梅森增益公式

合集下载

梅森公式_精品文档

梅森公式_精品文档

梅森公式
1. 简介
梅森公式(Mersenne formula),是指由法国数学家梅森(Marin Mersenne)在17世纪提出的一种用于生成素数的公式。

梅森公式的基本形式为2^n - 1,其中n是一个自然数。

如果2^n - 1是一个素数,则称之为梅森素数。

梅森公式产生的素数被广泛应用在密码学、计算机科学、通信领域等。

由于其计算简单、结构规律清晰,梅森公式较早被发现,至今为止已知的最大梅森素数为2^82,589,933 - 1。

本文将介绍梅森公式的原理、应用以及一些相关的数学定理。

2. 梅森公式的原理
梅森公式是基于二进制表示的思想,通过将2的幂次方相减得到一个整数,并判断该整数是否为素数。

其基本形式为:
M(n) = 2^n - 1
其中,M(n)为梅森素数。

梅森公式的原理是因为2^n - 1可以通过一种高效的算法进行计算,被称为。

梅森公式-信号流图

梅森公式-信号流图

例4 已知系统信号流图, 解:三个回路
求传递函数 X4/X1及 X2/X1。
L
a
d eg bcg
c
有两个互不接触回路
L L
b
deg
f
则 1 d eg bcg deg
1. X 1 X 4 , p1 aef , p2 abcf 1 1 d , 2 1
x2
(g)
x2
x3
x5 L5 a23a35a52
a12 a23 a34 a45 (1 a44 )a12 a23 a35 P 1 (a23 a32 a23 a34 a42 a44 a23 a34 a52 a23 a35 a52 ) a23 a32 a44 a23 a35 a52 a44
2 1 a44
x3
a42 a12
a44 a34 x4 a35 a52 a45 x5
(a)
a23 x2 a32 x3
x1
(d)
x2
x3
互不接触
L1 a23a32
L12 a23a32a44 L2 a23a34a42
(e) (f)
x2
x4 x4 x5 L3 a44 互不接触 L22 a23a35a52a44 L4 a23a34a45a52
E(s)=
R(s)[ (1+G2H2) + (- G3G2H3) ] + (–G2H3) N(s)
1 - G1H1 + G2H2
+ G1G2H3 -G1H1G2 H2
信号流图
R(s) 1
e
g
a
f
b

信号流图梅森公式

信号流图梅森公式

回路传输(增益):回路上各支路传输的乘积称为回路传输或回
路增益。
2/5/2020
5
信号流图的等效变换
串联支路合并:
ab x1 x2 x3
并联支路的合并:
a
x1 b x2
ab
x1

x3
ab
x1
x2
回路的消除:
ab
x1
x2
x c
3
b
a 1 bc
x1 x2 x3
2/5/2020
6
信号流图的等效变换
P

1
n k1
Pkk
1 L a L b L c L d L e L f .(.正. 负号间隔)
式中: La 流图中所有不同回路的回路传输之和;
LbLc 所有互不接触回路中,每次取其中两个回
路传输乘积之和;
LdLeLf 所有互不接触回路中,每次取其中三个
18
梅逊公式||例2-15
例2-15:数数有几个回路和前向通道。
G6
R
G5
1
G2
1
G7
G3
G4
1
G1
1
H2
G8
H1
有四个回路,分别是:
1
C
G 2 H 2 , G 1 G 2 G 3 G 4 H 1 , G 1 G 2 G 7 G 4 H 1 , G 1 G 2 G 8 G 4 H 1
ug ue
u1
u2
ua

G f
[解]:前向通道有一条;ug ,P 1G 1G 2G 3G u
有一个回路; L a G 1 G 2 G 3 G u G f

梅森增益公式适用范围.docx

梅森增益公式适用范围.docx

梅森增益公式适用范围标题:梅森增益公式适用范围的阐述引言:梅森增益公式是电子电路设计中常用的一种分析工具,用于计算电路增益和频率响应。

然而,在实际应用中,梅森增益公式的适用范围有一定限制。

本文将就梅森增益公式的适用范围展开阐述,以帮助读者更好地理解和使用这一公式。

一、梅森增益公式简介梅森增益公式是一种基于网络理论的公式,用于计算复杂电路的总增益。

它是由美国电子工程师梅森提出的,一般用于线性、定常、时不变的电路分析。

二、适用范围的限制1. 线性电路要求梅森增益公式适用于线性电路,即电路的元件和信号是线性的。

对于非线性电路,例如包含二极管、晶体管等非线性元件的电路,梅森增益公式就不再适用。

2. 定常电路要求第1页/共6页梅森增益公式适用于定常电路,即电路的参数是固定的,不随时间变化。

对于具有非定常特性的电路,如含有开关、变阻器等可变元件的电路,梅森增益公式无法提供准确的结果。

3. 时不变电路要求梅森增益公式适用于时不变电路,即电路的参数与时间无关。

在实践中,例如考虑温度变化、电源变化等因素会导致电路参数发生改变,因此这些情况下梅森增益公式不能得到准确的结果。

三、梅森增益公式的优势尽管梅森增益公式存在一定的适用范围限制,但它仍然是电子电路设计中常用的工具。

以下是梅森增益公式的一些优势:1. 简单易用相比其他复杂的电路分析方法,梅森增益公式简单易懂,计算过程相对简单直观。

这使得它成为工程师们在电路设计、故障排除等方面的重要工具。

2. 可模块化分析梅森增益公式支持对电路进行模块化分析。

通过将复杂的电路划分为多个子电路,可以使用梅森增益公式计算每个子电路的增益,进而得到整个电路的总增益。

这种分析方法便于对电路进行优化和调试。

第2页/共6页3. 提供定量分析结果梅森增益公式给出的是数值化的增益结果,可以帮助工程师量化地评估和比较不同电路的性能。

这对于电路设计者来说非常重要,可以在设计初期对各个子电路进行评估和优化。

最新梅森公式例子

最新梅森公式例子

1
C(s) 1
G8
G7 G9
R(s) G1 G2 G3 G4
G5 G6
1
-H1
-H2
-H3
第一条回路增益 L1= - G4 H1 第二条回路增益 L1= - G6 H2 第三条回路增益 L3= - G2 G3 G4 G5 G6 H3 第四条回路增益 L4= - G2 G3 G4 G9 G6 H3 第五条回路增益 L5= - G7 G4 G5 G6 H3 第六条回路增益 L6= - GG7 G9
R(s) G1 G2 G3 G4
G5 G6
1
-H1
-H2
-H3
第一条回路增益 L1= - G4 H1 第二条回路增益 L1= - G6 H2
第三条回路增益 L3= - G2 G3 G4 G5 G6 H3
1
C(s) 1
G8
G7 G9
R(s) G1 G2 G3 G4
G5 G6
1
-H1
-H2
-H3
第一条回路增益 L1= - G4 H1 第二条回路增益 L1= - G6 H2 第三条回路增益 L3= - G2 G3 G4 G5 G6 H3 第四条回路增益 L4= - G2 G3 G4 G9 G6 H3
1
C(s) 1
G8
G7 G9
R(s) G1 G2 G3 G4
G5 G6
1
R(s) G1 G2 G3 G4 G5
G6
1
-H1
-H2
-H3
第一条前向通路增益 P1=G1 G2 G3 G4 G5 G6
第二条前向通路增益 P2=G1 G2 G8
第三条前向通路增益 P3=G1 G7 G4 G5 G6 第四条前向通路增益 P4=G1 G2 G3 G4 G9 G6

2.6信号流图与梅森公式

2.6信号流图与梅森公式

G2 ( s) H ( s) N ( s) N ( s) 1 G1 ( s)G2 ( s) H ( s)
N ( s)
7)系统的总输出 X o (s) i (s) X i (s) N (s) N (s)
8)系统的总偏差 (s) i ( s) X i ( s) N (s) N (s) 结论
练习 试化简下图所示系统的方框图,并求系 统传递函数。
可看出此题方框图化简较复杂,试用梅森公式化简.
• 两条前向通路 • 两条回路 • 主特征式
P G1G3G5 , P2 G2G4G5 1
L1 G3 H , L2 G4 H
1 ( L1 L2 ) 1 G3 H G4 H
【例1】根据微分方程绘制信号流图
i1 (t ) 1 R1 [ui (t ) u A (t )]
1 u A (t ) [i1 (t ) i2 (t )]dt C1
1 i2 (t ) [u A (t ) uo (t )] R2
uo (t) 1 C2
i (t )dt
2
一般闭环控制系统的结构如下图所示
1)闭环系统的开环传递函数 将闭环控制系统主反馈 通道的输出断开,即 H(s)的输出通道断开 时,前向通道传递函数与反馈通道传递函数的乘积 G1(s)G2(s)H(s)称为该闭环控制系统的开环传递函数 ,记为GK(s)。
闭环系统的开环传递函数也可定义为反馈信 号B(s)和偏差信号ε(s)之间的传递函数,即:
X o ( s) G( s) G1 ( s)G2 ( s) ( s)
B( s) H ( s) X o (s)
4)输入信号作用下的闭环传递函数
令n(t)=0,此时在输入xi(t)作用下系统的闭环传 递函数为:

信号与系统7_梅森公式的证明及应用

信号与系统7_梅森公式的证明及应用

梅森公式的推导
• 定理7 设Aij是行列式|A|中aij 余因式,则当 ij时,Aij= Pk△k 式中Pk是从节点i到j的第K条路的传输。△k 是不接触从i到j的第K条路的图行列式。他 是在图G中取掉Pk的所有节点和这些节点所 关联的支路后按(1-42)式算出的图行列 式。 表示所有可能的从节点i到j的路求和。
梅森公式注意事项
注意:
梅森公式只能求系统的总增益,即输出对输入的增益。而输出 对混合节点(中间变量)的增益就不能直接应用梅森公式。也 就是说对混合节点,不能简单地通过引出一条增益为一的支路, 而把非输入节点变成输入节点。对此问题有两种方法求其传递 函数:
一、把该混合节点的所有输入支路去掉,然后再用梅森公式。
•梅森公式的推导
定义下列矩阵
• 分支矩阵B
B是一个节点-支路关联矩阵。行对应于节点,列
对应于支路。
B=[bij],bij={ 1,若支路j的起点是i }
0,
否则
因为每条支路只能有一个起点,故每列只能有一 个元素为1。
• 汇总矩阵S
S也是一个节点-支路关联矩阵。行对应于节点,
列对应于支路。
S=[sij],sij={ 1,若支路j的起点是节点i }
二、分别用梅森公式求取输出节点及该节点对输入节点的传递 函数,然后把它们的结果相比,即可得到输出对该混合节点的 传递函数。
mk e
于是传递函数为
(s) C(s) 2
bde f (1 m dl) bg
R(s) R 1 (m dl ke h gkl) mh dlh mke
分析上式可以看到,传递函数的分子和分母取决于方 程组的系数行列式,而系数行列式又和信号流图的拓扑结 构有着密切的关系。从拓扑结构的观点,信号流图的主要 特点取决于回路的类型和数量。而信号流图所含回路的主 要类型有两种:单独的回路和互不接触回路。

梅森公式的理解

梅森公式的理解

是包含于,你理解的有点偏差,举个例子如果有三个互不接触的回路,取两个不接触的回路应有三项,取三个互不接触回路就一项。

具体的应该是这样:
梅森公式G(s)=Σ(Ρκ*△κ)╱△G(s)= ——系统总传递函数;n——是前向通道数;Ρκ——第k条前向通路的传递函数,由输入端单向传递至输出端的信号通道称为前向通道;△——流图的特征式△=1-ΣLi+ΣLjLk-ΣLiLjLk+······
L A
bc为每两个不接触回路增益乘积之和
a为所有回路增益之和;L a L b
Li——所有单独回路的增益之和;
LjLk——所有互不接触的单独回路中,取其中两个不接触的回路增益乘积之和;LiLjLk——所有互不接触的单独回路中,取三个互不接触回路增益之和;
△κ——第k条前向通路特征式的余因子,即对于流图的特征式△,将与第k 条前向通路相接触的回路
增益代以零值,余下的即为△κ。

对于复杂的结构,理论上有很多项,但实际上△就取到前两三项。

梅森公式-信号流图

梅森公式-信号流图

L4 a23a34a45a52
x5 L5 a23a35a52
P
a12 a23a34 a45 (1 a44 )a12 a23a35
1 (a23a32 a23a34a42 a44 a23a34a52 a23a35a52 ) a23a32 a44 a23a35a52a44
G3(s)
梅逊公式求E(s)
R(s)
E(SG)GG3(33s(()ss))
RRR(s(()ss)) EEE(S((S)S))
P2= - G3G2H3
GGG1(11s(()ss))
△2= 1 P2△2=?
HHH1(11s(()ss))
G1(s)
NNN((s(ss)))
G2(s)
GGG2(22s(()ss))
CCC(s(()ss))
HHH2(22s(()ss)) H3(s)
HHH3(33s(()ss))
C(s)
R(s)
E(S) P1=H–P1G(s1)2=H13 △△1=11=+G1 2HH2 2(s)P1△1= ?
E(s)= R(s)[ (1+G2H2) +(- G3G2H3)] +(–G2H3)N(s)
1 G1H1 G2G7 H 2 G6G4G5 H 2 G2G3G4G5 H 2 G4G5G7 H1H 2
x1
x2
x3
x7 I(s) x4
x5
o在源节点上,只有信号输出 支路而没有信号输入的支路,
1/R1 1+R1C1s R2
它一般代表系统的输入变量。
-1
•阱节点(输出节点):
在阱节点上,只有信号输入的支路而没有信号输出的支路,它

第七节 信号流图与梅森公式

第七节 信号流图与梅森公式

23

例2:用梅森公式求如图所示系统的传递函数。
24

例3:用梅森公式求如图所示系统的传递函数。
25

例3:用梅森公式求如图所示系统的传递函数。
26

例3:用梅森公式求如图所示系统的传递函数。
27

例3:用梅森公式求如图所示系统的传递函数。
28

例3:用梅森公式求如图所示系统的传递函数。
X
3
BX
2
BX
2
ABX
1
4
2、说明
(1)节点变量(信号)等于所有流向该节点的信 号之代数和,与输出无关。从同一节点流出的信号均 等于该节点变量,与流入无关。同方向传递的信号不 能重复计算。
X
X
3
AX
CX
1
BX
2
4
3
X
5
DX
3
5
(2)信号在支路上沿箭头方向单向传递。 (3)支路相当于一个乘法器,信号流经支路时,被 乘以支路增益而变换为另一个信号。(支路增益为 “1”时,可不标出) (4)在混合节点上,增加一条具有单位增益的输出 支路,可以从信号流图中分离出系统变量。即变混合
29

例4:用梅森公式求如下2图所示系统的传递函数。
30
所 有 单 个 回 路 增 益 之 和
触取所 回其有 路中单 增不个 益同回 乘的路 积两中 之个, 和不每 。接次
20
2、有关定义
(1)前 向 通 路——信号从输入节点到输出节点传递时, 每个流经节点只通过一次的通路。 (2)回 路——起点与终点为同一节点,而中间混合 节点最多通过一次的闭合通路。

信号与系统7_梅森公式的证明及应用

信号与系统7_梅森公式的证明及应用
梅森公式的证明及应用
电子工程系 无22班 喻浩 赵欣 肖元章 马存庆 蔡金蝉
梅森公式
梅森公式的回顾
大家都知道,用梅逊公式可不必简化信号流图而直接求得
从输入节点到输出节点之间的总传输。(即总传递函数)
其表达式为:P

1
n k 1
Pk k
式中: P 总传输(即总传递函数);
n 从输入节点到输出节点的前向通道总数;
回路传输乘积之和;
k 第k个前向通道的特征式的余子式;其值为 中除去与
第k个前向通道接触的回路后的剩余部分;
梅森公式的推导
梅森公式的推导(先 用一个一般性的图来证明)
如右图已知信号流图如图所 示,所对应的代数方程为
V1 mV1 lV3 bR
f
m
h
R1

b
l

V3
k


C
V1 d Ⅴ e V2 1

1 m bR l 2 g fR e (1 m) fR debR dlfR gbR
d 0 1 [bde f (1 m dl) bg]R
梅森公式的推导
根据克莱姆法则得
C
V2

2
1 (m
[bde f (1 m dl) bg]R dl ke h gkl) mh dlh
j,k
而△值就是
1 Li Lj Lk 1 (m dl ke h gkl) mh dlh mke
i
j,k
可见,传递函数的分母△取决于信号流图的拓扑结构特征。
梅森逊公式的推导
1 Li Lj Lk 1 (m dl ke h gkl) mh dlh mke

信号流图梅森公式

信号流图梅森公式

2/5/2020
14
梅逊公式||例2-13
[例2-13]:绘出两级串联RC电路的信号流图并用Mason公式计算 总传递函数。
ui (s) ue (s) 1 I1(s) -
1 u(s)
-
R1
I(s) C 1s
-
1
1 uo(s)
R 2 I2(s) C 2 s
[解]:先在结构图上标出节点,再根据逻辑关系画出信号流图如
18
梅逊公式||例2-15
例2-15:数数有几个回路和前向通道。
G6
R
G5
1
G2
1
G7
G3
G4
1
G1
1
H2
G8
H1
有四个回路,分别是:
1
C
G 2 H 2 , G 1 G 2 G 3 G 4 H 1 , G 1 G 2 G 7 G 4 H 1 , G 1 G 2 G 8 G 4 H 1
P7 G6G3G4 P8 G6G8G4
P 9G 6H 2G 2G 7G 4
2/5/2020
19
梅逊公式||例2-15
对应的结构图为:
G6 G5
R - G1
R 1
G6
G5
1
G1
+
-
G2
H2
H1
G7
G2 1
G3
1
Байду номын сангаас
H2
G8
H1
G7
G3
+
++
+
G4
C
G8
为节点
注意:①信号流
G4
1
图与结构图的对

梅逊公式简单讲解

梅逊公式简单讲解
• 不接触环路—环路之间没有公共节点。
• 前向通路—从输入节点到输出节点的通路。前向通路中通过任 何节点不多于一次。
• Gk —从输入节点到输出节点的第k条前向通路增益
• Δ —特征式 且 1 La Lb Lc Ld LeL f
• La 所有不同回路的增益之和
• Lb Lc 所有两两互不接触回路的增益乘积之和
• La —所有不同回路的增益之和
• Lb Lc —所有两两互不接触回路的增益乘积之和
• Ld Le Lf —所有三个都互不接触回路的增益乘积之和
• k —在Δ中,将与第k条前向通路相接触的回路所在项去掉后 余下的部分
术语解释
• 节点—表示系统中的变量或信号的点称为节点。 • 支路—连接两节点间的有向线段称为支路。支路增益就是两节点间的增益。 • 输入节点(源点)—仅有输出支路的节点称为输入节点,一般为系统的输入。 • 输出节点(阱点)—仅有输入支路的节点称为输出节点,一般为系统的输出。 • 混合节点—既有输入支路又有输出支路的节点称为混合节点。
• Ld Le Lf 所有三个都互不接触回路的增益乘积之和
• k —在Δ中,将与第k条前向通路相接触的回路所在项去掉后
余下的部分 • 通路—从任一节点出发沿着支路箭头方向连续地穿过各相连支
路到达另一节点的路径称为通路
例2 求C(s)/R(s)
谢谢观赏
WPS Office
Make Presentation much more fun
定义和公式
• 梅逊公式是求解信号流图或等效的 系统框图输入点与输出点之间的系 统函数的算法,广泛用于拉普拉斯 变换或域模型求解系统函数中。公 式为:
• G—从输入节点到输出节点之间的系统特从征输式入且节点 到 1输出节点La的第k条L前b L向c 通路增Ld益Le L f

信号流图梅森公式

信号流图梅森公式
支路相当于乘法器,信号流经支路时,被乘以支路增益而 变换为另一信号。
信号在支路上只能沿箭头单向传递,即只有前因后果的因 果关系。
对于给定的系统,节点变量的设置是任意的,因此信号流图 不是唯一的。
Sunday, March 08, 2020
8
信号流图的绘制
[信号流图的绘制]:
根据结构图
列出系统各环节的拉氏方程,按变量间的数学关系绘制
Ld LeLf 所有互不接触回路中,每次取其中三个
回路传输乘积之和;
k 第k个前向通道的特征余子式;其值为 中除去与第k个
前向通道接触的回路后的剩余部分。
Sunday, March 08, 2020
13
梅逊公式||例2-13a
n
Pk k
P k 1
例2-13a:求速度控制系统的总传输(s) 。(不计扰动)
Sunday, March 08, 2020
12
梅逊公式
P

1
n k 1
Pk k
1 La LbLc Ld LeLf ...(正负号间隔)
式中: La 流图中所有不同回路的回路传输之和;
LbLc 所有互不接触回路中,每次取其中两个回
路传输乘积之和;
1
Pk k
k 1

P11
G1G2G3Gu 1 G1G2G3GuGf
Sunday, March 08, 2020
14
梅逊公式||例2-13
[例2-13]:绘出两级串联RC电路的信号流图并用Mason公式计算 总传递函数。
ui (s) ue (s) 1 I1(s) -
1 u(s)
-
R1
P1 G1G2G3G4 P2 G1G2G7G4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

具有任意条前向通路及任意个单独回路和不接触回路的复杂信号流图,求取从任意源节点到任意阱节点之间传递函数的梅森增益公式记为
式中
——从源节点到阱节点的传递函数(或总增益);
——从源节点到阱节点的前向通路总数;
——从源节点到阱节点的第
条前向通路总增益;
——流图特征式
式中
——所有单路回路增益之和;
——所有互不接触的单独回路中,每次取其中两个回路的回路增益的乘积之和;
——所有互不接触的单独回路中,每次取其中三个回路的回路增益的乘积之和;
——流图余因子式,它等于流图特征式中除去与第
条前向通路相接触的回路增益项(包括回路增益的乘积项)以后的余项式。

[1]。

相关文档
最新文档