最新研究生《应用数理统计基础》庄楚强,何春雄编制 课后答案资料

合集下载

Vectran长丝断裂强力的Weibull分布统计分析

Vectran长丝断裂强力的Weibull分布统计分析

Vectran长丝断裂强力的Weibull分布统计分析李敏洁;汪泽幸;陈南梁【摘要】通过假设检验,验证了2种Weibull分布对Vectran长丝断裂强力统计分析的适用性,并用2种Weibull分布对4种不同长度的长丝断裂强力进行统计分析.借助Minitab分析平台计算出Vectran长丝的平均断裂强力、Weibull模数、尺度参数和位置参数,并模拟了断裂强力的概率图和概率密度曲线.结果表明:Weibull分布适用于分析Vectran长丝的断裂强力,且三参数Weibull分布比两参数Weibull分布拟合程度更好;随着Vectran长丝试样长度的增大,其断裂强力的Weibull 模数逐渐减小,同时平均断裂强力逐渐变小,且由两参数Weibull分布得出的平均断裂强力略小于三参数Weibull.【期刊名称】《丝绸》【年(卷),期】2012(000)010【总页数】5页(P11-15)【关键词】Vectran长丝;断裂强力;Weibull分布【作者】李敏洁;汪泽幸;陈南梁【作者单位】东华大学纺织学院,上海 201620; 产业用纺织品教育部工程研究中心,上海 201620;产业用纺织品教育部工程研究中心,上海 201620; 湖南工程学院纺织服装学院,湖南湘潭 411104;东华大学研究院,上海 201620; 产业用纺织品教育部工程研究中心,上海 201620【正文语种】中文【中图分类】TS102.5;TS101.921.4Vectran聚合物是一种类似于芳族聚酰胺的聚酯。

其中用萘代替乙烯,然而萘是一种双环结构,因此重复建立了平面型分子(图1)。

在进行熔融纺丝时,通过高剪切纺丝过程中的结晶区域的校正,改善了Vectran聚合物的物理性能[1],因此与标准的PET相比,其强力、模量和热稳定性有所增强。

Vectran聚合物广泛用作工业材料、电气材料、防护用品、渔网、缆索、传送带、体育运动用品等,以及橡胶、水泥、塑料的高强度增强材料[2]。

最新研究生《应用数理统计基础》庄楚强-何春雄编制---课后答案

最新研究生《应用数理统计基础》庄楚强-何春雄编制---课后答案

研究生 习题2:2-7. 设 )1,0(~N ξ,),,,,,(654321ξξξξξξ为其一样本,而26542321)()(ξξξξξξη+++++=, 试求常数c ,使得随机变量ηc 服从2χ分布。

2-7解:设3211ξξξη++=,所以 )3,0(~1N η 6542ξξξη++=,所以 )3,0(~2N η所以)1,0(~31N η ,)1,0(~32N η)2(~)(3133222212221χηηηη+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛ 由于 2221ηηη+= 因此 当 31=c 时,)2(~2χηc 。

2-8. 设 ),,,(1021ξξξΛ为)3.0,0(2N 的一个样本,求 ⎭⎬⎫⎩⎨⎧>∑=101244.1i i P ξ 。

(参考数据:)2-8解:因为 )3.0,0(~),,,(21021N ξξξξΛ=, 所以)1,0(~3.0N ξ,即有)10(~3.021012χξ∑=⎪⎭⎫⎝⎛i i所以 ⎭⎬⎫⎩⎨⎧>∑=101244.1i i P ξ⎭⎬⎫⎩⎨⎧>=∑=1012223.044.13.0i i P ξ⎭⎬⎫⎩⎨⎧>=∑=10122163.0i i P ξ ⎭⎬⎫⎩⎨⎧≤-=∑=10122163.01i i P ξ1.09.01=-=2-14. 设总体)4,1(~N ξ,求{}20≤≤ξP 与{}20≤≤ξP ,其中ξ是样本容量为16的样本均值。

(参考数据:)2-14解: {}20≤≤ξP )0()2(F F -=)210()212(-Φ--Φ=)21()21(-Φ-Φ= 1)21(2-Φ=3830.016915.02=-⋅=由于 )4,1(~N ξ , 所以 )1,0(~2111621N -=-ξξ{}20≤≤ξP ⎭⎬⎫⎩⎨⎧-≤-≤-=21122112110ξP ⎭⎬⎫⎩⎨⎧≤-≤-=22112ξP )2()2(-Φ-Φ=9545.019725.021)2(2=-⋅=-Φ= 2-17. 在总体)20,80(2N 中随机抽取一容量为100的样本,问样本平均值与总体均值的差的绝对值大于3的概率是多少?(参考数据:) 2-17解:因为 )20,80(~2N ξ, 所以)1,0(~2801002080N -=-ξξ所以 {}380>-ξP {}3801≤--=ξP ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤--=232801ξP ⎭⎬⎫⎩⎨⎧≤-≤--=23280231ξP )]5.1()5.1([1-Φ-Φ-= ]1)5.1(2[1-Φ-=1336.0)93319.01(2)5.1(22=-=Φ-=2-25. 设总体ξ的密度函数为⎩⎨⎧<<=其它102)(x x x p取出容量为4的样本),,,(4321ξξξξ,求:(1) 顺序统计量)3(ξ的密度函数)(3x p ;(2))3(ξ的分布函数)(3x F ;(3)⎭⎬⎫⎩⎨⎧>21)3(ξP 。

统计基础知识题及答案2021

统计基础知识题及答案2021

统计基础知识题及答案2021统计基础知识题及答案2021 11.在你拿到试卷的同时将得到一份专用答题卡,所有试题均须在专用答题卡上作答,在试卷或草稿纸上作答不得分。

2.答题时请认真阅读试题,对准题号作答。

一、单项选择题(以下每小题各有四项备选答案,其中只有一项是正确的。

本题共40分,每小题 1 分。

)1.“必须对总体进行大量观察和分析,研究其内在联系才能揭示社会现象的规律”是()“实质性科学”的显著特点。

A.国势学派B.政治算术学派C.数理统计学派D.社会统计学派3.在对总体均值进行区间估计时,修正系数的使用()。

A.增大了样本均值的标准误差B.不会影响样本均值的标准误差C.缩小了样本均值的标准误差D.缩小了样本标准差4.样本均值是总体均值 m 的()。

A.无偏估计量B.有效估计量C.一致估计量D.最优估计量9.下列数列中属于时期序列的是()。

A.某银行 2010~2020 年居民储蓄存款B.某医院 2010~2020 年固定资产总额C.某高校 2010~2020 年在校学生人数D.某高校 2010~2020 年毕业学生人数10.某企业 2016~2020 年的利润(万元)分别为:920、1080、1650、1980 和2400,则该企业 2016~2020 年的年均利润及年均增长利润分别为()万元。

A.1606 和 296B.296 和 1606C.1606 和 370D.370 和 160611.移动平均法是分析趋势变动的一种重要方法,它采用一定时间间隔内的平均值作为下一期的估计值。

其前提是假定在一个比较短的时间间隔内,()。

A.序列的取值比较稳定,它们之间的差异主要是由于时间间隔长度造成的B.序列的取值变动较大,它们之间的差异主要是由于时间间隔长度造成的C.序列的取值比较稳定,它们之间的差异主要是由于随机干扰造成的D.序列的取值变动较大,它们之间的差异主要是由于随机干扰造成的13.老张去年的月工资为 5000 元,今年 1 月开始月工资涨为 5100 元,当前的居民消费价格指数为 103.1%。

《应用统计学》练习题及答案.docx

《应用统计学》练习题及答案.docx

《应用统计学》练习题及答案《应用统计学》本科第一章导论一、单项选择题1.统计有三种涵义,其基础是( )。

(1)统计学 (2)统计话动(3)统计方法(4)统计资料 2 .一个统计总体 ( )。

(1)只能有个标志(2)只能有一个指标(3)可以有多个标志(4)可以有多个指标 3 .若要了解某市工业生产设备情况,则总体单位是该市( )。

(1)每一个工业企业(2)每一台设备(3)每一台生产设备(4)每一台工业生产设备 4 .某班学生数学考试成绩分刷为65 分、71分、80分和87 分,这四个数字是( )。

(1)指标(2) 标志(3) 变量(4) 标志值 5 .下列属于品质标志的是( )。

(1)工人年龄(2)工人性别(3)工人体重(d)工人工资6.现要了解某机床厂的生产经营情况,该厂的产量和利润是( ) 。

(1)连续变量(2)离散变量()3前者是连续变量,后者是离散变量(4)前者是离散变量,后者是连续变量7.劳动生产率是( )。

(1)动态指标(2)质量指标(3)流量指标(4)强度指标 8 .统计规律性主要是通过运用下述方法经整理、分析后得出的结论( )。

(1)统计分组法(2)大量观察法(3)练台指标法(4)统计推断法 9 . ( ) 是统计的基础功能。

(1)管理功能(2)咨询功能(3)信息功能(4)监督功能 10 .( )是统计的根本准则,是统计的生命线。

(1)真实性 (2) 及时件 (3) 总体性 (4) 连续性11.构成统计总体的必要条件是( )。

(1)差异性(2) 综合性 (3) 社会性 (4) 同质性12.数理统计学的奠基人是 ( ) 。

(1)威廉·配第(2) 阿亭瓦尔(3)凯特勒 (4)恩格尔13 .统汁研究的数量必须是 ( ) 。

(1)抽象的量(2) 具体的量(3)连续不断的量(4)可直接相加量 14 .数量指标一般表现为 ( ) 。

(1)平均数(2) 相对数(3) 绝对数(1) 众数15.指标是说明总体特征的.标志则是说明总体单位特征的,所以 ( ) 。

(完整word版)研究生应用数理统计基础庄楚强何春雄编制课后答案

(完整word版)研究生应用数理统计基础庄楚强何春雄编制课后答案

研究生 习题2:2-7. 设 )1,0(~N ξ,),,,,,(654321ξξξξξξ为其一样本,而26542321)()(ξξξξξξη+++++=, 试求常数c ,使得随机变量ηc 服从2χ分布。

2-7解:设3211ξξξη++=,所以 )3,0(~1N η 6542ξξξη++=,所以 )3,0(~2N η所以)1,0(~31N η ,)1,0(~32N η)2(~)(3133222212221χηηηη+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛ 由于 2221ηηη+= 因此 当 31=c 时,)2(~2χηc 。

2-8. 设 ),,,(1021ξξξΛ为)3.0,0(2N 的一个样本,求 ⎭⎬⎫⎩⎨⎧>∑=101244.1i i P ξ 。

(参考数据:)2-8解:因为 )3.0,0(~),,,(21021N ξξξξΛ=, 所以)1,0(~3.0N ξ,即有)10(~3.021012χξ∑=⎪⎭⎫⎝⎛i i所以 ⎭⎬⎫⎩⎨⎧>∑=101244.1i i P ξ⎭⎬⎫⎩⎨⎧>=∑=1012223.044.13.0i i P ξ⎭⎬⎫⎩⎨⎧>=∑=10122163.0i i P ξ ⎭⎬⎫⎩⎨⎧≤-=∑=10122163.01i i P ξ1.09.01=-=2-14. 设总体)4,1(~N ξ,求{}20≤≤ξP 与{}20≤≤ξP ,其中ξ是样本容量为16的样本均值。

(参考数据:)2-14解: {}20≤≤ξP )0()2(F F -=)210()212(-Φ--Φ=)21()21(-Φ-Φ= 1)21(2-Φ=3830.016915.02=-⋅=由于 )4,1(~N ξ , 所以 )1,0(~2111621N -=-ξξ{}20≤≤ξP ⎭⎬⎫⎩⎨⎧-≤-≤-=21122112110ξP ⎭⎬⎫⎩⎨⎧≤-≤-=22112ξP )2()2(-Φ-Φ=9545.019725.021)2(2=-⋅=-Φ= 2-17. 在总体)20,80(2N 中随机抽取一容量为100的样本,问样本平均值与总体均值的差的绝对值大于3的概率是多少?(参考数据:) 2-17解:因为 )20,80(~2N ξ, 所以)1,0(~2801002080N -=-ξξ所以 {}380>-ξP {}3801≤--=ξP ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤--=232801ξP ⎭⎬⎫⎩⎨⎧≤-≤--=23280231ξP )]5.1()5.1([1-Φ-Φ-= ]1)5.1(2[1-Φ-=1336.0)93319.01(2)5.1(22=-=Φ-=2-25. 设总体ξ的密度函数为⎩⎨⎧<<=其它102)(x x x p取出容量为4的样本),,,(4321ξξξξ,求:(1) 顺序统计量)3(ξ的密度函数)(3x p ;(2))3(ξ的分布函数)(3x F ;(3)⎭⎬⎫⎩⎨⎧>21)3(ξP 。

庄楚强 应用数理统计二

庄楚强 应用数理统计二

应用数理统计第二章 数理统计基本概念1、设()12,,,n ξξξ为0—1分布的一个样本,问:(1)求样本均值ξ的期望与方差;(2)求修正样本方差2*S 的期望;(3)试证()21S ξξ=-。

解:由于()0,1ξ,所以E p ξ=,()1D p p ξ=-(1)()111111n nn i i i i i E E E E p n n n ξξξξ===⎛⎫==== ⎪⎝⎭∑∑∑()()()2221111111111n nn i i i i i D D D D np p p p n n n n n ξξξξ===⎛⎫====-=- ⎪⎝⎭∑∑∑(2)()()222112*1111n n i i i i E SE E n n n ξξξξ==⎡⎤⎡⎤⎛⎫=-=-⎢⎥ ⎪⎢⎥--⎣⎦⎝⎭⎣⎦∑∑()()()()()()2222111111n n i i i i i E nE D E n D E n n ξξξξξξ==⎡⎤⎧⎫⎡⎤⎡⎤=-=+-+⎨⎬⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦--⎣⎦⎩⎭∑∑ ()()()22111111n p p p n p p p p p n n ⎧⎫⎡⎤⎡⎤=-+--+=-⎨⎬⎣⎦⎢⎥-⎣⎦⎩⎭(3)由于()0,1ξ,所以211nnii i i ξξ===∑∑,故()()22222222111111111n n n n i i i i i i i i S n n n n n ξξξξξξξξξξξξ====⎛⎫=-=-=-=-=-=- ⎪⎝⎭∑∑∑∑,得证。

2、设总体()0,1N ξ,()12,,,n ξξξ为其样本,问:(1)求样本方差2S 的分布密度;(2)求样本标准差S 的分布密度。

解:(1)由于()0,1N ξ,所以根据定理,()()()()22212212*11ni ni i i n Sn ξξξξχσσ==--==--∑∑,而()21n χ-的分布密度为:()1122121,01;1220,0n xn x e x n f x n x ----⎧>⎪-⎪⎛⎫-=Γ⎨ ⎪⎝⎭⎪⎪≤⎩ ()2211ni i S n ξξ==-∑,所以样本方差2S 的分布密度为:()()()2131122222112211,01;122220,0nx n n nx n n n S nx e nx n x e x n n f x n x --------⎧'⋅=>⎪-⎪⎛⎫⎛⎫-=ΓΓ⎨ ⎪ ⎪⎝⎭⎝⎭⎪⎪≤⎩ 同理,样本标准差S 的分布密度为:()()()221112222222132211,01;122220,0nx n n n x n n n S nx e nx n x e x n n f x n x --------⎧'⋅=>⎪⎪-⎛⎫⎛⎫-=ΓΓ⎨ ⎪ ⎪⎝⎭⎝⎭⎪⎪≤⎩ 3、设(),F F m n ,而1ln 2Z F =,求Z 的分布密度。

最新《概率论与数理统计》课后习题与答案

最新《概率论与数理统计》课后习题与答案

《概率论与数理统计》课后习题与答案概率论与数理统计习题及答案习题一1.略.见教材习题参考答案.2.设A,B,C为三个事件,试用A,B,C的运算关系式表示下列事件:(1)A发生,B,C都不发生;(2)A与B发生,C不发生;(3)A,B,C都发生;(4)A,B,C至少有一个发生;(5)A,B,C都不发生;(6)A,B,C不都发生;(7)A,B,C至多有2个发生;精品好资料-如有侵权请联系网站删除(8)A,B,C至少有2个发生.【解】(1)A BC(2)AB C(3)ABC(4)A∪B∪C=AB C∪A B C∪A BC∪A BC∪A B C∪AB C∪ABC=ABC(5) ABC=A B C (6) ABC(7) A BC∪A B C∪AB C∪AB C∪A BC∪A B C∪ABC=ABC=A∪B∪C(8) AB∪BC∪CA=AB C∪A B C∪A BC∪ABC3.略.见教材习题参考答案4.设A,B为随机事件,且P(A)=0.7,P(A-B)=0.3,求P(AB).【解】P(AB)=1-P(AB)=1-[P(A)-P(A-B)]=1-[0.7-0.3]=0.65.设A,B是两事件,且P(A)=0.6,P(B)=0.7,求:(1)在什么条件下P(AB)取到最大值?(2)在什么条件下P(AB)取到最小值?【解】(1)当AB=A时,P(AB)取到最大值为0.6.(2)当A∪B=Ω时,P(AB)取到最小值为0.3.精品好资料-如有侵权请联系网站删除精品好资料-如有侵权请联系网站删除6.设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0,P (AC )=1/12,求A ,B ,C 至少有一事件发生的概率.【解】 P (A ∪B ∪C )=P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC )=14+14+13-112=347.从52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少?【解】 p =5332131313131352C C C C /C 8.对一个五人学习小组考虑生日问题:(1) 求五个人的生日都在星期日的概率; (2) 求五个人的生日都不在星期日的概率; (3) 求五个人的生日不都在星期日的概率.【解】(1) 设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故 P (A 1)=517=(17)5(亦可用独立性求解,下同) (2) 设A 2={五个人生日都不在星期日},有利事件数为65,故P (A 2)=5567=(67)5(3) 设A 3={五个人的生日不都在星期日}P (A 3)=1-P (A 1)=1-(17)59.略.见教材习题参考答案.10.一批产品共N 件,其中M 件正品.从中随机地取出n 件(n <N ).试求其中恰有m 件(m ≤M )正品(记为A )的概率.如果:(1) n 件是同时取出的; (2) n 件是无放回逐件取出的;精品好资料-如有侵权请联系网站删除(3) n 件是有放回逐件取出的.【解】(1) P (A )=C C /C m n m nM N M N --(2) 由于是无放回逐件取出,可用排列法计算.样本点总数有P n N 种,n 次抽取中有m 次为正品的组合数为C mn 种.对于固定的一种正品与次品的抽取次序,从M 件正品中取m 件的排列数有P mM 种,从N -M 件次品中取n -m 件的排列数为P n mN M --种,故P (A )=C P P P m m n mn M N MnN-- 由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成P (A )=C C C m n mM N MnN-- 可以看出,用第二种方法简便得多.(3) 由于是有放回的抽取,每次都有N 种取法,故所有可能的取法总数为N n 种,n 次抽取中有m 次为正品的组合数为C mn 种,对于固定的一种正、次品的抽取次序,m 次取得正品,都有M 种取法,共有M m 种取法,n -m 次取得次品,每次都有N -M 种取法,共有(N -M )n -m 种取法,故()C ()/m m n m nnP A M N M N -=- 此题也可用贝努里概型,共做了n 重贝努里试验,每次取得正品的概率为MN,则取得m 件正品的概率为 ()C 1mn mmnM M P A N N -⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭精品好资料-如有侵权请联系网站删除11.略.见教材习题参考答案.12. 50只铆钉随机地取来用在10个部件上,其中有3个铆钉强度太弱.每个部件用3只铆钉.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少? 【解】设A ={发生一个部件强度太弱}133103501()C C /C 1960P A ==13.一个袋内装有大小相同的7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率. 【解】 设A i ={恰有i 个白球}(i =2,3),显然A 2与A 3互斥.213434233377C C C 184(),()C 35C 35P A P A ====故 232322()()()35P A A P A P A =+=14.有甲、乙两批种子,发芽率分别为0.8和0.7,在两批种子中各随机取一粒,求:(1) 两粒都发芽的概率; (2) 至少有一粒发芽的概率; (3) 恰有一粒发芽的概率.【解】设A i ={第i 批种子中的一粒发芽},(i =1,2)(1) 1212()()()0.70.80.56P A A P A P A ==⨯= (2) 12()0.70.80.70.80.94P A A =+-⨯=(3) 2112()0.80.30.20.70.38P A A A A =⨯+⨯=15.掷一枚均匀硬币直到出现3次正面才停止. (1) 问正好在第6次停止的概率;精品好资料-如有侵权请联系网站删除(2) 问正好在第6次停止的情况下,第5次也是出现正面的概率.【解】(1) 223151115()()22232p C ==(2) 1342111C ()()22245/325p == 16.甲、乙两个篮球运动员,投篮命中率分别为0.7及0.6,每人各投了3次,求二人进球数相等的概率.【解】 设A i ={甲进i 球},i =0,1,2,3,B i ={乙进i 球},i =0,1,2,3,则33312123330()(0.3)(0.4)C 0.7(0.3)C 0.6(0.4)i i i P A B ==+⨯⨯+22223333C (0.7)0.3C (0.6)0.4+(0.7)(0.6)⨯=0.3207617.从5双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率.【解】 4111152222410C C C C C 131C 21p =-= 18.某地某天下雪的概率为0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求:(1) 在下雨条件下下雪的概率;(2) 这天下雨或下雪的概率. 【解】 设A ={下雨},B ={下雪}.(1) ()0.1()0.2()0.5P AB p B A P A === (2) ()()()()0.30.50.10.7p A B P A P B P AB =+-=+-=19.已知一个家庭有3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男为女是等可能的). 【解】 设A ={其中一个为女孩},B ={至少有一个男孩},样本点总数为23=8,故精品好资料-如有侵权请联系网站删除()6/86()()7/87P AB P B A P A ===或在缩减样本空间中求,此时样本点总数为7.6()7P B A =20.已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半). 【解】 设A ={此人是男人},B ={此人是色盲},则由贝叶斯公式()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.50.05200.50.050.50.002521⨯==⨯+⨯ 21.两人约定上午9∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率.精品好资料-如有侵权请联系网站删除题21图 题22图【解】设两人到达时刻为x,y ,则0≤x ,y ≤60.事件“一人要等另一人半小时以上”等价于|x -y |>30.如图阴影部分所示.22301604P ==22.从(0,1)中随机地取两个数,求:(1) 两个数之和小于65的概率; (2) 两个数之积小于14的概率.精品好资料-如有侵权请联系网站删除【解】 设两数为x ,y ,则0<x ,y <1.(1) x +y <65. 11441725510.68125p =-==(2) xy =<14.1111244111d d ln 242x p x y ⎛⎫=-=+⎪⎝⎭⎰⎰ 23.设P (A )=0.3,P (B )=0.4,P (A B )=0.5,求P (B |A ∪B ) 【解】 ()()()()()()()()P AB P A P AB P B A B P A B P A P B P AB -==+- 0.70.510.70.60.54-==+-24.在一个盒中装有15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率.【解】 设A i ={第一次取出的3个球中有i 个新球},i =0,1,2,3.B ={第二次取出的3球均为新球}由全概率公式,有3()()()i i i P B P B A P A ==∑精品好资料-如有侵权请联系网站删除33123213336996896796333333331515151515151515C C C C C C C C C C C C C C C C C C =•+•+•+•0.089=25. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问:(1)考试及格的学生有多大可能是不努力学习的人? (2)考试不及格的学生有多大可能是努力学习的人? 【解】设A ={被调查学生是努力学习的},则A ={被调查学生是不努力学习的}.由题意知P (A )=0.8,P (A )=0.2,又设B ={被调查学生考试及格}.由题意知P (B |A )=0.9,P (B |A )=0.9,故由贝叶斯公式知(1)()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.20.110.027020.80.90.20.137⨯===⨯+⨯即考试及格的学生中不努力学习的学生仅占2.702% (2) ()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.80.140.30770.80.10.20.913⨯===⨯+⨯即考试不及格的学生中努力学习的学生占30.77%.26. 将两信息分别编码为A 和B 传递出来,接收站收到时,A 被误收作B 的概率为0.02,而B 被误收作A 的概率为0.01.信息A 与B 传递的频繁程度为2∶1.若接收站收到的信息是A ,试问原发信息是A 的概率是多少? 【解】 设A ={原发信息是A },则={原发信息是B }精品好资料-如有侵权请联系网站删除C ={收到信息是A },则={收到信息是B } 由贝叶斯公式,得()()()()()()()P A P C A P A C P A P C A P A P C A =+2/30.980.994922/30.981/30.01⨯==⨯+⨯27.在已有两个球的箱子中再放一白球,然后任意取出一球,若发现这球为白球,试求箱子中原有一白球的概率(箱中原有什么球是等可能的颜色只有黑、白两种)【解】设A i ={箱中原有i 个白球}(i =0,1,2),由题设条件知P (A i )=13,i =0,1,2.又设B ={抽出一球为白球}.由贝叶斯公式知 11112()()()()()()()i i i P B A P A P A B P A B P B P B A P A ===∑ 2/31/311/31/32/31/311/33⨯==⨯+⨯+⨯28.某工厂生产的产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.【解】 设A ={产品确为合格品},B ={产品被认为是合格品}由贝叶斯公式得()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.960.980.9980.960.980.040.05⨯==⨯+⨯精品好资料-如有侵权请联系网站删除29.某保险公司把被保险人分为三类:“谨慎的”,“一般的”,“冒失的”.统计资料表明,上述三种人在一年内发生事故的概率依次为0.05,0.15和0.30;如果“谨慎的”被保险人占20%,“一般的”占50%,“冒失的”占30%,现知某被保险人在一年内出了事故,则他是“谨慎的”的概率是多少?【解】 设A ={该客户是“谨慎的”},B ={该客户是“一般的”},C ={该客户是“冒失的”},D ={该客户在一年内出了事故} 则由贝叶斯公式得()()(|)(|)()()(|)()(|)()(|)P AD P A P D A P A D P D P A P D A P B P D B P C P D C ==++0.20.050.0570.20.050.50.150.30.3⨯==⨯+⨯+⨯30.加工某一零件需要经过四道工序,设第一、二、三、四道工序的次品率分别为0.02,0.03,0.05,0.03,假定各道工序是相互独立的,求加工出来的零件的次品率.【解】设A i ={第i 道工序出次品}(i =1,2,3,4).412341()1()i i P A P A A A A ==-12341()()()()P A P A P A P A =-10.980.970.950.970.124=-⨯⨯⨯=31.设每次射击的命中率为0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率不小于0.9? 【解】设必须进行n 次独立射击.1(0.8)0.9n -≥即为 (0.8)0.1n≤ 故 n ≥11精品好资料-如有侵权请联系网站删除至少必须进行11次独立射击.32.证明:若P (A |B )=P (A |B ),则A ,B 相互独立.【证】 (|)(|)P A B P A B =即()()()()P AB P AB P B P B =亦即 ()()()()P AB P B P AB P B =()[1()][()()]()P AB P B P A P AB P B -=-因此 ()()()P AB P A P B = 故A 与B 相互独立.33.三人独立地破译一个密码,他们能破译的概率分别为15,13,14,求将此密码破译出的概率. 【解】 设A i ={第i 人能破译}(i =1,2,3),则31231231()1()1()()()i i P A P A A A P A P A P A ==-=-42310.6534=-⨯⨯= 34.甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率. 【解】设A ={飞机被击落},B i ={恰有i 人击中飞机},i =0,1,2,3由全概率公式,得3()(|)()i i i P A P A B P B ==∑=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)0.2+(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)0.6+0.4×0.5×0.7=0.45835.已知某种疾病患者的痊愈率为25%,为试验一种新药是否有效,把它给10个病人服用,且规定若10个病人中至少有四人治好则认为这种药有效,反之则认为无效,求:(1)虽然新药有效,且把治愈率提高到35%,但通过试验被否定的概率.(2)新药完全无效,但通过试验被认为有效的概率.【解】(1)310110C(0.35)(0.65)0.5138k k kkp-===∑(2)10102104C(0.25)(0.75)0.2241k k kkp-===∑36.一架升降机开始时有6位乘客,并等可能地停于十层楼的每一层.试求下列事件的概率:(1)A=“某指定的一层有两位乘客离开”;(2)B=“没有两位及两位以上的乘客在同一层离开”;(3)C=“恰有两位乘客在同一层离开”;(4)D=“至少有两位乘客在同一层离开”.【解】由于每位乘客均可在10层楼中的任一层离开,故所有可能结果为106种.(1)2466C9()10P A=,也可由6重贝努里模型:224619()C()()1010P A=(2) 6个人在十层中任意六层离开,故精品好资料-如有侵权请联系网站删除精品好资料-如有侵权请联系网站删除6106P ()10P B =(3) 由于没有规定在哪一层离开,故可在十层中的任一层离开,有110C 种可能结果,再从六人中选二人在该层离开,有26C 种离开方式.其余4人中不能再有两人同时离开的情况,因此可包含以下三种离开方式:①4人中有3个人在同一层离开,另一人在其余8层中任一层离开,共有131948C C C 种可能结果;②4人同时离开,有19C 种可能结果;③4个人都不在同一层离开,有49P 种可能结果,故1213114610694899()C C (C C C C P )/10P C =++(4) D=B .故6106P ()1()110P D P B =-=-37. n 个朋友随机地围绕圆桌而坐,求下列事件的概率: (1) 甲、乙两人坐在一起,且乙坐在甲的左边的概率; (2) 甲、乙、丙三人坐在一起的概率;(3) 如果n 个人并排坐在长桌的一边,求上述事件的概率. 【解】 (1) 111p n =- (2) 23!(3)!,3(1)!n p n n -=>-精品好资料-如有侵权请联系网站删除(3) 12(1)!13!(2)!;,3!!n n p p n n n n --''===≥ 38.将线段[0,a ]任意折成三折,试求这三折线段能构成三角形的概率【解】 设这三段长分别为x ,y ,a -x -y .则基本事件集为由0<x <a ,0<y <a ,0<a -x -y <a 所构成的图形,有利事件集为由()()x y a x y x a x y y y a x y x+>--⎡⎢+-->⎢⎢+-->⎣ 构成的图形,即02022a x a y ax y a ⎡<<⎢⎢⎢<<⎢⎢⎢<+<⎢⎣ 如图阴影部分所示,故所求概率为14p =. 39. 某人有n 把钥匙,其中只有一把能开他的门.他逐个将它们去试开(抽样是无放回的).证明试开k 次(k =1,2,…,n )才能把门打开的概率与k 无关.【证】 11P 1,1,2,,P k n k n p k n n--===40.把一个表面涂有颜色的立方体等分为一千个小立方体,在这些小立方体中,随机地取出一个,试求它有i 面涂有颜色的概率P (A i )(i =0,1,2,3).【解】 设A i ={小立方体有i 面涂有颜色},i =0,1,2,3.在1千个小立方体中,只有位于原立方体的角上的小立方体是三面有色的,这样的小立方体共有8个.只有位于原立方体的棱上(除去八个角外)的精品好资料-如有侵权请联系网站删除小立方体是两面涂色的,这样的小立方体共有12×8=96个.同理,原立方体的六个面上(除去棱)的小立方体是一面涂色的,共有8×8×6=384个.其余1000-(8+96+384)=512个内部的小立方体是无色的,故所求概率为01512384()0.512,()0.38410001000P A P A ====, 24968()0.096,()0.00810001000P A P A ====.41.对任意的随机事件A ,B ,C ,试证P (AB )+P (AC )-P (BC )≤P (A ).【证】 ()[()]()P A P A B C P AB AC ≥=()()()P AB P AC P ABC =+- ()()()P AB P AC P BC ≥+-42.将3个球随机地放入4个杯子中去,求杯中球的最大个数分别为1,2,3的概率. 【解】 设i A ={杯中球的最大个数为i },i =1,2,3.将3个球随机放入4个杯子中,全部可能放法有43种,杯中球的最大个数为1时,每个杯中最多放一球,故3413C 3!3()48P A ==而杯中球的最大个数为3,即三个球全放入一个杯中,故1433C 1()416P A ==精品好资料-如有侵权请联系网站删除因此 213319()1()()181616P A P A P A =--=--= 或 12143323C C C 9()416P A == 43.将一枚均匀硬币掷2n 次,求出现正面次数多于反面次数的概率.【解】掷2n 次硬币,可能出现:A ={正面次数多于反面次数},B ={正面次数少于反面次数},C ={正面次数等于反面次数},A ,B ,C 两两互斥.可用对称性来解决.由于硬币是均匀的,故P (A )=P (B ).所以1()()2P C P A -=由2n 重贝努里试验中正面出现n 次的概率为211()()()22n n nn P C C =故 2211()[1C ]22n n n P A =- 44.掷n 次均匀硬币,求出现正面次数多于反面次数的概率.【解】设A ={出现正面次数多于反面次数},B ={出现反面次数多于正面次数},由对称性知P (A )=P (B )(1) 当n 为奇数时,正、反面次数不会相等.由P (A )+P (B )=1得P (A )=P (B )=0.5 (2) 当n 为偶数时,由上题知211()[1C ()]22nn n P A =-45.设甲掷均匀硬币n +1次,乙掷n 次,求甲掷出正面次数多于乙掷出正面次数的概率.【解】 令甲正=甲掷出的正面次数,甲反=甲掷出的反面次数.乙正=乙掷出的正面次数,乙反=乙掷出的反面次数. 显然有精品好资料-如有侵权请联系网站删除>正正(甲乙)=(甲正≤乙正)=(n +1-甲反≤n -乙反) =(甲反≥1+乙反)=(甲反>乙反)由对称性知P (甲正>乙正)=P (甲反>乙反) 因此P (甲正>乙正)=1246.证明“确定的原则”(Sure -thing ):若P (A |C )≥P (B |C ),P (A |C )≥P (B |C ),则P (A )≥P (B ). 【证】由P (A |C )≥P (B |C ),得()(),()()P AC P BC P C P C ≥即有 ()()P AC P BC ≥ 同理由 (|)(|),P A C P B C ≥ 得 ()(),P AC P BC ≥故 ()()()()()()P A P AC P AC P BC P BC P B =+≥+=47.一列火车共有n 节车厢,有k (k ≥n )个旅客上火车并随意地选择车厢.求每一节车厢内至少有一个旅客的概率.【解】 设A i ={第i 节车厢是空的},(i =1,…,n ),则精品好资料-如有侵权请联系网站删除121(1)1()(1)2()(1)1()(1)n k ki k ki j ki i i n P A n nP A A n n P A A A n--==-=--=-其中i 1,i 2,…,i n -1是1,2,…,n 中的任n -1个. 显然n 节车厢全空的概率是零,于是2112111122111111123111()(1)C (1)2()C (1)1()C (1)0()(1)n n nk ki ni ki j n i j nn kn i i i n i i i nn nn i ni S P A n n n S P A A n n S P A A A nS P A S S S S --=≤<≤--≤<<≤+===-=-==--==-==-+-+-∑∑∑121121C (1)C (1)(1)C (1)k kn n kn n n n nnn--=---++--故所求概率为精品好资料-如有侵权请联系网站删除121121()1C (1)C (1)nk i i n ni P A n n=-=--+--+111(1)C (1)n n kn n n+----48.设随机试验中,某一事件A 出现的概率为ε>0.试证明:不论ε>0如何小,只要不断地独立地重复做此试验,则A 迟早会出现的概率为1. 【证】在前n 次试验中,A 至少出现一次的概率为1(1)1()n n ε--→→∞49.袋中装有m 只正品硬币,n 只次品硬币(次品硬币的两面均印有国徽).在袋中任取一只,将它投掷r 次,已知每次都得到国徽.试问这只硬币是正品的概率是多少?【解】设A ={投掷硬币r 次都得到国徽}B ={这只硬币为正品} 由题知 (),()m nP B P B m n m n==++ 1(|),(|)12r P A B P A B == 则由贝叶斯公式知()()(|)(|)()()(|)()(|)P AB P B P A B P B A P A P B P A B P B P A B ==+ 121212r rrm m m n m nm n m n m n+==++++ 50.巴拿赫(Banach )火柴盒问题:某数学家有甲、乙两盒火柴,每盒有N 根火柴,每次用火柴时他在两盒中任取一盒并从中任取一根.试求他首次发现一盒空时另一盒恰有r 根的概率是多少?第一次用完一盒火柴时(不是发现空)而另一盒恰有r 根的概率又有多少?精品好资料-如有侵权请联系网站删除【解】以B 1、B 2记火柴取自不同两盒的事件,则有121()()2P B P B ==.(1)发现一盒已空,另一盒恰剩r 根,说明已取了2n -r 次,设n 次取自B 1盒(已空),n -r 次取自B 2盒,第2n -r +1次拿起B 1,发现已空。

应用数理统计课件(配庄楚强版教材)第六章1

应用数理统计课件(配庄楚强版教材)第六章1

3各自的样本:ξ11=μ1+ε11,…, ξ17=μ1+ε17ξ21=μ2+ε21,…, ξ25=μ2+ε25ξ31=μ3+ε31,…, ξ38=μ3+ε38ξ41=μ4+ε41,…, ξ46=μ4+ε46理论上总平均:μ= (7μ1+5μ2+8μ3+6μ4)A 1的效应α1=μ1-μ,A 2的效应α2=μ2-μ,A 3的效应α3=μ3-μ,A 4的效应α4=μ4-μ,4个样本:单因素4水平的统计模型261(双下标71637.3076168016621636.251568.33168016801680168016801680 16801662 1662 1662166216621636.251636.251636.251636.251636.251636.251636.251636.251568.331568.331568.331568.331568.331568.33A 1A 2A 3A 41 2 3 4 5 6 7 8 寿命灯ξij 泡灯丝ξξi8(A 的)组间偏差平方和:2)(∑∑−=ijiA S ξξ(纵向偏差=灯丝不同带来误差+试验误差)2()ri i in ξξ=−∑222)1680(...)1680()1680(ξξξ−++−+−=(7项22)1662(...)1662(ξξ−++−+(522)25.1636(...)25.1636(ξξ−++−+(822)3.1568(...)3.1568(ξξ−++−+((抹平了横向波动,只剩下纵向波动)10Theorem 2.在一个因素的方差分析模型中,有E (S A ) = (r -1)σ2+ ∑n i αi 2 E (S e ) = (n -r)σ2Theorem 3.在一个因素的方差分析中,组内误差与总体方差之比服从χ2 分布,即S e / σ2~χ2(n -r )Theorem 4.在一个因素的方差分析中,当假设H 0 成立时有:(1) S A/σ2~χ2 (r -1)(2) S e 与S A 相互独立,因而)()1(r n S r S F e A −−=~F (r -1, n -r )13eA S S F =AT e S S S −=rn −rn S e−方差来源平方和S自由度ƒ均方和F 值显著性因素A误差e总和表6-3 一个因素差分析表(394页)∑=•−=ri i iA n TT n S 12211−r S Ar -1∑∑−=i jij T n TS 22ξn -1∑∑∑===•==rin j ri n j ji iji T T 111,ξξ其中14表6-4 例1 的计算表(p395)灯丝使用寿命T i•T 2i•A 1A 2A 3A 416001610 1650 1680 1700 1720 18001580 1640 1640 1700 175014601550 1600 1620 1640 1740 1660 18201510 1520 1530 1570 1680 16001176083101309094101382976006905610017134810088548100,4=r 126,rii n n===∑∑∑===ri n j iji112;69895900ξ()2212941013090831011760261.1+++=⎟⎠⎞⎜⎝⎛=∑=ri i T n n T ()==2642570269700188.461554.19571146.6970018869895900 =−=T S 7.44360 46.697001882.69744549 46.69700188 1 14122241=−=−=−=∑∑=••=i i ii i i A T n nTT n S 8. 151350=−=A T e S S S ()().15.222/8.1513503/7.44360/1/==−−=r n S r S F e A 0.10,F α=查分布表得()()(),22 ,3 35.215.2 35.222 ,3 ,1 10.0110.0111−−−−=<===−−=F F F r n r F F a α16在这个问题中,四个总体均值的点估计分别为:1680ˆ11==ξμ1662ˆ22==ξμ25.1636ˆ33==ξμ1568ˆ44==ξμ习题六---4, 5; Prep: §6.2将上述计算结果列成方差分析表:表6-5 例1的方差分析表方差来源平方和S 自由度ƒ均方和F 值显著性因素A 影响误差e 44360.7151350.832214786.96879.592.15(F 1−α=2.35)无显著影响195711.5425总和似乎配方1好,但方差分析表明各方案差别不算大.17。

针织松紧带弹性回复率模型设计

针织松紧带弹性回复率模型设计

针织松紧带弹性回复率模型设计鲁根;王其;刘昌杰;郭超群【摘要】以普通针织松紧带为研究对象,建立松紧带的弹性回复率模型,引入权重因素,得到松紧带的弹性回复率计算式.该计算式可用于计算和预测松紧带的弹性回复率,偏差百分率小于1%,与前人建立的松紧带弹性回复率计算式相比,计算精度有很大提高.【期刊名称】《国际纺织导报》【年(卷),期】2015(043)001【总页数】4页(P32,34-36)【关键词】针织松紧带;弹性回复率;弹性回复率模型【作者】鲁根;王其;刘昌杰;郭超群【作者单位】东华大学纺织面料技术教育部重点实验室中国;东华大学纺织面料技术教育部重点实验室中国;无锡百和织造股份有限公司中国;无锡百和织造股份有限公司中国【正文语种】中文松紧带作为一种弹性织物,广泛用于服装、鞋帽、箱包、医疗用品、体育用品等领域。

松紧带使用时被固紧在使用物体上,其特点是在连续经向张力的作用下,能伸长一定距离。

服装、鞋帽用松紧带还需反复使用,经历多次水洗、脱水和晾干[1]。

1 普通针织松紧带普通针织松紧带的组织结构如图1所示,其中经纱为针织闭口编链线圈,多采用涤纶低弹丝,纬纱也多采用涤纶低弹丝,图中高弹丝部分,本研究选取常用的乳胶丝。

纬纱与乳胶丝没有交织关系,依靠针织闭口编链线圈将纬纱与乳胶丝捆扎在一起。

弹性回复率是松紧带质量的一个非常重要的指标。

弹性回复率高,则表明松紧带耐疲劳、保形性好,经久耐用。

由针织松紧带的组织结构可以看出,影响松紧带弹性回复率的主要因素是经向的高弹丝和针织闭口编链线圈。

针织闭口编链线圈主要起捆扎、形成松紧带组织的作用,所以在松紧带的弹性恢复性能中起主要作用的是高弹丝,起辅助作用的是针织闭口编链线圈经纱。

图1 普通针织松紧带组织结构图2 弹性回复率模型2.1 模型建立假设针织松紧带经向由M 1根乳胶丝和M 2列针织编链线圈组成,松紧带的弹性回复率(ρ)取决于乳胶丝的弹性回复率(ρ1)和针织编链线圈经纱弹性回复率(ρ2)。

一种电信行业海量数据分组统计方法

一种电信行业海量数据分组统计方法

一种电信行业海量数据分组统计方法王锐;陈丽;马方明【摘要】结合电信行业海量数据的特点,提出一种分组统计方法,充分利用有限的、较低的系统资源成本,满足海量数据统计分析应用指标计算的精确性和及时性,特别是通过传统全量或增量方法无法快速出数的指标.采用合适的分组,该方法也可以应用于互联网、金融、电子商务等其他行业.%This paper provides a grouping statistics method in conjunction with the characteristic of massive data in telecom industry. Exploiting the limited and rather low system resource cost, the method satisfies the calculations of the statistical analyses application indicators of massive data accurately and timely, especially those indicators which can not be quickly worked out by traditional full or incremental statistics method. By properly grouping the factor, the method can also be applied to the internet, finance, electronic commerce industries, etc.【期刊名称】《计算机应用与软件》【年(卷),期】2012(029)012【总页数】3页(P237-239)【关键词】海量数据;分组统计;增量统计【作者】王锐;陈丽;马方明【作者单位】中国移动通信集团广东有限公司广东广州510623;广东交通职业技术学院计算机工程学院广东广州510650;中国移动通信集团广东有限公司广东广州510623【正文语种】中文【中图分类】TP3910 引言随着电信信息化业务向广度和深度的持续发展,海量数据的增长速度远远超过系统建设投资预算的增长速度。

应用数理统计课后答案

应用数理统计课后答案
解得 , 2 的极大似然估计值:
1 n ˆ xi x n i 1 1 n 2 ˆ 2 ( xi x) 2 sn n i 1
则 , 2 的极大似然估计量:
1 n ˆ n X i X i 1 1 n 2 ˆ 2 ( X i X )2 Sn n i 1
1 e x, F (x) 0,
x 0, x 0.
(1) FY ( y) P{Y y} P{aX b y} P{ X
y b yb }(a 0) F ( ) a a
y b y b 当 0,即y b时,FY ( y ) 1 e a . a 当 y b 0,即y b时,F ( y ) 0. Y a

Xi
i 1
2
(t ) e i1
i ( eit 1)
2
根据特征函数的性质(5)得: X 1 X 2 ~ P(1 2 )
第二章 数理统计的基本概念
8.解:设 X 为样本,x 为样本的观测值。由于数据已经按照从小到大的顺序排列,
于是经验分布函数为:
0, 1 , 8 1 , 4 3 , 8 1 Fn ( x ) , 2 5 8 , 3, 4 7 , 8 1,
y
1 e y, FY ( y ) 0,
y 0, y 0.
14.证明:
Cov( , ) Cov(aX b, cY d ) acCov ( X , Y ) D( ) D(aX b) a 2 D( X )同理:D( ) c 2 D(Y )
由极大似然估计的不变性可知
ˆ Sn

苏州河干流水质自动监测系统数据的可靠性分析

苏州河干流水质自动监测系统数据的可靠性分析

苏州河干流水质自动监测系统数据的可靠性分析赵利娜【摘要】The reliability of the online automatic water quality monitoring system was analyzed by statistical method to the laboratory by using the automatic water quality monitoring system for the main stream of Suzhou River as an example. Compared the temperature, pH, DO, CODMn and NH3-N of the automatic system with those of the laboratory, it could be shown that the data of the automatic water quality monitoring system were up to standard and there was no difference at the significant level of 0. 01. The data from the two methods were highly correlated and the automatic water quality monitoring system of Suzhou River was reliable. During the daily maintenance, the key parts of the automatic system should be cleaned irregularly and the causes should be found out and repaired when some suspicious data appear.%以苏州河干流水质自动监测系统为例,通过与实验室数据之间的统计分析,分析苏州河水质在线自动监测系统数据的可靠性。

《应用数理统计》吴翊 参考答案(前三章)

《应用数理统计》吴翊 参考答案(前三章)

第一章 数理统计的基本概念P261.2 设总体X 的分布函数为()F x ,密度函数为()f x ,1X ,2X ,…,n X 为X 的子样,求最大顺序统计量()n X 与最小顺序统计量()1X 的分布函数与密度函数。

解:(){}{}()12nn i n F x P X x P X x X x X x F x =≤=≤≤≤=⎡⎤⎣⎦ ,,,.()()()()1n n n f x F x n F x f x -'=⎡⎤=⎡⎤⎣⎦⎣⎦.(){}{}1121i n F x P X x P X x X x X x =≤=->>> ,,,. {}{}{}121n P X x P X x P X x =->>>{}{}{}121111n P X x P X x P X x =-⎡-≤⎤⎡-≤⎤⎡-≤⎤⎣⎦⎣⎦⎣⎦()11nF x =-⎡-⎤⎣⎦()()()()1111n f x F x n F x f x -'=⎡⎤=⎡-⎤⎣⎦⎣⎦.1.3 设总体X 服从正态分布()124N ,,今抽取容量为5的子样1X ,2X ,…,5X ,试问: (i )子样的平均值X 大于13的概率为多少?(ii )子样的极小值(最小顺序统计量)小于10的概率为多少? (iii )子样的极大值(最大顺序统计量)大于15的概率为多少?解:()~124X N ,,5n =,4~125X N ⎛⎫∴ ⎪⎝⎭,. (i ){}{}()13113111 1.1210.86860.1314P X P X P φφ⎧⎫⎛⎫⎪⎪⎪>=-≤=-=-=-=-=. (ii )令{}min 12345min X X X X X X =,,,,,{}max 12345max X X X X X X =,,,,.{}{}{}min min 125101*********P X P X P X X X <=->=->>> ,,,{}{}{}5551111011101110i i i i P X P X P X ===->=-⎡-<⎤=-⎡-<⎤⎣⎦⎣⎦∏∏.()12~012X Y N -=,, {}{}121012*********X X P X P P P Y ---⎧⎫⎧⎫∴<=<=<-=<-⎨⎬⎨⎬⎩⎭⎩⎭ {}()111110.84130.1587P Y φ=-<=-=-=.{}[]5min 10110.158710.42150.5785P X ∴<=--≈-=.(iii ){}{}{}{}{}55max max 1251151151151515115115i i P X P X P X X X P X P X =>=-<=-<<<=-<=-⎡<⎤⎣⎦∏ ,,,.{}5max 1510.9331910.70770.2923P X ∴>=-≈-=.1.4 试证:(i )()()()22211nni i i i x a x x n x a ==-=-+-∑∑对任意实数a 成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

研究生 习题2:2-7. 设 )1,0(~N ξ,),,,,,(654321ξξξξξξ为其一样本,而26542321)()(ξξξξξξη+++++=, 试求常数c ,使得随机变量ηc 服从2χ分布。

2-7解:设3211ξξξη++=,所以 )3,0(~1N η 6542ξξξη++=,所以 )3,0(~2N η所以)1,0(~31N η ,)1,0(~32N η)2(~)(3133222212221χηηηη+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛ 由于 2221ηηη+= 因此 当 31=c 时,)2(~2χηc 。

2-8. 设 ),,,(1021ξξξ 为)3.0,0(2N 的一个样本,求 ⎭⎬⎫⎩⎨⎧>∑=101244.1i i P ξ 。

(参考数据:)2-8解:因为 )3.0,0(~),,,(21021N ξξξξ =, 所以)1,0(~3.0N ξ,即有)10(~3.021012χξ∑=⎪⎭⎫⎝⎛i i所以 ⎭⎬⎫⎩⎨⎧>∑=101244.1i i P ξ⎭⎬⎫⎩⎨⎧>=∑=1012223.044.13.0i i P ξ⎭⎬⎫⎩⎨⎧>=∑=10122163.0i i P ξ ⎭⎬⎫⎩⎨⎧≤-=∑=10122163.01i i P ξ1.09.01=-=2-14. 设总体)4,1(~N ξ,求{}20≤≤ξP 与{}20≤≤ξP ,其中ξ是样本容量为16的样本均值。

(参考数据:)2-14解: {}20≤≤ξP )0()2(F F -=)210()212(-Φ--Φ=)21()21(-Φ-Φ= 1)21(2-Φ=3830.016915.02=-⋅=由于 )4,1(~N ξ , 所以 )1,0(~2111621N -=-ξξ{}20≤≤ξP ⎭⎬⎫⎩⎨⎧-≤-≤-=21122112110ξP ⎭⎬⎫⎩⎨⎧≤-≤-=22112ξP )2()2(-Φ-Φ=9545.019725.021)2(2=-⋅=-Φ= 2-17. 在总体)20,80(2N 中随机抽取一容量为100的样本,问样本平均值与总体均值的差的绝对值大于3的概率是多少?(参考数据:) 2-17解:因为 )20,80(~2N ξ, 所以)1,0(~2801002080N -=-ξξ所以 {}380>-ξP {}3801≤--=ξP ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤--=232801ξP ⎭⎬⎫⎩⎨⎧≤-≤--=23280231ξP )]5.1()5.1([1-Φ-Φ-= ]1)5.1(2[1-Φ-=1336.0)93319.01(2)5.1(22=-=Φ-=2-25. 设总体ξ的密度函数为⎩⎨⎧<<=其它102)(x x x p取出容量为4的样本),,,(4321ξξξξ,求:(1) 顺序统计量)3(ξ的密度函数)(3x p ;(2))3(ξ的分布函数)(3x F ;(3)⎭⎬⎫⎩⎨⎧>21)3(ξP 。

2-25解:(1)由 ()()[][])()(1)(!!1!)(1)(x p x F x F k n k n x p k n k k -----=ξ所以 当 10<<x 时,x tdt tdtx p x x 2212!1!2!4)(020)3(⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡=⎰⎰ξ()()()25222124124x x x x x -=-= 即 统计量)3(ξ的密度函数)()3(x p ξ为:⎩⎨⎧<<-=其它10)1(24)(253x x x x p(2) 由于 当10<<x 时,86025334)]1(24[)(x x dt t t x F x -=-=⎰所以 )3(ξ的分布函数 ⎪⎩⎪⎨⎧>≤<-≤=11103400)(863x x xx x x F (3))21(121121)3()3(F P P -=⎭⎬⎫⎩⎨⎧≤-=⎭⎬⎫⎩⎨⎧>ξξ256243213214186=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=习题3:3-3. 已知总体ξ的分布密度为:)0(00);(>⎩⎨⎧≤>=-λλλλx x e x p x设),,,(21n ξξξ 是容量为n 的样本,试分别求总体未知参数的矩估计量与MIE . 3-3解:矩法 由于 x xde x dx ex dx x xp E λλλλξ-+∞+∞-+∞∞-⎰⎰⎰-===);([]λλλλλ110=⎥⎦⎤⎢⎣⎡-=+-=+∞-∞+-∞+-⎰x xx e dx exe令 ξξ=E 所以 ξλ1ˆ= MIE 当0>x 时,构造似然函数∑===-=-∏ni iix n ni x ee L 11)(λλλλλ所以 ∑=-=ni i x n L 1ln )(ln λλλ 令0)(ln 1=-=∑=ni i x n d L d λλλ 得 ∑∑====ni i ni ix n xn1111ˆλ即λ的极大似然估计量为ξλ1ˆ=3-5. 为检验某种自来水消毒设备的效果,现从消毒后的水中随机抽取50L 化验,每升水中大肠杆菌的个数( 1L 水中大肠杆菌个数服从Poisson 分布),化验结果如下:试问平均每升水中大肠杆菌个数为多少时才能使上述情况的概率为最大?3-5解:由于 1L 水中大肠杆菌个数服从Poisson 分布所以 )0(!)(>=-λλλe x x p x所以λ的估计量为 ξλ=ˆ 即有 1)0014231022010(501ˆ=++⋅+⋅+⋅+⋅+=λ所以 平均每升水中大肠杆菌个数为1的概率为最大。

3-26. 随机地取某种炮弹9发做试验,得炮口速度的样本标准差s m S 11*=。

设炮口速度是正态分布的,求这种炮弹的炮口速度的标准差σ的95%置信区间。

(参考数据:) 3-26解:设 ),,(~2σμξN 则 )1(~)1(222*--n S n χσ由αχσχαα-=-<-<--1)}1()1()1({22122*22n S n n P得 2σ的α-1的置信区间为:⎪⎪⎪⎭⎫⎝⎛-----)1()1(,)1()1(222*2212*n S n n Sn ααχχ将数据 81=-n ,535.17)8()1(2975.0221==--χχαn ,180.2)8()1(2025.022==-χχαn , 11*=S 代入,得 2σ的95%置信区间为(55.2,444.0), 即 σ的95%置信区间为(7.4,21.1).习题4:4-1. 已知某炼铁厂的铁水含碳量ξ在正常下服从)108.0,55.4(2N ,现在测了5炉铁水,其含碳量分别为: 4.28,4.40,4.42,4.35,4.37如果方差没有改变,问总体均值有无变化?(显著性水平05.0=α)(参考数据:) 4-1. 解:检验问题 010055.4μμμμ≠==:;:H H由 ),(~2σμξN 且2σ为已知,所以 ασμαμ=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≥--2100u nx P 即 检验问题的拒绝域为210ασμ-≥-u n x 计算得:364.45151==∑=i i x x 有 85.35108.055.4364.40=-=-n x σμ 而 96.1975.0205.0121===--u u u α,即有210ασμ->-u n x 成立, 故 拒绝0H ,即 认为总体均值有变化。

4-2. 设某厂一台机器生产的纽扣,据经验其直径服从),(2σμN ,2.5=σ。

为检验这台机器生产是否正常,抽取容量n =100的样本,并由此算得样本均值56.26=x ,问该机器生产的纽扣的平均直径为26=μ,这个结论是否成立?(显著性水平1.0=α) (参考数据:)4-2. 解:检验问题 010026μμμμ≠==:;:H H由 ),(~2σμξN 且2σ为已知,所以 ασμαμ=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≥--2100u nx P 即 检验问题的拒绝域为210ασμ-≥-u n x 由 56.26=x , 2.5=σ, n =100 得08.11002.52656.260=-=-n x σμ 而 645.195.021.0121===--u u u α,即有n x σμ0-≯21α-u , 故 接受0H ,即 认为这个结论是成立的。

4-11. 已知用某种钢生产的钢筋强度服从正态分布,长期以来,其抗拉强度平均为52.002mm kg 。

现改变炼钢的配方,利用新法炼了7炉钢,从这7炉钢生产的钢筋中每炉抽一根,测得其强度分别为: 52.45,48.51,56.02,51.53,49.02,53.38,54.04 问用新法炼钢生产的钢筋,其强度的均值是否有明显提高?(显著性水平05.0=α)(参考数据:)4-11. 解:检验问题 010052μμμμ>==:;:H H由 ),(~2σμξN 且2σ为未知,所以 αμαμ=⎭⎬⎫⎩⎨⎧-≥--)17(1*00t n S x P 即 检验问题的拒绝域为 )6(1*0αμ-≥-t nS x 计算得 136.527171∑===i i x x , 71.2)(171712*∑==--=i ix x S , n =7 得 133.0771.252136.52*0=-=-n S x μ而 9432.1)6()6()6(95.005.011===--t t t α,即有 nS x *0μ-≯)6(1α-t , 故 接受0H ,即 认为强度均值无明显偏高。

4-37. 在一实验中,每隔一定时间观察一次由某种铀所放射到达计数器上的α粒子数ξ,共观察了100次,得结果如下表所示:其中i ν是观察到有i 个α粒子的次数。

从理论上来考虑知ξ服从Possion 分布 {}),2,1,0(!===-i e i i P iλλξ问:这理论考虑是否符合实际?(显著性水平05.0=α) (参考数据:)4-37. 解:检验问题 ξ:0H 服从Possion 分布 (在显著性水平05.0=α下) 100=n 2.41001ˆ=⋅==∑ii x νλ由公式,得 {}7,,2,1,0!2.4ˆ2.4 ====-i e i i P pi i ξ{}∑===711,10,9,8ˆi i P pξ 并计算2χ的观测值,见下表:即 检验统计量2χ的观测值为:2994.6ˆ)ˆ(22=-=∑i i i pn p n νχ 而 067.14)7()119()1(295.0205.0121==--=----χχχαr k 亦即 )7(205.012-<χχ 故 接受0H ,即 认为理论考虑符合实际。

4-45. 自动车床加工中轴,从成品中抽取11根,并测得它们的直径(mm )如下: 10.52,10.41,10.32,10.18,10.64,10.77,10.82,10.67,10.59,10.38,10.49试用W 检验法检验这批零件的直径是否服从正态分布?(显著性水平05.0=α)(参考数据:)4-45. 解:数据的顺序统计量为:10.18,10.32,10.38,10.41,10.49,10.52,10.59,10.64,10.67,10.77,10.82所以 6131.0][)()1(51)(=-=-+=∑k k n k k x x aL ,又 5264.10=x , 得38197.0)(1112=-∑=i ix x故 984.0)(11122=-=∑=i ix x L W , 又 当n = 11 时,85.005.0=W即有 105.0<<W W , 从而 接受正态假设,亦即 零件直径服从正态分布。

相关文档
最新文档