得出∠2的度数.解答:解:∵∠1和∠3是对顶角,∴∠1=∠3=50°,∵c⊥a,c⊥b,∴a∥b,∵∠2=∠3=50°.故选B.点评:本题考查了平行线的判定与性质,解答本题的关键是掌握两直线平行内错角相等,对顶角相等.32A.2x2B.3x2C.3x D.3考点:整式的除法分析:单项式除以单项式分为三个步骤:①系数相除;②同底数幂相除;③对被除式里含有的字母直接作为商的一个因式.解答:解:原式=3x3﹣2=3x.故选C.点评:本题考查了整式的除法运算,属于基础题,掌握整式的除法运算法则是关键.4.(4分)(2013•重庆)已知△ABC∽△DEF,若△ABC与△DEF的相似比为3:4,则△ABC与△DEF的面积比为()A.4:3 B.3:4 C.16:9 D.9:16考点:相似三角形的性质.分析:已知相似三角形的相似比,根据相似三角形的面积比等于相似比的平方可直接得出答案.解答:解:∵△ABC∽△DEF,且相似比为3:4,∴△DEF与△ABC的面积比为32:42,即△ABC与△DEF的面积比为9:16.故选D.点评:此题考查了相似三角形的性质,掌握“相似三角形的面积比等于相似比的平方”是解答本题的关键.5.(4分)(2013•重庆)已知正比例函数y=kx(k≠0)的图象经过点(1,﹣2),则这个正A.y=2x B.y=﹣2x C.D.考点:待定系数法求正比例函数解析式分析:利用待定系数法把(﹣1,2)代入正比例函数y=kx中计算出k即可得到解析式.解答:解:∵正比例函数y=kx经过点(﹣1,2),∴2=﹣1•k,解得:k=﹣2,∴这个正比例函数的解析式为:y=﹣2x.故选B.点评:此题主要考查了待定系数法求正比例函数解析式,题目比较简单,关键是能正确代入即可.6.(4分)(2013•重庆)为了比较甲乙两种水稻秧苗谁出苗更整齐,每种秧苗各随机抽取50株,分别量出每株长度,发现两组秧苗的平均长度一样,甲、乙的方差分别是3.5、10.9,A.甲秧苗出苗更整齐B.乙秧苗出苗更整齐C.甲、乙出苗一样整齐D.无法确定甲、乙出苗谁更整齐考点:方差.分析:方差反映一组数据的波动大小,方差越大,波动性越大,反之也成立,即可得出答案.解答:解:∵甲、乙方差分别是3.5、10.9,∴S2甲<S2乙,∴甲秧苗出苗更整齐;故选A.点评:本题考查方差的意义,它表示一组数据的波动大小,方差越大,波动性越大,反之也成立.7.(4分)(2013•重庆)如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()A.6cm B.4cm C.2cm D.1cm考点:矩形的性质;翻折变换(折叠问题)分析:根据翻折的性质可得∠B=∠AB1E=90°,AB=AB1,然后求出四边形ABEB1是正方形,再根据正方形的性质可得BE=AB,然后根据CE=BC﹣BE,代入数据进行计算即可得解.解答:解:∵沿AE对折点B落在边AD上的点B1处,∴∠B=∠AB1E=90°,AB=AB1,又∵∠BAD=90°,∴四边形ABEB1是正方形,∴BE=AB=6cm,∴CE=BC﹣BE=8﹣6=2cm.故选C.点评:本题考查了矩形的性质,正方形的判定与性质,翻折变换的性质,判断出四边形ABEB1是正方形是解题的关键.8.(4分)(2013•重庆)如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=40°,则∠OCB的度数为()A.40°B.50°C.65°D.75°考点:切线的性质.专题:数形结合.分析:根据切线的性质可判断∠OBA=90°,再由∠BAO=40°可得出∠O=50°,在等腰△OBC中求出∠OCB 即可.解答:解:∵AB是⊙O的切线,B为切点,∴OB⊥AB,即∠OBA=90°,∵∠BAO=40°,∴∠O=50°,∵OB=OC(都是半径),∴∠OCB=(180°﹣∠O)=65°.故选C.点评:本题考查了切线的性质,解答本题的关键在判断出∠OBA为直角,△OBC是等腰三角形,难度一般.9.(4分)(2013•重庆)如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为()A.2B.C.D.考点:含30度角的直角三角形;勾股定理;等腰直角三角形分析:在Rt△ACD中求出AD,在Rt△CDB中求出BD,继而可得出AB.解答:解:在Rt△ACD中,∠A=45°,CD=1,则AD=CD=1,在Rt△CDB中,∠B=30°,CD=1,则BD=,故AB=AD+BD=+1.故选D.点评:本题考查了等腰直角三角形及含30°角的直角三角形的性质,要求我们熟练掌握这两种特殊直角三角形的性质.10.(4分)(2013•重庆)2013年“中国好声音”全国巡演重庆站在奥体中心举行.童童从家出发前往观看,先匀速步行至轻轨车站,等了一会儿,童童搭乘轻轨至奥体中心观看演出,演出结束后,童童搭乘邻居刘叔叔的车顺利回到家.其中x表示童童从家出发后所用时间,A.B.C.D.考点:函数的图象分析:童童的行程分为5段,①离家至轻轨站;②在轻轨站等一会;③搭乘轻轨去奥体中心,④观看比赛,⑤乘车回家,对照各函数图象即可作出判断.解答:解:①离家至轻轨站,y由0缓慢增加;②在轻轨站等一会,y不变;③搭乘轻轨去奥体中心,y快速增加;④观看比赛,y不变;⑤乘车回家,y快速减小.结合选项可判断A选项的函数图象符合童童的行程.故选A.点评:本题考查了函数的图象,解答本题需要我们能将函数图象和实际对应起来,结合当前的一档娱乐节目出题,立意新颖,是一道不错的题目.11.(4分)(2013•重庆)下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有1棵棋子,第②个图形一共有6棵棋子,第③个图形一共有16棵棋子,…,则第⑥个图形中棋子的颗数为()A.51 B.70 C.76 D.81考点:规律型:图形的变化类专题:压轴题.分析:通过观察图形得到第①个图形中棋子的个数为1=1+5×0;第②个图形中棋子的个数为1+5=6;第③个图形中棋子的个数为1+5+10=1+5×3=16;…所以第n个图形中棋子的个数为1+,然后把n=6代入计算即可.解答:解:观察图形得到第①个图形中棋子的个数为1=1+5×0;第②个图形中棋子的个数为1+5=6;第③个图形中棋子的个数为1+5+10=1+5×3=16;…所以第n个图形中棋子的个数为1+,当n=6时,1+=76故选C.点评:本题考查了规律型:图形的变化类:通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.12.(4分)(2013•重庆)如图,在直角坐标系中,正方形OABC的顶点O与原点重合,顶点A、C分别在x轴、y轴上,反比例函数(k≠0,x>0)的图象与正方形的两边AB、BC分别交于点M、N,ND⊥x轴,垂足为D,连接OM、ON、MN.下列结论:①△OCN≌△OAM;②ON=MN;③四边形DAMN与△MON面积相等;④若∠MON=45°,MN=2,则点C的坐标为(0,).其中正确结论的个数是()A.1B.2C.3D.4考点:反比例函数综合题专题:压轴题;探究型.分析:根据反比例函数的比例系数的几何意义得到S△ONC=S△OAM=k,即OC•NC=OA•AM,而OC=OA,则NC=AM,在根据“SAS”可判断△OCN≌△OAM;根据全等的性质得到ON=OM,由于k的值不能确定,则∠MON的值不能确定,所以确定△ONM为等边三角形,则ON≠MN;根据S△OND=S△OAM=k和S△OND+S四边形DAMN=S△OAM+S△OMN,即可得到S四边形DAMN=S△OMN;作NE⊥OM于E点,则△ONE 为等腰直角三角形,设NE=x,则OM=ON=x,EM=x﹣x=(﹣1)x,在Rt △NEM中,利用勾股定理可求出x2=2+,所以ON2=(x)2=4+2,易得△BMN为等腰直角三角形,得到BN=MN=,设正方形ABCO的边长为a,在Rt △OCN中,利用勾股定理可求出a的值为+1,从而得到C点坐标为(0,+1).解答:解:∵点M、N都在y=的图象上,∴S△ONC=S△OAM=k,即OC•NC=OA•AM,∵四边形ABCO为正方形,∴OC=OA,∠ONC=∠OAM=90°,∴NC=AM,∴△OCN≌△OAM,所以①正确;∴ON=OM,∵k的值不能确定,∴∠MON的值不能确定,∴△ONM只能为等腰三角形,不能确定为等边三角形,∴ON≠MN,所以②错误;∵S△OND=S△OAM=k,而S△OND+S四边形DAMN=S△OAM+S△OMN,∴四边形DAMN与△MON面积相等,所以③正确;作NE⊥OM于E点,如图,∵∠MON=45°,∴△ONE为等腰直角三角形,∴NE=OE,设NE=x,则ON=x,∴OM=x,∴EM=x﹣x=(﹣1)x,在Rt△NEM中,MN=2,∵MN2=NE2+EM2,即22=x2+[(﹣1)x]2,∴x2=2+,∴ON2=(x)2=4+2,∵CN=AM,CB=AB,∴BN=BM,∴△BMN为等腰直角三角形,∴BN=MN=,设正方形ABCO的边长为a,则OC=a,CN=a﹣,在Rt△OCN中,∵OC2+CN2=ON2,∴a2+(a﹣)2=4+2,解得a1=+1,a2=﹣1(舍去),∴OC=+1,∴C点坐标为(0,+1),所以④正确.故选C.点评:本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征、比例系数的几何意义和正方形的性质;熟练运用勾股定理和等腰直角三角形的性质进行几何计算.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡(卷)中对应的横线上.13.(4分)(2013•重庆)实数“﹣3”的倒数是﹣.考点:倒数分析:根据倒数的定义,a的倒数是(a≠0),据此即可求解.解答:解:﹣3的倒数是:﹣.故答案是:﹣.点评:本题考查了倒数的定义,理解定义是关键.14.(4分)(2013•重庆)分式方程的解为x=3.考点:解分式方程分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x﹣2=1,解得:x=3,经检验x=3是分式方程的解.故答案为:x=3.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.15.(4分)(2013•重庆)某届青年歌手大奖赛上,七位评委为甲选手打出的分数分别是:96.5,97.1,97.5,98.1,98.1,98.3,98.5.则这组数据的众数是98.1.考点:众数分析:根据众数的概念:一组数据中出现次数最多的数据叫做众数求解即可.解答:解:这一组数据中98.1是出现次数最多的,故众数是98.1,故答案为:98.1.点评:本题考查了众数的知识,属于基础题,熟练掌握众数的定义是解题的关键.16.(4分)(2013•重庆)如图,一个圆心角为90°的扇形,半径OA=2,那么图中阴影部分的面积为(结果保留π)π﹣2.考点:扇形面积的计算.分析:先根据扇形面积公式计算出扇形面积,然后计算出三角形AOB的面积,继而用扇形面积﹣三角形面积可得出阴影的面积.解答:解:S扇形===π,S△AOB=×2×2=2,则S阴影=S扇形﹣S△AOB=π﹣2.故答案为:π﹣2.点评:本题考查了扇形面积的计算,难度一般,解答本题的关键是熟练掌握扇形面积的计算公式.17.(4分)(2013•重庆)在平面直角坐标系中,作△OAB,其中三个顶点分别是O(0,0),B(1,1),A(x,y)(﹣2≤x≤2,﹣2≤y≤2,x,y均为整数),则所作△OAB为直角三角形的概率是.考点:概率公式专题:压轴题.分析:根据已知得出A点坐标,进而得出△OAB为直角三角形时A点坐标个数,进而利用概率公式求出即可.解答:解:∵A(x,y)(﹣2≤x≤2,﹣2≤y≤2,x,y均为整数),∴A点坐标可以为:(﹣2,﹣2),(﹣2,﹣1),(﹣2,0),(﹣2,1),(﹣2,2),(﹣1,﹣2),(﹣1,﹣1),(﹣1,0),(﹣1,1),(﹣1,2),(0,﹣2),(0,﹣1),(0,0),(0,1),(0,2),(1,﹣2),(1,﹣1),(1,0),(1,1),(1,2),(2,﹣2),(2,﹣1),(2,0),(2,1),(2,2);只有A点坐标为:(0,2)(0,1),(1,0),(2,0),(0.﹣1),(0.﹣2),(1,﹣1),(﹣1,1),(2,﹣2),(﹣2.2)一共10种情况时△OAB为直角三角形,∴所作△OAB为直角三角形的概率是:=.故答案为:.点评:此题考查了直角三角形的性质和判定以及概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.18.(4分)(2013•重庆)如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线y=x交于点A,且BD=2AD,连接CD,直线CD与直线y=x交于点Q,则点Q的坐标为(,).考点:一次函数综合题专题:压轴题.分析:过P作MN⊥y轴,交y轴于M,交AB于N,过D作DH⊥y轴,交y轴于H,∠CMP=∠DNP=∠CPD=90°,求出∠MCP=∠DPN,证△MCP≌△NPD,推出DN=PM,PN=CM,设AD=x,求出DN=2x﹣1,得出2x﹣1=1,求出x=1,得出D的坐标,在Rt△DNP中,由勾股定理求出PC=PD=,在Rt△MCP中,由勾股定理求出CM=2,得出C的坐标,设直线CD的解析式是y=kx+3,把D(3,2)代入求出直线CD的解析式,解由两函数解析式组成的方程组,求出方程组的解即可.解答:解:过P作MN⊥y轴,交y轴于M,交AB于N,过D作DH⊥y轴,交y轴于H,∠CMP=∠DNP=∠CPD=90°,∴∠MCP+∠CPM=90°,∠MPC+∠DPN=90°,∴∠MCP=∠DPN,∵P(1,1),∴OM=BN=1,PM=1,在△MCP和△NPD中∴△MCP≌△NPD,∴DN=PM,PN=CM,∵BD=2AD,∴设AD=x,BD=2x,∵P(1,1),∴DN=2x﹣1,则2x﹣1=1,x=1,即BD=2,C的坐标是(0,3),∵直线y=x,∴AB=OB=3,在Rt△DNP中,由勾股定理得:PC=PD==,在Rt△MCP中,由勾股定理得:CM==2,则C的坐标是(0,3),设直线CD的解析式是y=kx+3,把D(3,2)代入得:k=﹣,即直线CD的解析式是y=﹣x+3,即方程组得:,即Q的坐标是(,),故答案为:(,).点评:本题考查了用待定系数法求出一次函数的解析式,全等三角形的性质和判定,解方程组,勾股定理,旋转的性质等知识点的应用,主要考查学生综合运用性质进行推理和计算的能力,题目比较好,但是有一定的难度.三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上.19.(7分)(2013•重庆)计算:.考点:实数的运算;零指数幂;负整数指数幂专题:压轴题.分析:分别进行乘方、绝对值、零指数幂、开立方等运算,然后按照实数的运算法则计算即可.解答:解:原式=﹣1﹣2+1×2+4=3.点评:本题考查了实数的运算,涉及了乘方、绝对值、零指数幂、开立方等知识,属于基础题.20.(7分)(2013•重庆)如图,在边长为1的小正方形组成的10×10网格中(我们把组成网格的小正方形的顶点称为格点),四边形ABCD在直线l的左侧,其四个顶点A、B、C、D分别在网格的格点上.(1)请你在所给的网格中画出四边形A′B′C′D′,使四边形A′B′C′D′和四边形ABCD关于直线l对称,其中点A′、B′、C′、D′分别是点A、B、C、D的对称点;(2)在(1)的条件下,结合你所画的图形,直接写出线段A′B′的长度.考点:作图-轴对称变换专题:压轴题.分析:(1)根据轴对称的性质,找到各点的对称点,顺次连接即可;(2)结合图形即可得出线段A′B′的长度.解答:解:(1)所作图形如下:.(2)A'B'==.点评:本题考查了轴对称变换的知识,要求同学们掌握轴对称的性质,能用格点三角形求线段的长度.四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上.21.(10分)(2013•重庆)先化简,再求值:,其中x是不等式3x+7>1的负整数解.考点:分式的化简求值;一元一次不等式的整数解分析:首先把分式进行化简,再解出不等式,确定出x的值,然后再代入化简后的分式即可.解答:解:原式=[﹣]×,=×,=×,=,3x+7>1,3x>﹣6,x>﹣2,∵x是不等式3x+7>1的负整数解,∴x=﹣1,把x=﹣1代入中得:=3.点评:此题主要考查了分式的化简求值,以及不等式的整数解,关键是正确把分式进行化简.22.(10分)(2013•重庆)为了贯彻落实国家关于增强青少年体质的计划,重庆市全面实施了义务教育学段中小学学生“饮用奶计划”的营养工程.某牛奶供应商似提供A(原味)、B (草莓味)、C(核桃味)、D(菠萝味)、E(香橙味)等五种口味的学生奶供学生选择(所有学生奶盒形状、大小相同),为了了解对学生奶口味的喜好情况,某初级中学九年级(1)班张老师对全班同学进行了调查统计,制成了如下两幅不完整的统计图:(1)该班五种口味的学生奶喜好人数组成一组统计数据,直接写出这组数据的平均数,并将折线统计图补充完整;(2)在进行调查统计的第二天,张老师为班上每位同学发放一盒学生奶,喜好B味的小明和喜好C味的小刚等四位同学最后领取,剩余的学生奶放在同一纸箱里,分别有B味2盒,C味和D味各1盒,张老师从该纸箱里随机取出两盒学生奶.请你用列表法或画树状图的方法,求出这两盒牛奶恰好同时是小明和小刚喜好的学生奶的概率.考点:折线统计图;扇形统计图;列表法与树状图法分析:(1)根据喜欢B类型的人数及所占比例可得出学生总数,然后求出A类型的人数、E类型的人数,从而求出平均数,补全统计图即可;(2)画出树状图,即可求出这两盒牛奶恰好同时是小明和小刚喜好的学生奶的概率.解答:解:(1)总人数=12÷30%=40人,则喜欢E类型的人数=40×15%=6人,喜欢A类型的人数=40﹣12﹣8﹣10﹣6=4,补全统计图如下:这组数据的平均数==8;(2)设所剩学生奶分别为B1、B2、C、D,画出树状图如下:或列表如下:由树状图或列表可知,一共有12种等可能的情况,其中恰好同时是小明和小刚喜好的有2种,所以这两盒牛奶同时是小明和小刚喜好的学生奶的概率为:P==.点评:本题考查了折线统和扇形统计图的知识,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,注意画出树状图或列表求概率.23.(10分)(2013•重庆)“4•20”雅安地震后,某商家为支援灾区人民,计划捐赠帐篷16800顶,该商家备有2辆大货车、8辆小货车运送帐篷.计划大货车比小货车每辆每次多运帐篷200顶,大、小货车每天均运送一次,两天恰好运完.(1)求大、小货车原计划每辆每次各运送帐篷多少顶?(2)因地震导致路基受损,实际运送过程中,每辆大货车每次比原计划少运200m顶,每辆小货车每次比原计划少运300m顶,为了尽快将帐篷运送到灾区,大货车每天比原计划多跑次,小货车每天比原计划多跑m次,一天恰好运送了帐篷14400顶,求m的值.考点:一元二次方程的应用;一元一次方程的应用专题:压轴题.分析:(1)设小货车每次运送x顶,则大货车每次运送(x+200)顶,根据两种类型的车辆共运送16800顶帐篷为等量关系建立方程求出其解即可;(2)根据(1)的结论表示出大小货车每次运输的数量,根据条件可以表示出大货车现在每天运输次数为(1+m)次,小货车现在每天的运输次数为(1+m)次,根据一天恰好运送了帐篷14400顶建立方程求出其解就可以了解答:解:(1)设小货车每次运送x顶,则大货车每次运送(x+200)顶,根据题意得:2[2(x+200)+8x]=16800,解得:x=800.∴大货车原计划每次运:800+200=1000顶答:小货车每次运送800顶,大货车每小时运送1000顶;(2)由题意,得2×(1000﹣200m)(1+m)+8(800﹣300m)(1+m)=14400,解得:m=2或m=21(舍去).答:m的值为2.点评:本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,解答时根据各部分工作量之和=工作总量建立方程是关键.24.(10分)(2013•重庆)已知,如图,在▱ABCD中,AE⊥BC,垂足为E,CE=CD,点F 为CE的中点,点G为CD上的一点,连接DF、EG、AG,∠1=∠2.(1)若CF=2,AE=3,求BE的长;(2)求证:∠CEG=∠AGE.考点:平行四边形的性质;全等三角形的判定与性质;直角三角形斜边上的中线;勾股定理.专题:压轴题.分析:(1)求出DC=CE=2CF=4,求出AB,根据勾股定理求出BE即可;(2)过G作GM⊥AE于M,证△DCF≌△ECG,推出CG=CF,求出M为AE中点,得出等于三角形AGE,根据性质得出GM是∠AGE的角平分线,即可得出答案.解答:(1)解:∵CE=CD,点F为CE的中点,CF=2,∴DC=CE=2CF=4,∵四边形ABCD是平行四边形,∴AB=CD=4,∵AE⊥BC,∴∠AEB=90°,在Rt△ABE中,由勾股定理得:BE==;(2)证明:过G作GM⊥AE于M,∵AE⊥BE,∴GM∥BC∥AD,∵在△DCF和△ECG中,,∴△DCF≌△ECG(AAS),∴CG=CF,∵CE=CD,CE=2CF,∴CD=2CG即G为CD中点,∵AD∥GM∥BC,∴M为AE中点,∵GM⊥AE,∴AM=EM,∴∠AGE=2∠MGE,∵GM∥BC,∴∠EGM=∠CEG,∴∠CEG=∠AGE.点评:本题考查了平行四边形性质,等于三角形的性质和判定,平行线分线段成比例定理,全等三角形的性质和判定,勾股定理等知识点的应用,主要考查学生综合运用定理进行推理的能力.五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上.25.(12分)(2013•重庆)如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5).(1)求直线BC与抛物线的解析式;(2)若点M是抛物线在x轴下方图象上的一动点,过点M作MN∥y轴交直线BC于点N,求MN的最大值;(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=6S2,求点P的坐标.考点:二次函数综合题专题:压轴题.分析:(1)设直线BC的解析式为y=mx+n,将B(5,0),C(0,5)两点的坐标代入,运用待定系数法即可求出直线BC的解析式;同理,将B(5,0),C(0,5)两点∑的坐标代入y=x2+bx+c,运用待定系数法即可求出抛物线的解析式;(2)MN的长是直线BC的函数值与抛物线的函数值的差,据此可得出一个关于MN 的长和M点横坐标的函数关系式,根据函数的性质即可求出MN的最大值;(3)先求出△ABN的面积S2=5,则S1=6S2=30.再设平行四边形CBPQ的边BC上的高为BD,根据平行四边形的面积公式得出BD=3,过点D作直线BC的平行线,交抛物线与点P,交x轴于点E,在直线DE上截取PQ=BC,则四边形CBPQ为平行四边形.证明△EBD为等腰直角三角形,则BE=BD=6,求出E的坐标为(﹣1,0),运用待定系数法求出直线PQ的解析式为y=﹣x﹣1,然后解方程组,即可求出点P的坐标.解答:解:(1)设直线BC的解析式为y=mx+n,将B(5,0),C(0,5)两点的坐标代入,得,解得,所以直线BC的解析式为y=﹣x+5;将B(5,0),C(0,5)两点的坐标代入y=x2+bx+c,得,解得,所以抛物线的解析式为y=x2﹣6x+5;(2)设M(x,x2﹣6x+5)(1<x<5),则N(x,﹣x+5),∵MN=(﹣x+5)﹣(x2﹣6x+5)=﹣x2+5x=﹣(x﹣)2+,∴当x=时,MN有最大值;(3)∵MN取得最大值时,x=2.5,∴﹣x+5=﹣2.5+5=2.5,即N(2.5,2.5).解方程x2﹣6x+5=0,得x=1或5,∴A(1,0),B(5,0),∴AB=5﹣1=4,∴△ABN的面积S2=×4×2.5=5,∴平行四边形CBPQ的面积S1=6S2=30.设平行四边形CBPQ的边BC上的高为BD,则BC⊥BD.∵BC=5,∴BC•BD=30,∴BD=3.过点D作直线BC的平行线,交抛物线与点P,交x轴于点E,在直线DE上截取PQ=BC,则四边形CBPQ为平行四边形.∵BC⊥BD,∠OBC=45°,∴∠EBD=45°,∴△EBD为等腰直角三角形,BE=BD=6,∵B(5,0),∴E(﹣1,0),设直线PQ的解析式为y=﹣x+t,将E(﹣1,0)代入,得1+t=0,解得t=﹣1∴直线PQ的解析式为y=﹣x﹣1.解方程组,得,,∴点P的坐标为P1(2,﹣3)(与点D重合)或P2(3,﹣4).点评:本题是二次函数的综合题,其中涉及到运用待定系数法求一次函数、二次函数的解析式,二次函数的性质,三角形的面积,平行四边形的判定和性质等知识点,综合性较强,考查学生运用方程组、数形结合的思想方法.(2)中弄清线段MN长度的函数意义是关键,(3)中确定P与Q的位置是关键.26.(12分)(2013•重庆)已知,在矩形ABCD中,E为BC边上一点,AE⊥DE,AB=12,BE=16,F为线段BE上一点,EF=7,连接AF.如图1,现有一张硬质纸片△GMN,∠NGM=90°,NG=6,MG=8,斜边MN与边BC在同一直线上,点N与点E重合,点G在线段DE上.如图2,△GMN从图1的位置出发,以每秒1个单位的速度沿EB向点B匀速移动,同时点P 从A点出发,以每秒1个单位的速度沿AD向点D匀速移动,点Q为直线GN与线段AE 的交点,连接PQ.当点N到达终点B时,△GMN和点P同时停止运动.设运动时间为t 秒,解答下列问题:(1)在整个运动过程中,当点G在线段AE上时,求t的值;(2)在整个运动过程中,是否存在点P,使△APQ是等腰三角形?若存在,求出t的值;若不存在,说明理由;(3)在整个运动过程中,设△GMN与△AEF重叠部分的面积为S.请直接写出S与t之间的函数关系式以及自变量t的取值范围.考相似形综合题点:分(1)如答图1所示,证明QEMG为平行四边形,则运动路程QG=EM=10,t值可求;析: (2)△APQ 是等腰三角形,分为三种情形,需要分类讨论,避免漏解.如答图2、答图3、答图4所示;(3)整个运动过程分为四个阶段,每个阶段重叠图形的形状各不相同,如答图5﹣答图8所示,分别求出其面积的表达式.解答: 解:(1)在Rt △GMN 中,GN=6,GM=8,∴MN=10.由题意,易知点G 的运动线路平行于BC .如答图1所示,过点G 作BC 的平行线,分别交AE 、AF 于点Q 、R .∵∠AED=∠EGM=90°,∴AE ∥GM .∴四边形QEMG 为平行四边形,∴QG=EM=10.∴t==10秒.(2)存在符合条件的点P .在Rt △ABE 中,AB=12,BE=16,由勾股定理得:AE=20.设∠AEB=θ,则sin θ=,cos θ=.∵NE=t ,∴QE=NE •cos θ=t ,AQ=AE ﹣QE=20﹣t .△APQ 是等腰三角形,有三种可能的情形:①AP=PQ .如答图2所示:过点P 作PK ⊥AE 于点K ,则AK=AP •cos θ=t .∵AQ=2AK ,∴20﹣t=2×t ,解得:t=;②AP=AQ .如答图3所示:有t=20﹣t,解得:t=;③AQ=PQ.如答图4所示:过点Q作QK⊥AP于点K,则AK=AQ•cosθ=(20﹣t)×=16﹣t.∵AP=2AK,∴t=2(16﹣t),解得:t=.综上所述,当t=,或秒时,存在点P,使△APQ是等腰三角形.(3)如答图1所示,点N到达点F的时间为t=7;由(1)知,点G到达点G的时间为t=10;QE=10×=8,AQ=20﹣8=12,∵GR∥BC,∴,即,∴QR=.∴点G到达点R的时间为t=10+=;点E到达终点B的时间为t=16.则在△GMN运动的过程中:①当0≤t<7时,如答图5所示:QE=NE•cosθ=t,QN=NE•sinθ=t,S=QE•QN=•t•t=t2;②当7≤t<10时,如答图6所示:设QN与AF交于点I,∵tan∠INF==,tan∠IFN==,∴∠INF=∠IFN,△INF为等腰三角形.底边NF上的高h=NF•tan∠INF=×(t﹣7)×=(t﹣7).S △INF =NF •h=×(t ﹣7)×(t ﹣7)=(t ﹣7)2,∴S=S △QNE ﹣S △INF =t 2﹣(t ﹣7)2=t 2+t ﹣; ③当10≤t <时,如答图7所示:由②得:S △INF =(t ﹣7)2,∴S=S △GMN ﹣S △INF =24﹣(t ﹣7)2=﹣t 2+t+;④当<t ≤16时,如答图8所示:FM=FE ﹣ME=FE ﹣(NE ﹣MN )=17﹣t .设GM 与AF 交于点I ,过点I 作IK ⊥MN 于点K .∵tan ∠IFK==,∴可设IK=4x ,FK=3x ,则FM=3x+17﹣t . ∵tan ∠IMF===,解得:x=(17﹣t ). ∴IK=4x=(17﹣t ).∴S=FM •IK=(t ﹣17)2.综上所述,S 与t 之间的函数关系式为:S=点评: 本题是运动型综合题,难度较大,解题关键是清楚理解图形的运动过程.计算过程较为复杂,需要仔细认真;第(2)(3)问中,注意均需要分情况讨论,分别计算,避免漏解.。
2013年重庆市初中毕业暨高中招生考试数学试题B(解析版)
![2013年重庆市初中毕业暨高中招生考试数学试题B(解析版)](https://img.taocdn.com/s3/m/a2a9bab9767f5acfa0c7cdb2.png)
2013年重庆市初中毕业暨高中招生考试数学试题B(解析版)新世纪教育网精选资料版权全部@新世纪教育网初中毕业生模拟考试数学答题卡考生号学校:班级:姓名:注意事项:1.答题前考生务必用黑色署名笔填写学校、姓名、考生号。
2.用 2B铅笔填涂试卷答题区的信息点。
信息点框内一定涂满、涂黑,不然无效。
改正时须用橡皮擦洁净。
3.作答时注意题号次序,不得改正题号和答题地点。
4.保持卡面洁净,不要折叠和弄破。
缺考考生由监考员用2B 铅笔将下边的缺考标志涂满涂黑。
缺考标志:考生禁填一、选择题(每题 3 分,共 36 分)159261037114812二、填空题(每题 3 分,共 18 分)13.; 14.;15.; 16.; 17.; 18.;三、解答题( 19,20 题各 6 分 ,21 题 9 分, 22、 23、 24 题各 8 分, 25 题 9 分, 26 题 12 分)分21.(此题满分9 分)(1)m=__, x=______, y=______(2)(3)22.(此题满分8 分)(1)D FC新世纪教育网-- 中国最大型、最专业的中小学教育资源门户网站-----版权全部@新世纪教育网BA OE2013年重庆市初中毕业暨高中招生考试数学试题B(解析版)新世纪教育网精选资料版权全部@新世纪教育网23.(此题满分8 分)( 1)24.(此题满分8 分)(1)( 2)(2)25.(此题满分9 分)(1)yCDB O A x(2)新世纪教育网-- 中国最大型、最专业的中小学教育资源门户网站-----版权全部@新世纪教育网( 3)2013年重庆市初中毕业暨高中招生考试数学试题B(解析版)新世纪教育网精选资料版权全部@新世纪教育网26.(此题满分12 分)(1)DAFB E C(2)A DB C备用图(3)A DB C备用图(4)新世纪教育网-- 中国最大型、最专业的中小学教育资源门户网站-----版权全部@新世纪教育网。
2013年重庆中考数学真题卷含答案解析
![2013年重庆中考数学真题卷含答案解析](https://img.taocdn.com/s3/m/43df1e0851e79b896902263f.png)
重庆市2013年初中毕业暨高中招生考试(B 卷)数学试题(含答案全解全析)(满分150分,考试时间120分钟)参考公式:抛物线y=ax 2+bx+c(a ≠0)的顶点坐标为(-b 2a ,4ac -b 24a ),对称轴为x=-b2a .第Ⅰ卷(选择题,共48分)一、选择题(本大题12个小题,每小题4分,共48分.在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的)1.在-2,0,1,-4这四个数中,最大的数是( ) A.-4B.-2C.0D.12.如图,直线a 、b 、c 、d,已知c ⊥a,c ⊥b,直线b 、c 、d 交于一点,若∠1=50°,则∠2等于( )A.60°B.50°C.40°D.30° 3.计算3x 3÷x 2的结果是( ) A.2x 2 B.3x 2 C.3xD.34.已知△ABC ∽△DEF,若△ABC 与△DEF 的相似比为3∶4,则△ABC 与△DEF 的面积之比为( )A.4∶3B.3∶4C.16∶9D.9∶165.已知正比例函数y=kx(k ≠0)的图象经过点(1,-2),则正比例函数的解析式为( ) A.y=2x B.y=-2xC.y=12xD.y=-12x 6.为了比较甲乙两种水稻秧苗谁出苗更整齐,每种秧苗各随机抽取50株,分别量出每株长度,发现两组秧苗的平均长度一样,甲、乙的方差分别是3.5、10.9,则下列说法正确的是( ) A.甲秧苗出苗更整齐B.乙秧苗出苗更整齐C.甲、乙出苗一样整齐D.无法确定甲、乙出苗谁更整齐7.如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()A.6cmB.4cmC.2cmD.1cm8.如图,AB是☉O的切线,B为切点,AO与☉O交于点C,若∠BAO=40°,则∠OCB的度数为()A.40°B.50°C.65°D.75°9.如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为()+1 D.√3+1A.2B.2√3C.√3310.2013年“中国好声音”全国巡演重庆站在奥体中心举行.童童从家出发前往观看,先匀速步行至轻轨车站,等了一会儿,童童搭乘轻轨至奥体中心观看演出,演出结束后,童童搭乘邻居刘叔叔的车顺利回到家.其中x表示童童从家出发后所用时间,y表示童童离家的距离.下面能反映y与x的函数关系的大致图象是()11.下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有1颗棋子,第②个图形一共有6颗棋子,第③个图形一共有16颗棋子,…,则第⑥个图形中棋子的颗数为()A.51B.70C.76D.8112.如图,在直角坐标系中,正方形OABC的顶点O与原点重合,顶点A、C分别在x轴、y轴上,反比例函数y=k(k≠0,x>0)的图象与正方形的两边AB、BC分别交于点M、N,ND⊥x轴,x垂足为D,连结OM、ON、MN.下列结论:①△OCN≌△OAM;②ON=MN;③四边形DAMN与△MON面积相等;④若∠MON=45°,MN=2,则点C的坐标为(0,√2+1).其中正确结论的个数是()A.1B.2C.3D.4第Ⅱ卷(非选择题,共102分)二、填空题(本大题6个小题,每小题4分,共24分)13.实数“-3”的倒数是.14.分式方程1=1的解为.x-215.某届青年歌手大奖赛上,七位评委为甲选手打出的分数分别是:96.5,97.1,97.5,98.1,98.1,98.3, 98.5.则这组数据的众数是.16.如图,一个圆心角为90°的扇形,半径OA=2,那么图中阴影部分的面积为.(结果保留π)17.在平面直角坐标系中,作△OAB,其中三个顶点分别是O(0,0),B(1,1),A(x,y)(-2≤x≤2,-2≤y≤2,x, y均为整数),则所作△OAB为直角三角形的概率是.18.如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连结PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线y=x交于点A,且BD=2AD,连结CD,直线CD与直线y=x交于点Q,则点Q的坐标为.三、解答题(本大题2个小题,每小题7分,共14分.解答时每小题必须给出必要的演算过程或推理步骤))-1.19.计算:(-1)2013-|-2|+(√3-π)0×√83+(1420.如图,在边长为1的小正方形组成的10×10网格中(我们把组成网格的小正方形的顶点称为格点),四边形ABCD在直线l的左侧,其四个顶点A、B、C、D分别在网格的格点上. (1)请你在所给的网格中画出四边形A'B'C'D',使四边形A'B'C'D'和四边形ABCD关于直线l 对称,其中,点A'、B'、C'、D'分别是点A、B、C、D的对称点;(2)在(1)的条件下,结合你所画的图形,直接写出线段A'B'的长度.四、解答题(本大题4个小题,每小题10分,共40分.解答时每小题必须给出必要的演算过程或推理步骤)21.先化简,再求值:(x+2x -x-1x-2)÷x-4x2-4x+4,其中x是不等式3x+7>1的负整数解.22.为了贯彻落实国家关于增强青少年体质的计划,重庆市全面实施了义务教育学段中小学学生“饮用奶计划”的营养工程.某牛奶供应商拟提供A(原味)、B(草莓味)、C(核桃味)、D(菠萝味)、E(香橙味)等五种口味的学生奶供学生选择(所有学生奶盒形状、大小相同),为了了解对学生奶口味的喜好情况,某初级中学九年级(1)班张老师对全班同学进行了调查统计,制成了如下两幅不完整的统计图:(1)该班五种口味的学生奶喜好人数组成一组统计数据,直接写出这组数据的平均数,并将折线统计图补充完整;(2)在进行调查统计的第二天,张老师为班上每位同学发放一盒学生奶.喜好B味的小明和喜好C味的小刚等四位同学最后领取.剩余的学生奶放在同一纸箱里,分别有B味2盒,C味和D味各1盒,张老师从该纸箱里随机取出两盒学生奶.请你用列表法或画树状图的方法,求出这两盒牛奶恰好同时是小明和小刚喜好的学生奶的概率.23.“4·20”雅安地震后,某商家为支援灾区人民,计划捐赠帐篷16800顶,该商家备有2辆大货车、8辆小货车运送帐篷.计划大货车比小货车每辆每次多运帐篷200顶,大、小货车每天均运送一次,两天恰好运完.(1)求大、小货车原计划每辆每次各运送帐篷多少顶?(2)因地震导致路基受损,实际运送过程中,每辆大货车每次比原计划少运200m顶,每辆小货车每次比原计划少运300顶,为了尽快将帐篷运送到灾区,大货车每天比原计划多跑1m次,小2货车每天比原计划多跑m次,一天恰好运送了帐篷14400顶,求m的值.24.已知:如图,在▱ABCD中,AE⊥BC,垂足为E,CE=CD,点F为CE的中点,点G为CD上的一点,连结DF、EG、AG,∠1=∠2.(1)若CF=2,AE=3,求BE的长;∠AGE.(2)求证:∠CEG=12五、解答题(本大题2个小题,每小题12分,共24分.解答时每小题必须给出必要的演算过程或推理步骤)25.如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y 轴交于点C(0,5).(1)求直线BC与抛物线的解析式;(2)若点M是抛物线在x轴下方图象上的一动点,过点M作MN∥y轴交直线BC于点N,求MN的最大值;(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=6S2,求点P的坐标.26.已知,在矩形ABCD中,E为BC边上一点,AE⊥DE,AB=12,BE=16,F为线段BE上一点,EF= 7.连结AF.如图1,现有一张硬质纸片△GMN,∠NGM=90°,NG=6,MG=8,斜边MN与边BC在同一直线上,点N与点E重合,点G在线段DE上.如图2,△GMN从图1的位置出发,以每秒1个单位的速度沿EB向点B匀速移动,同时,点P从A点出发,以每秒1个单位的速度沿AD 向点D匀速移动,点Q为直线GN与线段AE的交点,连结PQ.当点N到达终点B时,△GMN 和点P同时停止运动.设运动时间为t秒,解答下列问题:(1)在整个运动过程中,当点G在线段AE上时,求t的值;(2)在整个运动过程中,是否存在点P,使△APQ是等腰三角形.若存在,求出t的值;若不存在,说明理由;(3)在整个运动过程中,设△GMN与△AEF重叠部分的面积为S.请直接写出S与t之间的函数关系式以及自变量t的取值范围.答案全解全析:1.D ∵1>0>-2>-4,故选D.2.B ∵c⊥a,c⊥b,∴a∥b,∴∠1=∠2=50°,故选B.3.C 3x3÷x2=3x.故选C.4.D ∵两个相似图形的面积比是相似比的平方,故选D.5.B 把(1,-2)代入y=kx,得k=-2,∴y=-2x.故选B.6.A 因为方差越小,数据的波动幅度越小,所以甲秧苗出苗更整齐.故选A.7.C 由题设知四边形ABEB1一定是正方形,故BE=AB=6 cm,∴CE=8-6=2 cm.8.C ∵AB是☉O的切线,∴OB⊥AB,∴∠ABO=90°,∴∠O=90°-40°=50°.∵OB=OC,∴∠OCB=(180°-50°)÷2=65°.故选C.9.D ∵△ADC为等腰直角三角形,△CDB为含30°角的直角三角形,∴AD=CD=1,BD=√3CD=√3,∴AB=√3+1.故选D.10.A ∵童童步行的速度小于轻轨运行的速度,而等乘轻轨和观看演出都花费了一定的时间,故选A.11.C 根据题图示规律可得第⑥个图形中的棋子数是1+3+5+7+9+11+10+9+8+7+6=76.故选C.12.C 设正方形OABC的边长为m,∴点N(km ,m),点M(m,km),∴NO=MO.∴在正方形OABC中,△OCN≌△OAM,故①正确.由①得MN2-ON2=(m-km)2-2k,不恒为零,∴②不成立.∵Rt△MOA与Rt△NOD的面积均等于k的一半,故四边形DAMN与△MON的面积相等,故③成立.将Rt△OAM绕点O逆时针旋转90°,得Rt△OCM1,且点A与点C重合,点N、C、M1三点共线.若∠MON=45°,可得△MON≌△NOM1,可得NC=MA=12MN=1.又△MBN是等腰直角三角形,MN=2,∴BM=BN=√2,∴OC=√2+1,故点C(0,√2+1),故④正确.故①③④均正确,选C.评析本题综合考查反比例函数图象的性质、系数k的几何意义,三角形的旋转变换中的角和边之间的关系,特殊角三角函数值等知识点.将Rt△OAM绕点O逆时针旋转90°,得Rt△OCM1是判断④正确与否的关键.本题综合性较强,是区分度很高的一道选择题中的压轴题.13.答案-13解析∵a的倒数是1a (a≠0),∴-3的倒数是-13.14.答案 3解析去分母得x-2=1,∴x=3.经检验,符合题意.15.答案98.1解析 ∵数据98.1出现的次数最多,∴众数是98.1. 16.答案 π-2解析 阴影部分面积为圆面积的四分之一减去等腰直角三角形OAB 的面积,故阴影部分面积为14π·22-12×2×2=π-2. 17.答案 25解析 在5×5=25个整数点中,能和点O 、B 组成直角三角形的整数点有(0,1)、(0,2)、(-1,1)、(-2,2)、(1,0)、(2,0)、(1,-1)、(2,-2),共8个点,∵能组成三角形的共有20个点, ∴所求概率为P=820=25. 18.答案 (94,94)解析 过点P 作MN∥x 轴,交y 轴于点M,交直线AB 于点N. ∵PC=PD,PC⊥PD,∴Rt△MPC≌Rt△NDP.∵点P(1,1),∴PM=OM=DN=1,∴NB=1,DB=2,又DB=2AD, ∴BA=3.∵点A 在直线y=x 上,∴A(3,3),∴OB=3,又PN=CM=2,∴C(0,3),D(3,2),∴直线CD 的解析式为y=-13x+3. 联立{y =x ,y =-13x +3,可求得点Q 的坐标为(94,94).评析 本题综合考查旋转的性质、三角形全等的判定与性质、用待定系数法确定一次函数解析式、求两直线交点的坐标等知识点.以PC=PD 为切入点构造两全等直角三角形是解题的关键.将求解直线的交点转化为求解方程组的解是常见的方法之一.本题难度适中. 19.解析 原式=-1-2+1×2+4=3.评析 本题综合考查绝对值、负整数指数幂、零次幂等实数的运算法则,属容易题. 20.解析 (1)如图:(2)A'B'=AB=√12+32=√10. 21.解析 原式=(x -2)(x+2)-x (x -1)x (x -2)·x 2-4x+4x -4(2分)=x 2-4-x 2+x x (x -2)·(x -2)2x -4=x -4x (x -2)·(x -2)2x -4(5分)=x -2x.(6分)由3x+7>1,解得x>-2.又∵x 是该不等式的负整数解,∴x=-1.(8分) 当x=-1时,原式=-1-2-1=3.(10分)22.解析 (1)平均数为8,折线图如图所示.(2)设所剩学生奶分别为B 1、B 2、C 、D,画树状图如下:或列表B 1 B 2CD B 1 (B 1,B 2)(B 1,C) (B 1,D) B 2 (B 2,B 1) (B 2,C) (B 2,D) C (C,B 1) (C,B 2) (C,D) D(D,B 1)(D,B 2)(D,C)由树状图或列表知:一共有12种等可能情况,其中恰好同时是小明和小刚喜好的有2种.所以,这两盒牛奶恰好同时是小明和小刚喜好的学生奶的概率P=212=16. 23.解析 (1)设小货车原计划每辆每次运帐篷x 顶, 则大货车原计划每辆每次运帐篷(x+200)顶.(1分) 根据题意得2×2(x+200)+2×8x=16 800.(2分) 解得x=800,800+200=1 000.(3分)答:大货车原计划每辆每次运送帐篷1 000顶,小货车原计划每辆每次运送帐篷800顶.(4分) (2)2(1 000-200m)(1+12m )+8(800-300)(1+m)=14 400.(7分) 化简,得m 2-23m+42=0,解得m=2或m=21.(9分) ∵12m 为整数,∴m=21(舍去). 答:m=2.(10分)24.解析 (1)∵CD=CE=2CF,∴AB=DC=4,(1分) ∴由勾股定理得BE=√aa 2-A a 2=√7.(3分) (2)证明:延长AG 、BC 交于点M.∵CE=CD,∠1=∠2,∠ECG=∠DCF,∴△ECG≌△DCF.(5分)∴CF=CG,∵CD=CE=2CF,∴CG=DG,又∵AD∥BC,∴∠DAG=∠CMG,∠ADG=∠MCG,∴△ADG≌△MCG,∴AG=MG.(7分)∵AE⊥BC,∴EG=AG=MG,∴∠CEG=∠M.(9分)∵∠AGE=∠CEG+∠M,∠AGE.(10分)∴∠AGE=2∠CEG,即∠CEG=12评析本题综合考查三角形全等的判定和性质、平行四边形的性质、勾股定理、直角三角形斜边上的中线等于斜边的一半等知识,证明△ECG≌△DCF是解题的切入点,本题综合性较强,第(2)问属于较难题.25.解析(1)∵抛物线y=x2+bx+c与x轴的一个交点为B(5,0),与y轴交于点C(0,5),∴将B(5,0)、C(0,5)代入y=x2+bx+c,解得b=-6,c=5.∴二次函数解析式为y=x2-6x+5.(2分)设直线BC的解析式为y=kx+5.将B(5,0)代入直线BC解析式y=kx+5,解得k=-1,∴直线BC的解析式为y=-x+5.(3分)(2)如图①,设M(x,y),则MN=-x+5-(x2-6x+5)(5分)=-x 2+5x=-(a -52)2+254.(6分)∴MN 的最大值为254.(7分)图①(3)如图②,由(2)易得S 2=5,∴S 1=6S 2=30.(8分) BC=5√2,直线BC 的解析式为y=-x+5,∠CBO=45°. ∵S 1=30,∴平行四边形CBPQ 中BC 边上的高为5√2=3√2.(9分)图②过点C 作CD⊥PQ 与PQ 所在直线相交于点D, PD 交y 轴于点E,CD=3√2,∴CE=6. ∴E(0,-1),∴直线PQ 的解析式为y=-x-1.(10分) ∵点P 同时在抛物线和直线PQ 上, ∴x 2-6x+5=-x-1,解得x 1=2,x 2=3,∴P1(2,-3),P2(3,-4).(12分)评析本题以抛物线为载体,考查了初中数学的主干知识:函数、方程;考查了学生综合运用数学知识以及运用转化思想、数形结合思想、函数与方程思想解决问题的能力;考查了待定系数法、配方法等数学方法.26.解析(1)如图①,在矩形中,图①∵AB=12,BE=16,∴AE=20,由△ABE∽△ECD,得ABBE =ECCD,得CE=9,∴AD=25.∵NG=6,MG=8,∴NM=10.(1分)∵GM∥AE,当G点落在AE上时,点M与点E重合. ∴t=10.(2分)(2)存在满足条件的t,理由如下:(i)当AP=PQ时,如图②,过P作PH⊥AQ于点H. AP=t,NE=t,由△EQN∽△MGN,图②得NQ=35t,QE=45t,AQ=20-45t,AH=45t.∵AQ=2AH, ∴t=253.(4分)(ii)当AP=AQ 时,如图③.图③∵AP=t,AQ=20-45t,∴20-45t=t, t=1009.(6分)(iii)当AQ=PQ 时,如图④.图④过Q 作QK⊥AP 于点K,由△AKQ∽△AED,得AK AE =AQAD ,得AQ=58t, 又AQ=20-45t,∴20-45t=58t,∴t=80057.(8分)(3)S={ 625t 2(0≤t <7),-775t 2-143t +493(7≤t <10),-13t 2+143t +233(10≤t <715),67(t -17)2(715≤t ≤16).(12分)评析本题综合考查了动点问题、等腰三角形的判定和性质、二次函数、三角形相似、分段函数的知识,综合性强.第(2)问求解的关键是分类讨论思想的应用.第(3)问求解的关键是将三角形的运动转化为顶点G和顶点N的几个特殊位置的确定,这样才能求出三角形在运动过程中t的取值范围,而只有正确求解出临界状态时t的值,才能合理地对重叠部分面积进行分类,本题求解面积时化归思想方法的应用也比较重要.本题图形复杂,分类情况比较多,是一道综合性非常强的压轴题.。
2013重庆中考数学试题及答案
![2013重庆中考数学试题及答案](https://img.taocdn.com/s3/m/4a1154a29a89680203d8ce2f0066f5335a81679c.png)
2013重庆中考数学试题及答案一、选择题1. 下列运算中,$3^{-2} – 3^{-1} =$A. 8B. -6C. -2D. 22. 好书铺的图书销售量占总销售量的 $7\%$,如果好书铺图书销售量为 $210$ 本,那么总销售量为多少?A. 2100本B. 3000本C. 2700本D. 2000本3. “对于集合 A 中的任一元素 x ,总有 $x^2 > 0$,则 A 中的元素必须是实数.” 这个命题的否定形式是:A. “对于集合 A 中的任一元素 x,总有 $x^2 \leq 0$,则 A 中的元素不一定是实数.”B. “对于集合 A 中的任一元素 x,总有 $x^2 \leq 0$,则 A 中的元素一定是实数.”C. “对于集合 A 中的任一元素 x,总有 $x^2 > 0$,则 A 中的元素不一定是实数.”D. “对于集合 A 中的任一元素 x,总有 $x^2 > 0$,则 A 中的元素一定是实数.”4. 曲线 $y = ax + b$ 在点 (1, 4) 上的切线为 $2x + y = 6$,则常数 a 和 b 的值分别为:A. -2, 6B. 2, 6C. -2, -2D. 2, -25. 化简 $\frac{(-a^2b^3)^2}{(-ab^2)^2 \cdot a^2}$ 得:A. $b$B. $ab^3$C. $a^2b$D. $a^2b^3$二、非选择题1. 某校举行比赛,男生与女生参赛人数的比例为 $4:3$,如果共有$280$ 名参赛选手,其中女生人数是多少?2. 某商品原价为 $500$ 元,经过打折后降价为 $400$ 元,求打了多少折扣?3. 某数由 $2, 3, 4, 8$ 四个数字中任意选取一个组成,其中百位和个位都可以为零。
如果每一个数字只能使用一次,那么这个数有多少种可能?4. 某辅导班的学生有男生和女生两类,男生占总数的 $40\%$,女生占总数的 $60\%$。
2013重庆中考数学试题(图片版)
![2013重庆中考数学试题(图片版)](https://img.taocdn.com/s3/m/91cb5213657d27284b73f242336c1eb91a37332a.png)
2013重庆中考数学试题(图片版)
每年的六月底七月初都将会迎来一次中考,众多中考学子现在正在为考试作最后的复习准备,进行最后冲刺。为了给大家及时了解中考试题更多的相关信息,中国店铺将会走在前线给大家快速获取中考试题的相关信息及资料,请届时关注。
2013年重庆市中考数学试卷-答案
![2013年重庆市中考数学试卷-答案](https://img.taocdn.com/s3/m/b818862a4431b90d6c85c738.png)
重庆市2013年初中毕业暨高中招生考试数学答案解析一、选择题 1.【答案】B【解析】3,0,6,2-这四个数中,最大的数是6. 故选B .【提示】根据有理数的大小比较法则: ①正数都大于0; ②负数都小于0; ③正数大于一切负数;④两个负数,绝对值大的其值反而小,即可得出答案. 【考点】有理数大小比较 2.【答案】A【解析】326(2)4x y x =. 故选A .【提示】根据积的乘方的知识求解即可求得答案. 【考点】幂的乘方与积的乘方 3.【答案】C【解析】65A ∠=︒,A ∴∠的补角18065115=︒-︒=︒. 故选C .【提示】根据互补两角之和为180︒求解即可. 【考点】余角和补角 4.【答案】D【解析】去分母得220x x -+=,解得2x =-,经检验2x =-是分式方程的解. 故选D .【提示】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 【考点】解分式方程 5.【答案】A【解析】AD 平分BAC ∠,70BAD ∠=︒,2140BAC BAD ∴∠=∠=︒,AB CD ∥ACD ∴∠=故选A .【解析】甲的方差是【解析】如图,连接OA ,PA 时O 的切线又26cm PO =22OA PO PA =-=O ∴的周长为π2πOA =⨯故选C .利用圆的周长公式来求O 的周长.【考点】切线的性质,勾股定理 】四=AE ED2故选B.【提示】由边形【解析】第一个图形面积为【解析】根据图示知,一次函数与二次函数的交点由图示知,抛物线开口向上,则反比例函数图象经过第一、三象限,k>,b.0a>,b.0.观察二次函数2ba>,k,0【解析】设AB 的中点是O ,连接OE ,1142AD CD =⨯11部分的面积为8(π2)--【解析】所得函数的图象经过第一、三象限,,四边形,将四边形∠'',B DC和D重合,连接∠'中,B AE x20.【答案】(1)111A B C △如图所示:a b a b +=⎧⎨-=⎩【提示】先根据分式混合运算的法则把原式进行化简,再求出(2)设两组分别为A,B,其中4个人分别为:1A,2A,1B,2B,根据题意画树状图得出:82施工时间按月取整数,BE BF=BO EF∴⊥∴在Rt△又BEF∠=23BC=2AC BC∴=AB AC∴=)对称轴为直线点时,抛物线POC S =△132|x ∴⨯⨯24)四边形cos303AD︒=sin303AD︒=AED向右平移的过程中:(Ⅰ)当0 1.5t≤≤时,如图1所示,,2DD t=sin30t︒=213322NK t t t==;(Ⅱ)当1.5 4.5t<≤时,如图2所示,此时重叠部分为四边形00D E KN,2AA t=1tan30N︒=33232 S S t∴=-四边形(Ⅲ)当4.56t<≤时,如图3所示,,2AA t=1cos30B︒=2t,BI∴136)]3(6)(122)(122)23t t t----=之间的函数关系式为:(Ⅰ)当QB QP=时(如图4),(Ⅱ)当BQ BP=时,则11B Q B C=,若点Q在线段11B E的延长线上时(如图5),130B∠=若点Q在线段11E B的延长线上时(如图6),11CB E∠③当PQ=1CB CB =,1CQ CB CB ∴==,又点Q 在直线CB 上,0180α︒<︒<,∴点Q 与点B 重合,此时B 、P 、Q 三点不能构成三角形.综上所述,存在30α=︒,75︒或165︒,使BPQ △为等腰三角形.【提示】(1)在Rt ADE △中,解直角三角形即可;(2)在AED △向右平移的过程中,(Ⅰ)当0 1.5t ≤≤时,如图1所示,此时重叠部分为一个三角形; (Ⅱ)当1.5 4.5t <≤时,如图2所示,此时重叠部分为一个四边形;(Ⅲ)当4.56t <≤时,如图3所示,此时重叠部分为一个五边形;(3)根据旋转和等腰三角形的性质进行探究,结论是:存在α使BPQ △为等腰三角形,如图4、图5所示.【考点】几何变换。
2013重庆中考数学试题及答案a
![2013重庆中考数学试题及答案a](https://img.taocdn.com/s3/m/5c50fb09ae1ffc4ffe4733687e21af45b307fe9a.png)
2013重庆中考数学试题及答案a一、选择题(每题3分,共30分)1. 以下哪个数是无理数?A. 2B. √2C. 0.5D. 3.14答案:B2. 一个正数的平方根是它本身的数是?A. 0B. 1C. -1D. 以上都是答案:A3. 直线y=2x+3与x轴的交点坐标是?A. (0, 3)B. (-3/2, 0)C. (3/2, 0)D. (0, -3)答案:C4. 一个三角形的两边长分别为3和4,第三边长x满足的条件是?A. 1 < x < 7B. 1 < x < 5C. 3 < x < 7D. 4 < x < 75. 以下哪个函数是一次函数?A. y = 2x^2B. y = 3x + 1C. y = 1/xD. y = x^3 - 2答案:B6. 一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B7. 以下哪个图形是中心对称图形?A. 等腰三角形B. 矩形C. 等边三角形D. 半圆答案:B8. 一个数的相反数是-3,那么这个数是?A. 3B. -3C. 0D. 6答案:A9. 一个等差数列的首项是2,公差是3,那么第5项是多少?B. 14C. 11D. 8答案:A10. 以下哪个图形是轴对称图形?A. 平行四边形B. 矩形C. 梯形D. 不规则多边形答案:B二、填空题(每题3分,共15分)11. 一个直角三角形的两直角边长分别为3和4,那么斜边长是______ 。
答案:512. 一个二次函数的顶点坐标是(2, -3),那么它的对称轴是 ______ 。
答案:x=213. 一个等比数列的首项是2,公比是2,那么第4项是 ______ 。
答案:1614. 一个扇形的圆心角是60°,半径是4,那么它的面积是 ______ 。
答案:4π15. 一个正六边形的边长是a,那么它的面积是 ______ 。
2013重庆中考数学试题及答案
![2013重庆中考数学试题及答案](https://img.taocdn.com/s3/m/837bc9a650e79b89680203d8ce2f0066f533641d.png)
2013重庆中考数学试题及答案根据题目要求,我将按照合适的格式来书写关于2013年重庆中考数学试题及答案的文章。
以下是试题及答案的详细内容:(一)选择题1. 若a^2 = 9,则a的值为:A. 6B. 0C. 3D. -3答案:C. 32. 下列有理数中,负数是:A. 2/3B. 0C. -4D. 5/4答案:C. -43. sin30°的值等于:A. -1/2B. 1/2C. -√3/2D. √3/2答案:B. 1/24. 一辆汽车以60km/h的速度行驶3小时,行驶的路程为:A. 180kmB. 120kmC. 60kmD. 20km答案:A. 180km(二)填空题1. 设直角三角形的斜边为10cm,一直角边为6cm,则另一直角边的长为__________ cm。
答案:8cm2. 设集合A = {1, 2, 3},集合B = {3, 4, 5},则A ∪ B = __________。
答案:{1, 2, 3, 4, 5}3. 一个数的四倍与它的和的结果是64,这个数是__________。
答案:164. 已知函数f(x) = 2x + 3,求f(4)的值。
答案:11(三)解答题1. 甲、乙两人合作抓鱼,甲一小时可以抓8条鱼,乙一小时可以抓5条鱼。
如果两人合作8小时,共抓到了多少条鱼?解答:甲一小时抓鱼的条数为8条,乙一小时抓鱼的条数为5条。
根据合作时间和每小时抓鱼的条数,可以得出甲乙两人合作抓到鱼的总条数为8条/小时 + 5条/小时 = 13条/小时。
因此,8小时的总共抓到的鱼的条数为13条/小时 × 8小时 = 104条。
2. 某数的平方是36,这个数是多少?解答:设这个数为x,根据题意可以得出方程x^2 = 36。
解这个方程可以得到两个解x = 6或x = -6。
因此,这个数可以是6或-6。
通过以上内容,我们可以充分了解到2013年重庆中考数学试题的题型和答案。
选择题部分包括了对知识点的考察,填空题和解答题则要求考生有一定的计算和解题能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴反比例函数解析式为 y= ,
将 A(2,m)代入 y= 中,得 m=5,∴A(2,5),
∴三角形的相似比是 3:1,
∴△ABC 与△DEF 的面积之比为 9:1.
故答案为:9:1.
-5-
13.(2013 重庆)重庆农村医疗保险已经全面实施.某县七个村中享受了住院医疗费用报
销的人数分别为:20,24,27,28,31,34,38,则这组数据的中位数是
.
考点:中位数。
解答:解:把这一组数据从小到大依次排列为 20,24,27,28,31,34,38,
科学记数法表示为
.
考点:科学记数法—表示较大的数。
解答:解:380 000=3.8×105.
故答案为:3.8×105.
12.(2013 重庆)已知△ABC∽△DEF,△ABC 的周长为 3,△DEF 的周长为 1,则 ABC
与△DEF 的面积之比为
.
考点:相似三角形的性质。
解答:解:∵△ABC∽△DEF,△ABC 的周长为 3,△DEF 的周长为 1,
-7-
即:∠EAD=∠BAC,
在△EAD 和△BAC 中 ∴BC=ED.
19.(2013 重庆)解方程: 2 1 . x 1 x 2
考点:解分式方程。 解答:解:方程两边都乘以(x-1)(x-2)得, 2(x-2)=x-1, 2x-4=x-1, x=3, 经检验,x=3 是原方程的解, 所以,原分式方程的解是 x=3. 20.(2013 重庆)如图,在 Rt△ABC 中,∠BAC=90°,点 D 在 BC 边上,且△ABD 是等 边三角形.若 AB=2,求△ABC 的周长.(结果保留根号)
10.(2013 重庆)已知二次函数 y ax 2 bx c(a 0) 的图象如图所示对称轴为 x 1 .下列结论中,正确的是( ) 2
A. abc 0
B. a b 0
考点:二次函数图象与系数的关系。
解答:解:A、∵开口向上,
∴a>0,
∵与 y 轴交与负半轴,
∴c<0,
∵对称轴在 y 轴左侧,
坐标.
-9-
考点:反比例函数综合题。 解答:解:(1)过 B 点作 BD⊥x 轴,垂足为 D, ∵B(n,-2),∴BD=2, 在 Rt△OBD 在,tan∠BOC= ,即 = ,解得 OD=5, 又∵B 点在第三象限,∴B(-5,-2), 将 B(-5,-2)代入 y= 中,得 k=xy=10,
-8-
四、解答题:(本大题 4 个小题,每小题 10 分,共 40 分) 解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对
应的位置上.
21.(2013
重庆)先化简,再求值:
3x x2
4 1
x
2
1
x2
x2 2x 1
,其中
x
是不等式组
x 4 0 2x 5 1的整数解.
∴与 x 轴的另一个交点的取值范围为 x2<-2, ∴当 x=-2 时,4a-2b+c<0,
即 4a+c<2b,
故本选项正确.
故选 D.
二、填空题(本大题 6 个小题,每小题 4 分,共 24 分)请将每小题的答案直接填在答题
卡(卷)中对应的横线上,
11.(2013 重庆)据报道,2011 年重庆主城区私家车拥有量近 38000 辆.将数 380000 用
纵观各选项,只有 B 选项的图象符合.
故选 B.
-3-
9.(2013 重庆)下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形 一共有 2 个五角星,第②个图形一共有 8 个五角星,第③个图形一共有 18 个五角 星,…,则第⑥个图形中五角星的个数为( )
A.50 B.64 C.68 D.72 考点:规律型:图形的变化类。 解答:解:第①个图形一共有 2 个五角星, 第②个图形一共有 8 个五角星, 第③个图形一共有 18 个五角星, …, 则所以第⑥个图形中五角星的个数为 2×62=72; 故选 D.
与反比例函数 y k (k 0) 的图象交于一、三象限内的 A.B 两点,与 x 轴交于 C x 2
点,点 A 的坐标为(2,m),点 B 的坐标为(n,-2),tan∠BOC= 。
5
(l)求该反比例函数和一次函数的解析式;
(2)在 x 轴上有一点 E(O 点除外),使得△BCE 与△BCO 的面积相等,求出点 E 的
A.2 B.3 C.4 D.5 考点:一元一次方程的解。
解答:解;∵方程 2x a 9 0 的解是 x=2,
∴2×2+a-9=0, 解得 a=5. 故选 D. 8.(2013 重庆)2013 年“国际攀岩比赛”在重庆举行.小丽从家出发开车前去观看,途中 发现忘了带门票,于是打电话让妈妈马上从家里送来,同时小丽也往回开,遇到妈妈后 聊了一会儿,接着继续开车前往比赛现场.设小丽从家出发后所用时间为 t,小丽与比 赛现场的距离为 S.下面能反映 S 与 t 的函数关系的大致图象是( )
A
B
C
D
考点:函数的图象。
解答:解:根据题意可得,S 与 t 的函数关系的大致图象分为四段,
第一段,小丽从出发到往回开,与比赛现场的距离在减小,
第二段,往回开到遇到妈妈,与比赛现场的距离在增大,
第三段与妈妈聊了一会,与比赛现场的距离不变,
第四段,接着开往比赛现场,与比赛现场的距离逐渐变小,直至为 0,
A.60° B.50° C.40° D.30° 考点:平行线的性质;角平分线的定义。
-2-
解答:解:∵EF∥AB,∠CEF=100°, ∴∠ABC=∠CEF=100°, ∵BD 平分∠ABC, ∴∠ABD= ∠ABC= ×100°=50°.
故选 B.
7.(2013 重庆)已知关于 x 的方程 2x a 9 0 的解是 x 2 ,则 a 的值为( )
考点:分式的化简求值;一元一次不等式组的整数解。
解答:解:原式=[
-
]•
=
•
=
•
=,
又
,
由①解得:x>-4,
由②解得:x<-2,
∴不等式组的解集为-4<x<-2,
其整数解为-3,
当 x=-3 时,原式=
=2.
22.(2013 重庆)已知:如图,在平面直角坐标系中,一次函数 y ax b(a 0) 的图象
2013 年重庆市中考数学试卷
一、选择题(本大题 10 个小题,每小题 4 分,共 40 分)在每个小题的下面,都给出了代 号为 A.B.C.D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案 所对应的方框涂黑(或将正确答案的代号填人答题卷中对应的表格内). 1.(2013 重庆)在-3,-1,0,2 这四个数中,最小的数是( )
考点:解直角三角形;三角形内角和定理;等边三角形的性质;勾股定理。
解答:解:∵△ABD 是等边三角形, ∴∠B=60°, ∵∠BAC=90°, ∴∠C=180°-90°-60°=30°, ∴BC=2AB=4,
在 Rt△ABC 中,由勾股定理得:AC=
=
=2 ,
∴△ABC 的周长是 AC+BC+AB=2 +4+2=6+2 . 答:△ABC 的周长是 6+2 .
C. 2b c 0
-4-
D. 4a c 2b
∴- <0,
∴b>0, ∴abc<0, 故本选项错误; B、∵对称轴:x=- =- ,
∴a=b, 故本选项错误; C、当 x=1 时,a+b+c=2b+c<0, 故本选项错误;
D、∵对称轴为 x=- ,与 x 轴的一个交点的取值范围为 x1>1,
最中间的数字是 28,
所以这组数据的中位数是 28;
故答案为:28.
14.(2013 重庆)一个扇形的圆心角为 120°,半径为 3,则这个扇形的面积为
(结果保留 π)
考点:扇形面积的计算。
解答:解:由题意得,n=120°,R=3,
故 S 扇形=
=
=3π.
故答案为:3π. 15.(2013 重庆)将长度为 8 厘米的木棍截成三段,每段长度均为整数厘米.如果截成的
A.45° B.35° C.25° D.20° 考点:圆周角定理。 解答:解:∵OA⊥OB, ∴∠AOB=90°, ∴∠ACB=45°. 故选 A. 5.(2013 重庆)下列调查中,适宜采用全面调查(普查)方式的是( ) A.调查市场上老酸奶的质量情况 B.调查某品牌圆珠笔芯的使用寿命 C.调查乘坐飞机的旅客是否携带了危禁物品 D.调查我市市民对伦敦奥运会吉祥 物的知晓率 考点:全面调查与抽样调查。 解答:解:A、数量较大,普查的意义或价值不大时,应选择抽样调查; B、数量较大,具有破坏性的调查,应选择抽样调查; C、事关重大的调查往往选用普查; D、数量较大,普查的意义或价值不大时,应选择抽样调查. 故选 C. 6.(2013 重庆)已知:如图,BD 平分∠ABC,点 E 在 BC 上,EF∥AB.若 ∠CEF=100°,则∠ABD 的度数为( )
B、是轴对称图形,故本选项正确;
C、不是轴对称图形,故本选项错误;
D、不是轴对称图形,故本选项错误.
故选 B.
3.(2013 重庆)计算 ab2 的结果是( )
A.2ab
B. a 2b
考点:幂的乘方与积的乘方。 解答:解:原式=a2b2. 故选 C.
C. a 2b 2
D
D. ab2
-1-
4.(2013 重庆)已知:如图,OA,OB 是⊙O 的两条半径,且 OA⊥OB,点 C 在⊙O 上,则∠ACB 的度数为( )
17.(2013 重庆)计算: 4 π - 20 | 5 | - 1 2012 1 2 .
3