机械 工程材料 第五章
《机械工程材料》复习习题及答案
第一章材料的性能1.1 名词解释δb δb δsδ0.2 δ-1 a k HB HRC1.2 填空题1.材料常用的塑性指标有(延伸率)和(断面收缩率)两种,其中用(延伸率)表示塑性更接近材料的真实变形。
2.检验淬火钢成品件的硬度一般用( 洛氏)硬度,检测退火件、正火件和调质件的硬度常用(布氏)硬度,检验氮化件和渗金属件的硬度采用(维氏)硬度试验。
3.材料的工艺性能是指( 铸造)性能、(锻造)性能、(焊接)性能、(切削加工)性能和(热处理)性能。
4.工程上常用金属材料的物理性能有( 熔点)、(密度)、(导电性)、(磁性)和(热膨胀性)等。
5.表征材料抵抗冲击载荷能力的性能指标是(冲击韧性ak ),其单位是( J/cm2 )。
1.3 简答题2.设计刚性好的零件,应根据何种指标选择材料?采用何种材料为宜?3.常用的硬度方法有哪几种?其应用范围如何?这些方法测出的硬度值能否进行比较?1.4 判断1.金属的熔点及凝固点是同一温度。
( 错)2.导热性差的金属,加热和冷却时会产生内外温度差。
导致内外不同的膨胀或收缩,使金属变形或开裂。
( 对)3.材料的强度高,其硬度就高,所以刚度大。
( 错)4.所有的金属都具有磁性,能被磁铁所吸引。
( 错)5.钢的铸造性比铸铁好,故常用来铸造形状复杂的工件。
( 错)1.5 选择填空1.在有关零件图图纸上,出现了几种硬度技术条件的标注方法,正确的标注是( D )。
(a)HBS650—700 (b)HBS=250—300Kgf/mm2(c)HRCl5—20 (d) HRC 45—702.在设计拖拉机缸盖螺钉时应选用的强度指标是( a )。
(a) δb (b) δs(c) δ0.2(d) δp3.在作疲劳试验时,试样承受的载荷为( c )。
(a)静载荷(b)冲击载荷(c)交变载荷4.洛氏硬度C标尺使用的压头是( b )。
(a)淬硬钢球(b)金刚石圆锥体(c)硬质合金球5.表示金属密度、导热系数、导磁率的符号依次为( d )、( f )、( c )。
机械工程材料课程标准
《机械工程材料》课程标准学时数:48学时______________ 课程性质:专业基础课------ 适用专业:机电技术应用一一、课程定位和课程设计(一)课程性质与作用该课程是焊接技术及自动化专业的一门重要的专业基础课程。
是研究工程材料的性能、组织、热处理的基本知识,以及它们之间相互联系的学科。
通过本课程的学习使学生掌握常用材料的性能组织之间的关系及有关热处理的基本知识,为学习有关后继课程和从事生产技术工作打下良好的基础。
培养学生分析问题和解决问题的能力,使学生对常用机械工程材料有充分的认识,能根据材料的性能特点做到正确选材。
机械工程材料对帮住学生深入了解焊接技术专业特点,巩固加深专业知识,合理正确的选材起着非常重要的作用,课程的学习需要建立在相关专业基础课程的知识之上,尤其是机械制图、机械设计基础、机械制造基础、互换性与技术测量等课程的学习。
(二)课程设计理念遵循“设计导向”的现代职业教育指导思想,服从专业人才培养计划整体优化的要求。
在够用的基础上,考虑学生以后专业技能的发展,为培养“懂工艺、精操作、善维护、能管理、可提升”的高技术高素质、高技能应用型职业人才的培养目标而制定本课程标准。
培养学生树立终身学习的教育观念。
(三)课程设计思路在目前的教学条件下机械工程材料的教学主要以课堂讲授为主,保证了课程的学科体系,教学方法采用多媒体课件、现场教学、实物教学和项目教学相结合的教学模式。
二、课程目标(一)知识目标1.熟悉常用机械工程材料的成分,组织结构、加工工艺与性能之间的关系及变化规律;2.掌握常用机械工程材料的性能与应用,具有选用常用机械工程材料和改变材料性能方法的初步能力;3.掌握常用金属材料的牌号、性能、应用范围。
4.了解与本课程有关的新材料、新工艺、新技术及其发展概况;(二)能力培养目标1.熟悉常用机械工程材料的特点并能正确的选材;2.能根据所学知识进行简单热处理工艺的编制;(三)思想教育目标1培养学生热爱本职工作、勤学善思、勇于创新的精神;3.培养学生良好的职业道德素质;4.培养学生严谨、认真、务实的工作态度;5.培养学生刻苦钻研业务、擅于合作的团队精神。
机械工程材料习题答案
第六章 钢的热处理
2、何谓本质细晶粒钢?本质细晶粒钢的奥氏体晶粒是否一定比本质粗晶粒钢的细?
答: wC0.45%碳钢属于低碳钢,室温平衡组织为F+P,其中F和P相对含量分别为:
wF%0.77 0. 77 0.4542%
硬因度此和,伸该长碳率钢等的性硬能度指为标:符合加w合P法%则。 00..747558%
伸长率为:
H 4 5H PV P % H FV F % 1 8 0 5 8 % 8 4 2 % 1 0 4 .4 3 .3 6 1 0 7 .7 6
增加,材料硬度增加、塑性下降,强度在~ wC0.90% 时最高,之后下降。
因此,Rm( σb): wC0.20%< wC1.20%< wC0.77% HBW: wC0.20%< wC0.77%< wC1.20% A: wC1.20%< wC0.77%< wC0.20%
4、计算碳含量为wC0.20%的碳钢的在室温时珠光体和铁素体的相对含量。
B 将( α+β )II 视为一种组织构成项:
WαI=
W(α+β)II=
61.9-30 61.9-19 30-19 61.9-19
=74.36% =25.64%
WαI= W(α+β)II=
61.9-30 61.9-19 30-19 61.9-19
=74.36% =25.64%
则在( α+β )II中含有多少α和多少β相?
2、试述固溶强化、加工硬化和弥散强化的强化原理,并说明三者的区别。
答: 固溶强化:溶质原子溶入后,要引起溶剂金属的晶格产生畸变,进而位错运动时受到阻力增大。 弥散强化:金属化合物本身有很高的硬度,因此合金中以固溶体为基体再有适量的金属间化合物均 匀细小弥散分布时,会提高合金的强度、硬度及耐磨性。这种用金属间化合物来强化合金的方式为 弥散强化。 加工强化:通过产生塑性变形来增大位错密度,从而增大位错运动阻力,引起塑性变形抗力的增加, 提高合金的强度和硬度。 区别:固溶强化和弥散强化都是利用合金的组成相来强化合金,固溶强化是通过产生晶格畸变,使 位错运动阻力增大来强化合金;弥散强化是利用金属化合物本身的高强度和硬度来强化合金;而加 工强化是通过力的作用产生塑性变形,增大位错密度以增大位错运动阻力来强化合金;三者相比, 通过固溶强化得到的强度、硬度最低,但塑性、韧性最好,加工强化得到的强度、硬度最高,但塑 韧性最差,弥散强化介于两者之间。
机械工程材料第二版课后答案
1-3 现有一碳钢制支架刚性不足,采用以下三种方法中的哪种方法可有效解决此问题?为什么?①改用合金钢;②进行热处理改性强化;③改变该支架的截面与结构形状尺寸。
答:选③,改变该支架的截面与结构形状尺寸。
因为金属材料的刚度决定于基体金属的性质,当基体金属确定时,难于通过合金化、热处理、冷热加工等方法使之改变。
1-4 对自行车座位弹簧进行设计和选材,应涉及到材料的哪些主要性能指标?答:强度、弹性、疲劳极限。
1-9 传统的强度设计采用许用应力[σ]= σ0.2/n,为什么不能一定保证零件的安全性?有人说:“安全系数n越大,零件工作时便越安全可靠。
”,你怎样认识这句话?答:传统的强度设计采用[σ]= σ0.2/n ,都是假设材料是均匀无缺陷的,而实际上材料中存在着既存或后生的微小宏观裂纹,因此在实际的强度设计中还应考虑材料抵抗脆性断裂的力学性能指标—断裂韧度(KI),只考虑许用应力[σ]= σ0.2/n 是不能保证零件的安全性的。
“n越大,零件越安全”也是不对的,因为[σ]= σ0.2/n,n增大就会使[σ]降低而牺牲材料的强度,将塑性和韧性取大一些,导致[σ]偏低而零件的尺寸与重量增加,浪费了原材料。
1-11 一般认为铝、铜合金的耐蚀性优于普通钢铁材料,试分析在潮湿性环境下铝与铜的接触面上发生腐蚀现象的原因。
答:潮湿环境下铝与铜的接触面上会发生电化学腐蚀,因为这时铝与铜的接触面因电极电位不同存在着电极电位差而发生电化学腐蚀。
2-1常见的金属晶体结构有哪几种?它们的原子排列和晶格常数有什么特点?-Fe、-Fe、Al、Cu、Ni、Cr、V、Mg、Zn各属何种结构?答:常见晶体结构有3种:⑴体心立方:-Fe、Cr、V⑵面心立方:-Fe、Al、Cu、Ni⑶密排六方:Mg、Zn2-2 已知-Fe的晶格常数(a=3.6 )要大于-Fe的晶格常数(a=2.89 ),但为什么-Fe冷却到912℃转变为-Fe时体积反而增大?答:-Fe冷却到912℃转变为-Fe时体积增大,是因为转变之后面心立方的-Fe转变为体心立方的-Fe时致密度变小。
《工程材料》第五章 铁碳合金相图
二.制定热加工工艺方面的应用
第六节 铁碳合金的生产及分类
钢铁的冶炼。 钢锭的组织、质量及缺陷。 碳素钢的分类、编号及用途。
一.钢铁的冶炼
铸铁锭
生产铸铁件
高炉 炼铁
炼钢生铁
转炉 平炉 电炉
生产钢件
平炉炼钢
转炉炼钢
亚共析钢 ( hypoeutectoid steel )
过共析钢 ( hypereutectoid steel )
共晶白口铁 ( eutectoid white iron )
亚共晶白口铁( hypoeutectoid white iron )
过共晶白口铁( hypereutectoid white iron )
4.3%C
6.69%C Fe3C
Fe - Fe3C 相图
二. Fe - Fe3C 相图的分析
五个重要的成份点: P、S、E、C、K。 四条重要的线: EF、ES、GS、FK。 三个重要转变: 包晶转变反应式、共晶
转变反应式、共析转变反应式。 二个重要温度: 1148 ℃ 、727 ℃ 。
工程材料 机械制造基础 -Ⅰ
第五章 铁碳合金相图
第五章 铁碳合金相图 ( Iron – Carbon Phase Diagram )
Fe – C 相图的基础知识。 形成Fe - Fe3C 相图组元和基本组织的结
构与性能。 Fe - Fe3C 相图的建立与分析。 碳的质量分数对铁碳合金组织、性能的
共晶白口铁组织金相图
6.亚共晶白口铁 ( Wc = 3.0% )
亚共晶白口铁组织金相图
7.过共晶白口铁 ( Wc = 5.0% )
机械工程材料_沈莲_05章_铸铁
一、石墨化过程
铸铁中的碳元素除了少部分固溶于铁素体和奥 氏体,还可以以渗碳体(Fe3C)化合物和游离态 的石墨(Graphite)两种形式存在。
铸铁中石墨的形成过程称为石墨化过程。
SCHOOL OF ELECTRONICAL AND INFORMATION ENGINEERING
电气信息工程学院
机械工程材料
机械工程材料
若将含有铸铁成分的铁碳合金从液态以极其缓 慢的平衡状态进行冷却时,则其组织转变将按照 Fe-G相图进行,且石墨化过程可分为三个阶段。
第一阶段,液态石墨化阶段。从液体中直接析 出的石墨和在1154℃时通过共晶转变而形成的共
晶石墨。L4.26 2.08 G共晶
第二阶段,中间石墨化阶段。是从1154℃~ 738℃的冷却过程中,自奥氏体中析出的石墨。
1. 化学成分的影响
铸铁中的C和Si是促进石墨化的元素,它们的 含量越高,石墨化过程越易进行。
此外,P、Al、Cu、Ni、Co等元素也会促进石 墨化;而S、Mn、Cr、W、Mo、V等元素则阻碍 石墨化。
SCHOOL OF ELECTRONICAL AND INFORMATION ENGINEERING
电气信息工程学院
第五章 铸铁
CAST IRON
机械工程材料
铸铁:碳的质量分数Wc大于2.11%(一般为 2.5%~5.0%)的铁碳合金。详尽地说,铸铁中也 含有Si(硅)、Mn(锰)、S(硫)、P(磷)等 其他元素。
铸铁
白口铸铁 P Fe3CII Ld Ld Fe3CI Ld 灰口铸铁 F G F P G P G
图5-2中,实线表示Fe-Fe3C相图,虚线表示 Fe-G相图。
SCHOOL OF ELECTRONICAL AND INFORMATION ENGINEERING
《机械工程材料(第4版)》第5章
答案:C
解题过程:第三阶段不进行,不会析出α。
3、下列哪种材料的疲劳性能对缺口敏感度的影响(q值)最小()
A.灰铸铁B.碳钢C.合金钢D.陶瓷材料
答案:A
解题过程:灰铸铁q值很低的原因是其组织中的石墨片本身就是一种缺口,所以对试样表面缺口反而不敏感。
4、铸铁中wSi每增加1%,共晶点碳的质量分数相应()
A.增加1/3B.降低1/3C.增加0.4倍D.降低0.4倍
答案:B
解题过程:略。
5、那个选项具有与中碳钢媲美的性能,可以制造发动机曲轴。()
A.球墨铸铁B.灰铸铁C.可锻铸铁D.蠕墨铸铁
答案:A
解题过程:略。
二、判断题
1、可锻铸铁中的石墨是在铸造冷却过程中形成的。()
答案:Y
解题过程:略。
三、填空题
1、铸铁中除了Fe和C以外的主要元素是______________。
答案:Si
2、铸铁的石墨化:_________________________________________________。
答案:铸铁组织中析出碳原子,形成石墨的过程称为铸铁的石墨化过程。
3、影响铸铁石墨化的两个主要因素是___________________和_____________________;其对石墨化的影响趋势分别是____________________________和______________________。
《工程材料基础》课后测试试卷
《工程材料基础》课后测试试卷第五章
一、单项选择题
1、下列材料中适合作汽车减速器壳的是()
(完整版)机械工程材料习题集答案
第 1 章材料的性能 、选择题1. 表示金属材料屈服强度的符号是( B ) A.σ B.σs C.σb D.σ-12. 表示金属材料弹性极限的符号是(A ) A.σeB.σsC.σbD.σ-13. 在测量薄片工件的硬度时,常用的硬度测试方法的表示符号是(B ) A.HB B.HRC C.HV D.HS4. 金属材料在载荷作用下抵抗变形和破坏的能力叫( A ) A. 强度 B. 硬度 C. 塑性 D. 弹性二、填空1. 金属材料的机械性能是指在载荷作用下其抵抗(变形 )或(破坏 )的能力。
2. 金属塑性的指标主要有(伸长率)和(断面收缩率)两种。
3. 低碳钢拉伸试验的过程可以分为弹性变形、 (塑性变形)和(断裂)三个阶段。
4. 常用测定硬度的方法有(布氏硬度测试法) 、(洛氏硬度测试法)和维氏硬度测试法。
5. 疲劳强度是表示材料经(无数次应力循环)作用而(不发生断裂时)的最大应力值。
三、是非题1. 用布氏硬度测量硬度时,压头为钢球,用符号 HBS 表示。
2. 用布氏硬度测量硬度时,压头为硬质合金球,用符号HBW 表示。
3. 金属材料的机械性能可以理解为金属材料的失效抗力。
四、改正题1. 疲劳强度是表示在冲击载荷作用下而不致引起断裂的最大应力。
2. 渗碳件经淬火处理后用 HB 硬度计测量表层硬度 。
3. 受冲击载荷作用的工件,考虑机械性能的指标主要是疲劳强度。
4. 衡量材料的塑性的指标主要有伸长率和冲击韧性。
5. 冲击韧性是指金属材料在载荷作用下抵抗破坏的能力。
五、简答题6. 在立方晶系中 , 指数相同的晶面和晶向 (B ) A.相互平行 B. 相互垂直 C. 相互重叠 D. 毫无关联7. 在面心立方晶格中 , 原子密度最大的晶面是 (C ) A.(100) B.(110) C.(111) D.(122)将冲击载荷改成交变载荷 将 HB 改成 HR 将疲劳强度改成冲击韧性 将冲击韧性改成断面收缩率 将载荷改成冲击载荷1. 说明下列机械性能指标符合所表示的意思:σ σs:屈服强度 HRC :洛氏硬度(压头为金刚石圆锥)σb : 抗拉强度HBS:布氏硬度(压头为钢球) 第 2 章材料的结构一、选择题1. 每个体心立方晶胞中包含有( B )个原子2. 每个面心立方晶胞中包含有( C )个原子3. 属于面心立方晶格的金属有( C )4. 属于体心立方晶格的金属有( B )5. 在晶体缺陷中,属于点缺陷的有( A )s 、σ 0.2 、 HRC 、σ -1 、σ b 、δ 5、 HBS 。
工程材料第五章作业答案
1.画出Fe-Fe3C相图,指出图中S、E、GS、SE、PQ、PSK和ECF 各点线的含义,并标注各区域的相组成物或组织组成物。
略2.何谓铁素体(F)、奥氏体(A)、渗碳体(Fe3C)、珠光体(P)?铁素体(F):C在α-Fe中的间隙固溶体,具有体心立方晶格。
奥氏体(A):C在γ-Fe中的间隙固溶体,具有面心立方晶格。
渗碳体(Fe3C):C与Fe的化合物。
珠光体(P):铁素体与渗碳体的机械混合物。
3.在Fe-Fe3C相图上,指出碳在α-Fe和γ-Fe中的溶解度曲线,并指出它们的溶碳范围。
α-Fe:0~0.0218%γ-Fe:0~2.11%4.分别画出含碳为0.45%、0.77%、和1.0%的铁碳合金的结晶过程和室温组织。
w C=0.45%,亚共析钢w C=0.77%,共析钢:w C=1.0%,过共析钢:5.计算下列问题(1)0.6%C钢中的珠光体和铁素体各占多少?(2)1.2%C钢中的珠光体和渗碳体(二次)各占多少?6.某钢试样在显微镜下观察,发现珠光体占40%,铁素体占60%,试问这是什么成分的钢?首先由题设可知,该钢为亚共析钢。
设碳含量为x:求出x=0.32,即该钢为0.32%C的亚共析钢。
7.写出下列牌号钢材所属种类,含碳量和主要用途:45、50、T8、T12A。
45:平均碳含量为0.45%的优质碳素结构钢。
50:平均碳含量为0.50%的优质碳素结构钢。
优质碳素结构钢中有害杂质及非金属夹杂物含量较少,化学成分控制比较严格,塑韧性较好,多用于制造较重要零件。
T8:平均碳含量为0.8%的碳素工具钢。
T12A:平均碳含量为1.2%的高级碳素工具钢。
碳素工具钢含碳量较高,适用于制作工具。
8.解释下列名词α-Fe、α相与铁素体、γ-Fe、γ相与奥氏体α-Fe:具有体心立方晶格的Fe。
α相与铁素体:C在α-Fe中的间隙固溶体,具有体心立方晶格γ-Fe:具有面心立方晶格的Fe。
γ相与奥氏体:C在γ-Fe中的间隙固溶体,具有面心立方晶格。
机械工程材料第五章 铁碳合金
4、共晶白口铁
L
L→ Ld( A+Fe3C) A→ (Fe3C)Ⅱ
A→P(α+Fe3C)
室温组织:Ld′ 即 P+(Fe3C)Ⅱ+Fe3C 室温相:α+Fe3C
5、亚共晶白口铁
L L→A L→ Ld (A+Fe3C) A→ (Fe3C)Ⅱ
A→P(α+Fe3C)
室温组织: Ld′+P+(Fe3C)Ⅱ 即(P+(Fe3C)Ⅱ+Fe3C)+P+Fe3CⅡ 室温相:α+Fe3C
四、 Fe-Fe3C相图的应用
1.为选材提供成分依据
低碳钢(0.10-0.25%C):建筑结构和容器等 中碳钢(0.25-0.60%C):如轴等 高碳钢(0.6-1.3%C):如工具等 白口铁:如拔丝模、轧辊和球磨机的铁球等
34
2.为制定热加工工艺提供依据
(1)在铸造生产方面的应用 根据Fe-Fe3C相图可以确定铁碳合金的浇注温度, 浇注温度一般在液相线以上50℃~100℃。 共晶成分的铸铁凝固区间最小(为零),流动性 好,分散缩孔少,可使缩孔集中在冒口内,有可 能得到致密的铸件得到较广泛的应用。
其性能特点是强度低,硬度不高,易于塑性变形。
⑸ Fe3C相(又称渗碳体):根据其生成条件不同有条状、网状、
片状、粒状等形态,对铁碳合金的力学性能有很大影响。
1600 A 1400 N 1200 1000
+L
B 0.53 J 0.17 H 0.09 1495
L
2.11 E
4.3 1148 C
+
注意:由于不保证化学成分,所以热处理时不能 依甲类钢来选材,应依乙类钢选,才能根据相图 制定热处理工艺。
机械工程材料 第五、六章 工业用钢和铸铁
相当于是在Q235的基础上多添加了0.6~0.8%的 Mn。 3应用 桥梁钢构、船用钢板、车用钢板等。
5-3
南京长江大桥中的钢结构
上海卢浦大桥
5-3
5-3
“利丰南海”—2005年温州地区造 船企业在本土建造的第一艘万吨级 (11000T)国际航线集装箱船
温州船舶建造企业制造—2.3万吨散货 船瑞盛10号,2007年12月25日上午在乐清市 七里港顺利下水
5-1
合金工具钢
用“数字+元素符号+数字”表示
例:
9 Mn 2
表示该钢含有钒元素,平均wV小于 1.5% 表示该钢含有锰元素,平均wMn为2%
V
表示wC的千分之几
滚动轴承钢
用“G+数字”表示
例: G
Cr 1 5
表示该钢含有铬元素,平均wCr为1.5%
“滚动轴承钢”的汉语拼音字头
5-1
不锈钢
第五章 工业用钢
钢的分类、编号、杂质元素 结构钢、工具钢、特殊性能钢
5-1
钢 :以铁为主要元素,碳一般在2.11%以下并含有其他元素的材料
工业用钢中的元素: 主要元素:碳; 常存元素:锰、硅、硫、磷; 偶存元素:铜、钛、钒、稀土元素; 隐存元素:氧、氢; 合金元素:铬、镍、钨、钼、钒、钛、锰、硅、铜、磷 等。 (Si、Mn、Cr、Ni、W、Mo、V、Ti、Al、Cu、Co、 N、B、RE;)
wMn对区的影响
wCr对区的影响
5-2
3、合金元素对钢的热处理的影响
①对奥氏体化的影响 除Ni、Co外,大多数合金元素都延缓钢的奥氏体化过程。 它们阻碍C、Fe的扩散,因此合金钢的A化温度较高、时间较长。 ②对奥氏体晶粒度的影响 除Mn外,几乎所有合金元素都细化晶粒。 以碳化物的细化晶粒效果最显著,阻碍晶界的迁移,从而阻止晶粒长大。 ③对钢的淬透性的影响 除Co外,大多数合金元素,都提高淬透性。 ④对钢的回火稳定性的影响
机械工程材料 第三版 第五章 铁碳合金相图
② 共晶白口铸铁 (4.3%C)
③ 过共晶白口铸铁 (4.3~6.69%C)
㈠工业纯铁的 结晶过程
合 金 液 体 在 1-2
点间转变为, 3-4 点 间 → , 5-6 点 间 → 。 到7点,从中
析出Fe3C。
L+ H B
J
N +
+ S
工业纯铁的结晶过程
PQ—碳在-Fe中的固
溶线。
⒊ 相区
⑴ 五个单相区:
L、、、、Fe3C ⑵ 七个两相区: L+、
L+、L+Fe3C、 +、 +Fe3C、+ 、 +Fe3C
⑶ 三个三相区:即HJB (L++)、ECF(L++ Fe3C)、 PSK(++ Fe3C)三条水平线
三、典型合金的平衡结晶过程
铁碳相图上的合金,按成分可分为三类: ⑴ 工业纯铁(<0.0218% C) 组织为单相铁素体。
㈡ 共析钢的结晶过程
合金液体在 1-2点间转变
为。到S点
发生共析转 变:
S⇄P+Fe3C, 全部转变
为珠光体。
共析钢的结晶过程
珠光体在光镜下呈指纹状. 变结束时,珠光体中相的
相对重量百分比为:
Q
SK PK
6.69 0.77 6.69 0.0218
88.8%,
Q Fe3C 100% 88.8% 11.2%
从铁素体中析出的渗碳体称三次渗碳体,用Fe3CⅢ 表示。 Fe3CⅢ以不连续网状或片状分布于晶界。
随温度下降,
Fe3CⅢ量不断 增加,合金的
05--《工程材料》第五章
结晶过程: ①匀晶转变:合金在1-2点间按匀晶转变结晶出δ固溶体. ②包晶转变:到2点,δ含0.09%的C,液体含0.53%的C, 在恒温下发生包晶转变,δ0.09+L0.53→A0.17。 有液相剩余。 ③匀晶转变:在2-3点间液相继续转变为A0.53。所有A的 成分均沿JE线变化冷到3点,合金全部由含 碳0.40%的奥氏体所组成。 ④析出F:到4点时,开始析出F,4-5点A成分沿GS线变化, A含碳量升高,铁素体成分沿GP线变化。 ⑤共析转变:到5点时,奥氏体的成分达到S点成分(含碳 0.77%)便发生共析转变 ⑥析出Fe3CⅢ:温度下降,铁素体的溶碳量沿PQ线变化, 析出Fe3CⅢ,Fe3CⅢ量很少,可忽略。
3.S:一般认为S在钢中是一种有害的元素。 ①硫不溶于铁,而生成FeS,FeS与Fe形成共晶体 (熔点为989℃),分布于奥氏体晶界。当钢材 在1000℃-1200℃压力加工时,共晶已经熔化, 并使晶粒脱开,钢材将变得极脆,这种脆性现 象称为热脆。 ②在钢中增加含锰量,可消除S 的有害作用,Mn 能与S形成熔点为1620℃的MnS,而且MnS在高温 时具有塑性,这样避免了热脆现象。 来源:生铁中带来的而在炼钢时又未能除尽的元素。 含量:硫必须严格控制,普通钢含S量应≤0.055%, 优质钢含硫量应≤0.040%,高级优质钢含硫量 应≤0.030%。
三、铁碳合金的成分与性能的关系 (一)铁碳合金的相组成物、组织组成物的相对量
(二)含碳量对铁碳合金机械性能的影响
第三节
碳
钢
一、常存杂质元素对碳钢性能的影响 常存的杂质元素:Si、Mn、S、P、O、N、H 1.Mn:一般认为Mn在钢中是一种有益的元素。 ①Mn大部分溶于铁素体中,形成置换固溶体,并使 铁素体强化; ②另一部分Mn溶于Fe3C中,形成合金渗碳体,这都 使钢的强度提高,Mn与S化合成MnS,成熔点为 1620℃,能减轻S的有害作用。 ③Mn含量不多,在碳钢中仅作为少量杂质存在时, 它对钢的性能影响并不明显。 来源:钢中的Mn来自炼钢生铁及脱氧剂锰铁。 含量:在碳钢中含锰量通常<0.80%;在含锰合金钢中, 含锰量一般控制在1.0-1.2%范围内。
机械工程材料 第五章 钢的热处理.答案
30s
650 550
2s
40s
2s 5s
10s
2、C 曲线的分析 ⑴ 转变开始线与纵
坐标之间的距离为
孕育期。
孕育期越小,过冷
奥氏体稳定性越小.
孕育期最小处称C
曲线的“鼻尖”。
碳钢鼻尖处的温度
为550℃。
在鼻尖以上, 温度较 高,相变驱动力小.
在鼻尖以下,温度
较低,扩散困难。
从而使奥氏体稳定
为板条与针状的混合
组织。
0.2%C 0.45%C 1..2%C
3、马氏体的性能 高硬度是马氏体性 能的主要特点。 马氏体的硬度主要 取决于其含碳量。 含碳量增加,其硬
C%
马氏体硬度、韧性与含碳量的关系
度增加。
当含碳量大于0.6%时,其硬度趋于平缓。
合金元素对马氏体硬度的影响不大。
℃
温 度 ,
共析钢奥氏体化曲线(875℃退火)
体成分趋于均匀。
共析钢奥氏体化过程
亚共析钢和过共析钢的奥 氏体化过程与共析钢基本
相同。但由于先共析 或
二次Fe3C的存在,要获得
全部奥氏体组织,必须相
应加热到Ac3或Accm以上.
二、奥氏体晶粒长大及其影响因素
1、奥氏体晶粒长大 奥氏体化刚结束时的 晶粒度称起始晶粒度, 此时晶粒细小均匀。
(a)940淬火+220回火(板条M回+A‘少)(b)(c)(d)940淬火+820、780、750淬火(板条M+条状F+A’少) (e)940淬火+780淬火+220回火(板条M回+条状F+A‘少)(f)780淬火+220回火(板条M回+块状F)
工程材料学5第五章 铸铁
东北大学
14
(a)铁素体基灰口铁;(b)铁素体、珠光体基灰口铁;(c)珠光体基灰口铁
东北大学
15
5.4 影响石墨化因素
(1)化学成分 普通铸铁中合金元素主要为C、Si、Mn、P、S 等。其中C、Si、P是促进石墨化元素,而Mn、 S为阻止石墨化元素。
a. 碳的影响
强烈促进石墨化,并对石墨形状、大小有显著影响。
铸铁成分 铸铁壁厚 对铸铁组 织的影响
东北大学
20
5.5 铸铁热处理
铸铁生产除适当地选择优学成分以得到~定的组织外,热处理也是 进一步调整和改进基体组织以提高铸铁性能的一种重要途径。 铸铁的热处理和钢的热处埋有相同之处 ,也有不同之处。铸铁的热 处理一般不能改善原始组织中石墨的形态和分布状况。
东北大学
第五章 铸铁
铸铁是含碳量大于2.11%并含有较多硅、锰、硫、磷等元素 的多元铁基合金。 普通铸铁成分:C 2.4~4.0%, Si 0.6~3.0%,Mn 0.2~1.2,S 0.08~0.15%, P 0.1~1.2%。
成分特点: C、Si含量高;S、P等杂质较多;
(普通碳素钢 Si ≤0.35%,Mn 0.25~0.80%,S≤0.055%,P≤0.045%)
东北大学
11
5.2 铸铁石墨化过程
3、若共析石墨化受 到抑制,则得到的 组织是珠光体基体 加片状石墨。
东北大学
12
5.2 铸铁石墨化过程
4、如果冷速过快, 两阶段石墨化均被 抑制,则得到白口 铁。
东北大学
13
5.3 铸铁组织
铁素体 珠光体和铁素体 珠光体
+ 石墨
钢基体上加石墨的组织。
珠光体 + 渗碳体
机械工程材料课后习题参考答案
机械工程材料思考题参考答案第一章金属的晶体结构与结晶1.解释下列名词点缺陷,线缺陷,面缺陷,亚晶粒,亚晶界,刃型位错,单晶体,多晶体,过冷度,自发形核,非自发形核,变质处理,变质剂。
答:点缺陷:原子排列不规则的区域在空间三个方向尺寸都很小,主要指空位间隙原子、置换原子等。
线缺陷:原子排列的不规则区域在空间一个方向上的尺寸很大,而在其余两个方向上的尺寸很小。
如位错。
面缺陷:原子排列不规则的区域在空间两个方向上的尺寸很大,而另一方向上的尺寸很小。
如晶界和亚晶界。
亚晶粒:在多晶体的每一个晶粒内,晶格位向也并非完全一致,而是存在着许多尺寸很小、位向差很小的小晶块,它们相互镶嵌而成晶粒,称亚晶粒。
亚晶界:两相邻亚晶粒间的边界称为亚晶界。
刃型位错:位错可认为是晶格中一部分晶体相对于另一部分晶体的局部滑移而造成。
滑移部分与未滑移部分的交界线即为位错线。
如果相对滑移的结果上半部分多出一半原子面,多余半原子面的边缘好像插入晶体中的一把刀的刃口,故称“刃型位错”。
单晶体:如果一块晶体,其内部的晶格位向完全一致,则称这块晶体为单晶体。
多晶体:由多种晶粒组成的晶体结构称为“多晶体”。
过冷度:实际结晶温度与理论结晶温度之差称为过冷度。
自发形核:在一定条件下,从液态金属中直接产生,原子呈规则排列的结晶核心。
非自发形核:是液态金属依附在一些未溶颗粒表面所形成的晶核。
变质处理:在液态金属结晶前,特意加入某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增加,从而提高了形核率,细化晶粒,这种处理方法即为变质处理。
变质剂:在浇注前所加入的难熔杂质称为变质剂。
2.常见的金属晶体结构有哪几种?α-Fe 、γ- Fe 、Al 、Cu 、Ni 、Pb 、Cr 、V 、Mg、Zn 各属何种晶体结构?答:常见金属晶体结构:体心立方晶格、面心立方晶格、密排六方晶格;α-Fe、Cr、V属于体心立方晶格;γ-Fe 、Al、Cu、Ni、Pb属于面心立方晶格;Mg、Zn属于密排六方晶格;3.配位数和致密度可以用来说明哪些问题?答:用来说明晶体中原子排列的紧密程度。
机械工程材料:第五章 铁碳合金相图及碳钢
Q
5K 100% PK
组织组成物的相对重量为
QP
P5 PS
100%,Q
5S PS
100%
室温下相的相对重量
百分比为:
Q6 QFe3C QL
C 0.0008 100% 6.69 0.0008
Q
6L QL
100% QFe3C
S’
室温下组织组成物的相对重量百分比为:
QP
Q6 QS '
C 0.0008 100%, 0.77 0.0008
从 Fe-FesC 相图中可知 ,铸 钢的凝固温度区间较宽 ,故流动性 差 ,化学成分不均匀 ,易形成分散 缩孔 。一般采用提高浇注温度来 改善流动性 , 这样会使高温奥氏 体晶粒粗大 ,且冷却速度又比较 快 , 迫使铁素体沿奥氏体一定晶 面以针状组织析出 , 这种组织称 为魏氏组织(如图所示) 。
同素异晶转变:固态金属随温度的变化,由一种晶体结构转变成另一种晶 体结构的过程。 具有同素异晶转变的金属:Fe、Co、Ti、Mn Sn等。
二、铁碳合金的组元和相
⒈ 组元 Fe、 Fe3C
⒉相
液相L、高温铁素体δ 、奥氏体A( )、 (低温)铁素体F ( )、渗碳体Fe3C (Cm)
(1)铁素体 (符号:F) 碳在体心立方的α-Fe或δ-Fe的晶格间隙中形成的间隙固溶体。
三铁碳合金相图a1538铁的熔点c1148含碳量43共晶点d1227渗碳体的熔点e1148含碳量211碳在奥氏体中最大溶解度点s727含碳量077共析点p727含碳量00218碳在铁素体中最大溶解度点q室温含碳量00008室温时碳在铁素体中最大溶解度点1特性点g912铁的同素异构转变点2特性线ecf共晶反应线psk共析反应线符号abcd液相线es碳在奥氏体中的溶解度线符号acmpq碳在铁素体中的溶解度线gs冷却时奥氏体开始析出铁素体加热时铁素体全部溶入奥氏体的转变温度线符号fefe工业纯铁含碳量000218亚共析钢含碳量00218077共析钢含碳量077
《机械工程材料》教案
《机械工程材料》教案第一章:金属材料1.1 金属的晶体结构介绍金属晶体的基本结构解释金属键的概念探讨金属的晶体缺陷1.2 金属的力学性能讨论金属的强度、韧性、硬度等力学性能解释影响金属力学性能的因素探讨金属的疲劳和腐蚀性能1.3 常用金属材料介绍铁合金、铜合金、铝合金等常用金属材料分析各种金属材料的特性及应用领域第二章:非金属材料2.1 陶瓷材料介绍陶瓷材料的组成、制备和特性探讨陶瓷材料的烧结过程及影响因素分析陶瓷材料在工程中的应用2.2 塑料材料介绍塑料的组成、制备和特性讨论塑料的成型加工方法探讨塑料在工程中的应用及限制2.3 复合材料介绍复合材料的定义及分类解释复合材料的特点及优势分析复合材料在工程中的应用案例第三章:材料的力学性能测试3.1 拉伸试验介绍拉伸试验的原理及设备探讨拉伸试验中应力、应变、塑性、弹性等概念分析拉伸试验结果及应用3.2 压缩试验介绍压缩试验的原理及设备探讨压缩试验中应力、应变、脆性等概念分析压缩试验结果及应用3.3 冲击试验介绍冲击试验的原理及设备探讨冲击试验中冲击吸收能量、冲击韧性等概念分析冲击试验结果及应用第四章:材料的焊接4.1 焊接概述介绍焊接的定义、分类及原理解释焊接过程中的热影响区、冷却速度等概念探讨焊接接头的缺陷及影响因素4.2 常见焊接方法介绍熔化焊接、压力焊接、摩擦焊接等常见焊接方法分析各种焊接方法的适用范围及特点4.3 焊接质量控制讨论焊接质量的检测方法解释焊接质量标准及要求探讨焊接质量控制的具体措施第五章:材料的选用及应用5.1 材料选用原则介绍材料选用的基本原则解释材料选用时需要考虑的因素分析材料选用的重要性和必要性5.2 工程材料应用案例分析分析具体工程材料应用案例探讨材料在工程应用中的优势和局限性总结材料应用的经验教训《机械工程材料》教案第六章:材料的热处理6.1 热处理的基本概念介绍热处理的定义、目的和分类解释热处理过程中温度、时间等参数的作用探讨热处理的基本方法(如退火、正火、淬火等)6.2 热处理工艺及设备介绍各种热处理工艺的具体步骤和操作要点探讨热处理设备的类型及选用原则分析热处理过程中的热量传递和相变规律6.3 热处理的应用及效果分析热处理在改善材料性能方面的作用讨论热处理对材料组织结构的影响探讨热处理在实际工程中的应用案例第七章:表面处理技术7.1 表面处理技术概述介绍表面处理技术的定义、目的和分类解释表面处理技术在工程中的应用重要性探讨表面处理技术的选择原则7.2 常见表面处理方法介绍抛光、喷砂、电镀、阳极氧化等常见表面处理方法分析各种表面处理方法的特点、适用范围及优缺点7.3 表面处理技术的应用案例分析表面处理技术在实际工程中的应用案例探讨表面处理技术在提高材料性能、延长使用寿命等方面的作用第八章:材料的疲劳与断裂8.1 疲劳与断裂的基本概念介绍疲劳与断裂的定义、类型和特点解释疲劳失效的过程及影响因素探讨断裂力学的相关概念(如应力强度因子、断裂韧性等)8.2 材料的疲劳性能测试与评估介绍疲劳试验的方法、设备及参数测定分析疲劳试验结果及疲劳寿命的预测方法探讨材料的疲劳裂纹扩展行为及影响因素8.3 疲劳与断裂的控制与应用讨论材料和构件在防止疲劳与断裂方面的设计原则分析实际工程中的疲劳与断裂控制案例总结疲劳与断裂研究的新进展及发展趋势第九章:材料的磨损与腐蚀9.1 磨损与腐蚀的基本概念介绍磨损与腐蚀的定义、类型和特点解释磨损与腐蚀对材料性能和寿命的影响探讨磨损与腐蚀的常见原因和机理9.2 材料的磨损与腐蚀性能测试方法介绍磨损试验(如摩擦磨损试验、冲击磨损试验等)及设备分析腐蚀试验(如浸泡试验、电化学腐蚀试验等)及方法探讨磨损与腐蚀试验结果的分析与评估9.3 磨损与腐蚀的控制与应用讨论材料选择、表面处理等在防止磨损与腐蚀方面的作用分析实际工程中的磨损与腐蚀控制案例总结磨损与腐蚀研究的新进展及发展趋势第十章:材料的环境适应性10.1 环境适应性的基本概念介绍环境适应性的定义、类型和重要性解释材料在不同环境(如大气、水、土壤等)中的行为探讨环境适应性评价的方法和指标10.2 材料的环境老化与性能变化分析环境因素(如温度、湿度、紫外线等)对材料老化的影响讨论材料老化过程及性能退化的机制探讨材料环境老化试验的方法和设备10.3 提高材料环境适应性的策略与应用介绍提高材料环境适应性的方法(如改性、表面防护等)分析实际工程中提高材料环境适应性的应用案例总结材料环境适应性研究的新进展及发展趋势《机械工程材料》教案第十一章:材料的设计与性能优化11.1 材料设计的基本概念介绍材料设计的目标和方法解释材料设计的意义和挑战探讨计算机辅助材料设计的发展趋势11.2 材料性能优化的策略讨论单一材料性能优化的方法(如合金化、微合金化等)分析复合材料性能优化的途径(如纤维增强、颗粒填充等)探讨材料性能优化时的权衡与取舍11.3 材料设计及性能优化的应用案例分析具体材料设计及性能优化的成功案例探讨材料设计及性能优化在工程应用中的价值第十二章:材料的可持续性与环保12.1 可持续发展的基本概念介绍可持续发展的定义、原则和目标解释材料在可持续发展中的作用和责任探讨可持续发展的评价方法和指标体系12.2 环保材料的选择与应用介绍环保材料的分类和特点(如生物降解材料、再生材料等)分析环保材料在工程中的应用优势和限制探讨环保材料的发展趋势及挑战12.3 材料可持续性的实施与案例分析讨论材料生产、使用和回收过程中的可持续性措施分析实际工程中实现材料可持续性的成功案例总结材料可持续性研究的新进展及发展趋势第十三章:材料的经济性分析13.1 材料成本的构成与分析介绍材料成本的构成要素分析材料成本的影响因素探讨降低材料成本的策略和方法13.2 材料的经济性评价方法介绍经济性评价的基本原则和方法(如成本效益分析、生命周期成本分析等)分析各种经济性评价方法的适用范围和优缺点探讨经济性评价在材料选择中的应用13.3 材料经济性分析的应用案例分析实际工程中材料经济性分析的成功案例探讨材料经济性分析在工程项目中的价值第十四章:材料在机械工程中的应用14.1 机械零件的材料选择介绍机械零件设计中材料选择的重要性分析机械零件在不同工作条件下的材料要求探讨机械零件材料选择的依据和流程14.2 典型机械工程材料的应用案例分析机械工程中常用材料(如钢、铝、陶瓷等)的应用案例探讨不同材料在提高机械性能、降低成本等方面的作用14.3 材料在机械工程领域的创新应用介绍材料科学和技术在机械工程领域的最新进展分析新型材料(如记忆合金、纳米材料等)在机械工程中的应用前景第十五章:总结与展望15.1 课程总结回顾本课程的主要内容和知识点强调材料在机械工程中的重要性总结学习过程中掌握的关键技能和思维方法15.2 展望未来分析材料科学和技术的发展趋势探讨材料在机械工程领域的潜在应用激发学生对材料科学和工程的兴趣和热情重点和难点解析重点:理解不同类型材料(金属、非金属、复合材料等)的结构、性能及其应用;掌握材料的力学性能测试方法及其结果分析;了解材料的热处理工艺、表面处理技术以及疲劳与断裂、磨损与腐蚀的基本原理和控制方法;熟悉材料的经济性分析以及在机械工程中的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
合金元素对珠光体转变的影响
除了Co、Al外均推迟奥氏体向珠光体的转变。
合金元素溶入奥氏体中,就或多或少地推迟珠光体转变,提高淬透性。多种元素的共同 作用比单一元素的作用大的多。 合金元素对贝氏体转变的影响
合金元素对贝氏体转变的影响主要体现在对
γ→α转变速度和碳扩散速度的影响。
Cr、Mn、Ni降低γ→α转变温度,减少奥氏
马氏体中形成固溶体
2、形成强化相--合金渗碳体或合金碳化物 3、形成非金属夹杂物 ,与O、N、S等作用形成 氧化物、氮化物和硫化物
4、以游离状态存在 ,例如:Pb、Cu、石墨等。
A Ⅰ
0
A Ⅱ A Ⅲ A Ⅳ A Ⅴ A Ⅵ A Ⅶ
H e
H Li Na K Pb Cs
Be B C B B Ⅰ Ⅱ Mg ⅢB ⅣB ⅤB ⅥB ⅦB ⅧB Al Si Ca Se Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Ba La Hf Ta W Re Os Ir Pt Au Hg Ti Pd
• 提高钢的回火稳定性作用较强的合金元素有:V,Si, Mo,W,Cr,Ni,Mn,Co
1. 对马氏体分解的影响 合金元素对马氏体分解的第一阶段 (两相式分解)没影响;碳化物形成元 素V、Nb、Cr、Mo、W等使马氏体分解的 第二阶段减慢,原因:需碳原子长距离 的扩散…..。碳从马氏体中析出温度升 高。非碳化物形成元素影渗碳体,大部分仍溶于奥氏体 和铁素体中。(弱)
合金元素溶入渗碳体中
• 置换Fe3C中的Fe原子 溶于奥氏体
单独形成特殊碳化物
合金渗碳体;(Cr、W、
Mo、V、Nb);硬度增,提高耐磨性,加热时难
合金元素与碳化合
特殊碳化物,结构简单、
熔点高、硬度高、稳定性高,当以细小的质点 分布在固溶体基体上时,可以起到弥散强化作 用。 NbC、TiC、VC
Ni、Cr特殊,
含量少时,铁素体韧性升高; 含量多时,铁素体韧性下降
5.2.2合金元素与碳的作用
• 两大类:
1.非碳化物形成元素 Ni、Si、Co、Al、Cu等,以溶于γ-Fe 和α-Fe 中存在,形成非金属夹杂物和金属间化合物, 如Al2O3、AlN、SiO2、FeSi、Ni3Al等。Si含量 大时使渗碳体分解析出石墨。 2. 碳化物形成元素(次d电子层不满) Ti、 Zr、 Nb、 V、 W、 Mo、Cr、Mn、Fe等, 一部分溶入奥氏体和铁素体中,另一部分与碳 形成碳化物。
N P As Sb Bi
O S Se Te Po
F Cl Br I At
Ne Ar Kr Xe Rn
表中字体颜色为绿色或深蓝色的元素为钢中常见合金 元素; 字体颜色为深蓝色的元素为钢中常见碳化物合 金元素。
5.2 合金元素与铁和碳的相互作用
5.2.1合金元素与铁的作用(合金元素与铁构成的相图 类型) 一.γ相稳定化元素 γ相稳定化元素使A3降低,A4升 高,在较宽的成分范围内,促使奥氏体形成,即扩大 了γ相区。 1.无限扩大奥氏体区 合金元素与γ-Fe形成无限固溶体,与α-Fe形成有 限固溶体。使A3点降低,A4点升高。Mn、 Ni、 Co。 2.有限扩大奥氏体区 合金元素与γ-Fe 和α-Fe均形成有限固溶体。 使A3点降低,A4点升高。C、N、Cu、Zn等。
• •
Si的作用比较独特。 回火温度低时,Si不扩散,马氏 体和ε-碳化物中含Si量相等。由于 Fe3C中不溶Si,所以ε-碳化物转化为 Fe3C时必须把Si扩散出来,但Si的扩 散比碳慢,因此可以显著地减慢马氏 体的分解,使得马氏体的分解温度升 高。
2. 对残余奥氏体转变的影响 残余奥氏体C-曲线的孕育期较过冷奥氏体 的显著缩短。合金元素使过冷奥氏体和残余奥 氏体的C-曲线上出现一个中温稳定区。 Cr、Mn等可使奥氏体的分解温度显著升高。 在含有W、Mo、V等元素的高合金钢,由于 500~600℃回火中碳化物的析出,使残余A中 Me% ↓ ,Ms点高于室温,随后冷却时转变为残 余A →M→马氏体,硬度升高——二次淬火或二 次硬化。
碳化物形成元素在周期表中都是 位于铁元素的左边的过渡族金属元素, 它们都有一个未填满的d电子亚层,当 形成碳化物时,碳原子首先将其价电子 填入金属原子未填满的d电子亚层,使 形成的碳化物具有金属键结合的性质, 金属原子的d电子亚层愈不满(周期表 中,在铁左边离铁愈远),则其与碳的亲 和力愈强,形成碳化物的能力愈大,愈 稳定,而且不易分解。
当钢中含Cr、W、Mo、V、Ti等超过一定量时,回火后 的硬度随回火温度的升高不是单调的降低,而是在某 一温度范围回火后硬度反而增加,并在一定温度 (500~600℃)达到峰值。 • 二次硬化:在一定回火温度下硬度出现峰值的现象。
• 回火温度较高时析出细小、高硬度的合金碳化物,如 Mo2C,使硬度反而提高。(韧性也大大↑ ) • 二次淬火 • 500~600℃回火时析出合金碳化物→残余A中Me% ↓ → Ms、Mf ↑,随后冷却时残余A →M→硬度升高 二次淬火:在高合金钢中回火冷却时残余奥氏体转变 为马氏体,而导致硬度升高的现象。
2. 缩小γ区,但不使γ区封闭型 合金元素使A3上升,A4下降。B、Nb、Ti、 Zr、Ta等。 合金元素分为两类: 扩大奥氏体区的元素成为奥氏体形成元素, Mn、 Ni、Co、C、N、Cu、Zn等; 缩小奥氏体区的元素称为铁素体形成元素, Cr、 Mo、 Ti 、 Si、Al等。
图3-3
铁-铬相图(封闭γ相区)
5.4.2合金元素对过冷奥氏体转变过程的影响: • 除Co以外,大多数合金元素的加入(溶入奥氏 体中)均使C曲线右移,提高过冷奥氏体的稳 定性, Vk↓从而提高了钢的淬透性; • 一些碳化物形成元素还使C曲线的形状发生改 变; • 除Co,Al外,所有的合金元素都使 Ms、Mf 点 下降,淬火后残余A量↑, 硬度↓ • 提高钢的淬透性。最常采用的是:Cr,Mn,Si, Ni,B
溶于碳钢中原有的相中;形成新类型的特殊碳化物 1.溶于基体中形成合金 F 或合金 渗碳体 。 2.与碳作用形成合金碳化物。 3.单独形成特殊碳化物 。
(1) Ti、Zr、 Nb 、 V缺碳时,才以原子态溶入固溶体。 (强)特殊的碳化物如NbC、TiC、ZrC等, (2) W、Mo、Cr含量少时,形成合金渗碳体。如: (Fe、 Cr)3C、(Fe、Mo)3C、 (Fe、W)3C 含量多时,反 之形成特殊碳化物。(中强)Cr7C3、MoC、WC、
5.3 合金元素对Fe-C相图的影响
1.对奥氏体相区的影响 Mn、Ni、Co均使S点左移、A3线下降; Cr、W、Mo、V、Ti、Si使A3线上升; 大多数元素均使ES线左移,E点左移, 意味着钢中含碳量小于2.11%时就出现共晶 莱氏体,—高速钢、奥氏体钢、莱氏体钢。
例如:W18Cr4V的铸态组织中已出现了莱氏体;
5.4 合金元素对钢相变的影响
合金元素对奥氏体的形成、过冷奥氏体的分解、淬火马氏体 回火转变三个基本相变过程都有影响。
5.4.1合金元素对加热时奥氏体形成过程的影响:
(1 )改变奥氏体形成的速度 加速奥氏体形成速度:非碳化物形成元素Co、Ni等 减慢奥氏体形成速度:强碳化物形成元素Cr、Mo、W、V等,
图3-1
铁-镍相图(开启γ相区 ) 图3-2
铁-碳相图(扩展γ相区 )
二.α相稳定化元素 合金元素使A4降低,A3 升高,在较宽的成分范围内,促使铁素体形成, 即缩小了γ相区。
1. 封闭γ区、无限扩大α区 合金元素使A3点上升,A4点下降, 某一点时重合,γ区封闭,超过此含 量,则合金不再有γ α相变,与 α-Fe 形成无限固溶体。Cr、 W、 Mo、 V、Ti、 Si、 P、 Al、Be等。
合金元素对马氏体转变的影响 除Co、Al以外,溶入奥氏体中的合 金元素均使Ms点下降,碳的作用最大, 其次是Mn、Cr、Ni、Mo、W、Si。多种元 素共存时,作用更大。
5.4.3合金元素对回火转变的影响:
1. 提高钢的回火稳定性: 回火稳定性:表示钢对于回火时发生软化过程的抵抗能 力; M 分解、碳化物长大、残余A转变、F再结晶被推迟到 较高的温度才发生。 回火温度相同时,合金钢中析出的碳化物更细小,其强 度更高。 合金钢在相同的回火温度下比含碳量相同的碳钢具有更 高硬度, 回火稳定性越高的钢,在较高温度下的强度或硬度也 越高; 在达到相同强度条件下,回火稳定性高的钢,可在更 高温度下回火。---合金钢综合力学性能比碳钢好。
体与铁素体的自由能差,减少了相变驱动力,
且Cr与Mn还阻碍碳的扩散,因此推迟贝氏体
的转变。
Si强烈地阻止贝氏体转变(原因:强烈
地阻止过饱和铁素体的脱溶)。
W、Mo、V、Ti不同于Mn、Ni,使 γ→α转变温度升高,增大转变驱动 力,但降低碳的扩散速度,因此推迟 贝氏体转变,但作用较小。 含有W、Mo、V、Ti的钢贝氏体转变 的孕育期短,铁素体-珠光体转变的孕 育期长,空冷时容易得到贝氏体组织, 如12Cr1MoV钢。
2. 对共析温度和共析点位置的影响 扩大γ区的元素降低A3和A1,使S 点左移,缩小γ区元素升高A3和A1, 使S点左移。即含碳量小于0.77%时, 就析出二次渗碳体。如4Cr13钢(马氏 体不锈钢,就是过共析钢)。
图 合金元素对 S 点成分的影响
总结:
• 当含Mn、Ni较高的钢,因扩大奥氏体相区有可能将A3降至室温 以下,此时钢在室温下保持奥氏体组织,叫做奥氏体钢; 例如:Mn13(耐磨钢)、1Cr18Ni9(不锈钢);如P122图7-1; • 当含Cr较高的钢,因缩小奥氏体相区有可能在室温下只有铁素 体存在而成为铁素体钢; 例如:Cr17(铁素体型不锈钢);如P122图7-2; • 由于所有的合金元素均使S点左移,这就意味着钢中的含碳量 不足0.77%时,钢就变为过共析钢而析出Fe3CⅡ; • 例如:4Cr13(马氏体型不锈钢)就是过共析钢;