《分式》基础练习题
分式的乘方练习题
分式的乘方练习题一、基础题1. 计算:(1/2)^32. 计算:(3/4)^23. 计算:(5/8)^34. 计算:(2/5)^45. 计算:(4/3)^2二、进阶题1. 计算:(3/4)^5 × (2/3)^22. 计算:(5/6)^3 ÷ (2/3)^33. 计算:(7/8)^4 × (1/2)^34. 计算:(3/4)^5 ÷ (2/5)^25. 计算:(4/5)^3 × (3/2)^4三、综合题1. 计算:(2/3)^3 × (3/4)^2 ÷ (4/5)^22. 计算:(5/6)^4 × (2/3)^3 ÷ (3/4)^33. 计算:(4/5)^5 × (2/3)^4 ÷ (3/5)^24. 计算:(6/7)^3 × (3/4)^2 ÷ (4/7)^35. 计算:(7/8)^4 × (5/6)^3 ÷ (2/3)^4四、挑战题1. 计算:(2/3)^6 × (3/4)^4 ÷ (4/5)^52. 计算:(5/6)^7 × (2/3)^5 ÷ (3/4)^63. 计算:(4/5)^8 × (2/3)^7 ÷ (3/5)^54. 计算:(6/7)^5 ×(3/4)^4 ÷ (4/7)^65. 计算:(7/8)^7 × (5/6)^6 ÷ (2/3)^8五、应用题1. 如果一个正方体的边长是 (2/3) 米,求它的体积的平方。
2. 一个物体的密度是 (3/4) 克/立方厘米,求其体积为 (4/5)立方厘米时的质量的立方。
3. 一个长方体的长、宽、高分别是 (5/6) 米、(2/3) 米和 (3/4) 米,求其表面积的第四次方。
4. 一个圆的半径是 (4/5) 米,求其面积的立方。
分式的运算练习题及答案
分式的运算练习题及答案分式的运算是数学中的基本内容之一,掌握好分式的运算方法对于提高数学水平具有重要的作用。
本文将为您提供一些分式的运算练习题及答案,帮助您巩固分式运算的知识。
一、基础练习题1. 计算:$\frac{1}{2} + \frac{3}{4}$答案:$\frac{5}{4}$2. 计算:$\frac{2}{3} \times \frac{3}{5}$答案:$\frac{2}{5}$3. 计算:$\frac{5}{6} \div \frac{1}{2}$答案:$\frac{5}{3}$4. 计算:$\frac{3}{4} + \frac{2}{9} - \frac{1}{3}$答案:$\frac{1}{36}$5. 计算:$(\frac{2}{3} + \frac{1}{4}) \times \frac{3}{5}$答案:$\frac{13}{30}$二、复杂练习题1. 计算:$\frac{3}{4} \div \frac{2}{5} \times \frac{1}{3}$答案:$\frac{15}{8}$2. 计算:$(\frac{7}{8} - \frac{3}{4}) \div (\frac{2}{3} \times\frac{5}{6})$答案:$\frac{7}{20}$3. 计算:$\frac{1}{2} + \frac{1}{3} - \frac{1}{4} \times \frac{1}{5}$答案:$\frac{2}{15}$4. 计算:$\frac{2}{3} \div \frac{3}{4} + \frac{4}{5} - \frac{5}{6}$答案:$\frac{7}{6}$5. 计算:$(\frac{3}{4} + \frac{1}{5}) \div \frac{2}{3} - \frac{5}{6}$答案:$-\frac{17}{36}$三、应用题1. 甲、乙两人一起做数学题,甲做的时间是乙的$\frac{2}{3}$,若乙做完题所需时间为1小时,问甲需要多长时间做完这些题?答案:$\frac{4}{3}$小时解析:设甲需要x小时做完这些题,则根据题意可得$\frac{x}{1}=\frac{2}{3}$,解得x=$\frac{4}{3}$。
分式练习计算练习试题(超全)
分式练习题一 填空题1.下列有理式中是分式的有 (1)-3x ;(2)y x ;(3)22732xy y x -;(4)-x 81;(5) 35+y ; (6)112--x x ;(7)-π-12m ; (8)5.023+m ; 2.(1)当a 时,分式321+-a a 有意义;(2)当_____时,分式4312-+x x 无意义; (3)当______时,分式68-x x 有意义;(4)当_______时,分式534-+x x 的值为1; (5)当______时,分式51+-x 的值为正;(6)当______时分式142+-x 的值为负. (7)分式36122--x x 有意义,则x (8)当x = 3时,分式b x a x +-无意义,则b ______ 3.(1)若分式0)1x )(3x (1|x |=-+-,则x 的值为_________________; (2)若分式33x x --的值为零,则x = ; (3)如果75)13(7)13(5=++a a 成立,则a 的取值范围是__________; (4)若)0(54≠=y y x ,则222y y x -的值等于________; (5)分式392--x x 当x __________时分式的值为零; (6)当x __________时分式xx 2121-+有意义; (7)当x=___时,分式22943x x x --+的值为0; (8)当x______时,分式11x x +-有意义; (10)当a=_______时,分式2232a a a -++ 的值为零; (11)当分式44x x --=-1时,则x__________;(12)若分式11x x -+的值为零,则x 的值为 (13)当x________时,1x x x -- 有意义. 4.①())0(,10 53≠=a axy xy a ②()1422=-+a a 。
5.约分:①=ba ab 2205__________,②=+--96922x x x __________。
分式练习题及答案
分式练习题及答案分式是数学中的一个重要概念,它在我们的日常生活中有着广泛的应用。
在学习分式的过程中,练习题是不可或缺的一部分。
通过练习题,我们可以巩固对分式的理解,提高解题能力。
本文将给大家介绍一些常见的分式练习题及其答案,希望对大家的学习有所帮助。
一、基础练习题1. 计算:$\frac{3}{4}+\frac{2}{5}$解答:首先找到两个分式的公共分母,这里是20。
然后将两个分式的分子相加,保持分母不变。
计算得到:$\frac{15}{20}+\frac{8}{20}=\frac{23}{20}$2. 计算:$\frac{5}{6}-\frac{1}{3}$解答:同样地,找到两个分式的公共分母,这里是6。
然后将两个分式的分子相减,保持分母不变。
计算得到:$\frac{5}{6}-\frac{2}{6}=\frac{3}{6}=\frac{1}{2}$3. 计算:$\frac{2}{3}\times\frac{3}{4}$解答:将两个分式的分子相乘,分母相乘,得到:$\frac{2}{3}\times\frac{3}{4}=\frac{6}{12}=\frac{1}{2}$4. 计算:$\frac{2}{3}\div\frac{5}{6}$解答:将除法转化为乘法,即将第二个分式的分子与分母互换位置,然后进行乘法运算。
得到:$\frac{2}{3}\div\frac{5}{6}=\frac{2}{3}\times\frac{6}{5}=\frac{12}{15}=\frac{4}{5}$二、应用练习题1. 甲、乙两个水管一起工作可以在3小时内将一个水池填满。
如果甲单独工作需要4小时,乙单独工作需要多少小时?解答:设乙单独工作需要x小时。
根据工作时间和工作效率的关系,可以得到以下分式:$\frac{1}{4}+\frac{1}{x}=\frac{1}{3}$。
将分式转化为方程,解方程得到:$x=12$。
分式练习计算练习题(超全)
分式练习题一 填空题1.下列有理式中是分式的有 (1)-3x ;(2)y x ;(3)22732xy y x -;(4)-x 81;(5) 35+y ; (6)112--x x ;(7)-π-12m ; (8)5.023+m ; 2.(1)当a 时,分式321+-a a 有意义;(2)当_____时,分式4312-+x x 无意义; (3)当______时,分式68-x x 有意义;(4)当_______时,分式534-+x x 的值为1; (5)当______时,分式51+-x 的值为正;(6)当______时分式142+-x 的值为负. (7)分式36122--x x 有意义,则x (8)当x = 3时,分式b x a x +-无意义,则b ______ 3.(1)若分式0)1x )(3x (1|x |=-+-,则x 的值为_________________; (2)若分式33x x --的值为零,则x = ; (3)如果75)13(7)13(5=++a a 成立,则a 的取值范围是__________; (4)若)0(54≠=y y x ,则222y y x -的值等于________; (5)分式392--x x 当x __________时分式的值为零; (6)当x __________时分式xx 2121-+有意义; (7)当x=___时,分式22943x x x --+的值为0; (8)当x______时,分式11x x +-有意义; (10)当a=_______时,分式2232a a a -++ 的值为零; (11)当分式44x x --=-1时,则x__________;(12)若分式11x x -+的值为零,则x 的值为 (13)当x________时,1x x x -- 有意义. 4.①())0(,10 53≠=a axy xy a ②()1422=-+a a 。
5.约分:①=ba ab 2205__________,②=+--96922x x x __________。
《分式运算》练习题及答案
分式运算练习一、填空题1.计算:__________x2y y y x 2x 2=-+-. 2.计算:____________1a 1a a 2=---. 3.计算:______________1x 1x 2x x 11122=-+----. 4.计算:______________a 6a 532a 3a 322=---+-. 5.计算:________________)1x (11x 11x 12=-⎪⎭⎫ ⎝⎛-++-. 6.若01x 4x 2=++则______________x1x 22=+. 7.若x +y =-1,则_______________xy 2y x 22=++. 8.________________ba ab a 2=+--. 9.计算1201(1)5(2004)2π-⎛⎫-+-÷- ⎪⎝⎭的结果是_________ . 10.当m=______时,方程233x m x x =---会产生增根. 二、选择题 11..3x =时,代数式x1x 21x x 1x x -÷⎪⎭⎫ ⎝⎛+--的值是( ) A .213- B .231- C .233- D .233+ 12.化简2222a ab b ab ab b a ----的结果是( ) A .a b b a 22+- B .b a C .ba - D .ab b 2a 22+ 13.下面的计算中,正确的是( )A .21x x 1x 11x =----- B .2244222322ab b a b a b a b a b a =÷=⋅÷C .1ba ab b a b a b a m mm m m m m 3m 3m 2m 2=⋅=⋅÷ D .0)1x (x )1x (x )x 1(x )1x (x 6666=---=-+- 14.化简分式abb a a b b a 22+--的结果是( ) A .10 B .b a 2- C .a b 2- D .ab 2 15.计算⎪⎭⎫ ⎝⎛-+÷⎪⎭⎫ ⎝⎛-+1x 111x 112的结果是( ) A .1B .x +1C .x 1x +D . 16.1x 1- 2. 一件工作,甲独做a 小时完成,乙独做b 小时完成,则甲、乙两人合作完成需要( )小时. A.11a b + B.1ab C.1a b + D.ab a b+ . 17.某农场原计划用m 天完成A 公顷的播种任务,如果要提前a 天结束,那么平均每天比原计划要多播种_________公顷.18.用科学记数法表示:12.5毫克=________吨.19化简:4x 24x 216x 42--++-.20.化简:x 1x 3x 2x 1x x 3x 1x 2222+÷⎪⎪⎭⎫ ⎝⎛-----+.21.已知23y 32x -=+=,,求y x y x )y x (2244++÷-的值.22.解方程:21212339x x x -=+--23.已知实数x 、y 满足04y 2x 32|1y x 2|=+-++-,求代数式2222y 4xy 4x y x y 2x y x 1+--÷---的值.24.已知122y 22x -=-=,,求2y xy 2x y x y x y x 2222-++-++-.25.阅读下列材料:∵11111323⎛⎫=- ⎪⨯⎝⎭,111135235⎛⎫=- ⎪⨯⎝⎭, 111157257⎛⎫=- ⎪⨯⎝⎭, ……1111171921719⎛⎫=- ⎪⨯⎝⎭, ∴11111335571719++++⨯⨯⨯⨯ =11111111111(1)()()()2323525721719-+-+-++- =11111111(1)2335571719-+-+-++- =119(1)21919-=. 解答下列问题:(1)在和式111133557+++⨯⨯⨯ 中,第6项为______,第n 项是__________. (2)上述求和的想法是通过逆用________法则,将和式中的各分数转化为两个数之差,使得除首末两项外的中间各项可以_______,从而达到求和的目的.(3)受此启发,请你解下面的方程:1113(3)(3)(6)(6)(9)218x x x x x x x ++=++++++.。
七年级数学下册《第五章分式》练习题-附答案(浙教版)
七年级数学下册《第五章分式》练习题-附答案(浙教版)一、选择题1.若分式x +12-x有意义,则x 满足的条件是( ) A.x ≠-1 B.x ≠-2 C.x ≠2 D.x ≠-1且x ≠22.若分式2x +63x -9的值为零,则x 等于( ) A.2 B.3 C.-3 D.3或-33.与分式﹣11-x的值相等的是( ) A.﹣1x -1 B.﹣11+x C.11+x D.1x -14.下列约分正确的是( ) A.B. =﹣1C. =D. =5.下列分式中,最简分式是( )A.x 2-1x 2+1B.x +1x 2-1C.x 2-2xy +y 2x 2-xyD.x 2-362x +126.下列运算结果为x -1的是( )A.1-1xB.x 2-1x ·x x +1C.x +1x ÷1x -1D.x 2+2x +1x +17.化简a 2a -1-1-2a 1-a的结果为( ) A.a +1a -1B.a -1C.aD.1 8.分式方程x +1x +1x -2=1的解是( ) A.x =1 B.x =-1 C.x =3 D.x =-39.施工队要铺设1 000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务,设原计划每天施工x 米,所列方程正确的是( )A.1 000x -1 000x +30=2B.1 000x +30-1 000x =2C.1 000x -1 000x -30=2D.1 000x -30-1 000x=2 10.若﹣2<a ≤2,且使关于y 的方程y +a y -1+2a 1-y =2的解为非负数,则符合条件的所有整数a 的和为( )A.﹣3B.﹣2C.1D.2二、填空题11.要使分式1x -1有意义,x 的取值应满足 . 12.当x =1时,分式x x +2的值是________. 13.把分式a +13b 34a -b 的分子、分母中各项系数化为整数的结果为________. 14.方程2x +13-x =32的解是 . 15.A ,B 两市相距200千米,甲车从A 市到B 市,乙车从B 市到A 市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x 千米/小时,则根据题意,可列方程____________________.16.在小学阶段,我们知道可以将一个分数拆分成两个分数的和(差)的形式,例如,=. 类似地,我们也可以把一个较复杂的分式拆分成两个较简单,并且分子次数小于分母次数的分式的和或者差的形式.例如=,仿照上述方法,若分式可以拆分成的形式,那么 (B +1)﹣(A +1)= .三、解答题17.化简:x -2x -1·x 2-1x 2-4x +4-1x -2.18.化简:(1-2x -1)·x 2-xx 2-6x +9.19.解分式方程:xx -1﹣2x =1;20.解分式方程:32x -4﹣xx -2=12.21.化简(xx -1 - 1 x 2-1 )÷x 2+2x +1x 2 ,并从-1,0,1,2中选择一个合适的数求代数式的值。
分式练习题(附答案)
分式单元复习一、选择题1.下列各式中,不是分式方程的是( )111..(1)1111.1.[(1)1]110232x A B x x x x x xxC D x x x -=-+=-+=--=+-2.如果分式2||55x x x -+的值为0,那么x 的值是( )A .0B .5C .-5D .±53.把分式22x yx y +-中的x ,y 都扩大2倍,则分式的值( )A .不变B .扩大2倍C .扩大4倍D .缩小2倍4.下列分式中,最简分式有( )322222222222212,,,,312a x y m n m a ab b x x y m n m a ab b -++-++----A .2个B .3个C .4个D .5个5.分式方程2114339x x x +=-+-的解是( )A .x=±2B .x=2C .x=-2D .无解6.若2x+y=0,则2222x xy y xy x ++-的值为( )A .-13.55B - C .1 D .无法确定7.关于x 的方程233x kx x =+--化为整式方程后,会产生一个解使得原分式方程的最简公分母为0,则k 的值为()A .3B .0C .±3D .无法确定8.使分式224x x +-等于0的x 值为( )A .2B .-2C .±2D .不存在9.下列各式中正确的是( )....a b a b a ba bA B a b a b a b a ba b a ba b a b C D a b a b a b b a-++--==-----++--+-+-==-+-+-10.下列计算结果正确的是( )22222211..()223..()955b a a b A B a ab a b ab a a m n n xy xy C D xy x x m a a --=-÷-=-÷=÷= 二、填空题1.若分式||55y y--的值等于0,则y= __________ . 2.在比例式9:5=4:3x 中,x=_________________ .3.计算:1111b a b a a b a b++---=_________________ . 4.当x> __________时,分式213x--的值为正数. 5.计算:1111x x ++-=_______________ . 6.当分式2223211x x x x x +++--与分式的值相等时,x 须满足_______________ . 7.已知x+1x =3,则x 2+21x = ________ . 8.已知分式212x x +-:当x= _ 时,分式没有意义;当x= _______时,分式的值为0;当x=-2时,分式的值为_______. 9.当a=____________时,关于x 的方程23ax a x +-=54的解是x=1. 10.一辆汽车往返于相距akm 的甲、乙两地,去时每小时行mkm ,•返回时每小时行nkm ,则往返一次所用的时间是_____________.三、解答题1.计算题:2222444(1)(4);282a a a a a a a --+÷-+--222132(2)(1).441x x x x x x x --+÷+-+-2.化简求值.(1)(1+11x -)÷(1-11x -),其中x=-12;(2)213(2)22x x x x x -÷-+-++,其中x=12.3.解方程:(1)1052112x x +--=2; (2)2233111x x x x +-=-+-.4.课堂上,李老师给大家出了这样一道题:当x=3,5-,时,求代数式22212211x x x x x -+-÷-+的值.小明一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?•请你写出具体的解题过程.5.对于试题:“先化简,再求值:23111x x x----,其中x=2.”小亮写出了如下解答过程: ∵ 2313111(1)(1)1x x x x x x x ---=----+- ① 31(1)(1)(1)(1)x x x x x x -+--+-+ ② =x -3-(x+1)=2x -2, ③∴当x=2时,原式=2×2-2=2. ④(1)小亮的解答在哪一步开始出现错误: ① (直接填序号);(2)从②到③是否正确: 不正确 ;若不正确,错误的原因是 把分母去掉了 ;(3)请你写出正确的解答过程.6.小亮在购物中心用12.5元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14元,买的饼干盒数比第一次买的盒数多25,•问他第一次在购物中心买了几盒饼干?分式单元复习题及答案一、选择题1.下列各式中,不是分式方程的是(D )111..(1)1111.1.[(1)1]110232x A B x x x xx x x C D x x x -=-+=-+=--=+- 2.如果分式2||55x x x-+的值为0,那么x 的值是(B ) A .0 B .5 C .-5 D .±53.把分式22x y x y+-中的x ,y 都扩大2倍,则分式的值(A ) A .不变 B .扩大2倍 C .扩大4倍 D .缩小2倍4.下列分式中,最简分式有(C )322222222222212,,,,312a x y m n m a ab b x x y m n m a ab b-++-++---- A .2个 B .3个 C .4个 D .5个5.分式方程2114339x x x +=-+-的解是(B ) A .x=±2 B .x=2 C .x=-2 D .无解6.若2x+y=0,则2222x xy y xy x++-的值为(B ) A .-13.55B -C .1D .无法确定 7.关于x 的方程233x k x x =+--化为整式方程后,会产生一个解使得原分式方程的最简公分母为0,则k 的值为(A ) A .3 B .0 C .±3 D .无法确定8.使分式224x x +-等于0的x 值为(D ) A .2 B .-2 C .±2 D .不存在9.下列各式中正确的是(C )....a b a b a b a bA B a ba b a b a b a ba ba b a b C D a b a b a b b a -++--==-----++--+-+-==-+-+-10.下列计算结果正确的是(B )22222211..()223..()955b a a b A B a ab a b ab a a m n n xy xy C D xy x x m a a --=-÷-=-÷=÷= 二、填空题1.若分式||55y y--的值等于0,则y= -5 . 2.在比例式9:5=4:3x 中,x= 2027. 3.1111b a b a a b a b ++---的值是 2()a b ab+ . 4.当x> 13 时,分式213x--的值为正数. 5.1111x x ++-= 221x - . 6.当分式2223211x x x x x +++--与分式的值相等时,x 须满足 x ≠±1 . 7.已知x+1x =3,则x 2+21x= 7 . 8.已知分式212x x +-,当x= 2 时,分式没有意义;当x= -12 时,分式的值为0;当x=-2时,分式的值为 34. 9.当a= -173 时,关于x 的方程23ax a x +-=54的解是x=1. 10.一辆汽车往返于相距akm 的甲、乙两地,去时每小时行mkm ,•返回时每小时行nkm ,则往返一次所用的时间是 (a a m n+)h . 三、解答题1.计算题.2222222444(1)(4);28241(2)1.(2)(4)424a a a a a a a a a a a a a a --+÷-+----==-+--+解:原式 2222132(2)(1).441(1)(1)1(1)(2)1.(2)112x x x x x x x x x x x x x x x x --+÷+-+-+----==-+--解:原式 2.化简求值.(1)(1+11x -)÷(1-11x -),其中x=-12; 解:原式=1111111122x x x x x x x x x x -+---÷==-----. 当x=-12时,原式=15. (2)213(2)22x x x x x -÷-+-++,其中x=12. 解:原式=22(1)(2)(2)3121(2)(1)2211x x x x x x x x x x ---+++÷=-=-+-++--. 当x=12时,原式=43. 3.解方程.(1)1052112x x+--=2; 解:x=74. (2)2233111x x x x +-=-+-. 解:用(x+1)(x -1)同时乘以方程的两边得,2(x+1)-3(x -1)=x+3.解得 x=1.经检验,x=1是增根.所以原方程无解.4.课堂上,李老师给大家出了这样一道题:当x=3,5-,时,求代数式22212211x x x x x -+-÷-+的值.小明一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?•请你写出具体的解题过程.解:原式=2(1)1(1)(1)2(1)x x x x x -++--=12. 由于化简后的代数中不含字母x ,故不论x 取任何值,所求的代数式的值始终不变.所以当x=3,5-,时,代数式的值都是12. 5.对于试题:“先化简,再求值:23111x x x----,其中x=2.”小亮写出了如下解答过程: ∵ 2313111(1)(1)1x x x x x x x ---=----+- ①31(1)(1)(1)(1)x x x x x x -+--+-+ ② =x -3-(x+1)=2x -2, ③∴当x=2时,原式=2×2-2=2. ④(1)小亮的解答在哪一步开始出现错误: ① (直接填序号);(2)从②到③是否正确: 不正确 ;若不正确,错误的原因是 把分母去掉了 ;(3)请你写出正确的解答过程.解:正确的应是:23111x x x ----=312(1)(1)(1)(1)1x x x x x x x -++=-+-++ 当x=2时,原式=23. 6.小亮在购物中心用12.5元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14元,买的饼干盒数比第一次买的盒数多25,•问他第一次在购物中心买了几盒饼干?解:设他第一次在购物中心买了x 盒,则他在一分利超市买了75x 盒. 由题意得:12.51475x x -=0.5 解得 x=5.经检验,x=5是原方程的根.答:他第一次在购物中心买了5盒饼干.。
100道分式解方程练习题
100道分式解方程练习题一、基础练习题1. 解方程:$\frac{x}{3} - 4 = 7$2. 解方程:$\frac{2}{5}y + 1 = 4$3. 解方程:$2 - \frac{3}{x} = 5$4. 解方程:$3x - \frac{1}{2} = 6$5. 解方程:$\frac{x}{4} + \frac{2}{3} = \frac{5}{6}$二、整数系数练习题6. 解方程:$\frac{3}{2}x - 1 = 2$7. 解方程:$2 - \frac{4}{3}x = -1$8. 解方程:$\frac{1}{4}x + \frac{2}{5} = \frac{3}{10}$9. 解方程:$3x - \frac{5}{2} = \frac{1}{2}$10. 解方程:$-2 - \frac{3}{4}x = -\frac{1}{2}$三、含有分数项的练习题11. 解方程:$\frac{1}{2}x - \frac{3}{4} = \frac{x}{3}$12. 解方程:$y + \frac{2y}{3} = \frac{5}{2}$13. 解方程:$2 - \frac{1}{x} = \frac{x}{2}$14. 解方程:$\frac{3}{x} - \frac{x}{2} = 1$15. 解方程:$3 - \frac{x}{2} = \frac{5}{6} - \frac{1}{3}x$四、复杂分式练习题16. 解方程:$\frac{x+1}{x} - \frac{1}{x+1} = \frac{1}{2}$17. 解方程:$\frac{2x-1}{x-1} - \frac{x+1}{x} = \frac{1}{3}$18. 解方程:$\frac{3}{2x-1} - \frac{x}{x+1} = \frac{1}{4}$19. 解方程:$\frac{2}{x+1} + \frac{1}{x-1} = 1$20. 解方程:$\frac{1}{2x} + \frac{1}{x+2} = \frac{5}{4}$五、含有根式的练习题21. 解方程:$2\sqrt{x} - 3 = 5$22. 解方程:$\frac{1}{\sqrt{x}} + 5 = 3$23. 解方程:$\sqrt{x+1} + \sqrt{x-2} = 5$24. 解方程:$\frac{6}{\sqrt{x}} - 4 = 2$25. 解方程:$\sqrt{x} - \frac{1}{\sqrt{x}} = 2$六、含有二次项的练习题26. 解方程:$x^2 - \frac{1}{4} = \frac{3}{2}$27. 解方程:$\frac{5x}{2} + 3x^2 = 7x$28. 解方程:$x^2 - 6x + 9 = 4$29. 解方程:$(2x-1)(x+\frac{1}{3}) = 0$30. 解方程:$x^2 - 4x + 4 = 0$七、混合练习题31. 解方程:$\frac{1}{2}x - \frac{3}{4} = \frac{x}{3}$32. 解方程:$y + \frac{2y}{3} = \frac{5}{2}$33. 解方程:$2 - \frac{1}{x} = \frac{x}{2}$34. 解方程:$\frac{3}{x} - \frac{x}{2} = 1$35. 解方程:$3 - \frac{x}{2} = \frac{5}{6} - \frac{1}{3}x$36. 解方程:$\frac{x+1}{x} - \frac{1}{x+1} = \frac{1}{2}$37. 解方程:$\frac{2x-1}{x-1} - \frac{x+1}{x} = \frac{1}{3}$38. 解方程:$\frac{3}{2x-1} - \frac{x}{x+1} = \frac{1}{4}$39. 解方程:$\frac{2}{x+1} + \frac{1}{x-1} = 1$40. 解方程:$\frac{1}{2x} + \frac{1}{x+2} = \frac{5}{4}$41. 解方程:$2\sqrt{x} - 3 = 5$42. 解方程:$\frac{1}{\sqrt{x}} + 5 = 3$43. 解方程:$\sqrt{x+1} + \sqrt{x-2} = 5$44. 解方程:$\frac{6}{\sqrt{x}} - 4 = 2$45. 解方程:$\sqrt{x} - \frac{1}{\sqrt{x}} = 2$46. 解方程:$x^2 - \frac{1}{4} = \frac{3}{2}$47. 解方程:$\frac{5x}{2} + 3x^2 = 7x$48. 解方程:$x^2 - 6x + 9 = 4$49. 解方程:$(2x-1)(x+\frac{1}{3}) = 0$50. 解方程:$x^2 - 4x + 4 = 0$以上是100道分式解方程的练习题,通过这些题目的练习,可以加深对分式解方程的理解和掌握。
分式的概念经典练习题
祖π数学新人教 八年级上册之高分速成 1【基础知识】从分数到分式(1)分式的概念:形如 ,A 、B 是 ,B 中含有 且B 不等于 的 整式叫做分式.其中A 叫做分式的分子,B 叫做分式的分母.(2)分式有意义的条件: .(3)分式值为0的条件: .(4)分式值为正(大于0)的条件: .(5)分式值为负(小于0)的条件: .【题型1】分式的判断下列各式中,是分式的有 ;是整式的有 .2x ,a 2+1,x 5,3-x π,1x -2,2a a +b ,2xy 2xy ,532x -,)74(31y x -,)74(31y x x-,2a -2b. 【变式训练】1.下列式子是分式的是( )A.x 5B.x x +1C.x 6+yD.3xy π2.下列式子:-3x ,2a ,x 2-y 2xy ,-a 2π,x -1y 2,a -2b ,其中分式有 .3.下列式子:-3x ,31y +,5y x -,y x ,x 81-, 22732xy y x -,其中是分式有 个. 4.在式子xx y x y x x c b a xy a 232109,87,65,43,2,1,+++π中,分式有 . 5.列式表示下列各量.(1)赵明骑自行车用了m 小时到达距离家n 千米的学校,则他的平均速度是 千米/小时;若乘公共汽车则可少用0.2小时,则公共汽车的平均速度是 千米/小时.(2)465班在一次考试中,有m 人得90分,有n 人得80分,那么这两部分人合在一起的平均分是 分.(3)我市对一段全长1 500米的道路进行改造,原计划每天修x 米,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天修路比原计划的2倍还多35米,那么修这条路实际用了 天.。
分式分节基础练习题
《分式》分节专项练习题测试1 分式的基本概念学习要求:掌握分式的概念,能求出分式有意义,分式值为0、为1的条件. 一、填空题1.用A 、B 表示两个整式,A ÷B 就可以表示成_ _____的形式,如果除式B 中___ ___,该分式的分式.2.甲每小时做x 个零件,做90个零件所用的时间,可用式子表示成____ __小时. 3.n 公顷麦田共收小麦m 吨,平均每公顷的产量可用式子表示成____ __吨.4.轮船在静水中每小时走a 千米,水流速度是b 千米/时,轮船在逆流中航行s 千米所需要的时间可用式子表示成__ ____小时.5.当x____ __时,分式632-x x无意义. 6.当x___ ___时,分式13-x x有意义.7.当x =____ __时,分式112--x x 的值为0.8.当x= 时,2)3)(2(---x x x 的值为0.二、选择题 9.使得分式1+a a有意义的a 的取值范围是( ) A .a ≠0B .a ≠1C .a ≠-1D .a +1>010.下列判断错误的是( ) A .当32=/x 时,分式231-+x x 有意义 B .当a ≠b 时,分式22b a ab-有意义C .当21-=x 时,分式x x 412+值为0 D .当x ≠y 时,分式x y y x --22有意义11.使分式5+x x值为0的x 值是( )A .0B .5C .-5D .x ≠-512.当x <0时,xx ||的值为( ) A .1B .-1C .±1D .不确定13.x 为任何实数时,下列分式中一定有意义的是( )A .xx 12+B .112--x x C .11+-x x D .112+-x x测试2 分式的基本性质学习要求:掌握分式的基本性质,并能利用分式的基本性质将分式约分.分式的基本性质:分式的分子、分母同时乘以一个不等于0的整式,分式的值不变。
即:A A MB B M⨯=⨯ 一、填空题 1.把分式xy中的x 和y 都扩大3倍,则分式的值______. 2.⋅-=--)(121xx x 3..y x xy x22353)(= 4.22)(1y x y x -=+. 5.⋅-=--24)(21yy x 6.化简分式:(1)=--3)(x y yx _____;(2)=+--22699xx x _____. 7.填空:)()1(=++-nm n m =-----ba n m m n 212)2(;)(⋅-ba221 8.填入适当的代数式,使等式成立.(1)⋅+=--+b a b a b ab a )(22222(2).a b ba b a-=-+)(11 二、选择题9.把分式bab a 392+-约分得( )A .33++b a B .33+-b a C .ba 3- D .ba 3+ 10.如果把分式yx yx ++2中的x 和y 都扩大10倍,那么分式的值( ) A .扩大10倍B .缩小10倍C .是原来的32D .不变11.下列各式中,正确的是( ) A .b am b m a =++ B .0=++b a ba C .1111--=-+c b ac abD .yx y x y x +=--12212.把分式yx x-2中的x 、 y 都扩大m 倍(m ≠0),则分式的值( ) A .扩大m 倍 B .缩小m 倍 C .不变 D .不能确定13.化简22222b ab a b a ++-的正确结果是( )A .ba ba -+ B .ba ba +- C .ab21 D .ab21- 14.化简分式2222639ab b a b a -后得( )A .222223ab b a b a -B .263aba ab- C .ba ab23- D .bb a ab2332- 三、解答题 10.约分:(1)acab1510-(2)231632x y x y-(3)112--m m(4)yx x xy y -+-24422(5)22164mm m --(6)2442-+-x x x测试3 分式的乘法、除法学习要求:1.学会类比方法、总结出分式乘法、除法法则. 2.会进行分式的乘法、除法运算. 一、填空题1.389()22x yy x•-=______. 2.=+-÷-x y x x xy x 33322______. 3.=+÷+)(1b a ba ______.4.2222222ab b a b a ab b a ab +-•=++-______. 5.已知x =2008,y =2009,则4422))((yx y x y x -++的值为______. 二、选择题 6.)(22m n nm a-⋅-的值为( ) A .nm a+2 B .nm a+ C .nm a+-D .nm a--7.计算cdaxcd ab 4322-÷等于( ) A .x b 322B .232x bC .x b 322-D .222283dc x b a -8.当x >1时,化简xx --1|1|得( ) A .1 B .-1 C .±1 D .09.计算xx x x x x +-÷---2231)2)(3(的结果是( ) A .22--x x xB .xx x 212--C .xx x --22D .122--x x x10.下列各式运算正确的是( )A .m n n m ÷•=B .1m n m n÷•= C .111=÷⋅÷mm m m D .1123=÷÷m mm 三、计算下列各题11.252128yxy x •12.nm mnm mn m n m --÷--24222213.22111(1)11x x x x -÷•--+14.22222(32)25549x a a b a b x a x +-•+-15.44)16(.2-+÷-a a a16.2222(1)(1)a a a a a a a -+•--17.422222222a a b a ab b a a ab b b-+÷•-+ 18.22262(3)443x x x x x x--÷+•-+-测试4 分式的乘法、除法、乘方学习要求:掌握乘方的意义,能根据乘方的法则,先乘方,再乘除进行分式运算. 一、填空题1.分式乘方就是 .2.=323)2(bca ____________. 3.=-522)23(z y x ____________.二、选择题4.分式32)32(b a 的计算结果是( )A .3632b aB .3596b aC .3598b aD .36278b a5.下列各式计算正确的是( )A .yx y x =33B .326m m m =C .b a ba b a +=++22D .b a a b b a -=--23)()(6.22222n n m m nm -÷•的结果是( )A .2nm -B .32nm -C .4m n -D .-n7.计算⨯-32)2(b a 2)2(a b )2(a b -⨯的结果是( ) A .68ba - B .638b a - C .5216b aD .5216ba -三、计算题8.32)32(cb a9.22)52(ay x --10.223)2(8y xy ÷11.232)4()2(ba ba -÷-四、解答题12.先化简,再求值:(1),144421422xx x x x ++÷--其中⋅-=41x(2),a b .b b a a b a b a a 222224)()(+÷--其中,21=a b =-1.四、化简求值21.若m 等于它的倒数,求22232442()()422m m m m m m m +++÷•---的值.测试5 分式的加减学习要求1.能利用分式的基本性质通分. 2.会进行同分母分式的加减法. 3.会进行异分母分式的加减法. 一、填空题1.分式2292,32ac bc b a 的最简公分母是____ __. 2.分式3241,34,21xx x x x +--的最简公分母是____ __. 3.分式)2(,)2(++m b nm a m 的最简公分母是___ ___.4.分式)(,)(x y b yy x a x --的最简公分母是___ ___. 5.同分母的分式相加减的法则是____ __.6.异分母的分式相加减,先__ ____,变为___ ___的分式,再加减.7.计算a a -+-329122的结果是____________. 8.=-+abb a 6543322____________. 二、选择题9.已知=++=/xx x x 31211,0( ) A .x21 B .x61 C .x65 D .x611 10.x y y a y x a x +--+++3333等于( )A .y x y x +-33B .x -yC .x 2-xy +y 2D .x 2+y 211.ca b c a b +-的计算结果是( )A .abca cb 222+-B .abcb a ac c b 222-- C .abc b a ac c b 222+-D .abcac b +- 12.313---a a 等于( ) A .aa a --+1622B .1242-++-a a aC .1442-++-a a aD .aa -1四、计算下列各题13.x x x x x -+--+224222 14.xx x x x x x x +---+--+++35223634222 15.412234272--+--x x x 16.xyy xxy x y -+-2217.先化简,1)121(22xx x x x x x ÷+---+再选择一个恰当的x 值代入并求值.18.已知,10345252---=++-x x x x B x A 试求实数A 、B 的值.测试6 分式的混合运算学习要求1.掌握分式的四则运算法则、运算顺序、运算律. 2.能正确进行分式的四则运算. 一、填空题1.化简=-2222639ab b a b a ______.2.化简2426a a ab -=______. 3.计算)1()1111(2-⨯+--m m m 的结果是______. 4.)1(yx y y x +-÷的结果是______.5.=-+-+-b a ba b a b a ______. 6.=++-+-32329122m m m ______.二、选择题7.2222y x y x y x y x -+÷+-的结果是( ) A .222)(y x y x ++B .222)(y x y x -+C .222)(y x y x +-D .222)(yx y x ++8.222)(ba bb b a -⨯-的结果是( ) A .b1 B .2b ab ba +-C .ba ba +- D .)(1b a b +9.ba ba b a b a b a b a -+⨯-+÷-+22)()(的结果是( ) A .ba ba +- B .ba ba -+ C .2)(ba b a -+ D .1三、计算题 8.xxx -+-111 9.291232m m -+-10.242-++x x11.121)11(22+-+-÷--a a a a a a12.)()(nm mnm n m mn m +-÷-+13.)131()11(22a a a a --÷++14.yy y y y yy y 4)44122(22-÷+--+-+15.)1214()11(22-----+÷+x x x x x x四、化简求值 16.,)]3(232[xy x y x xy x yx x -÷--++-其中5x +3y =0.测试7 分式方程的解法学习要求:了解分式方程的概念和检验根的意义,会解可化为一元一次方程的分式方程. 一、填空题 1.分式方程1712112-=-++x x x 若要化为整式方程,在方程两边同乘的最简公分母是 . 2.方程111=+x 的解是_____ _. 3.方程625--=-x x x x 的解是___ ___. 4.x =2是否为方程32121---=-x x x 的解?答:___ ___.5.若分式方程127723=-+-xax x 的解是x =0,则a =__ ____. 6.当m =______时,方程312=-xm 的解为1.7.已知分式方程 424-+=-x ax x 有增根,则a 的值为______. 二、选择题8.下列关于x 的方程中,不是分式方程的是( )A .11=+x xB .4132=+x xC .52433=+x xD .6516-=x x 9.下列关于x 的方程中,是分式方程的是( ) A .55433+=--x x B .abb x b a a x +=- C .11)1(2=--x xD .nx m n nx =-10.将分式方程yyy y 2434216252--=+-+化为整式方程时,方程两边应同乘( ). A .(2y -6)(4-2y ) B .2(y -3) C .4(y -2)(y -3)D .2(y -3)(y -2)11.方程4321+-=+-x x x x 的解是( ) A .x =-4 B .21-=xC .x =3D .x =112.方程34231--=+-x xx 的解是( ) A .0 B .2 C .3 D .无解13.分式方程)2(6223-+=-x x x x 的解是( ) A .0B .2C .0或2D .无解14.若关于x 的方程0111=----x xx m 有增根,则m 的值是( ) A .3 B .2 C .1D .-1三、解分式方程 15.0227=-+x x16.3625+=-x x17.45411--=--x xx 18.1617222-=-++x xx xx19.1211422+=+--x xx x x 20.2224412-++=--x x x x x21.32)3)(2(122-=-----x x x x x x x 22.xx x x x x ---+-=-+41341216852测试8 列分式方程解应用题学习要求会列出分式方程解简单的应用问题. 一、选择题1.某班学生军训打靶,有m 人各中靶a 环,n 人各中靶b 环,那么所有中靶学生的平均环数是( ) A .nm ba ++ B .n m bnam ++ C .)(21nb m a +D .)(21bn am +2.某农场挖一条480米的渠道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x 米,那么下列方程正确的是( )A .420480480=+-x x B .204480480=+-x x C .448020480=--xxD .204804480=--xx二、列方程解应用题3.一辆汽车先以一定速度行驶120千米,后因临时有任务,每小时加5千米,又行驶135千米,结果行驶这两段路程所用时间相等,求汽车先后行驶的速度.4.一个车间加工720个零件,预计每天做48个,就能如期完成,现在要提前5天完成,每天应该做多少个?5.甲、乙两同学学习电脑打字,甲打一篇3000字的文章与乙打一篇2400字的文章所用的时间相同,已知甲每分钟比乙多打12个字,问甲、乙两人每分钟各打字多少个?6.某煤矿现在平均每天比原计划多采330吨煤,已知现在采33000吨煤所需的时间和原计划采23100吨煤的时间相同.问现在平均每天采煤多少吨?10.某市决定修建一条从市中心到飞机场的轻轨铁路,为了使工程能提前3个月完成,需要将原定的工作效率提高12%,问原计划完成这项工程用多少月?11.某一工程招标时,接到甲、乙两工程队的投标书,每施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元.目前有三种施工方案:方案一:甲队单独完成此项工程刚好如期完成;方案二:乙队单独完成此项工程比规定日期多5天;方案三:若甲、乙两队合作4天,剩下的工程由乙队单独做也正好如期完成.哪一种方案既能如期完工又最节省工程款?。
分式基础练习题
分式基础练习题一.选择题1.若a=1,则aa+3- 9a+3的值为( )A.2B.-2C.12D. - 122.下列各式中,正确的是()A.ab =abB.a+1b+1=abC.3a b⬚ab=3abD.a+2b−1=3a+23b−13.已知x2-3x-4=0,则代数式xx−x−4的值是()A.3B.2C.13D.124.若a与b互为相反数,则2019a2+2021b22020ab的值是()A.-2020 B.-2 C.1 D.25.若方程2- kx−2=1x−4有增根,则k的值为()A.-4B. - 14C.4 D.146.小红用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完),已知每本硬面笔记本笔软面笔记本贵3元,且小红和小丽买到相同数量的笔记本。
设硬面笔记本每本售价为x元,根据题意可列出的方程为()A.15x =24x+3B.15x=24x−3C.15x+3=24xD.15x−3=24x7.已知x=22,y=-7,则1x−3y - 6yx−9y2的值为()A.-1B.1C.-3D.38.当-1<x<0时,x−1,x0,x2的大小顺序是()A.x−1<x0<x2B.x0<x−1<x2C.x0<x2<x−1D.x−1<x2<x09.计算a÷ab ×ba的结果是()A.aB.a2C.ba D.1a二.填空题10.当m= 时,分式方程13+m 3(2x−1)=22x−1会出现增根。
11.若x=2是关于x 的分式方程k x +x−3x−1=1的解,则实数k 的值等于 。
13.当x 时,分式x−2x 的值为负。
14.化简分式:a+1a −2a+1÷1+a a−1= 。
15.已知x 5 = y 3 = z 4≠0,则x −y 2+z 2xy+xz−yz = .16.方程12x+1=1x−2的解是x= 。
分式的加减法练习题及答案
分式的加减法练习题及答案一、基础练习题1. 计算下列分式的和或差:(1) 1/2 + 1/3(2) 3/5 - 1/4(3) 2/3 + 5/6(4) 7/8 - 2/92. 用分式表示下列各数:(1) 八分之三(2) 六分之五(3) 三分之六(4) 十分之一3. 简化下列分式:(1) 4/8(2) 6/12(3) 9/27(4) 10/20二、深度练习题1. 小明喝了1/2瓶可乐,小红喝了3/4瓶可乐,两人一共喝了多少瓶可乐?解答:小明和小红喝的可乐瓶数之和为 1/2 + 3/4 = 2/4 + 3/4 = 5/4 瓶可乐。
2. 小华从家到学校有4/5小时的路程,小明从家到学校有3/4小时的路程,两人谁比较早到学校?解答:比较两人到学校所需的时间,3/4小时 < 4/5小时,即小明比小华更早到学校。
3. 小明在数学考试中获得了4/5的分数,小红获得了3/4的分数,两人的总分是多少?解答:小明和小红的总分为 4/5 + 3/4 = 20/25 + 15/20 = 35/25 = 7/5。
三、答案:一、基础练习题1.(1) 1/2 + 1/3 = (3 + 2)/6 = 5/6(2) 3/5 - 1/4 = (12 - 5)/20 = 7/20(3) 2/3 + 5/6 = (4 + 5)/6 = 9/6 = 3/2(4) 7/8 - 2/9 = (63 - 16)/72 = 47/722.(1) 八分之三 = 3/8(2) 六分之五 = 5/6(3) 三分之六 = 6/3 = 2(4) 十分之一 = 1/103.(1) 4/8 = 1/2(2) 6/12 = 1/2(3) 9/27 = 1/3(4) 10/20 = 1/2二、深度练习题1. 小明和小红一共喝了 5/4 瓶可乐。
2. 小明比小华更早到学校。
3. 小明和小红的总分为 7/5。
希望以上练习题及答案对你有帮助!如有其他问题可以继续咨询。
分式基础练习题
分式基础练习题在分数运算中,我们需要掌握基础的分式运算规则,并通过练习题来提升我们的计算能力。
下面是一些基础的分式练习题,希望能帮助你更好地理解和掌握分数运算。
1. 简化以下分数:a) $\frac{9}{15}$b) $\frac{16}{24}$c) $\frac{3}{6}$d) $\frac{10}{25}$e) $\frac{18}{12}$f) $\frac{21}{28}$2. 将以下分数转化为最简形式:a) $\frac{24}{36}$b) $\frac{12}{18}$c) $\frac{36}{48}$d) $\frac{54}{72}$e) $\frac{64}{80}$f) $\frac{16}{20}$3. 计算以下分数的和或差,并将结果化简:a) $\frac{5}{8} + \frac{3}{8}$b) $\frac{7}{12} - \frac{1}{12}$c) $\frac{2}{5} + \frac{3}{10}$d) $\frac{4}{7} - \frac{2}{7}$e) $\frac{1}{3} + \frac{1}{6}$f) $\frac{2}{5} - \frac{1}{10}$4. 计算以下分数的乘积:a) $\frac{2}{3} \times \frac{3}{4}$b) $\frac{5}{6} \times \frac{6}{7}$c) $\frac{3}{5} \times \frac{4}{7}$d) $\frac{1}{2} \times \frac{2}{3}$e) $\frac{4}{5} \times \frac{5}{6}$f) $\frac{2}{3} \times \frac{1}{4}$5. 计算以下分数的商:a) $\frac{4}{5} \div \frac{2}{3}$b) $\frac{6}{7} \div \frac{7}{8}$c) $\frac{8}{9} \div \frac{4}{5}$d) $\frac{5}{6} \div \frac{1}{4}$e) $\frac{7}{8} \div \frac{3}{5}$6. 简化以下带分数:a) $2\frac{4}{8}$b) $3\frac{9}{12}$c) $5\frac{10}{15}$d) $4\frac{12}{18}$e) $6\frac{16}{24}$f) $8\frac{20}{30}$7. 将以下带分数转化为假分数:a) $1\frac{2}{3}$b) $2\frac{3}{4}$c) $3\frac{4}{5}$d) $4\frac{5}{6}$e) $5\frac{6}{7}$f) $6\frac{7}{8}$8. 计算以下分数的混合运算:a) $1\frac{2}{5} + \frac{3}{4}$b) $2\frac{1}{3} - \frac{1}{6}$c) $3\frac{3}{7} \times \frac{1}{4}$e) $5\frac{5}{6} + \frac{2}{5}$f) $6\frac{6}{7} - \frac{3}{8}$9. 解决以下分数的问题:a) 如果Sarah每天运动$\frac{3}{4}$小时,一周有7天,她一周总共运动了多少小时?b) 一个饭店上午卖出了$\frac{2}{5}$份餐点,下午卖出了$\frac{3}{5}$份餐点,一共卖出了14份餐点,问该饭店一共有多少份餐点?以上是分数基础练习题,通过不断的练习和巩固基础知识,我们能够更加熟练地进行分数运算,提高我们的数学能力。
分式的基本性质专项练习30题(有答案)ok
分式的基本性质专项练习30题(有答案)ok1.如果将分式中的x、y都扩大到原来的10倍,分式的值会扩大10倍。
2.如果将分式中的x和y都扩大3倍,分式的值不变。
3.将分子、分母中各项系数化为整数不改变分式的值。
4.正确的是A。
5.正确的是B。
6.与分式的值相等的是B。
7.与分式的值相等的是D。
8.化简为9.化简为10.若x在(0,2)之间,化简后的结果为B。
11.正确的是C。
12.不改变分式13.正确的个数为B。
14.分子和分母的系数化为整数后,正确的变形有A、C、D。
15.不改变分式的值,使分子和分母的最高次项的系数为正数。
16.略17.不改变分式的值,将分式化简为18.若,则x的取值范围是19.分子与分母的各项系数化为整数为20.(1) 分式的乘法法则,(a≠)。
(2) 分式的除法法则,(1)除以一个数等于乘以它的倒数,(2)21.设22.略23.依次填入。
24.若x:y:z=1:2:1,则25.若 $a=b$,则 $a^2=ab$。
解析:对 $a^2=ab$ 两边同时减去 $b^2$,得到 $a^2-b^2=ab-b^2$,即 $(a-b)(a+b)=b(a-b)$,由于 $a=b$,所以 $a-b=0$,分母不能为 $0$,因此原等式不成立。
26.不改变分式的值,使分子、分母都不含负号:$\frac{-3x}{2y}$。
解析:将分子、分母同时乘以 $-1$,即可得到$\frac{3x}{-2y}$,化简后为 $\frac{-3x}{2y}$。
27.已知 $\frac{a}{b}=\frac{c}{d}$,则$\frac{a+b}{b}=\frac{c+d}{d}$。
解析:将 $\frac{a+b}{b}$ 和 $\frac{c+d}{d}$ 分别化简,可得到 $\frac{a}{b}+1=\frac{c}{d}+1$,即$\frac{a}{b}=\frac{c}{d}$,由已知条件可知其成立。
分式的初步认识练习题
分式的初步认识练习题一、填空题1. 分式的定义是:分子和分母都是______,且分母不为______的式子。
2. 如果一个分式的分子和分母同时乘以同一个不为0的数,那么这个分式的______不改变。
3. 分式的分子与分母的符号,可以通过______来改变。
4. 分式的值为0的条件是______。
5. 若分式的分子大于分母,则这个分式的值______1;若分子小于分母,则这个分式的值______1。
二、判断题(对的在括号内打“√”,错的打“×”)1. 分式的分子和分母都可以是整数。
()2. 分式的分母不能为0。
()3. 分式的分子和分母同时除以同一个数,分式的值不变。
()4. 分式的分子和分母同时乘以同一个数,分式的值不变。
()5. 分式的值大于1时,分子一定大于分母。
()三、选择题A. 3x + 5B. x/5C. 5/(x+1)D. √xA. 2/3B. 5/5C. 7/8D. 9/10A. 3/4B. 5/6C. 7/7D. 9/8四、简答题1. 请举出三个分式的例子,并说明它们的特点。
2. 如何判断一个分式的值是否为正数?3. 分式的分子和分母同时加上或减去同一个数,分式的值会发生什么变化?请举例说明。
五、计算题1. 简化分式:4x/6y2. 简化分式:9a^2/3a^2b3. 简化分式:(x^2 1)/(x + 1)4. 计算分式的值:2/3 + 1/65. 计算分式的值:5/8 3/8六、应用题1. 小明有5个苹果,小华有3个苹果,请用分式表示小明和小华的苹果数量比。
2. 甲、乙两数的比是3:4,如果甲数是15,求乙数。
3. 一辆汽车行驶了200公里,消耗了20升汽油,请用分式表示这辆汽车的油耗。
七、分类题8/4, 9/3, 10/5, 7/612/18, 15/20, 21/28, 25/303/2, 4/4, 5/6, 8/710/12, 9/9, 7/8, 6/5八、匹配题请将下列分式与它们的简化结果进行匹配:6/9, 8/12, 15/20, 18/242/3, 2/3, 3/4, 3/4九、改错题1. 5/0 = 无意义2. (x + 2)/(x 2) = (x 2)/(x + 2)3. 4x/2y = 2x/y十、推理题1. 已知分式 A/B = 4/5,且 A > B,求证:A B < B。
分式与分式方程练习题
分式与分式方程练习题一、基础练习1. 计算下列分式的值:(a) $\frac{3}{5} + \frac{2}{5}$(b) $\frac{5}{6} - \frac{1}{3}$(c) $\frac{2}{3} \times \frac{4}{5}$(d) $\frac{7}{8} \div \frac{4}{9}$2. 将下列分数化为最简形式:(a) $\frac{9}{12}$(b) $\frac{18}{30}$(c) $\frac{24}{36}$(d) $\frac{16}{48}$3. 求下列分式的整数部分和分数部分:(a) $\frac{15}{4}$(b) $\frac{8}{3}$(c) $\frac{23}{5}$(d) $\frac{17}{6}$4. 求下列分式的倒数:(a) $\frac{4}{9}$(b) $\frac{5}{12}$(c) $\frac{7}{5}$(d) $\frac{9}{10}$5. 求下列分式的平方:(a) $\left( \frac{2}{5} \right)^2$(b) $\left( \frac{3}{4} \right)^2$(c) $\left( \frac{5}{6} \right)^2$(d) $\left( \frac{7}{8} \right)^2$二、方程练习1. 解下列分式方程:(a) $\frac{x}{3} - \frac{1}{2} = \frac{x}{4}$(b) $\frac{2}{x} + \frac{3}{4} = \frac{1}{2}$(c) $\frac{x}{6} + \frac{x-1}{3} = \frac{3}{2}$(d) $\frac{x}{5} - \frac{2x-1}{4} = \frac{x}{3} - 2$2. 解下列分式方程组:(a) $\frac{1}{x} + \frac{1}{y} = \frac{3}{4}$$\frac{1}{x} - \frac{1}{y} = \frac{1}{8}$ (b) $\frac{x+1}{2} + \frac{y-1}{3} = 1$$\frac{x-2}{4} - \frac{y+2}{2} = 2$三、应用练习1. 小明花了$\frac{3}{8}$小时的时间在写作业上,又花了$\frac{5}{12}$小时的时间在看电视上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《分式》基础练习题
一、精心选一选!
1.代数式-32x ,4x y
-,x+y ,22x π+,273y y ,55b a ,98,中是分式的有( ) A .1个 B .2个 C .3个 D .4个
2. 使分式
21
x x - 有意义的x 的取值范围是( ) .A 12x > .B 12x ≤ .C 12x ≥ .D 12
x ≠ 3.当x≠-1时,对于分式11
x -总有( ) A .11x -=21x + B .11x -= 211x x +- C .11x -=211x x -- D .11x -=13x -- 4.分式325x y xy
-中的字母x ,y 都扩大为原来的4倍,则分式的值( ) A .不变 B .扩大为原来的4倍 C .扩大为原来的8倍 D .缩小为原来的
14 5.计算⎪⎪⎭⎫ ⎝⎛-÷⎪⎪⎭⎫ ⎝⎛-⋅2438234
2y x y x y x 的结果是( ) A .x 3- B .x 3 C .x 12- D .x 12
6.若关于x 的分式方程2344m x x
=+--有增根(即无解),则m 的值为( ) A .-2 B .2 C .±2 D .4
7.甲、乙两班学生植树造林,甲班每天比乙班多植5棵树,甲班植80•棵树所用的天数与 乙班植70棵树所用的天数相等,若设甲班每天植树x 棵,•则根据题意列出方程是( )
A .80705x x =-
B .80705x x =+
C .80705x x =+
D .80705
x x =- 二、细心填一填! 8.计算:-16-=
9.用科学记数法表示:-0.00002004=
10.当x=_______时,分式
43x x --无意义;当x=______时,分式||99x x -+的值等于零 11.如果2a b
=,那么a a b =+ 12.分式13x ,11x x +-,225(1)
xy x -的最简公分母为________
13.计算:
a
b b b a a -+-= 14.若5544x m x x --=--有增根(即:无解),则m =___________ 三、认真算一算!
15.化简: (1) 133(3)
x x x ---; (2) 2()11a a a a a a +÷---
16.先化简再求值:22
22
a b a b ab --÷(1+222a b ab +),其中a=5,b=-3
17.计算:2301()242012|1|2---⨯++-
18.解方程:
(1)
16
4412-=-x x (2)12x x --=122x --
四、动脑想一想
19.一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用
时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?
20.某校招生录取时,为来防止数据输入出错,2640名学生的成绩数据由两位程序员各向计算机输入一遍,然后让计算机比较两个人的输入是否一致。
已知甲的输入是乙的2倍,结果甲比乙少用2小时输完。
问这两个操作员每个小时各能输入多少名学生的成绩?。