第6讲向量的内积与正交化
(完整版)[自然科学]向量的内积与向量组的正交变换
思考题
求一单位向量,使它与
1 1,1,1,1, 2 1,1,1,1, 3 2,1,1,3
正交.
思考题解答
解 设所求向量为x (a, b, c, d ),则由题意可得 :
a2 b2 c2 d 2 1, a b c d 0, a b c d 0,
] ]
2
s
s
[ s [1
, ,
1] 1]
1
[ s [2
, ,
2] 2]
2
[s , [ s1
s1] , s1]
s1
s k11 k22 ks1 s1
那么1, , s两两正交, 且1, , s与1, s等价.
(2)单位化(规范化),取
e1
1 1
,
e2
2 2
,
,es
s s
,
那么 e1,e2, ,es为Rn的一个单位(规范)正交向量组.
1 1
a2 0 , 1
a3
1 1
2
0 1
2
2 . 1
四、正交矩阵
定义5.9: 若n阶方阵A满足 AT A I 即A1 AT ,则
称A为 正交矩阵 .
定理5.9: A 为正交矩阵的充要条件是 A 的列向量都 是单位向量且两两正交.
证明 AT A I
a11 a21 an1 a11 a12 a1n
二、向量的长度及性质
定义5.6 令 , a12 a22 an2 ,
称 为 n维向量 的长度 或范数 .
(在 R2 中向量 的长度就是对应点到原点的距离)
向量的长度具有下述性质: 1. 非负性 当 0时, 0;当 0时, 0;
向量的内积、长度及正交性
在多维空间中,向量长度可以通过欧几里得范数计算,即 $||vec{a}|| = sqrt{sum_{i=1}^{n} a_i^2}$。
向量模的计算
在数学软件中,如Matlab或Python的NumPy库,可以直接使 用内置函数计算向量长度,如`numpy.linalg.norm()`。
03
02
CHAPTER
向量的长度
向量长度的定义
定义
向量长度是指向量从原点到终点所经 过的距离,通常用符号“||”表示。
几何意义
向量长度等于向量在欧几里得空间中 的模,即以原点为起点、终点为终点 的有向线段的长度。
向量长度的性质
非负性
向量长度总是大于等于0,即对于任意向量$vec{a}$,有 $||vec{a}|| geq 0$。
CHAPTER
向量的正交性
向量正交的定义
两个向量$mathbf{a}$和 $mathbf{b}$正交,当且仅当它们的 内积为零,即$mathbf{a} cdot mathbf{b} = 0$。
正交意味着两个向量在所有方向上都 相互垂直,没有共同的行或列。
向量正交的性质
1
正交向量之间的内积为零,即$mathbf{a} cdot mathbf{b} = 0$。
2
正交向量的点积为零,但不意味着它们的长度为 零。
3
正交向量之间没有共同的行或列,即它们是垂直 的。
向量正交的判断方法
01
检查向量的点积是 否为零
如果$bf{a}$和$mathbf{b}$正 交。
02
检查向量的模长是 否为零
向量的内积、长度及正交性
目录
CONTENTS
• 向量的内积 • 向量的长度 • 向量的正交性 • 向量的应用
向量的内积与施密特正交化过程
向量的内积与施密特正交化过程向量的内积(亦称点积、内积积)是线性代数中非常重要的运算,它是将两个向量映射成一个标量的二元运算。
在内积中,有几个重要的性质和应用。
另一方面,施密特正交化过程是将线性相关的向量组转变为线性无关的正交向量组的过程。
在施密特正交化过程中,我们通过对向量组进行逐步的处理,使新的向量与之前的向量都正交。
一、向量的内积在二维欧几里得空间中,向量的内积定义为:其中,和分别为向量和的坐标。
在三维欧几里得空间中,向量的内积定义为:1.对于任何向量,都有。
2.对于任何向量,都有。
3.对于任何向量和标量,都有。
4.若向量和满足,则称向量和正交,记作。
内积具有许多应用和重要性质,其中之一是通过内积计算向量的模长,即。
内积还可以用于计算两个向量之间的夹角。
对于向量和,,当且仅当和共线时夹角为0,在此情况下,称向量和共线。
施密特正交化过程是将线性相关的向量组转化为线性无关的正交向量组的过程。
施密特正交化过程的基本思想是,通过不断减去之前所有的向量在当前向量上的投影,得到与之前向量正交的新向量。
具体步骤如下:对于给定的向量组,我们希望将其转化为正交向量组。
施密特正交化过程的步骤如下:1.令,即第一个正交向量等于第一个向量。
2.对于向量,对其进行如下处理:a.计算向量在的投影,即。
b.令为向量减去其在上的投影,即。
c.实际得到的向量与垂直,即。
得到向量的长度。
3.对于向量,继续对其进行如上处理。
经过施密特正交化过程,我们最终可以得到单位正交向量组。
如果希望得到标准正交向量组,即长度为1的正交向量组,需要将单位正交向量组进行标准化处理。
施密特正交化过程的关键思想是不断减去之前的向量在当前向量上的投影,得到与之前的向量正交的新向量。
这样可以确保每次得到的新向量都与之前向量组成的空间正交。
施密特正交化过程广泛应用于数值计算中的线性代数问题,例如最小二乘法、特征值问题等。
它的作用是简化计算,提高计算的精度和稳定性。
向量的内积与施密特正交化过程
向量的内积与施密特正交化过程向量的内积是线性代数中重要的概念,它不仅可以表述两个向量之间的夹角关系,还可以用于正交化过程中的计算。
施密特正交化是一种将一组线性无关的向量组转化为一组正交向量组的过程。
本文将分为以下几个部分介绍向量的内积和施密特正交化过程。
一、向量的内积A·B=a1b1+a2b2+...+anbn1.交换律:A·B=B·A2.分配律:(A+B)·C=A·C+B·C3.结合律:k(A·B)=(kA)·B=A·(kB),其中k为实数4.内积为0的充要条件:当且仅当A、B正交(或垂直)时,A·B=0内积具有很多实际应用,比如:1.计算向量的模长:,A,=√(A·A)2. 计算向量之间的夹角:cosθ = (A·B)/(,A,B,)3.判断两个向量是否垂直:当且仅当A·B=0时,A与B垂直4.判断向量的正负性:当A·B>0时,夹角θ为锐角;当A·B<0时,夹角θ为钝角二、施密特正交化施密特正交化是一种将一组线性无关的向量组转化为一组正交向量组的过程。
假设有一组线性无关的向量A1,A2,...,An,施密特正交化的过程如下:1.选择一个向量a1作为正交向量组的第一个向量,令b1=a1/,a1,即单位化。
2.对于第k个向量向量Ak(k=2,3,...,n),先将它与前k-1个向量的内积计算出来,然后减去它在前k-1个向量的投影:Ak' = Ak - (Ak·b1)b1 - (Ak·b2)b2 - ... - (Ak·bk-1)bk-1其中,bk = Ak'/,Ak'3. 重复步骤2,直到计算完所有向量。
经过施密特正交化,得到一组正交向量组b1,b2,...,bn。
施密特正交化的过程可以通过内积的运算来实现,将向量投影的概念用到了正交化过程中。
向量的内积与正交
使β3 与β1,β2 彼此正交,满足
β3β1 β3, β2 0
即有
β3β1 α3, β1 k1 β1, β1 0
以及
β3β2 α3, β2 k2 β2, β2 0
得
k1
α3 , β1,
β1 β1
,k2
α3 , β2,
β2 β2
于是得
β3
α3
α3 , β1,
1 3
1 21
5 3
1
1 1
1
2 10
那么 β1β2, , βr与 就是与 α1,α2, ,αr 等价的单位正交向量组。
1
例3,a1 1 1
求一组非零向量 α2, α3, 使 α1, α2, α3
两两正交。
解 α2, α3 应满足方程 α1T x 0, 即
x1 x2 x3 0
线性代数
向量的内积与正交
1 向量的内积
2 线性无关向量 组的正交化方法
3 正交阵
内容
向量的内积与正交
定义1 设n 维向量
a1 b1
a2
,
b1
an
b1
令
α, β a1b1 a2b2 anbn
称为向量的内积。
向量的内积是一种运算。如果把向量看成列矩阵,那么向量的内积 可以表示成矩阵的乘积形式
定义2 设有n 维向量
a1
α
=
a1
a1
令
α α, α a12 a22 an2
α 称为n 维向量α 的长度(也称为模或范数)。 向量的长度具有下列性质: (1) α 0,且 α 0当且仅当α 0 (2) kα k α (3) α β α β
性质(1),(2)是显然的,性质(3)称为三角不等式,这里不予证明。
向量空间的正交化_图文_图文
在空间 中,若一组基
满足标准正交
向量组的条件,即
则称
为标准正交基。
例如 是 中的一组标准正交基,而 中的自然基
也是标准正交基。 设
三、Schmidt正交化方法
空间中的线性无关 向量组。 (当r=n时,就是Rn空间里的一组基)
但是,这组向量组不定是(标准)正交向量组; (当r=n时,这组向量组不定是(标准)正交基) 下述方法称为Schmidt正交化方法,它是把线性无关向量组, 转变为正交向量组的方法。
长度不为1,则可取
称 为与
同向的单位向量, 从
的过程也称为
向量的单位化。
定义3
,则称向量 正交。 零向量与任何向量都正交。
例1 求与 解:设
都正交的单位向量。
与
都正交
则
对系数矩阵A作初等行变换
所以 再单位化得
为所求向量。
二 向量的正交性
设一个向量组
,若它们两两正交,
称这个向量组为正交向量组。 又若每一个向量
所得向量组是正交向量Fra bibliotek。当时,Schmidt 正交化方法就可以将一组基
化为正交基
然后单位化:
则
书例2
即为标准正交基。
四、 正交矩阵
定义 设A是n阶的实矩阵,若 A是正交矩阵。 正交矩阵的性质:若A为正交阵,则
,则称
(1) (2)
(3) 也为正交阵 (4)若A,B为正交阵,则AB也为正交阵
向量空间的正交化_图文_图文.ppt
一 向量的内积 定义1 对n 维向量空间 中的向量
定义 中内积
为
注:
当
到实数集R的函数,
上述定义中给出的内积满足: (1)交换性: (2)线性性:
向量的内积与正交
(1, ) x1(1,1) x2 (1,2 ) x3 (1,3 ) x1(1,1) x1
(2 , ) x1(2 ,1) x2 (2 ,2 ) x3 (2 ,3 ) x2
(3, ) x1(3,1) x2 (3,2 ) x3 (3,3 ) x3
x1 1,
1 2
,x2
2 ,
x1, x2 ,, xr ,
使 x11 x22 xrr 0
两边与
作内积
i
x1(1,i ) xi (i ,i ) xr (r ,i ) (0,i )
j ,i 0, i j i ,i 0,
xi i , i 0 xi 0 (i 1,2,, r)
故 1 , 2 ,, r 线性无关。
令 x4 1
得 1,0,0,1T ,
单位化得
1 1,0,0,1T 为所求的向量
2
9
第9页/共21页
定义4 在欧氏空间
R n中, 若 1 , 2 ,, n 满足
i , j
0, i 1, i
j j
称 1,2 ,,n
为标准正交基。
例如在 R 3 中,
1
1
1
1,
2 0
1 及 e1 0,
R n 叫做欧氏空间
简记 , T T
Rn 。
, 为列向量, 简记 , T T
b1
,
n
ai bi
a1
,
a2
,,
an
b2
i 1
bn
2
第2页/共21页
性质 设 , , 都是 n 维向量,
K 为实数则有
10 , ,
20 k, k,
1 C 0
1
§3.4向量的内积与正交化
|| y||= yT y = xT PT Px = xT x 不变, 特点: 经正交变换线段的长度保持不变, (从而三角形的形状保持不变 。 从而三角形的形状保持不变)。 从而三角形的形状保持不变
例 求向量 α = (1,2,2,3 )与β = (3,1,5,1)的夹角.
α ⋅ β = 18 = 2 解 Q cosθ = 3 2⋅6 2 α β π ∴θ = .
4
二 向量组的正交化
若一非零向量组中的向量两两正交, 若一非零向量组中的向量两两正交,则称该向量组 正交向量组. 为正交向量组. 例如, 例如, 向量组
再令
−1 4 1 5−1 (b1 , a2 ) b2 = a2 − b1 = 3− 2 = 1 , 1 6−1 3 1 (b1 , b1 )
1 −1 1 b 1 2 e = b2 = 1 1 e = b3 = 1 0 , . e1 = 1 = , 2 −1 || b || || b2 || 3 1 3 || b3 || 6 2 1 1 e1, e2, e3即为所求. 即为所求.
维向量a 是一组两两正交的非零向量, 定理 若n维向量 1, a2, ⋅ ⋅ ⋅, ar是一组两两正交的非零向量, 维向量 线性无关. 则a1, a2, ⋅ ⋅ ⋅, ar线性无关. 证明 设有λ1, λ2, ⋅ ⋅ ⋅, λr, 使 , λ1a1+λ2a2+ ⋅ ⋅ ⋅ +λrar=0, 左乘上式两端, λ1a1Ta1=0, 以a1T左乘上式两端, 得 , 因a1≠0, 故a1Ta1=||a1||2≠0, 从而λ1=0. , , . . 类似可证λ2=λ3= ⋅ ⋅ ⋅=λr=0. 因此, 向量组a 线性无关. 因此, 向量组 1, a2, ⋅ ⋅ ⋅, ar线性无关.
向量的内积与正交
目录
CONTENTS
• 向量的内积 • 向量的正交 • 向量的内积与正交的应用 • 向量的点积与叉积 • 总结
01
CHAPTER
向量的内积
向量内积的定义
定义
向量内积是两个向量之间的点乘运算,记作$mathbf{A} cdot mathbf{B}$。 其结果是一个标量,表示两个向量之间的角度余弦值与两个向量模的乘积。
几何意义
叉积的几何意义是垂直于两向量所在平面的第三个向量,其模长等于两向量构成的平行四边形的面积。
性质
叉积满足反交换律,即$mathbf{A} times mathbf{B} = -mathbf{B} times mathbf{A}$。
点积与叉积的区别和联系
区别
点积和叉积在定义、几何意义和性质上都有所不同。点积是两向量的内积,结果 是一个标量;叉积是两向量的外积,结果是一个向量。
如果两个向量的方向垂直,则它们正交。
判断两个向量的模长是否 相等
如果两个向量的模长相等,则它们正交。
03
CHAPTER
向量的内积与正交的应用
向量内积在几何中的应用
判断两向量是否垂直
通过计算两向量的内积,若结果为0,则两向量垂直。
计算向量的长度
利用向量内积和向量的模长,可以计算出任意向量的长度。
计算向量的夹角
向量内积的计算方法
坐标表示法
若向量$mathbf{A}$和$mathbf{B}$的坐标分别为$(a_1, a_2, ..., a_n)$和$(b_1, b_2, ..., b_n)$,则$mathbf{A} cdot mathbf{B} = a_1b_1 + a_2b_2 + ... + a_nb_n$。
向量的内积与向量组的正交化ppt课件
+
1
+
2
3 0.
1 0
它的基础解系为
1
0 , 1
2
1 . 1
把基础解系正交化,即合所求.亦即取 a2 1,
a3
2
[ [
1, 1,
2]
1]
1
.
其中[1, 2] 1,[1,1] 2,于是得
a2
1 0 , 1
a3
0 1 1
1 2
1 0 1
1 2
1 2 . 1
4、正交矩阵与正交变换
定义4 若n阶方阵A满足 AT A E 即A1 AT ,则称A为正交矩阵.
定理 证明
A为正交矩阵的充要条件是 A的列向量都是单位向量且两两正交.
a11
AT
A
E
a12 L
a21
a22 L
L L L
an1 a11 an2 a21 L L
a12
a22 L
L L L
201
由于
0 1 2 0, 所以 1 , 2 , 3 线性无关 .
112
即 A 有 3 个线性无关的特征向量 , 因而 A 可对角化 .
2 1 2 (2) A 5 3 3
1 0 2
2 1
2
A E 5 3 3 + 13
1
0 2
所以 A 的特征值为 1 2 3 1 . 把 1代入 A E x 0 , 解之得基础解系 (1,1,1)T ,
内积的运算性质 其中 x, y, z为n维向量,为实数 :
(1) [x, y] [y, x]; (2) [x, y] [x, y]; (3) [x + y, z] [x, z] + [y, z];
向量的内积与施密特正交化过程
目录
• 向量的内积 • 施密特正交化过程 • 向量的模与向量的夹角 • 施密特正交化过程在向量空间中的应用 • 向量内积与线性代数的关系
01
向量的内积
向量内积的定义
定义
向量内积是两个向量之间的点积运算, 记作$mathbf{a} cdot mathbf{b}$。 它等于向量$mathbf{a}$和 $mathbf{b}$的各分量相乘后的总和。
征向量等。
THANKS
感谢观看
在信号处理中,施密特正交化过程可以用于将一组信号向量转化为正交基底,以便更好地分析和处理信 号。
在量子力学中,施密特正交化过程可以用于将一组量子态向量转化为正交基底,以便更好地描述量子系 统的状态和演化。
05
向量内积与线性代数的关 系
向量内积与矩阵的关系
向量内积的定义
两个向量$mathbf{a}$和$mathbf{b}$的内积定义为$mathbf{a} cdot mathbf{b} = ||mathbf{a}|| times ||mathbf{b}|| times cos theta$,其中 $theta$是两向量之间的夹角。
施密特正交化过程的定义
01
施密特正交化过程是一种数学 方法,用于将一组线性无关的 向量转换为正交基。
02
正交基是指一组两两正交的向 量,即它们的内积为0。
03
通过施密特正交化过程,我们 可以得到一组标准正交基,即 它们的长度为1且两两正交。
施密特正交化过程的应用
在线性代数中,施密特正交化过程常 用于将一组给定的线性无关向量转换 为标准正交基,从而方便进行向量运 算和矩阵表示。
矩阵与向量内积的关系
矩阵乘法可以看作是线性变换的一种表示,而向量内积则是描述向量之间角度 和长度关系的工具,因此向量内积在矩阵乘法中有着重要的应用。
线性代数第六章向量空间及向量的正交性讲义
一、n 维向量的定义及运算一、n 维向量的定义及运算二、向量空间二、向量空间第一节向量空间第二节向量的正交性一、向量空间及其维数和基一、向量空间及其维数和基二、向量在基下的坐标二、向量在基下的坐标例1设V 是一些n 维实向量的组成的非空集合,如果V 关于向量的加法与数乘封闭(线性运算封闭),即(1) ∀a , b ∈V , 有a +b ∈V .(2) ∀a ∈V , k ∈R , 有k a ∈V .则称V 是一个实向量空间.一、向量空间及其维数和基定义1全体n 维向量的集合{(x 1, x 2, …, x n )T | x i ∈R ,i=1, 2, …, n }是一个向量空间,记为R n .特别的n = 1 时全体实数R 是一个向量空间;n = 3 时全体三维向量{(x 1, x 2, x 3)T |x i ∈R ,i= 1, 2, 3 } 是一个向量空间,记为R 3.n = 2 时全体平面中的向量{(x 1, x 2 )T | x i ∈R ,i=1, 2} 是一个向量空间,记为R 2.注:向量空间中必含有零向量。
例3例2而W = {(a 1, a 2, …, a n )T |}01∑==ni i a 是一向量空间.}1|),,,{(121∑==…=ni i T n a a a a S 不是一向量空间, 因为它关于加法与数乘均不封闭,也不含零向量.仅含一个n 维零向量0=(0, 0, …, 0)T 的集合{0}构成一个向量空间,称为零空间.除零空间之外的所有向量空间均称为非零空间。
设V 是一个向量空间,W V, W ≠∅. 如果W 关于向量的加法与数乘也封闭,则称W 是V 的子空间.定义2若W V ,并且V W , 则称两个向量空间相等,记为W=V.⊆⊆⊆例5}1,,2,1,|)0,,,,{(1211−=∈=−n i a a a a W i T n ""R }|),,,,{(2R ∈=a a a a a W T "n 个分量都是R n 的子空间.及例6设a ∈V , 则span {a } = {ka | k ∈R }为V 的子空间,称它为由a 生成的子空间,a 称为这子空间的生成元.{}},,2,1,,|{,,11s i k k span i si i i s ""=∈==∑=R a a a a a 是V 的由a 1, a 2, …, a s 生成的子空间.更一般地,设a 1, a 2, …, a s ∈V .例4V 本身和{0}都是V 的子空间,称它们为V 的平凡子空间.例7证明:m×n阶齐次线性方程组Ax=0的解集S组成一个向量空间,称S为齐次方程组Ax=0的解空间.证明:设u,v为Ax=0的解集S中的任意两个向量,满足Au=0,Av=0. 设k为任一实数。
向量内积与向量组的正交化
向量内积与向量组的正交化
定义3-16
对Rn中的向量α=a1,a2,…,anT,称实数α,α为向量α的长度 或模,记作‖α‖.即
‖α‖=43;a2n 长度为1的向量称为单位向量. 由向量长度的定义,可证得以下性质: (1)‖α‖≥0,且‖α‖=0的充要条件是α=0. (2)对任意实数k,有‖kα‖=k‖α‖. (3)‖α,β‖≤‖α‖·‖β‖. (4)‖α+β‖≤‖α‖+‖β‖.
向量内积与向量组的正交化
定义3-19
如果n阶方阵Q满足 QTQ=QQT=E 那么称Q为正交矩阵.
正交矩阵具有下列性质:
向量内积与向量组的正交化
定理3-11
若Q是正交矩阵,则 (1)Q=±1. (2)Q-1=QT也是正交矩阵. 证明 (1)因QTQ=E=1,所以Q2=1,故Q=±1. (2)因(Q-1) T=(QT)T=Q=(Q-1) -1,所以Q-1也是正交矩阵. 证毕. 由定义3-19及定理3-11可得:
向量内积与向量组的正交化
定理3-12
n阶方阵Q是正交矩阵的充分必要条件,是Q的列(行) 向量组,是单位正交向量组.
由以上讨论容易验证下面两个实方阵都是正交矩阵:
谢谢聆听
向量内积与向量组的正交化
上述定理的逆命题不成立.即线性无关的向量 组不一定是正交向量组.但可以通过线性组合的方 式将一个线性无关的向量组改造成一个与之等价 的正交向量组.
将一个线性无关的向量组正交化的方法很多, 此处不加证明地给出一种方法:施密特(Schmidt) 正交化法.具体操作步骤如下:
向量内积与向量组的正交化
设向量组α1,α2,…,αs线性无关.
取
β1=α1
向量内积与向量组的正交化
【例3-22】
向量的内积与正交向量组
§2.4 向量的内积与正交向量组定义1 在中,设向量n R ,,2121⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n n b b b a a a βα令,),(2211n n b a b a b a +++= βα称为向量与的内积.),(βααβ.),(βαβαT =例如,设则与的内积.)2,1,3,2(,)0,0,1,1(T T =−−=βααβ.12010312)1(),(=⨯+⨯+⨯+⨯−=βα内积是向量的一种运算,可用矩阵记号表示为根据定义1,不难验证内积具有下述性质:,0),)(4().,(),)(3().,(),)(2().,(),)(1(≥++=+==ααγβγαγβαβαβααββαk k 当且仅当时,有其中为中的向量,为常数.0=α.0),(=ααγβα,,n R k n R 定义2 对中的向量其长度向量长度也称为向量的范数.,),,,(21Tn a a a =α.),(22221n a a a +++== ααα例如,向量的长度T )2,1,1(=α.6211),(222=++==ααα向量长度具有下面的性质:当且仅当时,有.0α≥(1),0=α0=α.k k αα=•(2)(3)对任意向量,有βα,)1(.),(βαβα•≤如果上面不等式可写成这一等式称为柯西-施瓦次不等式.,),,,(,),,,(2121Tn T n b b b a a a ==βα.12121∑•∑≤∑===n i i n i i n i i i b a b a 证:当时,(1)式显然成立,以下. 令t 是一个实数,作向量. 由内积的性质(4)可知,不论t 取何值,一定有0=β0≠ββαγt +=,0),(),(≥++=βαβαγγt t对于不等式(1)当且仅当线性相关时,等号才成立.这由上述证明过程可以看出.用向量的长度去除向量,就得到一个单位向量,通常称为把向量单位化.即0),(),(2),(2≥++t t βββααα取代入上式,得),(),(βββα−=t ,0),(),(),(2≥−βββααα即),,)(,(),(2ββααβα≤两边开方得βαβα•≤),(βα,长度为1的向量称为单位向量,对于中的任一非零nR 向量,向量是一个单位向量.ααα1)0(≠ααα例1零向量与任意向量的内积为0,因此零向量与任意向量正交.定义3 如果两个向量与的内积等于0,即则称向量与互相正交. 记为.αβ,0),(=βααββα⊥例2 中的单位坐标向量组是两两正交的.n R n εεε,,,21 ⎩⎨⎧≠==)(0)(1),(j i j i j i εε定义4如果中的非零向量组两两正交,即则称该向量组为正交向量组.n R s ααα,,,21 ),,,2,1,;(0),(s j i j i j i =≠=αα定理4.1中的正交向量组线性无关.nR 证设为中的正交向量组,且有数,s ααα,,,21 n R s k k k ,,,21 .02211=+++s s k k k ααα 使得上式两边与向量组中的任意向量求内积,得i α,0)0,(),(2211==+++i s s i k k k ααααα 即,0),(),(),(2211=+++s i s i i k k k αααααα 由于,所以上式可化简为)(0),(j i j i ≠=αα,0),(1=i i k αα而为非零向量,于是得,从而线性无关.i α,0),(≠i i αα),,2,1(0s i k i ==s ααα,,,21.),(),(),(),(),(),(,),(),(),(),(,),(),(,111122221111222231111333111122211−−−−−−−−=−−=−==s s s ss s s s s ββββαββββαββββααβββββαββββααβββββααβαβ如果已知中的线性无关的向量组则可以生成正交向量组使这两个向量组等价.由一个线性无关向量组生成满足上述性质的正交向量组的过程,一般称为将该向量组正交化,将一个向量组正交化可以应用施密特正交化方法,其步骤如下:n R 12,,,,s ααα12,,,,s βββ对于中的线性无关向量组,令n R s ααα,,,21解.)21,21,1()1,1,0(21)1,1,1(30)0,1,1(),(),(),(),(,)1,1,0()1,1,1(33)2,0,1(),(),(,)1,1,1(222231111333111122211T T T T T T T T−=−−−−−=−−=−=−=−===ββββαββββααβββββααβαβ例3已知线性无关向量组将其化为正交向量组.,)0,1,1(,)2,0,1(,)1,1,1(321T T T −===ααα定义5设n 阶实矩阵Q ,满足则称Q 为正交矩阵.例如,单位矩阵E 为正交矩阵;在平面解析几何中,两直角坐标系间的坐标变换矩阵,是正交矩阵.正交矩阵具有下述性质:(1)若Q 为正交矩阵,则其行列式的值为1或-1.(2)若Q 为正交矩阵,则Q 可逆,且(3)若P , Q 都是正交矩阵,则它们的积PQ 也是正交矩阵.,E Q Q T =⎪⎭⎫⎝⎛−θθθθcos sin sin cos .1T Q Q =−定理4.2设Q 为n 阶实矩阵,则Q 为在正交矩阵的充分必要条件是其列(行)向量组是单位正交向量组.即Q 为正交矩阵的充分必要条件是其列向量组是单位正交向量组.类似可证,Q 的正交矩阵的充分必要条件是其行向量组是单位正证设,其中为Q 的列向量组.Q 是正交矩阵等价于而),,,(21n Q ααα =n ααα,,,21 ,E Q Q T =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n T n T n T n n T T T n T T T n T n T T T Q Q αααααααααααααααααααααααα 2122212121112121),,,(由此可知等价于E Q Q T =⎩⎨⎧=≠===),,2,1,;(0),,,2,1(1n j i j i n i j T i i T i αααα11例4正交阵的例子:定义6若Q 为正交矩阵,则线性变换y =Qx 为正交变换.由正交变换的定义可知这表明正交变换不改变向量的长度,这正是正交变换的优良特性..31313161616221210)2(;010100001)1(⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛−−⎪⎪⎪⎭⎫⎝⎛−−.x x x Qx Q x y y y T T T T ====。
向量的内积、正交性
2 2 2 x1 x2 x3 [ x , x ]
向量的长度 定义:令
|| x || [ x , x ]
2 2 2 x1 x2 xn
称 || x || 为 n 维向量 x 的长度(或范数). 当 || x || = 1时,称 x 为单位向量. 向量的长度具有下列性质:
[x, y]2 ≤ [x, x] [y, y].
回顾:线段的长度
P(x1, x2)
x2
[x, x] = x12 + x22 + … + xn2 ≥ 0
若令 x = (x1, x2)T,则
| OP |
2 2 x1 x2 [ x , x ]
O
x1
P 若令 x = (x1, x2, x3)T,则 x3 x2 x1 O
|| e1 || [e1 , e1 ] 1
从而 e1, e2, …, er 是向量空间 V 中的一个规范正交基.
1 1 4 例:设 a1 2 , a2 3 , a3 1 ,试用施密特正交化 1 1 0 过程把这组向量规范正交化.
x1 x 3 得 x2 0
1 1 从而有基础解系 0 ,令 a3 0 . 1 1
定义: n 维向量e1, e2, …, er 是向量空间 V R n中的向量, 满足 e1, e2, …, er 是向量空间 V 中的一个基(最大无关组); e1, e2, …, er 两两正交; e1, e2, …, er 都是单位向量, 则称 e1, e2, …, er 是V 的一个规范正交基.
说明:
• 内积是两个向量之间的一种运算,其结果是一个实数. • 内积可用矩阵乘法表示:当x 和 y 都是列向量时, [x, y] = x1 y1 + x2 y2 + … + xn yn = xT y .
向量的内积与正交向量组
2020年3月30日星期一
13
复习
“对乘加”
内积:, @a1b1 a2b2 L anbn
模(范数): @ , a12 a22 L an2
单位化:
0
正交:, 0
正交向量组必线性无关.
2020年3月30日星期一
14
施密特正交化方法(递推公式):
第十一次课
教学内容
§5.1 向量的内积与正交向量组 教学目标及基本要求
了解内积、正交的概念 了解正交向量组的性质 掌握施密特(Schmidt)正交化方法 了解正交矩阵的概念及性质 重点
施密特(Schmidt)正交化方法 难点 施密特(Schmidt)正交化方法
§5.1 向量的内积与正交向量组
一、向量的内积
1. def:设列向量 a1, a2 L an T , b1,b2 L bn T
b1
内积 , @ T
a1, a2 L
an
b2
M
bn
“对乘加”
a1b1 a2b2 L anbn
2020年3月30日星期一
2
2.性质
交换律:, ,
结合律:k, ,k k , 分配律: , , , :, a12 a22 L an2 0
模(范数): @ , a12 a22 L an2
单位化:
0
正交:, 0
正交向量组必线性无关.
2020年3月30日星期一
16
施密特正交化方法(递推公式):
正交化:
1 1
k 2,3,L , m 正交向量组
k
k
k , 1 1, 1
1
k , 2,
2 2
2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可得: 定理:方阵 A 为正交阵的充分必要条件是 A 的列(行)向量都 是单位向量,且两两正交。
正交矩阵有如下性质: 1) 若 A 为正交矩阵,则 |A|=1 或 |A|= -1; 2) A为正交矩阵,则 AT=A-1 也为正交矩阵; 3) 若A,B为同阶正交矩阵,则 AB 也为正交矩阵。 定义:若 P 为正交矩阵,则线性变换 y = Px 称为正交变换。 性质:正交变换保持线段长度不变。 设 y=Px 为正交变换,则有 由于任意两点的距离均不变,从而正交变换不改变图形的形状, 这是正交变换的优良特性。
(1) (x,y) = (y, x); (2) (kx, y) = k (x, y); (3) (x+y, z) = (x, z)+(y,z); (4) (x, x)≥0,当且仅当 x=0 时, (x,x)=0。 内积还满足施瓦茨(Schwarz)不等式
定义:定义向量
的长度(范数, 模)为
向量的长度具有下述性质: (1) 非负性:当 x≠0 时,|| x ||>0;当 x=0 时,||x||=0; (2) 齐次性: ||k x || = |k| ||x||; (3) 施瓦茨不等式:|(x,y)| ≤ ||x|| ||y||; (4) 三角不等式:||x+y|| ≤ ||x|| + ||y||。
正交的
;
,即得 n 个两两正交的
若现已有线性无关的向量组
,也可以构
建一个与之等价的且两两正交的向量组:
以上过程称为施密特(Schimidt)正交化过程。 进一步,可将 单位化(规范化),
对施密特正交化过程,应注意向量组 等价,其中 t=1,…, r
与向量组
例:
=
=
例:
三 正交矩阵与正交变换
定义:如果 n 阶矩阵 A 满足
第6节 向量的内积与正交化 一 向量的内积、长度及向量间的夹角 定义
内积是两个向量之间的一种运算,其结果是一个实数。 内积也称作点积或点乘,并记作 x ·y。 由于向量又可看作矩阵,借用矩阵记号,向量(列矩阵)x,
y 的内积又可写成 (x,y) = xT y。
内积具有下列性质(其中 x, y, z交的向量组及向量组的正交化
若一组向量两两正交,且不含0向量,则称该向量组为正
交向量组。 定理:正交的向量组必线性无关。
例:
在 n维向量空间中可以找到 n 个两两正交的向量。这是因为 1) 对任意的 则 2) 又因方程组 正交; 有非零解,从而任取一非零解作为
亦有非零解,从而可确定与
3) …… 如此下去进一步确定出 非零向量组。
在二、三维空间中有向量夹角的概念,在更高维的向量
空间中,夹角并没有直观的含义。 但由施瓦茨不等式, 当 x≠0, y≠0时,有
称该角度为非零向量x与y的夹角。 当(x,y)=0时,x与y的夹角为 记为 。 ,此时称向量x与y正交,
由于零向量与任意同维向量的内积为0,所以规定零向
量与任意同维向量正交。