MOS场效应晶体管的基本特性

合集下载

MOSFET

MOSFET

MOS晶体管MOS晶体管的概念金属-氧化层-半导体-场效晶体管,简称金氧半场效晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET)是一种可以广泛使用在模拟电路与数字电路的场效晶体管(field-effect transistor)。

MOSFET依照其“通道”的极性不同,可分为n-type与p-type的MOSFET,通常又称为NMOSFET与PMOSFET,其他简称尚包括NMOS FET、PMOS FET、nMOSFET、pMOSFET等。

这个名称前半部分说明了它的结构,后半部分说明了它的工作原理。

从纵向看,MOS晶体管是由栅电极、栅绝缘层和半导体衬底构成的一个三明治结构;从水平方向看,MOS晶体管由源区、沟道区和漏区3个区域构成,沟道区和硅衬底相通,也叫做MOS 晶体管的体区。

一个MOS晶体管有4个引出端:栅极、源极、漏极和体端即衬底。

由于栅极通过二氧化硅绝缘层和其他区域隔离,MOS晶体管又叫做绝缘场效应晶体管。

MOS晶体管还因为其温度稳定性好、集成化时工艺简单,而广泛用于大规模和超大规模集成电路中。

MOS管有N沟道和P沟道两类,但每一类又分为增强型和耗尽型两种,因此MOS管的四种类型为:N沟道增强型管、N沟道耗尽型管,P沟道增强型管和P沟道耗尽型管。

凡栅-源电压U GS为零时漏极电流也为零的管子均属于增强型管,凡栅-源电压U GS为零时漏极电流不为零的管子均属于耗尽型管。

MOS管构成的集成电路称为MOS集成电路,而P沟道增强型MOS管和N沟道增强型MOS管共同构成的互补型MOS集成电路即为CMOS-IC。

MOS器件基于表面感应的原理,是利用垂直的栅压V GS实现对水平I DS的控制。

它是多子(多数载流子)器件。

用跨导描述其放大能力。

MOSFET晶体管的截面图如图1所示在图中,S=Source,G=Gate,D=Drain。

mos管关断阈值电压

mos管关断阈值电压

mos管关断阈值电压摘要:一、mos管的基本概念和特性二、mos管的关断阈值电压三、关断阈值电压的影响因素和应用四、如何测量和优化mos管的关断阈值电压五、结论正文:一、mos管的基本概念和特性MOS管(Metal-Oxide-Semiconductor Field-Effect Transistor,金属氧化物半导体场效应晶体管)是一种广泛应用于集成电路(IC)中的半导体器件。

它具有高输入阻抗、低噪声、低失真等优点,因此在电子设备中发挥着重要作用。

MOS管的特性主要取决于其工作电压、阈值电压、沟道长度等因素。

二、mos管的关断阈值电压在MOS管中,关断阈值电压(Vth)是一个关键参数。

它是指在栅源电压(Vgs)达到一定值时,MOS管从关断状态转变为导通状态的电压。

换句话说,当Vgs大于Vth时,MOS管开始导通,允许电流流过;当Vgs小于Vth 时,MOS管处于关断状态,电流不会流过。

三、关断阈值电压的影响因素和应用关断阈值电压Vth受多种因素影响,包括半导体材料的性质、沟道长度、栅氧化层厚度等。

在实际应用中,优化MOS管的Vth具有重要意义。

较低的Vth可以降低功耗、提高开关速度,但同时也可能引入噪声和失真。

较高的Vth则有利于降低噪声和失真,但可能增加功耗和影响开关速度。

四、如何测量和优化mos管的关断阈值电压测量MOS管的关断阈值电压Vth通常采用半导体参数测试仪、脉冲发生器等设备。

在实验室环境中,可以通过改变栅源电压Vgs,观察漏极电流Id的变化,从而确定Vth。

在实际应用中,可以通过以下方法优化MOS管的Vth:1.选择合适的半导体材料:不同材料的半导体具有不同的Vth特性,可根据具体应用选择适合的材料。

2.调整沟道长度:较短的沟道长度可以降低Vth,但同时可能引入短沟道效应,影响器件稳定性。

3.优化栅氧化层厚度:较薄的栅氧化层可以降低Vth,但可能增加漏极电流和噪声。

4.采用先进的制造工艺:先进的制造工艺有助于降低Vth,同时提高器件性能。

MOS 场效应管的工作原理及特点

MOS 场效应管的工作原理及特点

MOS 场效应管的工作原理及特点场效应管是只有一种载流子参与导电,用输入电压控制输出电流的半导体器件。

有N沟道器件和P 沟道器件。

有结型场效应三极管JFET(Junction Field Effect Transister)和绝缘栅型场效应三极管IGFET( Insulated Gate Field Effect Transister) 之分。

IGFET也称金属-氧化物-半导体三极管MOSFET(Metal Oxide SemIConductor FET)。

MOS场效应管有增强型(Enhancement MOS 或EMOS)和耗尽型(Depletion)MOS或DMOS)两大类,每一类有N沟道和P沟道两种导电类型。

场效应管有三个电极:D(Drain) 称为漏极,相当双极型三极管的集电极;G(Gate) 称为栅极,相当于双极型三极管的基极;S(Source) 称为源极,相当于双极型三极管的发射极。

增强型MOS(EMOS)场效应管道增强型MOSFET基本上是一种左右对称的拓扑结构,它是在P型半导体上生成一层SiO2 薄膜绝缘层,然后用光刻工艺扩散两个高掺杂的N型区,从N型区引出电极,一个是漏极D,一个是源极S。

在源极和漏极之间的绝缘层上镀一层金属铝作为栅极G。

P型半导体称为衬底(substrat),用符号B表示。

一、工作原理1.沟道形成原理当Vgs=0 V时,漏源之间相当两个背靠背的二极管,在D、S之间加上电压,不会在D、S间形成电流。

当栅极加有电压时,若0<Vgs<Vgs(th)时(VGS(th) 称为开启电压),通过栅极和衬底间的电容作用,将靠近栅极下方的P型半导体中的空穴向下方排斥,出现了一薄层负离子的耗尽层。

耗尽层中的少子将向表层运动,但数量有限,不足以形成沟道,所以仍然不足以形成漏极电流ID。

进一步增加Vgs,当Vgs>Vgs(th)时,由于此时的栅极电压已经比较强,在靠近栅极下方的P型半导体表层中聚集较多的电子,可以形成沟道,将漏极和源极沟通。

场效应管的基础知识

场效应管的基础知识

场效应管的基础学问英文名称:MOSFET (简写:MOS )中文名称:功率场效应晶体管(简称:场效应管)场效应晶体管简称场效应管,它是由半导体材料构成的。

与一般双极型相比,场效应管具有许多特点。

场效应管是一种单极型半导体(内部只有一种载流子一多子)分四类:N沟通增加型;P沟通增加型;N沟通耗尽型;P沟通耗尽型。

增加型MOS管的特性曲线场效应管有四个电极,栅极G、漏极D、源极S和衬底B ,通常字内部将衬底B与源极S相连。

这样,场效应管在外型上是一个三端电路元件场效管是一种压控电流源器件,即流入的漏极电流ID栅源电压UGS掌握。

1、转移特性曲线:应留意:①转移特性曲线反映掌握电压VGS与电流ID之间的关系。

②当VGS很小时,ID基本为零,管子截止;当VGS大于某一个电压VTN时ID随VGS的变化而变化,VTN称为开启电压,约为2V0③无论是在VGS2、输出特性曲线:输出特性是在给顶VGS的条件下,ID与VDS之间的关系。

可分三个区域。

①夹断区:VGS②可变电阻区:VGS>VTN且VDS值较小。

VGS值越大,则曲线越陡,D、S极之间的等效电阻RDS值就越小。

③恒流区:VGS>VTN且VDS值较大。

这时ID只取于VGS ,而与VDS无关。

3、MOS管开关条件和特点:管型状态,N-MOS , P-MOS特点截止VTN , RDS特别大,相当与开关断开导通VGS2VTN , VGS<VTN , RON很小,相当于开关闭合4、MOS场效应管的主要参数①直流参数a、开启电压VTN ,当VGS>UTN时,增加型NMOS管通道。

b、输入电阻RGS , 一般RGS值为109〜1012。

高值②极限参数最大漏极电流IDSM击穿电压V(RB)GS , V(RB)DS最大允许耗散功率PDSM5、场效应的电极判别用RxlK挡,将黑表笔接管子的一个电极,用红表笔分别接此外两个电极,如两次测得的结果阻值都很小,则黑表笔所接的电极就是栅极(G),此外两极为源(S)、漏(D)极,而且是N型沟场效应管。

MOSFET_MOS管特性参数的理解

MOSFET_MOS管特性参数的理解

MOSFET_MOS管特性参数的理解MOSFET(金属氧化物半导体场效应晶体管)是一种常用的半导体器件,具有较高的性能和功耗优势。

了解MOSFET的特性参数对于设计和应用电子电路至关重要。

下面将从基本结构、特性参数和其理解等方面进行详细阐述。

MOSFET 的基本结构如下:它由源极、漏极、栅极和底座四个引脚组成,其中源极(source)和漏极(drain)与半导体结成二极管,栅极(gate)则是介质氧化铝上的金属引脚。

其中金属层和介质氧化铝之间的结构形成了场效应管,因此被称为MOS管。

接下来是几个关键的特性参数:1. 阈值电压:阈值电压(Threshold Voltage,简称Vth)是MOSFET 的一个重要参数,它表示了在栅极和漏极之间形成导电路径的最低电压。

当栅极电压高于Vth 时,MOSFET 开始工作并形成导通通道。

2. 饱和电流:饱和电流(Saturation Current,简称Isat)是指在MOSFET 处于饱和工作区时的漏极电流,也称为最大漏极电流。

在饱和区,漏极电流与栅极电压成非线性关系。

3. 输出电导:输出电导(Output Conductance,简称gds)表示了MOSFET 在饱和状态时,输出电流变化对栅极漏极电压的敏感程度。

较高的输出电导意味着MOSFET 在饱和区的输出电流更敏感,从而使其在放大器等应用中更可靠。

4. 线性区增益:线性区增益(Linear Region Gain,简称gm)表示MOSFET 在线性工作区时,输入阻抗和输出阻抗间的关系。

该参数也可以用来衡量MOSFET 对输入信号的放大能力。

5. 输出电容:输出电容(Output Capacitance,简称Coss)表示栅极和漏极之间的电容。

这个电容会导致MOSFET 在高频应用中的频率响应减弱,影响其性能。

以上只是几个主要的特性参数,实际上MOSFET 还有很多其他的参数,如输入电容(Input Capacitance)、迁移率(Mobility)、开启延迟(Turn-on Delay)和反向转移电容(Reverse Transfer Capacitance)等。

mos管 场效应管

mos管 场效应管

mos管场效应管摘要:1.引言2.什么是MOS 管和场效应管3.MOS 管和场效应管的工作原理4.MOS 管和场效应管的特性比较5.MOS 管和场效应管的应用领域6.结论正文:MOS 管和场效应管是两种不同类型的半导体器件,它们都具有放大和开关等功能,广泛应用于各种电子设备中。

下面将从它们的定义、工作原理、特性比较和应用领域等方面进行详细介绍。

1.引言MOS 管(Metal-Oxide-Semiconductor Transistor,金属- 氧化物- 半导体晶体管)和场效应管(Field Effect Transistor,场效应晶体管)是两种常见的半导体器件,它们在现代电子设备中扮演着重要角色。

本文将对这两种器件进行详细解析,以帮助读者更好地理解它们的工作原理和应用。

2.什么是MOS 管和场效应管MOS 管是一种三端半导体器件,由金属导电层、氧化物绝缘层和半导体基片组成。

它的主要功能是控制电路中的电流流动,具有高输入阻抗、低噪声和低功耗等特点。

场效应管是一种四端半导体器件,由源极、漏极、栅极和衬底组成。

它的主要功能是通过改变栅极电势来调节源漏电流,具有响应速度快、驱动能力强和可控制的电流增益等特点。

3.MOS 管和场效应管的工作原理MOS 管的工作原理:当栅极施加正向电压时,栅极和源极之间的绝缘层上会形成一个正向电场。

这个电场可以吸引源极处的电子,使其向栅极方向运动。

如果这个电子流足够大,就会形成一个电流,从而导致MOS 管的导通。

场效应管的工作原理:当栅极施加正向电压时,栅极和源极之间的绝缘层上会形成一个正向电场。

这个电场会使得源极处的电子被吸引到靠近栅极的位置,从而减小源极和漏极之间的电阻。

如果栅极电压足够大,源漏电流将显著增加,从而导致场效应管的导通。

4.MOS 管和场效应管的特性比较MOS 管和场效应管在特性上有一定的差异。

MOS 管具有更高的输入阻抗、更低的工作电压和更小的功耗,但驱动能力较弱;而场效应管具有更强的驱动能力、更高的电流增益和更快的响应速度,但输入阻抗和功耗相对较差。

第八章 MOS场效应晶体管

第八章 MOS场效应晶体管

VT
MS
TOX
OX
QOX
TOX
OX
QAD 2FB
e) 氧化层中的电荷面密度 QOX
QOX 与制造工艺及晶向有关。MOSFET 一般采用(100) 晶面,并在工艺中注意尽量减小 QOX 的引入。在一般工艺条 件下,当 TOX = 150 nm 时:
QOX 1.8 ~ 3.0 V COX
以VGS 作为参变量,可以得到不同VGS下的VDS ~ID 曲线族, 这就是 MOSFET 的输出特性曲线。







将各条曲线的夹断点用虚线连接起来,虚线左侧为非饱和区, 虚线右侧为饱和区。
5、MOSFET的类型 P 沟 MOSFET 的特性与N 沟 MOSFET 相对称,即: (1) 衬底为 N 型,源漏区为 P+ 型。 (2) VGS 、VDS 的极性以及 ID 的方向均与 N 沟相反。 (3) 沟道中的可动载流子为空穴。 (4) VT < 0 时称为增强型(常关型),VT > 0 时称为耗尽型
MS
QOX COX
K
2FP VS VB
1
2 2FP VS
注意上式中,通常 VS > 0,VB < 0 。 当VS = 0 ,VB = 0 时:
VT
MS
QOX COX
K
2 FP
1 2
2FP
这与前面得到的 MOS 结构的 VT 表达式相同。
同理可得 P 沟 MOSFET的 VT 为:
电势差,等于能带弯曲量除以 q 。COX 表示单位面积的栅氧化
层电容,COX
OX
TOX
,TOX 为氧化层厚度。
(3)实际 MOS结构当 VG = VFB 时的能带图

第五章 MOS场效应管的特性

第五章 MOS场效应管的特性

1 1 C C C Si ox
1
+
N+ N+ N+
G N+ N+
以SiO2为介质的电容器—Cox 以耗尽层为介质的电容器—CSi
MOS管的电容
MOS电容—束缚电荷层厚度
耗尽层电容的计算方法同 PN 结的耗尽层电容的计算 方法相同,利用泊松方程

2
1
Si
Q qNAWL X p WL 2 Si qNA
CD = Cdb + 0 + Cdb
1 W 2 I ds Vgs VT 2 tox L L
MOS管的电容
深亚微米CMOS IC工艺的寄生电容
21 40 86 9 15 48 36 14
Metal3 Metal2 Metal1
29 38 39 62 46
在耗尽层中束缚电荷的总量为
2 Si Q qNA X pWL qN AWL WL 2 Si qNA q NA
是耗尽层两侧电位差的函数,耗尽层电容为
dQ 1 CSi WL 2 Si qNA dv 2
1 2
Si qNA WL 2
是一个非线性电容,随电位差的增大而减小。
这时,栅极电压所感应的电荷Q为,
Q=CVge 式中Vge是栅极有效控制电压。
MOS管特性
电荷在沟道中的渡越时间
非饱和时(沟道未夹断),在漏源电压Vds作用 下,这些电荷Q将在时间内通过沟道,因此有
L L2 Eds Vds L
为载流子速度,Eds= Vds/L为漏到源方向电场强度,Vds为漏 到源电压。 为载流子迁移率: n n µ n = 650 cm2/(V.s) 电子迁移率(NMOS) µ p = 240 cm2/(V.s) 空穴迁移率(PMOS)

mos管体效应

mos管体效应

MOS管体效应介绍MOS管(Metal-Oxide-Semiconductor Field-Effect Transistor)是一种常见的场效应晶体管类型,其中MOS管体效应是其工作原理的关键。

本文将详细探讨MOS 管体效应的相关概念、特性以及在电子器件和集成电路中的应用。

MOS管体效应的概念与原理MOS管体效应是指当在P型或N型半导体材料上覆盖一层绝缘物质(通常为二氧化硅)后,通过加在绝缘层上的电压来改变半导体表面电子浓度的现象。

这种电子浓度的变化导致了MOS管的导电性能发生改变。

MOS管体效应原理基于场效应晶体管结构,其中包含一个控制电极(栅极)和两个输运电极(源极和漏极)。

通过在栅极上施加电压,形成了一个由栅极、绝缘层和半导体基底组成的电容。

当施加的栅极电压大于一定阈值电压,绝缘层下方的半导体表面就会形成一个导电层,称为沟道(Channel)。

沟道中载流子的浓度和电荷极性取决于沟道区半导体的类型(P型或N型)。

MOS管体效应特性阈值电压阈值电压是指当栅极电压达到一定水平时,沟道开始形成的电压值。

在MOS管中,阈值电压通常是一个重要参数,决定了MOS管在导通和截断间的临界电压。

沟道电流与栅极电压关系MOS管的工作状态可以通过沟道中的电流来确定。

通常情况下,随着栅极电压的增加,沟道电流也随之增加。

这个关系可以由MOS管的输出特性曲线表示。

沟道调制与电场控制MOS管体效应是通过施加在栅极上的电场来改变沟道中载流子浓度的。

因此,通过调节栅极电压,可以实现对沟道中载流子浓度的精确控制,从而改变MOS管的电导率。

子阻尼与迁移率子阻尼(Subthreshold Swing)和迁移率(Mobility)是描述MOS管体效应特性的重要参数。

子阻尼是指沟道电流对栅极电压的响应速度,迁移率则是沟道电流与沟道电场之间的关系。

两者的数值越小,代表MOS管体效应越优。

MOS管体效应在电子器件和集成电路中的应用开关MOS管在开关电路中被广泛应用。

MOS

MOS

PMOS是指n型衬底、p沟道,靠空穴的流动运送电流的MOS管全称: positive channel Metal Oxide Semiconductor别名: positive MOS金属氧化物半导体场效应(MOS)晶体管可分为N沟道与P沟道两大类, P沟道硅MOS场效应晶体管在N型硅衬底上有两个P+区,分别叫做源极和漏极,两极之间不通导,源极上加有足够的正电压(栅极接地)时,栅极下的N型硅表面呈现P型反型层,成为连接源极和漏极的沟道。

改变栅压可以改变沟道中的空穴密度,从而改变沟道的电阻。

这种MOS场效应晶体管称为P沟道增强型场效应晶体管。

如果N型硅衬底表面不加栅压就已存在P型反型层沟道,加上适当的偏压,可使沟道的电阻增大或减小。

这样的MOS场效应晶体管称为P沟道耗尽型场效应晶体管。

统称为PMOS晶体管。

P沟道MOS晶体管的空穴迁移率低,因而在MOS晶体管的几何尺寸和工作电压绝对值相等的情况下,PMOS晶体管的跨导小于N沟道MOS晶体管。

此外,P沟道MOS晶体管阈值电压的绝对值一般偏高,要求有较高的工作电压。

它的供电电源的电压大小和极性,与双极型晶体管——晶体管逻辑电路不兼容。

PMOS因逻辑摆幅大,充电放电过程长,加之器件跨导小,所以工作速度更低,在NMOS电路(见N沟道金属—氧化物—半导体集成电路)出现之后,多数已为NMOS电路所取代。

只是,因PMOS电路工艺简单,价格便宜,有些中规模和小规模数字控制电路仍采用PMOS电路技术。

MOSFET共有三个脚,一般为G、D、S,通过G、S间加控制信号时可以改变D、S 间的导通和截止。

PMOS和NMOS在结构上完全相像,所不同的是衬底和源漏的掺杂类型。

简单地说,NMOS是在P型硅的衬底上,通过选择掺杂形成N型的掺杂区,作为NMOS的源漏区;PMOS是在N型硅的衬底上,通过选择掺杂形成P型的掺杂区,作为PMOS的源漏区。

两块源漏掺杂区之间的距离称为沟道长度L,而垂直于沟道长度的有效源漏区尺寸称为沟道宽度W。

半导体基础 7.1场效应晶体管-MOSFET

半导体基础 7.1场效应晶体管-MOSFET

南京大学第三部分 场效应晶体管半导体器件基础第七章:MOSFET一、MOSFET简介 二、MOS电容 三、MOSFET定性分析 四、MOSFET定量分析电子科学与工程学院MOSFET与BJT半导体器件基础 南京大学电子科学与工程学院2014/4/9一、MOSFET简介半导体器件基础(1)基本概况 晶体管的分类:双极型晶体管(少子与多子参与导电) 单极型晶体管(电流由多数载流子输运)。

硅平面工艺和外延技术的发展,实现了对器件尺寸的较精确的控制。

对硅—二氧化硅界面特性的研究及表面态密度的控制,使场效应管得到了显著的发展。

南京大学电子科学与工程学院器件比较半导体器件基础电压控制器件(MOSFET)利用加在栅极与源极之间的电压来控制输出 电流。

饱和区工作电流IDSS会随VGS而改变。

电流控制器件(BJT)利用基极电流控制集电极电流。

南京大学电子科学与工程学院1场效应管的分类:半导体器件基础表面场效应管(绝缘栅场效应管IGFET和MOS场效应管)。

结型场效应管(JFET),使用PN结势垒电场控制导电能力的体内场效应管。

薄膜场效应管(TFT)采用真空蒸发工艺制备在绝缘衬底上。

结构与原理类 似表面场效应管。

南京大学电子科学与工程学院半导体器件基础2014/4/9半导体器件基础性能比较输入阻抗高:(103-106与109-1015)。

噪声系数小。

多子输运电流,不存在散粒噪声和配分 噪声。

功耗小,可用于制造高密度的半导体集成电路。

温度稳定性好。

多子器件,电学参数不易随温度而变 化(n与)。

抗辐射能力强:双极型晶体管的下降(非平衡少子的 寿命降低),而场效应管的特性变化小(与载流子寿命 关系不大)。

其它:工艺卫生要求较高,速度较低。

南京大学电子科学与工程学院半导体器件基础南京大学电子科学与工程学院南京大学电子科学与工程学院2南京大学集成电路工艺的演变半导体器件基础•10 µm — 1971 •6 µm — 1974 •3 µm — 1975 •2 µm — 1979•1.5 µm — 1982 •1 µm — 1985•800 nm (0.80 µm) — 1989 •600 nm (0.60 µm) — 1994 •350 nm (0.35 µm) — 1995 •250 nm (0.25 µm) — 1998 •180 nm (0.18 µm) — 1999 •130 nm (0.13 µm) — 2000•90 nm — 2002 •65 nm — 2006 •45 nm — 2008 •32 nm — 2010 •22 nm — approx. 2011 •16 nm — approx. 2013 •11 nm — approx. 2015电子科学与工程学院2)P沟耗尽型:半导体器件基础在零偏栅极电压下,半导体表面存在P型沟道(采用B离子注 入的方法)。

MOS场效应管的特性

MOS场效应管的特性
V T2q b pC Q o d xq m sQ C m o xmC Q o F xQ iC t(U o xs)
阈值电压VT
在工艺确定之后,阈值电压VT主要决 定于衬底的掺杂浓度: P型衬底制造NMOS,杂质浓度越大,需 要赶走更多的空穴,才能形成反型层, VT 值增大,因而需要精确控制掺杂浓度 如果栅氧化层厚度越薄,Cox越大,电荷的 影响就会降低。故现在的工艺尺寸和栅氧 化层厚度越来越小
当器件尺寸还不是很小时,这个ΔW影响还 小,但是器件缩小时,这个ΔW就影响很大
迁移率的退化
MOS管的电流与迁移率成正比,一般假定μ 为常数
实际上, μ并不是常数,它至少受到三个因 素的影响
温度 垂直电场 水平电场
特征迁移率μ0
电场强度
电场强度增加时,迁移率是减小的 电场有水平分量和垂直分量,因而迁移率
沟道很短、很窄,边沿效应对器件特性产 生很大的影响,最主要的是阈值电压减小
短沟道效应
短沟道效应
狭沟道效应引起的阈值电压的变化
沟道太窄,W太小,那么栅极的边缘电场也 引起Si衬底中的电离化,产生附加的耗尽层, 因而增加阈值电压
狭沟道效应
C ox
ox A tox
oxW L tox
Vgs增加达到VT值
C ( 1 1 )1达到最小值 Cox CSi
Vgs继续增加
C Cox
MOS管电容变化曲线
MOS电容计算
VGS<VT
沟道未建立,MOS管源漏沟道不通 Cg=Cgs+Cox Cd=Cdb
VGS>VT
MOS电容是变化的 MOS电容对Cg和Cd都有贡献,贡献大小取决于
-电压特性不变,Dennard等人提出了等比例缩小规律 等比例缩小规律即器件水平和垂直方向的参数以及电压按

MOS场效应晶体管的基本特性

MOS场效应晶体管的基本特性

MOSFET相比双极型晶体管的优点
(1)输入阻抗高:双极型晶体管输入阻抗约为几千欧,而 场效应晶体管的输入阻抗可以达到109~1015欧; (2)噪声系数小:因为MOSFET是依靠多数载流子输运电 流的,所以不存在双极型晶体管中的散粒噪声和配分噪声; (3)功耗小:可用于制造高集成密度的半导体集成电路; (4)温度稳定性好:因为它是多子器件,其电学参数不易 随温度而变化。 (5)抗辐射能力强:双极型晶体管受辐射后β下降,这是 由于非平衡少子寿命降低,而场效应晶体管的特性与载流子 寿命关系不大,因此抗辐射性能较好。
3.高输入阻抗 由于栅氧化层的影响,在栅和其他端点之间不存在直流通道,因 此输入阻抗非常高,而且主要是电容性的。通常,MOSFET的直 流输入阻抗可以大于1014欧。 4.电压控制 MOSFET是一种电压控制器件。而且是一种输入功率非常低的器 件。一个MOS晶体管可以驱动许多与它相似的MOS晶体管;也 就是说,它有较高的扇出能力。 5.自隔离


公式(7-1)、(7-2)只适用于长沟道MOSFET。 当沟道长度较短时,必须考虑短沟道效应,管子的阈 值电压VT会随沟道长度L的减小而减小。这个问题将 在以后讨论。
7.4 MOSFET的伏安特性
为了方便起见,先作以下几个假定: (1)漏区和源区的电压降可以忽略不计; (2)在沟道区不存在复合-产生电流; (3)沿沟道的扩散电流比由电场产生的漂移电流小得多; (4)在沟道内载流子的迁移率为常数; (5)沟道与衬底间的反向饱和电流为零; (6)缓变沟道近似成立,即跨过氧化层的垂直于沟道方 向的电场分量与沟道中沿载流子运动方向的电场分量无关。
4qN D S 0 F 2kT N D ln C OX q ni

MOS场效应晶体管ppt课件

MOS场效应晶体管ppt课件
MOS 场效应晶体管基本结构示意图
16
2. MOS管的基本工作原理
MOS 场效应晶体管的工作原理示意图
17
4.2.2 MOS 场效应晶体管的转移特性
MOS 场效应晶体管可分为以下四种类型:N沟增强型、 N沟耗尽型、P沟增强型、P沟耗尽型。 1. N沟增强型MOS管及转移特性
18
2. N沟耗尽型MOS管及转移特性 3.P沟增强型MOS管及转移特性
理想 MOS 二极管不同 偏压下的能带图及 电荷分布
a) 积累现象 b) 耗尽现象 c) 反型现象
3
2.表面势与表面耗尽区 下图给出了P型半导体MOS结构在栅极电压UG>>0情况 下更为详细的能带图。
4
在下面的讨论中,定义与费米能级相对应的费米势为
F
(Ei
EF )体内 q
因此,对于P型半导体, F
如图所示,当漏源电压UDS增高到某一值时,漏源电流 就会突然增大,输出特性曲线向上翘起而进入击穿区。 关于击穿原因,可用两种不同的击穿机理进行解释:漏 区与衬底之间PN结的雪崩击穿和漏-源之间的穿通。
41
1. 漏区-衬底之间的PN结击穿 在MOS晶体管结构中,栅极金属有一部分要覆盖在漏极上。 由于金属栅的电压一般低于漏区的电位,这就在金属栅极 与漏区之间形成附加电场,这个电场使栅极下面PN结的耗 尽区电场增大,如下图,因而使漏源耐压大大降低。
a) N 沟 MOS b) P 沟 MOS
29
3. 衬底杂质浓度的影响
衬底杂质浓度对阀值电压的影响
30
4. 功函数差的影响
功函数差也将随衬底杂质浓度的变化而变化。但实验证明, 该变化的范围并不大。 从阀值电压的表示式可知,功函数越大,阀值电压越高。 为降低阀值电压,应选择功函数差较低的材料,如掺杂多 晶体硅作栅电极。

MOS 场效应晶体管

MOS 场效应晶体管
效应晶体管,简称mosfet。
工作原理
mosfet通过在金属-氧化物-半导 体结构上施加电压,控制电子流动, 实现信号放大和开关作用。
结构
mosfet由栅极、源极、漏极和半导 体层组成,具有对称的结构。
mos 场效应晶体管的应用
集成电路
mosfet是集成电路中的基本元件, 广泛应用于数字电路和模拟电路 中。
工作原理概述
电压控制
导电通道的形成与消失
mos场效应晶体管是一种电压控制器 件,通过在栅极施加电压来控制源极 和漏极之间的电流流动。
随着栅极电压的变化,导电通道的形 成与消失,从而控制源极和漏极之间 的电流流动。
反型层
当在栅极施加正电压时,会在半导体 表面产生一个反型层,使得源极和漏 极之间形成导电通道。
电压与电流特性
转移特性曲线
描述栅极电压与漏极电流之间关 系的曲线。随着栅极电压的增加, 漏极电流先增加后减小,呈现出
非线性特性。
跨导特性
描述源极电压与漏极电流之间关 系的曲线。跨导反映了mos场效
应晶体管的放大能力。
输出特性曲线
描述漏极电压与漏极电流之间关 系的曲线。在一定的栅极电压下, 漏极电流随着漏极电压的增加而
增加,呈现出线性特性。
Part
03
mos 场效应晶体管的类型与 特性
nmos 场效应晶体管
总结词
NMOS场效应晶体管是一种单极型晶体管,其导电沟道由负电荷主导。
详细描述
NMOS场效应晶体管通常由硅制成,其导电沟道由负电荷主导,因此被称为 NMOS。在NMOS中,电子是主要的载流子,其源极和漏极通常为n型,而衬 底为p型。
制造工艺中的挑战与解决方案
1 2 3

mos管体效应

mos管体效应

mos管体效应
回答:
MOS管是一种常用的场效应晶体管,其主要特点是具有高输入阻抗、低噪声、低失真等优点。

MOS管的体效应是指在MOS管的工作过程中,由于沟道中的电子密度变化而引起的电场效应。

MOS管的结构包括一个金属栅极、一个绝缘层和一个半导体沟道。

当栅极施加正电压时,栅极和沟道之间的电场会引起沟道中的电子密度变化。

由于沟道中的电子密度变化,沟道中的电场也会发生变化,从而影响MOS管的输出特性。

MOS管的体效应主要包括两个方面:沟道长度调制效应和沟道宽度调制效应。

沟道长度调制效应是指在MOS管的工作过程中,由于沟道长度的变化而引起的电场效应。

当栅极施加正电压时,沟道中的电子密度会发生变化,从而引起沟道长度的变化。

沟道长度的变化会影响沟道中的电场分布,从而影响MOS管的输出特性。

沟道宽度调制效应是指在MOS管的工作过程中,由于沟道宽度的变化而引起的电场效应。

当栅极施加正电压时,沟道中的电子密度会发生变化,从而引起沟道宽度的变化。

沟道宽度的变化会影响沟道中的电场分布,从而影响MOS管的输
出特性。

MOS管的体效应对MOS管的输出特性有很大的影响。

在MOS管的设计和制造过程中,需要考虑体效应的影响,以提高MOS管的性能和可靠性。

MOS场效应管的特性

MOS场效应管的特性

第五章MOS 场效应管的特性5.1MOS 场效应管5.3体效应第五章MOS 场效应管的特性5.1 MOS 场效应管5.2 MOS 管的阈值电压5.3 体效应115.5MOSFET 的噪声5.6MOSFET 尺寸按比例缩小5.7MOS 器件的二阶效应5.4 MOSFET 的温度特性5.5 MOSFET 的噪声5.6 MOSFET 尺寸按比例缩小5.7 MOS 器件的二阶效应1)N 型漏极与P 型衬底;2)N 型源极与P 型衬底。

5.1 MOS 场效应管5.1.1 MOS 管伏安特性的推导两个PN 结:图2)1)2同双极型晶体管中的PN 结一样,在结周围由于载流子的扩散、漂移达到动态平衡,而产生了耗尽层。

3)一个电容器结构:23)栅极与栅极下面的区域形成一个电容器,是MOS 管的核心,决定了MOS 管的伏安特性。

p+/ n+n(p) MOSFET的三个基本几何参数toxpoly-Si diffusionDWG L3p+/ n+⏹栅长:⏹栅宽:⏹氧化层厚度:LWt oxSMOSFET的三个基本几何参数⏹L min、W min和t ox由工艺确定⏹L min:MOS工艺的特征尺寸(feature size)决定MOSFET的速度和功耗等众多特性⏹L和W由设计者选定⏹通常选取L= L min,设计者只需选取W,W是主要的设计变量。

⏹W影响MOSFET的速度,决定电路驱动能力和功耗4MOSFET 的伏安特性:电容结构⏹当栅极不加电压或加负电压时,栅极下面的区域保持P 型导电类型,漏和源之间等效于一对背靠背的二极管,当漏源电极之间加上电压时,除了PN 结的漏电流之外,不会有更多电流形成。

⏹当栅极上的正电压不断升高时,P 型区内的空穴被不断地排斥到衬底方向。

当栅极上的电压超过阈值电压V T ,在5栅极下的P 型区域内就形成电子分布,建立起反型层,即N 型层,把同为N 型的源、漏扩散区连成一体,形成从漏极到源极的导电沟道。

MOS管的工作原理及特性

MOS管的工作原理及特性

金氧半场效晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,
板级电路应用上,都十分广泛。

一、MOS管的工作原理
以增强型MOS管为例,我们先简单来看下MOS管的工作原理。

由上图结构我们可以看到MOS管类似三极管,也是背靠背的两个PN结!三极管的原理是在偏置的情况下注入电流到很薄的基区通过电子-空穴复合来控制CE 之间的导通,MOS管则利用电场来在栅极形成载流子沟道来沟通DS之间。

如上图,在开启电压不足时,N区和衬底P之间因为载流子的自然复合会形成一个中性的耗尽区。

给栅极提供正向电压后,P区的少子(电子)会在电场的作用下聚集到栅极氧化硅下,最后会形成一个以电子为多子的区域,叫反型层,称为反型因为是在P型衬底区形成了一个N型沟道区。

这样DS之间就导通了。

二、MOS管的特性
1、由于MOSFET是电压驱动器件(G极加电压控制电流),因此无直流电流流入栅极。

2、要开通MOSFET,必须对栅极施加高于额定栅极阈值电压Vth的电压。

3、处于稳态开启或关断状态时,MOSFET栅极驱动基本无功耗(但是请注意交叉点附近,就是电压下降与电流上升导致的功耗)。

4、通过驱动器输出看到的MOSFET栅源电容根据其内部状态而有所不同。

5、MOSFET通常被用作频率范围从几kHz到几百kHz的开关器件。

这点尤其需要注意。

三、结语
希望本文对大家能够有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MOSFET相比双极型晶体管的优点
(1)输入阻抗高:双极型晶体管输入阻抗约为几千欧,而 场效应晶体管的输入阻抗可以达到109~1015欧;
(2)噪声系数小:因为MOSFET是依靠多数载流子输运电 流的,所以不存在双极型晶体管中的散粒噪声和配分噪声;
(3)功耗小:可用于制造高集成密度的半导体集成电路;
MOSFET的四种类型
P沟增强型:栅压为零时,沟道不存在,加上一个 负的栅压才能形成P型沟道。
P沟耗尽型:栅压为零时,沟道已存在,加上一个 正的栅压可以使P型沟道消失。
N沟增强型:栅压为零时,沟道不存在,加上一个 正的栅压才能形成N型沟道。
N沟耗尽型:栅压为零时,沟道已存在,加上一个 负的栅压才能使N型沟道消失。
q S 2q F
表面强反型即沟道形成时,在表面处空穴
的浓度与体内电子的浓度相等。开启电压是表 征MOS场效应管性能的一个重要参数,以后内 容中还将做详细介绍。
另外,还可以指出,当栅极电压变化时,
沟道的导电能力会发生变化,从而引起通过漏 和源之间电流的变化,在负载电阻RL上产生电 压变化,这样就可以实现电压放大作用。
对于N沟道增强型管,VDS为正电压,VGS也是正电压。当VGS 大于开启电压时,N沟道形成,电流通过N沟道流过漏和源之间。
定性地可以将它分为三个工作区来进行讨论。
可调电阻区/线性工作区/三极管工作区
当漏-源电压VDS相对于栅极电压较小时,在源和漏之间存在 一个连续的N型沟道。此沟道的长度L不变,宽度W也不变。从 源端到漏端沟道的厚度稍有变化。这是因为VDS使沟道中各点的 电位不同,在近源处(VGS-V沟)比近漏处的大,表面电场较大, 沟道较厚。但是,总的来讲,沟道的厚度比氧化层厚度小得多。 由此可见,此时的沟道区呈现电阻特性,电流IDS与VDS基本上是 线性关系。而且,VGS越大,沟道电阻越小,可调电阻区的名称 由此而来。
3.高输入阻抗
由于栅氧化层的影响,在栅和其他端点之间不存在直流通道,因 此输入阻抗非常高,而且主要是电容性的。通常,MOSFET的直 流输入阻抗可以大于1014欧。
4.电压控制
MOSFET是一种电压控制器件。而且是一种输入功率非常低的器 件。一个MOS晶体管可以驱动许多与它相似的MOS晶体管;也 就是说,它有较高的扇出能力。
输出特性曲线
通过MOSFET的漏-源电流IDS与加在漏-源极间 的电压VDS之间的关系曲线即为输出特性曲线。
这时加在栅极上的电压作为参变量。 以N沟道增强型MOSFET为例来进行讨论。 (共源极接法)
源极接地,并 作为输入与输 出的公共端, 衬底材料也接 地。 输入加在栅极G 及源极S之间, 输出端为漏极D 与源极S。
5.自隔离
由MOS晶体管构成的集成电路可以达到很高的集成密度,因为 MOS晶体管之间能自动隔离。一个MOS晶体管的漏,由于背靠 背二极管的作用,自然地与其他晶体管的漏或源隔离。这样就省 掉了双极型工艺中的既深又宽的隔离扩散。
7.2 MOSFET的特性曲线
对于MOSFET则可引进输出特性曲线和转移特 性曲线来描述其电流-电压关系。
场效应晶体管的分类
第一类:表面场效应管,通常采取绝缘栅的形式,称为 绝缘栅场效应管(IGFET)。若用二氧化硅作为半导体 衬底与金属栅之间的绝缘层,即构成“金属-氧化物- 半导体”(MOS)场效应晶体管,它是绝缘栅场效应 管中最重要的一种; 第二类:结型场效应管(JFET),它就是用P-N结势垒 电场来控制导电能力的一种体内场效应晶体管; 第三类:薄膜场效应晶体管(TFT),它的结构与原理 和绝缘栅场效应晶体管相似,其差别是所用的材料及工 艺不同,TFT采用真空蒸发工艺先后将半导体-绝缘体金属蒸发在绝缘衬底上而构成。
(4)温度稳定性好:因为它是多子器件,其电学参数不易 随温度而变化。
(5)抗辐射能力强:双极型晶体管受辐射后β下降,这是 由于非平衡少子寿命降低,而场效应晶体管的特性与载流子 寿命关系不大,因此抗辐射性能较好。
MOSFET相比双极型晶体管的缺点 工艺洁净要求较高;
场效应管的速度比双极型晶体管的速度来得低。
如果在同一N型衬底上同时制造P沟MOS管和N沟MOS管, (N沟MOS管制作在P阱内),这就构成CMOS 。
MOSFET的特征
1.双边对称
在电学性质上源和漏是可以相互交换的。与双极型晶体 管相比,显然有很大不同,对于双极型晶体管,如果交换 发射极与集电极,晶体管的增益将明显下降。
2.单极性 在MOS晶体管中参与导电的只是一种类型的载流子,这 与双极型晶体管相比也显著不同。在双极型晶体管中,显 然一种类型的载流子在导电中起着主要作用,但与此同时, 另一种载流子在导电中也起着重要作用。
7.1 MOSFET的结构和分类
漏-源区,栅氧化层,金属栅电极等组成
用N型半导体材料做衬底 用P型半导体材料做衬底
由N型衬底制成的管子,其漏-源区是P型的, 称为P沟MOS场效应管; 由P型材料制成的管子,其漏-源区是N型的, 称为N沟MOS S 2q F
在工作时,源与漏之间接电源电压。通常源极接地,漏极接 负电源。在栅极和源之间加一个负电压,它将使MOS结构中半导 体表面形成负电的表面势,从而使由于硅-二氧化硅界面正电荷 引起的半导体能带下弯的程度减小。当栅极负电压加到一定大小 时,表面能带会变成向上弯曲,半导体表面耗尽并逐步变成反型。 当栅极电压达到VT时,半导体表面发生强反型,这时P型沟道就 形成了。空穴能在漏-源电压VDS的作用下,在沟道中输运。VT 称为场效应管的开启电压。显然,P沟MOS管的VT是负值。由前 面的讨论可知,形成沟道的条件为
双极型晶体管和场效应晶体管的区别
双极型晶体管:由一个P-N结注入非平衡少数载流 子,并由另一个P-N结收集而工作的。在这类晶体 管中,参加导电的不仅有少数载流子,也有多数载 流子,故称为双极型晶体管。
场效应晶体管(FET):利用改变垂直于导电沟 道的电场强度来控制沟道的导电能力而工作的。 在场效应晶体管中,工作电流是由半导体中的多 数载流子所输运的,因此也称为单极型晶体管。
相关文档
最新文档