音乐频谱-电路图

合集下载

led音乐频谱显示课程设计

led音乐频谱显示课程设计

led音乐频谱显示课程设计一、课程目标知识目标:1. 学生能理解LED音乐频谱显示的原理,掌握基础电子元件的功能和使用方法。

2. 学生能掌握编程控制LED灯亮灭的基本技巧,了解与音乐频谱显示相关的编程知识。

3. 学生能够解释简单电路的工作原理,并了解如何将其与音乐信号相结合。

技能目标:1. 学生能够设计并搭建简单的LED音乐频谱显示装置,进行功能测试和调试。

2. 学生通过实践操作,掌握使用编程软件对LED音乐频谱进行编程控制的能力。

3. 学生能够通过团队合作,解决在制作过程中遇到的技术难题。

情感态度价值观目标:1. 学生培养对电子技术和编程的兴趣,激发创新思维和探索精神。

2. 学生在团队协作中,学会相互尊重、支持和沟通,培养合作精神。

3. 学生能够认识到科技在音乐领域的应用,提高对科技与艺术融合的认识,培养审美情趣。

本课程针对初中年级学生,结合电子技术和编程知识,以实践性、趣味性和创新性为特点。

在教学过程中,注重培养学生的动手能力、逻辑思维和团队协作能力,使学生在实践中掌握知识,提高技能,培养良好的情感态度价值观。

通过分解课程目标为具体的学习成果,为教学设计和评估提供明确方向。

二、教学内容1. 电子元件基础知识:讲解电阻、电容、二极管、三极管等基础电子元件的功能和用途,结合教材相关章节,让学生了解电子元件在电路中的作用。

2. LED灯特性与应用:介绍LED灯的基本特性,如亮度、颜色、电压等,并讲解其在音乐频谱显示中的应用。

3. 电路原理与设计:教授简单电路的搭建方法,分析音乐频谱显示电路的原理,指导学生设计符合需求的电路图。

4. 编程知识:结合教材,教授Arduino编程基础知识,如变量、循环、条件语句等,并讲解如何利用编程控制LED灯的亮灭。

5. 音乐信号处理:介绍音乐信号的特点,如何从音频信号中提取频谱信息,以及如何将频谱信息与LED灯亮度对应起来。

6. 实践操作:安排学生进行分组实践,每组设计并搭建一个LED音乐频谱显示装置,通过编程和调试,实现音乐频谱的实时显示。

第5章-频谱的线性搬移电路

第5章-频谱的线性搬移电路

一、非线性函数的级数展开分析法
1、非线性函数的泰勒级数 非线性器件的伏安特性,可用下面的非线性函数来表示:
i f (u)
(5-1)
式中, u为加在非线性器件上的电压。一般情况下,
u=EQ+u1+u2, 其中EQ为静态工作点, u1和u2为两个输入电 压。用泰勒级数将式(5-1)展开, 可得
i a0 a1(u1 u2 ) a2 (u1 u2 )2 an (u1 u2 )n
3、正弦波振荡器
反馈式振荡器的平衡条件,三点式振荡器的起振判断条件,电路 结构,克拉泼,西勒电路的计算,晶体振荡器的特点等。
下面学习频率变换电路电路,包括频谱的线性搬移和非线 性搬移电路及其应用。
《高频电子线路》
1
第5章 频谱的线性搬移电路
第5章 频谱的线性搬移电路
5.1 非线性电路的分析方法 5.2 二极管电路 5.3 差分对电路 5.4 其它频谱线性搬移电路
即有
i I0(t) g(t)u1
(5-14)
可见,非线性器件的输出电流与输入电压的关系类似于线 性系统,但其系数却是时变的,故叫做线性时变电路。
2、线性时变参数分析法的应用
考虑u1和u2都是余弦信号, u1=U1cosω1t, u2=U2cosω2t, 故I0(t) 、g(t)也为周期性函数,可用傅里叶级数展开,得:
I0 (t) f (EQ U2 cos2t) I00 I01 cos2t I02 cos 22t (5-15) g(t) f (EQ U2 cos2t) g0 g1 cos2t g2 cos 22t (5-16)
《高频电子线路》
16
第5章 频谱的线性搬移电路
两个展开式的系数可直接由傅里叶系数公式求得

一种基于STM32F103C8T6单片机DSP库的音乐频谱

一种基于STM32F103C8T6单片机DSP库的音乐频谱

2020年软 件2020, V ol. 41, No. 4一种基于STM32F103C8T6单片机DSP 库的音乐频谱谢志平(广东省技师学院,广东 惠州 516100)摘 要: 利用STM32单片机内部的DSP 库功能,将外部输入的音乐信号放大后再送入单片机内部的A/D 转换器,运用STM32内部DSP 库功能进行FFT 运算,采用中断扫描技术,将音乐信号的频谱在32X64全彩点阵屏进行显示,能对音乐信号的频谱进行简单的分析,实现多种随音乐节奏舞动的视觉效果。

关键词: 单片机;DSP 库;FFT ;中断扫描技术中图分类号: TP3 文献标识码: A DOI :10.3969/j.issn.1003-6970.2020.04.042本文著录格式:谢志平. 一种基于STM32F103C8T6单片机DSP 库的音乐频谱[J]. 软件,2020,41(04):200 202+228A Music Spectrum Based on DSP Library of STM32F103C8T6 MicrocontrollerXIE Zhi-ping(Guangdong technician college, huizhou 516100, China )【Abstract 】: Use of STM32 MCU internal DSP library function, the music of external input signal amplification and then sent into single chip microcomputer internal A/D converter, use STM32 internal DSP library functions for FFT arithmetic, using interrupt scanning technology, the music signal spectrum in 32 x64 lattice screen for display, full-color to simple music signal spectrum analysis, realize the visual effect of A variety of dance with the music rhythm.【Key words 】: Single chip microcomputer; DSP library; FFT; Interrupt scanning technique0 引言任何周期函数,都可以看作是不同振幅,不同相位正弦波的叠加。

基于单片机的音频频谱显示器的研究与开发

基于单片机的音频频谱显示器的研究与开发

1
音频信号,这个音频信号再经功放模块由扬声器驱动播放音乐。

同时,音频信号又作为输入信号接到另外一个单片机系统,此单片机系统主要是完成音频信号的模数转换,并由内部软件通过快速傅里叶算法,实现音频信号在频域上的分析,最后量化输出,由LED点阵显示出频谱变化。

三、研究指向内容与过程
(一)研究指向
1. 降低设计、制作以及成品的成本;
2. 提高音频频谱与音乐的匹配度;
3. 开发电子产品专业课程的实训资源,使实训资源与生活相结合,便于电子专业学生的
学习与研究。

(二)研究内容
1、硬件设计
单片机我们选用STC12C5A60S2。

STC 公司的单片机不但和8051指令、管脚完全兼容,而且其片内的具有大容量程序存储器且是FLASH工艺的,其中STC12C5A60S2单片机内部就自带高达60K FLASHROM,这种工艺的存储器用户可以用电的方式瞬间擦除、改写。

而且STC 系列单片机支持串口程序烧写。

本设计系统由单片机模块、音频采集模块、滤波模块、按键模块、功放模块和显示模块六部分组成,如图1所示。

图1 音频频谱显示器的系统结构图
硬件电路图如图2所示,使用音频采集模块对输入的音频信号进行采样,经过FFT变换,然后取某些频率项的幅值,量化显示,驱动LED点阵,点亮相应的LED灯,其中显示模块即LED频谱显示电路。

图2左上方是滤波模块以及功放模块的设计,左下方是单片机模块的电路设计,右侧是LED频谱显示电路的设计。

其中,音频功放芯片选用8002,它是两个OTL电路桥式连接为BTL工作方式的音频功放。

2
3。

单片机实现音乐频谱

单片机实现音乐频谱
还省去了部分限流电阻,食人鱼 LED 有四个引脚,便于手工焊接,大量减少跳线。
图二 MCU 部分的原理图
) ( 灯 吸呼 键摸触
色 : :: 颜
图三 点阵驱动电路图 (三) 编程思路
1) 在主函数中,单片机通过 AD 对音频数据采样,然后存放到数据缓存区进行预处理,完成 AD 滤波 处理,自动增益控制信息扫描以及其他信息处理。接着,将缓存区数据送入 快速傅立叶变换(FFT) 处理子函数进行运算。处理完后,从缓存区取出运算结果,根据得到幅值计算出点阵的显示数据, 并存储到显示缓存区。
a) 采用 USB 接口供电,并且对 USB 接口进行了扩展。在没有额外占用电脑主机 USB 接口情况下, 随时随地给系统供电;
b) 加入了触摸键设计,以及震动反馈。当触摸键响应时有震动反馈,及声光提示,如今很多触屏手 机也有这种时尚设计;
c) 加入 ThinkPad 笔记本上的经典呼吸灯指示设计。如夏日里的萤火虫,一闪一闪亮晶晶,不仅有趣 还能指示系统工作状态;
好的声音效果,其各段频率成分应该有一定的比例,录音的时候,录音师操作调音台就可以使各 段频率的成分得到调整。由于各种乐器的基频高低是不同的,所以,也可以使各种乐器之间的声音比 例得到调整,常见的是把频率由低至高分成 5 段或 7 段、10 段或 15 段,有经验的录音师或音乐家能听 出哪里(哪个频率段)“空”了,即这个频段弱。哪里“鼓了个包”,即这个频段过强。通过均衡器可 以把这些予以弥补。又因为每个人对音乐中频率分布的欣赏标准是不同的,因此,各位录音师掌握的 尺度也不同,显示出各自的风格。
小贴士(1): 根据 STC12A32S2 单片机的资源情况,最多只有 1280B RAM,我们取 64 点的 FFT 就可以满足要求,还

基于51单片机的LED点阵音乐频谱显示器

基于51单片机的LED点阵音乐频谱显示器
《 工 业控制计算机} 2 0 1 5年 第 2 8卷 第 4期
1 3 7
基于 5 1 单片机的 L E D点阵音乐频谱显示器
L E D Do t Ma t r i x Di s pl a y Mu s i c Sp e c t r u m B a s e d o n 51 Si n gl e Ch i p Mi c r o c o mp u t e r
pr o c e s s i n g u n i t s . s o u n d p r o c e s s i n g u n i t S T Cl 2 C 5 A 6 0 S 2 mi c r o c o n t r o l l e r F F . r p r o c e s s i n g .
实 现 音 乐频 谱 。
关键词 : S T C l 2 C 5 A 6 0 S 2 , 数 字信 号 处理 , 傅里叶变换 , 源程 序 , 仿 真 与调 试
Abs t r a c t
T h i s d e s i g n b y u s i n g s i n g l e - c h i p mi c r o c o mp u t e r a n d d i g i t a l s i g n a l p r o c e s s i n g t e c h n i q u e s t o a c h i e v e mu s i c a l s p e c t r u m
李逸 家 ( 华南农业大学珠江学院, 广东 广州 5 1 0 9 0 0 )
摘 要

通 过 使 用 单 片机 原 理 , 利 用数 字信 号 理 论 , 使 音 乐频 谱 分 析 在 单 片机 上 的 实现 。 系 统 包括 : 声 音 接 收模 块 , 声 音 转 换 模 块和 L E D 组 成 的点 阵显 示单 元 。 其 中声 音采 集模 块 , 是利用 S T C1 2 C5 A 6 0 S 2单 片机 中 的声 音 采 集 和 A / D转 换 。 音 频 的模 拟信号 通过声音采 集模块接 收到 , 经过 A / D转 换 系统 , 转换为数 字信号 , 送给 下一级 处理单元 处理 。声音转换模 块利 用 S T Cl 2 C5 A 6 0 S 2单 片机 内部 的 资 源 , 进行 F F T处 理 。显 示模 块接 收 AD转 换 后 的信 号 , 控 制 5组 , 总共 有 5 5个 L E D灯泡 , 分别完成显示。 L E D 灯 的 明 暗条 件 , 是 随 着 音 乐的 频 率 变化 所 决 定 的 , 随 时更 新 做 出相 应 的 变化 , 通过 视 觉 上 的 灯光 显 示 以

第5章__频谱的线性搬移电路

第5章__频谱的线性搬移电路
(5―9)
依此可以推断,输出电流i中将包含下列通式表示的无限 多个频率组合分量
p ,q p1 q2
(5―10)
第5章 频谱的线性搬移电路
p ,q p1 q2
(5―10)
式中,p,q=0、1、2 …,称p + q为组合分量的阶数。 综上所述,当多个信号作用于非线性器件时,其输出 端不仅包含了输入信号的频率分量,还有输入信号频率的 各次谐波分量(pω 1、qω 2、rω 3…)以及输入信号频率的 组合分量(± pω1 ± qω2 ± rω3 ± …)。
n 0
n 0
n为偶数
n为奇数

i bnU1n cos n1t
n 0
式中,bn为an和cosnω 1t的分解系数的乘积。
可见,当一个单一频率(ω 1)的信号作用于非线性器件时,在输 出电流中不仅有ω1成分,还有nω1(n=2,3,…)分量(新频率分量)。
第5章 频谱的线性搬移电路
(2) 当u1、u2都不为零时,输出电流中不仅有两个输入
第5章 频谱的线性搬移电路
第5章 频谱的线性搬移电路
5.1 非线性电路的分析方法 5.2 二极管电路 5.3 差分对电路 5.4 其它频谱线性搬移电路
第5章 频谱的线性搬移电路
频谱搬移:指对输入信号进行的频谱变换(产生新的 频率分量),以获得具有所需频谱的输出信号。 频谱的线性搬移:搬移前后各频率分量的比例关系不
第5章 频谱的线性搬移电路
5.1.1 非线性函数的级数展开分析法 非线性器件的伏安特性,可用下面的非线性函数来表示:
i f (u )
式中,u为加在非线性器件上的电压。一般情况下, u=EQ+u1+u2,其中EQ为静态工作点,u1和u2为两个输入电压。

42频谱搬移电路的基本工作原理2012421

42频谱搬移电路的基本工作原理2012421

Mα Ωt
Vm-----假设-uAM(t)= Vm cosωct= 2(1+ MαcosΩt)cosωct
00
900
1800
2700
3600
cosΩt
1
0
—1
0
1
Mα=1:
4
2
0
2
4
Mα>1—设 Mα=3 ; 8
2
-4
2
8
Mα<1,设 Mα=0.2 2.4
2
1.6
2
2.4
AM的三种情况(见下图): Mα>1:过调制,波形已失真(包络不能如实反映基带信号幅度),不用 Mα=1:临界调制(与失真仅一线之隔,参数略有变化就失真,也不用); Mα<1:正常调幅,最常用(实验时一般Mα:20%——40%)
从调幅波的频谱图可知,唯有它的上、下边带分量才实际地 包含调制信号的频谱结构,而载波分量仅是起到频谱搬移的作用, 不反映调制信号的变化规律。
2020/2/16
14
上、下边频的平均功率均为
P
边频
1 2 RL
( mUC 2
)2

m2 4
Pc
AM信号的平均功率
Pav

1
2

Pd t

Pc
100%
23
4.2.4 AM信号的实现模型----工作原理
调幅波的共同之处都是在调幅前后产生了新的频率分量,也 就是说都需要用非线性器件(电路)来完成频率变换。
这里将调制信号vΩ与载波信号vω0加入非线性器件,然后 通过中心频率为ω0的带通滤波器取出输出电压vo中的调幅波成 分。
具体原理与电路在第三节讲述
n
1 2

第十讲频谱的线性搬移

第十讲频谱的线性搬移

频谱搬移有两种类型: 线性搬移:振幅调制及其解调、混频,线性
搬移的示意图如图5-1(a)所示。
线性搬移
0
f
0
fc
f
图5-1(a) 线性频谱搬移示意图
非线性搬移:频率调制及其解调、相位调制 及其解调。非线性搬移的示意图如图5-1(b)所示。
非线性搬移
0
f
0
fc
f
图5-1(b) 非线性频谱搬移示意图 图5-1 频谱搬移示意图
iD

I DSS
(1
UG
Us cosst )2 UP

I DSS
ቤተ መጻሕፍቲ ባይዱ
U
2 P
[UG
UP )2

2Us (UG
UP ) cosst

U
2 s
2
cos 2st]
可见, 输出电流中除了直流和ωs这两个输入信号频率 分量之外, 还产生了一个新的频率分量——2ωs。
例 5.2 已知晶体管基极输入电压为uB=UQ+u1+u2, 其中
当元器件正向偏置,且激励信号较小时,一般采用 指数函数分析法;
当元器件反向偏置,且激励信号较大,涉及器件的 导通、截至转化时,一般可采用开关函数法来进行分析;
当器件正偏,又有两个信号作用,并其中一个信号的 振幅大于另一个信号的振幅时,可用线性时变法来进行 分析。
下面分别介绍非线性电路的几种分析方法。
第五章 频谱的线性搬移电路
§5.1 非线性电路的分析方法 §5.2 二极管电路 §5.3 差分电路 §5.4 其他频谱线性搬移电路
调制、解调、混频等电路都属于频谱搬移电路。 调制为频谱搬移过程:将某种消息信号寄载于载波上, 从而便于传输。改变高频载波的一个参数(如振幅、频率、相 位)就可实现这种调制。 解调为频谱搬移过程:从已调信号中取出所需的消息信 号。 混频为频谱搬移过程:将某一频率(或频段的信号变换到 另一频率或频段)。

毕业设计-频谱显示的音乐播放器

毕业设计-频谱显示的音乐播放器

关键词:单片机;音频;快速傅里叶变换(FFT) ;频谱显示
I
河南理工大学毕业设计(论文)说明书
Abstract
This design is a single-chip computer with spectrum display function based on music player, through a design of hardware and software of low cost, to realize the music playing function. At the same time achieving music spectrum dynamic display, so that people can easily enjoy music brought joy. Music playing part is composed of a single-chip computer, the SD card module circuit, power amplifier circuit, a function key circuit and power supply circuit. Through the single-chip computer, using serial peripheral interface (SPI) protocol on the SD card, and the WAV music file is read. The WAV file with pulse width modulated sampling rate (PWM). Pulse width modulation (PWM) and the two order filter circuit converts the digital signal into analog signals, and the audio power amplifier module amplifies the signal to drive reducing audio speaker. Spectrum display part is composed of a single-chip computer and LED lattice part. When the music is played, the analog signal is collected by A/D converter in the single-chip computer. The 128 sampling points are analyzed by the Fast Fourier Transform (FFT) algorithm. And then taking the amplitude, driving LED lattice. And the corresponding LED is lighted.

频率变换电路

频率变换电路
调幅分类—— 1)普通调幅制(AM); 2)双边带调幅制(DSB); 3)单边带调幅制(SSB); 4)残留边带调幅制(VSB)。
2.普通(双边带)调幅波——DSB 设:(低频)调制信号为单音频信号为: uΩ(t)=UΩmcosΩt=UΩmcos2πFt (高频)载波信号为: uC(t)=UcmcosωCt=Ucmcos2πfCt
( F —为低频调制信号频率;fC—高频载波频率。且F <<fC)
调幅电路如图所示:(UQ——直流电压)
uc
X Am X Y
+
Y
uo
uΩ_
UQ
+ _
调幅波输出为:
uAM(t)=Am﹛UQ+ uΩ(t)﹜ uC(t) =Am Ucm(UQ+UΩmcosΩt)cosωCt =Am UcmUQ(1+macosΩt)cosωCt = Umo(1+macosΩt)cosωCt
44
(2)满足多路复用的要求
——多套广播电台或电视频道的节目信号要发射时,接
收机可以将它们接收下来,并能区分开来。
广播电台音频信号频率(20Hz~20kHz)范围,电视 台视频图像信号频率在(0~6MHz)范围,如果同时发送, 就会出现频谱混叠的现象,接收机无法区分,也无法将信 号彼此分开,不能实现多路复用。
得频谱图:
ui
o
u2
f fC
o F
u0
o
f fC-F fC fC+F f
uAM(t)组成——1)载波成分:UcmcosωCt; 2)差频(ωC-Ω)成分: maUcmcos(ωC-Ω)t, 也称为“下边频”或“下边带”; 3)和频(ωC+Ω)成分: maUcmcos(ωC+Ω)t, 也称为“上边频”或“上边带”。

音乐信号频谱分析

音乐信号频谱分析
等处理
利用双线性变换设 计IIR滤波器( 巴特 沃斯数字低通滤波 器的设计)",首先 要设计出满足指标
要求的模拟滤波器 的传递函数Ha(s), 然后由Ha(s)通过双 线性变换可得所要 设计的IIR滤波器的
系统函数H(z)
如果给定的指标为 数字滤波器的指标, 则首先要转换成模 拟滤波器的技术指 标,这里主要是边 界频率Wp和Ws的转 换,对ap和as指标
2.语音信号的采集
但过高的采样频率并不可取,对固定长 度(T)的信号,采集到过大的数据量 (N=T/△t),给计算机增加不必要的计算 工作量和存储空间
若数据量(N)限定,则采样时间过短,会 导致一些数据信息被排斥在外
采样频率过低,采样点间隔过远,则离 散信号不足以反映原有信号波形特征, 无法使信号复原,造成信号混淆
3.低通滤波器的设计
plot(x2)
subplot(2,1,2)
title('IIR低通滤波器 滤波后的时域波形')
%画出滤波前的时域图 plot(fl) sound(fl, 44100)
title('IIR低通滤波器 滤波前的时域波形')
%画出滤波后的时域图
%播放滤波后的信号
3.低通滤波器的设计
1 散的数字语音信号
采样也称抽样,是信号在时间上的离散化,即按照一定时间间隔△t在模拟信号x(t)上逐点采取其瞬时
2值
采样时必须要注意满足奈奎斯特定理,即采样频率fs必须以高于受测信号的最高频率两倍以上的速度进
3 行取样,才能正确地重建波它是通过采样脉冲和模拟信号相乘来实现的 4 在采样的过程中应注意采样间隔的选择和信号混淆:对模拟信号采样首先要确定采样间隔 5 如何合理选择△t涉及到许多需要考虑的技术因素 6 一般而言,采样频率越高,采样点数就越密,所得离散信号就越逼近于原信号

五色LED音乐频谱详细制作文件

五色LED音乐频谱详细制作文件

五色LED音乐频谱长时间没有搞电子制作了,感觉思维有些退化了,但是又不能整天闲着,于是只能进行小补搞搞别人搞过的东西,玩玩山寨。

如图所示,这个东西一直是大家比较喜欢的,我们用电脑音乐播放器播放音乐时就喜欢看上面随音乐而跳动的竖条,一跳一跳的,很酷。

当然,这个作品我不是首创,国内有很多人都有成功的作。

在此说明一下,我个人感觉比较有趣,于是自己也研究一下原理,然后也做出来一个。

好了,不多废话,来看看俺的版本。

如图所示,正面看仅是一个LED显示屏,从左到右分别由黄、红、绿、蓝和粉红这5种不同颜色组成的5条光柱,电路的控制部分在后面的一层洞洞板上,然后用铜柱子把前后两层洞洞板固定起来,这样整体上看就彼为干净利落,而且音乐频谱还能直接立起来,方便正面的观看。

程序还加入了自动增益,能根据音量调节的大小而改变光柱的高度,从而不会出现满屏或者不亮的情况。

制作!看电路图:+5V 0.1uF+5V 100uF元器件列表:STC12C5A 60S2 单片机一块 12*18cm 洞洞板两块黄、红、绿、蓝、粉红 草帽LED 各11个(可根据个人爱好而选择) 3.5mm 的音频插头 一个 一分二音频线一个 24MHZ 晶振 一个 30PF 电容两个 40脚单片机插座一个 470欧贴片电阻11个 排插若干 铜柱子 4个并排8针的杜邦线 两条下面我进行图文详细的介绍,懒惰者可以直接看图,跳过文字的说明,因为图片已经说明一切了。

首先,我们要在12*18cm的洞洞板上焊接上LED灯,因此要先前量度好板子,合理分配每个LED灯的焊接位置,每一竖的光柱为11个,总共有5竖,经过分配后就可以焊接上LED,如图所示,先焊接黄色LED发光二极管,逐个放上LED灯在洞洞板上,然后在背面用焊锡固定好,引脚不要剪去,到后面还有用,焊接后就如图所示。

我的淘宝店:我的博客地址:/new/haorongwu先焊接好11个黄色的LED灯,每个LED灯的距离大概洞洞板5个洞的距离,我选用的是12*18cm的洞洞板,要根据你选用的洞洞板从而平均分配焊接位置,焊接好一竖的LED 后就如图所示,这些都不难完成的,要注意的是焊接LED的时候,最好用一只手指按住LED 的草帽位置,然后用焊锡在背面焊接上固定,这样就可以避免焊接出来的LED灯歪曲了。

手把手教你用51单片机DIY音乐频谱显示_稿件 - V3

手把手教你用51单片机DIY音乐频谱显示_稿件 - V3








图二

MCU 部分的原理图





图三 (三) 编程思路 1)
点阵驱动电路图
在主函数中,单片机通过 AD 对音频数据采样,然后存放到数据缓存区进行预处理,完成 AD 滤波 处理, 自动增益控制信息扫描以及其他信息处理。 接着, 将缓存区数据送入 快速傅立叶变换 (FFT) 处理子函数进行运算。 处理完后, 从缓存区取出运算结果, 根据得到幅值计算出点阵的显示数据, 并存储到显示缓存区。 在中断函数中,根据显示缓冲区的内容对点阵显示屏进行实时刷新点亮。
根据傅立叶分析,任何声音可以分解为数个甚至无限个正弦波,而它们往往又包含有无数多的谐 波分量。而它们又往往是时刻在变化着。所以一个声音的构成其实是很复杂的。将声音的频率分量绘 制成曲线,就形成了频谱。 对频谱进行分析的仪器就是频谱分析仪,早期频谱仪都是模拟分析的。频谱仪的原理就是将声音
信号通过一系列不同中心频率的模拟带通滤波器。每个带通滤波器相当于一个共振电路,其特性由中 心频率(步进的) 、频带宽度及响应时间表示。在声音信号通过滤波器后,经过平方检波器,并进行平 均之后,在每个频率上测定所传输的功率,从而得到信号的频谱。然而,传统的频谱仪受到滤波器性 能的制约,因为模拟电路本身的特性所局限,滤波器的带宽和响应时间成反比,也就是说模拟滤波器 的频率分辨力与时间分解能力之间存在矛盾。因为频谱仪所测量的往往都是非稳态声,一般来说,都 是使用若干个滤波器来覆盖整个频率范围,并将信号同时并联地输入到这些滤波器上去。或者使用中 心频率能够从低到高连续变化的滤波器。 随着科学技术的不断进步,现在我们所使用的基本不再是那些笨重而不准确的模拟仪器的频谱仪, 取而代之的是基于处理器的软件分析法。它分析的数据来源其实是经过了 ADC(模数转换器件)转换 后得出的数字信号,所以频谱仪软件所测量的信号准确度,很大程度取决于数模转换电路的性能。比 起模拟滤波器,数字滤波器应该要更加迅速和精确。 2) 你问:那什么是均衡器和音乐频谱显示?在我们欣赏音乐的过程中有什么样的作用? 我答:对于录音棚等专业级别的音乐制作来说,通常都需要对录制的音频信号进行频谱分析来辅助音 频的加工制作。当然对于我们普通的爱好者来说,不需要那么精确的频谱分析,我们更多的是用来略 显音乐节奏,美化环境,增添气氛。于是,大多数的音乐播放软件(如图一),手机,mp3,高档的音箱 设备等,都有了音乐频谱显示。

LED音乐频谱设计与制作

LED音乐频谱设计与制作

LED音乐频谱设计与制作摘要:电子信息技术几乎主宰了整个电器行业的发展,随着电子技术的进步发展在功率放大器的设计上功能也不断更新。

功率放大器在家电、数码产品中的应用也越来越广泛,与我们日常生活有着密切关系。

随着生活水平的提高,人们越来越注重视觉,音质的享受。

音频频谱显示器不但能够直观的显示信号输入的状况,而且在美学方面给予人好的视觉享受和,在某一方面来说频谱显示器赋予了音乐的动态美,让原本抽象的电信号,具体化,实质化。

本文通过使用单片机和数字信号处理技术,实现了单片机控制的音乐频谱显示系统。

系统分为,声音采集单元,声音处理单元和显示单元。

其中声音采集单元包括声音接收和 A/D 转换系统。

声音接收单元接收到的音频模拟信号,经过 A/D 转换为数字信号,送给下一级处理单元处理。

声音处理单元采用C52单片机进行快速傅立叶变换处理。

显示单元接收处理后的信号,控制16*16LED板进行显示。

软件方面使用单片机进行DFT,从而判断出该时间段音频信号的主谱,跟随着音乐节拍和强弱的变化来控制LED亮度和暗灭的实时变化,实现音乐的频谱分析并加以灯光显示。

关键字:单片机功率放大器 A/D转换快速傅立叶变换LED Design and Production of the Music Spectrum Abstract:Electronic information technology has occupied almost the entire appliance industry, with the advances and development of electronic technology on the design of power amplifier features are constantly updated. Closely related to our daily life, power amplifiers in applications of home appliances and digital products are increasingly widespread. With the improvement of living standards, there is a growing emphasis on visual and audio enjoyment. Audio spectrum display can not only show the situation of the signal input but also bring people a perfect visual enjoyment in aspect of aesthetics. In other words, audio spectrum displays are endowed with musical beauty of dynamic, which make abstract electric signal to be reification and substantiation.This paper discusses that using the single-chip and digital signal processing technology could make music spectrum display system controlled by single-chip microcomputer possible. The system is divided into voice acquisition unit, the voice processing unit and display unit. V oice acquisition unit includes the sonic receiving and A/D conversion system. The audio analog signal which is received by sonic receiver unit is transformed by A/D conversion system to be a digital signal and, after that, is sent to the next level of processing. V oice processing unit takes C52 single-chip microcomputer for Fast Fourier Transform Algorithm processing. Display unit receives the final signal to display by controlling 16*16 LED Display Board. In the aspect of software, take the single-chip microcomputer to have DFT, in order to determine the main audio signal spectrum during this period and to control the real time changes of LED brightness and antique with the music beats and the strength, which can make the music spectrum analysis and light show possible.Keywords: SCM singlechip power amplifier A/D conversionFast Fourier Transform Algorithm目录1 引言 (1)2 LED音乐频谱设计 (2)2.1设计思路 (2)2.2硬件及电路设计部分 (2)2.2.1单片机电路设计 (2)2.2.2 16*16LED显示板设计 (5)2.2.3 A/D转换模块设计 (6)2.2.4行驱动器 (7)2.2.5 列驱动器 (8)2.2.6 音频放大电路 (9)2.2.7 继电器切换电路 (10)3 程序设计部分 (11)3.1 音频信号的采集和预处理 (11)3.1.1 采样频率 (11)3.1.2 样本大小 (11)3.2 音频频谱算法 (11)3.2.1 倒位序及其优化算法 (11)3.2.2 蝶形运算及其优化算法 (12)3.3 源程序设计 (13)3.3.1 快速傅立叶变换程序 (13)3.3.2 AD采样控制程序 (14)3.3.3 系统初始化和循环控制部分 (15)3.3.4 文字滚动程序 (15)4 设计总结 (25)参考文献 (26)致谢 ....................................................................................................... 错误!未定义书签。

音乐频谱显示套件制作说明

音乐频谱显示套件制作说明

音乐频谱显示套件制作说明区分贴片发光二极管的正负极从背面观察发光二极管,可以看到如下形式在音乐频谱套件PCB 上,对应的发光二极管安装位置正负极如下找出集成电路的第一脚找单片机STC12C5A32S2 的第一脚 将单片机如下摆放将PCB 如下摆放集成电路8002和LM358为相同的封装结构,在此统一说明: 从正面观察集成电路把STC12C5A32S2 单片机以这个方向放上去焊接建议首先焊接顺序:从U3 → U2 → 贴片电阻 → 贴片电容 → U1 → USB 插座→ S1 ,这些焊接好后,可以先测量USB 插座上的正负极之间的电阻大小,看看是否有短路。

背面焊接完成后,正面的发光二极管可以从下往上一行一行进行焊接,最下面一行有数字,指示每一列对应的频率点。

焊接完最下面一行后,可以通电并接入音频信号,看看最下面一行发光二极管是否在闪烁,如果开始闪烁,说明差不多已经制作成功了,剩下的就是慢慢一点一点的将剩下的发光二极管焊接完成了。

开关S1的有两个功能:1:短按一次,测试发光二极管。

2:长按S1三秒以上,可以切换声道来源。

这时可以看见出现一个箭头指示选择左右声道.还是使用S1短按进行选择,确认选择后,长按S1保存,退出。

元件清单:下面附上贴片元件焊接简明教程1、尽量选择0.6mm焊锡丝63%焊锡量,选用25W或35W的尖头或刀头电烙铁进行焊接。

4、贴片元件的焊接方法图解。

可以先在一个焊盘上镀上锡,然后用镊子拾取元件放上元件的一头。

镊子夹持元件的同时,焊接上镀锡的这一头,在看看是否放正了,如果位置正确,最后再焊接另外一端,若不正,重新进行焊接。

5.贴片LED的正负极区分如图。

绿点对电路板上的粗线端那边,LED的焊接时间不能太长,容易损坏LED。

6.贴片IC的焊接,焊接IC芯片时,用镊子小心的将芯片放到PCB上,使其与焊盘对齐,且要保证芯片的放置方向正确,用工具按住芯片,烙铁头蘸上少量的焊锡,焊接两个对角位置的引脚,使芯片固定不能移动,然后重新检查芯片的位置是否正确良好,可进行调整后重新焊好。

单片机音乐频谱

单片机音乐频谱

单片机音乐频谱一、概述在单片机应用领域中,音乐频谱的设计与实现是一项常见且有趣的任务。

音乐频谱是指将音频信号的频率内容进行可视化展示的一种方法,通过频谱图可以直观地观察到音频信号的频谱特性。

本文档将详细介绍如何利用单片机实现音乐频谱的设计与实现。

二、硬件设计1.选择合适的单片机:根据实际需求选择适用的单片机,考虑到处理速度和存储容量等因素。

2.音频输入:通过选择合适的音频输入模块,将音频信号输入到单片机中。

可以选择模拟输入或数字输入方式。

3.FFT转换器:使用FFT(Fast Fourier Transform)转换器将音频信号从时域转换为频域,并计算频谱数据。

4.LED显示屏/柱形图显示模块:使用LED显示屏或柱形图显示模块,将频谱数据转化为可视化的频谱图展示。

三、软件设计1.ADC采样:在单片机中配置ADC模块,以一定的采样频率对音频信号进行采样,将其转换为数字信号。

2.数据处理:对采样得到的音频数据进行预处理,例如进行加窗处理,以减小频谱泄漏的影响。

3.FFT计算:通过调用FFT算法库,对预处理后的音频数据进行FFT计算,得到频谱数据。

4.数据显示:将计算得到的频谱数据通过LED显示屏或柱形图模块进行可视化展示。

四、调试与优化1.验证硬件连接:确保单片机与音频输入模块、显示模块等硬件连接正确。

2.调试采样频率:根据实际需求,调整ADC采样频率,以确保采样频率能够满足音频信号的频率范围。

3.调试FFT参数:根据实际需求,调整FFT参数,例如采样点数、窗函数类型等,以优化频谱分辨率和计算速度。

4.优化显示效果:通过调整频谱数据的灵敏度、颜色映射等参数,优化频谱图的展示效果。

五、附件1.单片机音乐频谱原理图:附带单片机音乐频谱的硬件连接图,方便实际搭建与调试过程中的参考和理解。

2.单片机音乐频谱代码示例:提供一个完整的单片机音乐频谱的软件代码示例,包括初始化配置、FFT计算、数据显示等部分。

六、法律名词及注释1.单片机:也称为微控制器,是一种包含处理器核心、存储器和外设功能的集成电路芯片,用于控制电子设备的工作。

等响度控制电路

等响度控制电路
频率整形网 C1是输入电容,R 1,C 2,R 4,C 5是一个频率整形网络的第一阶段。每个阶段表现为频率依赖性衰减,并且更容易 理解与以下图:
R2和C1组成重绘为XL1衰减器的一个分支,和C4和R5组成的第二支,相当于XL2。在整个音频频谱,XL1和XL2的阻 抗会有所不同,在不同的频率,提供不同的衰减量。 C2的阻抗是选择在高音频率20KHZ相比,R 2是小的,并且在低音频率,20Hz的,C5被选择为具有高阻抗。其结果是 一个不断变化的阻抗网络,如XL1和XL2的有效的值而变化。可以认为网络作为频率相关的衰减器,并且这个单一网络 的频率响应如下所示:
该电路采用的是3级被动式rc滤波器来调整频率响应由一个运算放大器lt1007来提供增益
等响低的音量,低音和高音频率被衰减超过中音频率。这个等响度控制电路改变频率响应曲线与耳朵的等响度 特性大致对应。所示的电路,是用于一个单个信道,所以对立体声系统,应该建立两个这样的电路。该电路具有13分 贝的提升在20Hz和大约9分贝提升在20kHz。 规格 电源:12伏特 电流:5毫安 增益:13dB(20Hz),9分贝(20kHz) 输入阻抗:27K(1KHz) 等响度控制电路 该电路采用的是3级被动式RC滤波器来调整频率响应,由一个运算放大器LT1007来提供增益。以下的频率响应示图:
级联两个以上相同的阶段,导致更明显的高峰,低音和高音频率。由于所有三个阶段是被动的,运算放大器是需要提供 必要的增益。增益运算放大器是由R9和R10,C9与R9滚降20kHz以上的高频响应平行设置。 输入阻抗 输入阻抗将发生变化,这是预期的,并在整个音频频谱的阻抗如下所示:
运算放大器是ADI公司型号LT1007。如果没有,可用于其它低噪声运算放大器,如LF071,NE5534等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档