基于DSP设计正弦信号发生器

合集下载

基于DSP的正弦信号发生器的设计

基于DSP的正弦信号发生器的设计

软件设计
正弦波子程序流程图 :
软件设计
调幅和调相流程图: 调幅和调相流程图:
汇报内容
• • • • • • 背景 正弦波信号发生器的几种实现方法比较 正弦波信号发生器的数字实现 硬件设计 软件设计 结论
结论
文中分析了正弦波的产生原理,并给出了硬 件电路和软件编写流程;设计了一个更好的 实现人机对话的正弦波信号发生器,给出了 显示和键盘的接口电路。该设计改进了传统 的需要用软件界面来输入幅值和频率值的方 法,更方便的实现调节输出波形的幅值和频 率值。
正弦波信号发生的数字实现 产生正弦波的方法有两种:
查表法。 优点:处理速度快;调频调相容易。 不足:要得到较高的精度,存储空间足够大以存放 查找表。 适用:对精度要求不高的场合。 泰勒级数展开法。 优点:需要的存储单元很少;精度高;展开的级数 越多,失真度就越小;调频调相易。 不足:处理速度慢。
正弦波信号发生的数字实现
硬件设计
DSP与LCD显示和键盘连接电路: DSP与LCD显示和键盘连接电路: 显示和键盘连接电路
硬件设计
键盘电路:
汇报内容
• • • • • • 背景 正弦波信号发生器的几种实现方法比较 正弦波信号发生器的数字实现 硬件设计 软件设计 结论
软件设计
主程序流程图: 主程序流程图:
设计采用采用模块化思路来编写,包括主程序、 设计采用采用模块化思路来编写,包括主程序、正 采用模块化思路来编写 弦波产生程序、调幅和调相子程序等功能子程序。 弦波产生程序、调幅和调相子程序等功能子程序。
性差,波形精度不够高且用较多硬件等。
正弦波信号发生器的几种实现方法比较
基于DSP的正弦波信号发生器:
组成:DSP处理芯片、 D/A转换器等。 优点:可程控调幅、调频,调节精度高,实

基于DSP设计正弦信号发生器

基于DSP设计正弦信号发生器

基于DSP设计正弦信号发生器一.设计目的设计一个基于DSP的正弦信号发生器二.设计内容利用基于CCS开发环境中的C54X汇编语言来实现正弦信号发生装置。

三.设计原理一般情况,产生正弦波的方法有两种:查表法和泰勒级数展开法。

查表法是使用比较普遍的方法,优点是处理速度快,调频调相容易,精度高,但需要的存储器容量很大。

泰勒级数展开法需要的存储单元少,具有稳定性好,算法简单,易于编程等优点,而且展开的级数越多,失真度就越小。

本文采用了泰勒级数展开法。

一个角度为θ的正弦和余弦函数,可以展开成泰勒级数,取其前5项进行近似得:式中:x为θ的弧度值,x=2πf/fs(fs是采样频率;f是所要发生的信号频率。

正弦波的波形可以看作由无数点组成,这些点与x轴的每一个角度值相对应,可以利用DSP处理器处理大量重复计算的优势来计算x轴每一点对应的y的值(在x轴取N个点进行逼近)。

整个系统软件由主程序和基于泰勒展开法的SIN子程序组成,相应的软件流程图如图。

三.总体方案设计本设计采用TMS320C54X系列的DSP作为正弦信号发生器的核心控制芯片。

通过计算一个角度的正弦值和余弦值程序可实现正弦波,其步骤如下:1.利用sinx和cosx子程序,计算0°~45°(间隔为0.5°)的正弦和余弦值2.利用sin(2x)=2sin(x)cos(x)公式,计算0°~90°的正弦值(间隔为1°)3.通过复制,获得0°~359°的正弦值4.将0°~359°的正弦值重复从PA口输出,便可得到正弦波四.软件操作DSP 集成开发环境 CCS是 Code Composer Studio 的缩写,即代码设计工作室。

它是 TI 公司推出的集成可视化 DSP 软件开发工具。

DSP CCS 内部集成了以下软件工具:◆ DSP 代码产生工具(包括 DSP 的 C 编译器、汇编优化器、汇编器和链接器)◆ CCS 集成开发环境(包括编辑、建立和调试 DSP 目标程序)◆ 实时基础软件 DSP/BIOS (必须具有硬件开发板)◆ RTDX、主机接口和 API(必须具有硬件开发板)在 CCS 下,用户可以对软件进行编辑、编译、调试、代码性能测试(profile)和项目管理等工作。

正弦波信号发生器的DSP设计

正弦波信号发生器的DSP设计

正弦波信号发生器的DSP设计摘要:数字信号处理器(DSP)是在模拟信号变成数字信号以后进行高速实时处理的专用处理器。

DSP芯片以其独特的结构和快速实现各种数字信号处理算法的突出优点,发展十分迅速。

本文介绍了正弦信号产生的典型算法,并结合数字振荡器原理,应用迭代法编程完成了TMS320VC5402 DSP 正弦波信号发生器的设计。

关键词:DSP;正弦振荡;信号发生器正弦信号发生器能输出一个幅度可调、频率可调的正弦信号,特别是低频正弦信号发生器在科学研究及生产实践中均有着广泛应用。

目前,常用的信号发生器绝大部分是由模拟电路构成的。

当这种模拟信号发生器用于低频信号输出时,往往需要的RC值很大,这样不但参数准确度难以保证,而且体积和功耗都很大。

而由数字电路构成的低频信号发生器,虽然其低频性能好,但体积较大,价格较贵。

而借助DSP芯片的运算速度高,系统集成度强的优势设计的这种信号发生器,比以前的任意一种信号发生器速度更快,且实现更加简便。

1正弦波信号的产生方式1.1采样回放法通过对已有的标准正弦信号源进行采样得到数据后直接回放或进行变频变幅处理后回放。

该方法的关键在于合理设计高性能的硬件电路,尽量避免信号处理过程中的波形失真,来确保采样数据的精准性。

同时在数字域处理时,数据的回归点数必须满足Nyquist定理,以免频谱混迭情况的发生。

1.2查表法5402的片内ROM中存有256字的正弦及余弦数据表,可以通过程序直接调用该表中的数据,由D/A回放出正弦波。

通过MATLAB模拟仿真自己生成的正弦数据表,不但可以解决频率单一的问题,还可以增加精度,并改善系统的兼容性。

1.3泰勒级数展开法任一角度的正弦及余弦波都可以展开成泰勒级数,取前五项的近似公式为:其中:α为角度值,ω为其对应的弧度值。

通过变换的α值,且利用弧度与频率之间的关系很容易实现变频处理。

1.4数字正弦振荡器数字正弦波振荡器的系统函数可表示为:对应的是在单位圆上有复共轭极点的二阶振荡器,共扼极点为:P1,2=e±jω0,其离散时域脉冲单位冲击响应响应:h(n)=Asin[(n+1)ω0]·u(n)实际应用中对于给定的冲激信号所产生的正弦信号对应的差分方程为:如果系统无阻尼且稳定,我们不对系统加入冲击信号,改变y(-2)的起始值,从而使系统满足起始条件。

基于DSP的信号发生器

基于DSP的信号发生器

基于DSP的信号发生器——正弦信号院系:班级:学号:姓名:老师:2015年12月15日一、DSP简介数字信号处理(Digital Signal Processing,简称DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。

数字信号处理的目的是对真实世界的连续模拟信号进行测量或滤波。

因此在进行数字信号处理之前需要将信号从模拟域转换到数字域,这通常通过模数转换器实现。

而数字信号处理的输出经常也要变换到模拟域,这是通过数模转换器实现的。

20世纪60年代以来,随着计算机和信息技术的飞速发展,数字信号处理技术应运而生并得到迅速的发展。

数字信号处理是一种通过使用数学技巧执行转换或提取信息,来处理现实信号的方法,这些信号由数字序列表示。

在过去的二十多年时间里,信号处理已经在通信等领域得到极为广泛的应用。

图1是数字信号处理系统的简化框图。

此系统先将模拟信号转换为数字信号,经数字信号处理后,再转换成模拟信号输出。

其中抗混叠滤波器的作用是将输入信号x(t)中高于折叠频率的分量滤除,以防止信号频谱的混叠。

随后,信号经采样和A/D转换后,变成数字信号x(n)。

数字信号处理器对x(n)进行处理,得到输出数字信号y(n),经D/A转换器变成模拟信号。

此信号经低通滤波器,滤图1数字信号处理系统简化框图数字信号处理是以众多学科为理论基础的,它所涉及的范围极其广泛。

例如,在数学领域,微积分、概率统计、随机过程、数值分析等都是数字信号处理的基本工具,与网络理论、信号与系统、控制论、通信理论、故障诊断等也密切相关。

近来新兴的一些学科,如人工智能、模式识别、神经网络等,都与数字信号处理密不可分。

可以说,数字信号处理是把许多经典的理论体系作为自己的理论基础,同时又使自己成为一系列新兴学科的理论基础。

二、信号发生器简介信号源有很多种分类方法,其中一种方法可分为混和信号源和逻辑信号源两种。

其中混和信号源主要输出模拟波形,逻辑信号源输出数字波形。

基于DSP的正弦信号发生器

基于DSP的正弦信号发生器

基于DSP的正弦信号发生器1.正弦信号在各种科学和工程领域中广泛应用,如通信系统、音频处理、医学诊断等。

因此,制作一个能够生成正弦信号的设备是非常必要的。

传统的方法是使用模拟电路,但这种方法需要用到很多电子元器件,难以控制和调整。

同时,传统的模拟电路还容易受到电磁干扰、温度等环境因素的影响,导致输出的信号失真。

因此,数字信号处理(DSP)技术逐渐成为生成正弦波信号的常见方法,能够实现高精度、低失真的输出。

2. 设计概述本文介绍一种基于DSP的正弦信号发生器的设计。

该设计采用TMS320C5505数字信号处理芯片和信号解调电路,通过软件和硬件设计,实现了一个高精度、低失真的正弦信号发生器。

2.1 硬件设计本设计采用了TMS320C5505数字信号处理器集成电路作为主控芯片。

该芯片具有低功耗、高性能、灵活性和易于开发等优点。

除此之外,还需要电源模块、时钟模块、信号解调模块等。

2.2 软件设计本设计采用了C语言进行程序设计。

使用Code Composer Studio作为开发环境,将程序编译后烧录到芯片中。

代码的主要实现过程为:1.生成一个只包含一周期正弦波形的信号2.将该信号送入DA(Digital to Analog)转换器,使其变为模拟信号3.经过信号解调器后输出到外部接口信号的生成采用的是Taylor级数展开,可以实现高精度的波形生成。

信号解调电路主要是由低通滤波器、防干扰电路和放大电路等模块组成。

3. 实验结果经过实验测试,本设计输出的正弦波信号的频率可以在0~10kHz范围内任意设定。

信号的失真率小于0.1%。

同时,本设计还支持正弦波的相位调节和幅度调节等功能。

通过外部的控制,可以实现信号的精准控制和调节。

4.本文介绍了一种基于DSP的正弦信号发生器的设计,通过使用数字信号处理技术,实现了高精度、低失真的正弦波信号的生成。

该设计具有灵活性和可扩展性,可以为各种科学和工程领域提供高精度的正弦信号源。

基于DSP的正弦波信号发生器(汇编语言)

基于DSP的正弦波信号发生器(汇编语言)

正弦波信号发生器一、实验目的1.了解用泰勒级数展开法计算角度正弦值和余弦值;2.了解产生正弦信号的方法;3.熟悉使用汇编语言编写较复杂的程序;4.熟悉在CCS 环境下计算角度正弦值和余弦值及产生正弦波的方法;二、实验原理泰勒级数展开法是根据泰勒展开式进行计算来实现正弦信号,它能精确地计算出一个角度的正弦和余弦值,且只需要较小的存储空间。

正弦函数和余弦函数可以展开成泰勒级数,其表达式:递推公式: sin()2cos()sin[(1)]sin[(2)]cos()2cos()sin[(1)]cos[(2)]nx x n x n x nx x n x n x =---=--- 由递推公式可以看出,在计算正弦和余弦值时,需要已知cos(x )、sin(n -1)x 、sin(n -2)x 和cos(n -2)x 。

用这种方法求少数点还可以,如产生连续正弦波、余弦波,则积累误差太大,不可取。

下面主要用泰勒级数展开法求正弦和余弦值,以及产生正弦波的方法。

三、实验内容与步骤1.用泰勒级数展开法计算sin(x)的值;(1)在 CCS 中新建项目:sinx.pjt ,建立文件sinx.asm 、vectors.asm 和sinx.cmd 。

并将此三个文件加入到项目中。

******************************************************* 用泰勒级数开展开式计算一个角度的正弦值 **sin(x)=x(1-x*x/2*3(1-x*x/4*5(1-x*x/6*7(1-x*x/8*9))))*******************************************************.title "sinx.asm".mmregs .def startSTACK: .usect "STACK",10start: STM #STACK+10,SPLD #d_x,DPST #6487H,d_x ;x-->d_x CALLsin_start end:B end sin_start:35792222sin()3!5!7!9! 111123456789(((())))x x x x x x x x x x x =-+-+=----⨯⨯⨯⨯24682222cos()12!4!6!8! 11112345678((()))x x x x x x x x x =-+-+=----⨯⨯⨯.def sin_startd_coeff .usect "coeff",4.datatable: .word 01C7H ;c1=1/(8*9).word 030BH ;c2=1/(6*7).word 0666H ;c3=1/(4*5).word 1556H ;c4=1/(2*3)d_x .usect "sin_vars",1d_squr_x .usect "sin_vars",1d_temp .usect "sin_vars",1d_sinx .usect "sin_vars",1c_1 .usect "sin_vars",1.textSSBX FRCTSTM #d_coeff,AR5RPT #3MVPD #table,*AR5+STM #d_coeff,AR3STM #d_x,AR2STM #c_1,AR4ST #7FFFH,c_1SQUR *AR2+,A ;A=x^2ST A,*AR2 ;(AR2)=x^2||LD *AR4,B ;B=1MASR *AR2+,*AR3+,B,A ;A=1-x^2/72,T=x^2MPYA A ;A=T*A=x^2(1-x^2/72)STH A,*AR2 ;(d_temp)=x^2(1-x^2/72)MASR *AR2-,*AR3+,B,A ;A=1-x^2/42(1-x^2/72),T=x^2(1-x^2/72)MPYA *AR2+ ;B=x^2(1-x^2/42(1-x^2/72))ST B,*AR2 ;(d_temp)=x^2(1-x^2/42(1-x^2/72))||LD *AR4,B ;B=1MASR *AR2-,*AR3+,B,A ;A=1-x^2/20(1-x^2/42(1-x^2/72))MPYA *AR2+ ;B=x^2(1-x^2/20(1-x^2/42(1-x^2/72)))ST B,*AR2 ;(d_temp)=B||LD *AR4,B ;B=1MASR *AR2-,*AR3+,B,A ;A=1-x^2/6(1-x^2/20(1-x^2/42(1-x^2/72)))MPYA d_x ;B=x(1-x^2/6(1-x^2/20(1-x^2/42(1-x^2/72))))STH B,d_sinx ;sin(theta)RET.end*******************************************************中断向量文件vectors.asm******************************************************.title "vectors.asm".ref start.sect ".vectors"B start.end*******************************************************链接命令文件******************************************************vectors.objsinx.obj-O sinx.out-m sinx.map-estartMEMORY{PAGE 0:EPROM: org=0090H,len=0F70HVECS: org=0080H,len=0010HPAGE 1:SPRAM: org=1000H,len=1000HDARAM: org=2000H,len=2000H}SECTIONS{.text :>EPROM PAGE 0.data :>EPROM PAGE 0STACK :>SPRAM PAGE 1sin_vars :>DARAM PAGE 1coeff :>DARAM PAGE 1.vectors :>VECS PAGE 0}(2)编译、链接项目文件sinx.pjt。

基于DSP控制的正弦波和三角波发生器的设计毕业论文 精品

基于DSP控制的正弦波和三角波发生器的设计毕业论文 精品

毕业设计题目名称基于DSP控制的正弦波和三角波发生器的设计学院电气信息工程学院专业/班级自动化09102学生学号指导教师(职称)葛延津(教授)严海领(助教)摘要信号发生器发展到今天,在电子测试、电子设计、模拟仿真、通信工程中,扮演着一个相当重要的角色,有着相当广泛的应用,极大加快了电子测试与设计工作中的效率,在电子技术和信号仿真应用中已发挥了巨大的作用。

本文主要介绍了以TMS320VC5402 DSP为主的信号发生器的设计情况。

这是一个以DSP为核心来实现信号发生器的系统,该系统具有结构简单灵活,抗干扰能力强、产生频率较高、应用广泛等特点。

该系统的组成核心TMS320VC5402 DSP芯片是TI公司生产的16位定点处理芯片,它有运算速度快、具有可编程特性、接口灵活和外围电路丰富等特点。

选择该芯片作为设计信号发生器的核心芯片,能够提高信号发生器所产生信号的频率,使信号发生器有更加广泛的应用。

本设计的硬件部分是有该DSP芯片和D/A转换芯片TLC7528组成,DSP芯片用于产生各种波形,D/A转换芯片用于把数字信号转换为模拟信号。

在以上硬件的基础上,通过软件编程来实现三角波、正弦波等波形。

关键词:DSP;D/A转换器;信号发生器;波形AbstractSignal generator to today, in the electronic testing, electronic design, simulation, communications engineering, plays a very important role, has a very wide range of applications, greatly accelerate the efficiency of the electronic test and design work in the electronics technology and signal simulation applications has played a huge role. This paper describes the design to TMS320VC5402 DSP-based signal generator. This is a core DSP signal generator system, the system structure is simple and flexible, anti-interference ability, resulting in a higher frequency, widely used features.The System is comprised core TMS320VC5402 DSP chip is produced by TI 16-bit fixed-point processing chip, computing speed, programmable features, flexible interface and peripheral circuits rich features. Select the chip to chip as the core of the design of the signal generator, it is possible to improve the signal generator to produce the signal frequency, the signal generator has a broader application. The design of the hardware part is composed of the DSP chip and the D / A converter chip TLC7528 DSP chip for generating various waveforms, D / A converter chip used to convert digital signals to analog signals. On the basis of the above hardware, by software programming to achieve the waveform of the triangular wave, sine wave, etc..Keywords: DSP; D / A converter; signal generator; waveform目录第一章绪论.................................................... - 1 -1.1选题的背景............................................. - 1 -1.2选题的目的及意义....................................... - 1 - 第二章整体方案................................................ - 2 - 第三章硬件系统设计............................................ - 3 -3.1 系统的组成及实现功能................................... - 3 -3.2 硬件系统设计思想....................................... - 3 -3.3 硬件电路方案及电路原理设计 ............................ - 3 -3.4 相关电路介绍........................................... - 4 -3.4.1 核心电路芯片TMS320VC5402...................... - 4 -3.4.2 D/A 转换器TLC7528............................. - 10 -3.4.3 电源电路和晶振电路 ............................. - 14 - 第四章软件系统设计........................................... - 17 -4.1 ICETEK—B2.0说明............................. - 17 -4.2 三角波的设计方案..................................... - 18 - 4.3 正弦波的设计方案...................................... - 21 - 4.4 软件系统.............................................. - 25 - 第五章总结展望............................................... - 28 - 结束语........................................................ - 29 -致谢......................................................... - 30 - 参考文献...................................................... - 31 - 附录......................................................... - 32 -第一章绪论1.1选题的背景信号发生器,主要作为激励信号或仿真信号,广泛应用于电子设计、生物医疗、环保、机械运动、新型材料等各个领域。

基于Matlab_DSPBuilder的正弦信号发生器设计.

基于Matlab_DSPBuilder的正弦信号发生器设计.

基于Matlab/DSP Builder的正弦信号发生器设计引言近年来随着通信技术的不断发展,信号的正确传输显得日益重要,也就是说要有一个可靠的能产生稳定确信号的发生器,基于Matlab/DSP Builder的正弦信号发生器是利用Matlab/DSP Builder的模块进行的模快化设计,软件的设计采用模块化结构,使程序设计的逻辑关系更加简洁明了、易懂、易学。

使硬件在软件的控制下协调运作。

DSP Builder可以帮助设计者完成基于FPGA的DSP系统设计设计,除了图形化的系统建模外,还可以完成及大部分的设计过程和仿真,直至将设计文件下载到DSP 开发板上。

此次实验的目的就是将两者的优势有机的结合在一起,利用DSP的优势开发正弦信号发生器。

在设计中主要采用DSP Builder库中的模块进行系统的模型设计,然后再进行Simulink仿真。

1.设计思想1.1 DSP Builder特点DSP Builder系统级(或算法级设计工具,它架构在多个软件工具之上,并把系统级(算法仿真建模和RTL(硬件实现两个领域的设计工具连接起来,最大程度的发挥了两种工具的优势。

DSP Builder依赖于MathWorks公司的数学分析工具Matlab/Simulink,可以在Simulink中进行图形化设计和仿真,同时又通过Signal Compilder把Matlab/Simulink的设计文件(.mdl转换成相应的硬件描述语言VHDL 设计文件(.vhd,以及用于控制和编译的tcl脚本。

而对后者的处理可以用Quartus II 来实现。

1.2 QuartusII特点QuartusII提供了完整的多平台设计环境,能满足各种特定设计的需要,是单芯片可编程系统(SOPC设计的综合性环境和SOPC开发的基本设计工具,并且为Altera DSP开发包进行系统模型设计提供了集成综合环境。

QuartusII完全支持VHDL的设计流程,其内部嵌有VHDL逻辑综合器。

基于DSP的正弦波信号发生器设计

基于DSP的正弦波信号发生器设计

基于DSP的正弦波信号发生器设计————————————————————————————————作者:————————————————————————————————日期:目录第1章绪论 (1)1 DSP简介 (1)第2章总体方案的分析和设计 (2)2.1 总体方案设计 (2)2.2正弦波信号发生器 (2)第3章硬件设计 (3)3.1硬件组成 (3)3.2控制器部分 (4)3.4人机接口部分 (5)第4章软件设计 (6)4.1流程图 (6)4.2 正弦信号发生器程序清单 (7)第5章总结 (12)参考文献 (12)第1章 绪论1 DSP 简介数字信号处理(Digital Signal Processing ,简称DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。

20世纪60年代以来,随着计算机和信息技术的飞速发展,数字信号处理技术应运而生并得到迅速的发展。

数字信号处理是一种通过使用数学技巧执行转换或提取信息,来处理现实信号的方法,这些信号由数字序列表示。

在过去的二十多年时间里,信号处理已经在通信等领域得到极为广泛的应用。

图一是数字信号处理系统的简化框图。

此系统先将模拟信号转换为数字信号,经数字信号处理后,再转换成模拟信号输出。

其中抗混叠滤波器的作用是将输入信号x (t)中高于折叠频率的分量滤除,以防止信号频谱的混叠。

随后,信号经采样和A/D 转换后,变成数字信号x(n)。

数字信号处理器对x(n)进行处理,得到输出数字信号y (n),经D/A 转换器变成模拟信号。

此信号经低通滤波器,滤除不需要的高频分量,最后输出平滑的模拟信号y(t)。

图1.1 数字信号处理系统简化框图数字信号处理是以众多学科为理论基础的,它所涉及的范围极其广泛。

例如,在数学领域,微积分、概率统计、随机过程、数值分析等都是数字信号处理的基本工具,与网络理论、信号与系统、控制论、通信理论、故障诊断等也密切相关。

近来新兴的一些学科,如人工智能、模式识别、神经网络等,都与数字信号处理密不可分。

dsp-正弦波信号发生器课程设计.

dsp-正弦波信号发生器课程设计.

※※※※※※※※※※2009级学生DSP原理※※※※及应用课程设计※※※※※※※※※※太原理工大学DSP原理及应用课程设计报告书课题名称正弦波信号发生器姓名学号院、系、部专业正弦波信号发生器课程设计一、课程设计基础数字信号处理(Digital Signal Processing,简称DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。

数字信号处理是利用计算机或专用处理设备,以数字的形式对信号进行分析、采集、合成、变换、滤波、估算、压缩、识别等加工处理,以便提取有用的信息并进行有效的传输与应用。

数字信号处理是以众多学科为理论基础,它所涉及的范围极其广泛。

如数学领域中的微积分、概率统计、随机过程、数字分析等都是数字信号处理的基础工具。

它与网络理论、信号与系统、控制理论、通信理论、故障诊断等密切相关。

一个典型的DSP系统应包括抗混叠滤波器、数据采集A/D转换器、数字信号处理器DSP、D/A转换器和低通滤波器等组成。

DSP信号处理过程:①将输入信号x(t)进行抗混叠滤波,滤掉高于折叠频率的分量,以防止信号频谱的混叠;②经采样和A/D转换器,将滤波后的信号转换为数字信号x(n);③数字信号处理器对x(n)进行处理,得数字信号y(n);④经D/A转换器,将y(n)转换成模拟信号;⑤经低通滤波器,滤除高频分量,得到平滑的模拟信号y(t)。

二、课程设计目的1、了解DSP对数据的处理能力2、利用DSP实现正弦信号发生器三、课程设计总体方案1. 总体方案设计①基于DSP的特点,本设计采用TMS320C54X系列的DSP作为正弦信号发生器的核心控制芯片。

②用泰勒级数展开法实现正弦波信号。

③设置波形时域观察窗口,得到其滤波前后波形变化图;④设置频域观察窗口,得到其滤波前后频谱变化图。

2. 正弦波信号发生器正弦波信号发生器已被广泛地应用于通信、仪器仪表和工业控制等领域的信号处理系统中。

通常有两种方法可以产生正弦波,分别为查表法和泰勒级数展开法。

基于DSP的音频信号发生器的设计及实现

基于DSP的音频信号发生器的设计及实现

基于DSP的音频信号发生器的设计及实现摘要本课题介绍了基于DSP芯片TMS320C5402实现正弦信号发生器的设计原理和实现方法。

使用TMS320C5402作为数据处理器,AT89C51作为控制器引导并控制DSP芯片。

采用直接数字合成(DDS)技术,在DSP上建立一个信号发生器,可产生指定频率(音频范围)的正弦波、方波等信号。

该信号发生器所产生的正弦波波形清晰、稳定性好,调频、调幅功能均由软件实现。

本设计主要实现正弦音频信号发生器,该系统由DDS模块、单片机控制模块、语音提示、输出运算放大模块、D/A转换模块、幅度控制模块组成。

这里介绍一种采用DSP实现的正弦信号发生器,其调幅、调频功能均由软件实现,而且有较好的可扩展性、稳定性,与计算机接口方便。

关键词:音频信号发生器,正弦波,DSP ,DDSAUDIO SIGNAL GENERATOR BASED ON TMS320C5402 DESIGN AND LMPLEMENTATIONABSTRACTThis design uses TMS320C5402 of DSP chip as a data processor,STC89C51 as a controller to guide and control the DSP chip. use TMS320C5402 as a data processor, STC89C51 as a controller to guide and control the DSP chip. Synthesis of direct sequence (DDS) technology, DSP, a signal generator, can generate the specified frequency (audio range) of the sine wave, square wave signal. Synthesis of direct sequence (DDS) technology, DSP, a signal generator, can generate the specified frequency (audio range) of the sine wave, square wave signal. The design of the main sine wave audio signal generator, the system by the DDS module, microprocessor control module, voice prompt, the output operational amplifier module, D/A converter module, rate control module.High-speed direct-sequence synthesis (DDS) technique, D/A and other technology, can generate any frequency sinusoidal signal and a variety of analog and digital modulation signal. Wide frequency range of the system, step small, magnitude and frequency with high accuracy.KEY WORDS:Signal generator,Sine tonic train signal, DSP ,DDS目录前言 (1)第1章系统描述 (3)§1.1 系统方案选择 (3)§1.2 本系统的方案 (3)§1.2.1 方案系统框图 (3)§1.2.2 DSK5402开发板硬件结构 (4)§1.2.3 DSK5402系统概述 (6)第2章音频信号发生器的硬件描述 (7)§2.1 DSP芯片 (7)§2.1.1 DSP芯片特点 (7)§2.1.2 C54x的引脚功能 (8)§2.2 串行口MCBSP (12)§2.3 主机接口 (13)第3章音频信号发生器的外设 (16)§3.1 89C51芯片的描述 (16)§3.1.1 89C51的主要性能高如下 (16)§3.1.2 89C51的引脚及说明 (17)§3.2 串口描述 (19)§3.2.1 RS232接口电路 (19)§3.2.2 RS232通信原理 (21)§3.3 声卡 (21)第4章音频信号发生器设计的算法 (24)§4.1 DDS算法简介 (24)§4.2 步长计算查表 (25)§4.3 DDS的特点 (25)第5章系统软件设计 (27)§5.1 DSP程序设计 (27)§5.2 单片机程序设计 (27)第6章系统调试及测试 (29)§6.1 DSP程序编写 (29)§6.2 把DSP程序转化成单片机程序 (35)§6.3 程序调试 (36)§6.3.1 调试流程 (36)§6.3.2 系统的调试 (37)结论 (39)参考文献 (40)致谢 (42)外文资料翻译 (43)前言随着21世纪的到来,人类跨入了信息网络时代。

基于DSP正弦信号发生器设计

基于DSP正弦信号发生器设计

基于DSP正弦信号发生器设计摘要:提出了一种基于TMS320C5402实现正弦信号发生器的设计原理与方法,介绍了所设计的正弦信号发生器硬件电路结构和软件程序流程图。

结合DSP硬件特性,通过使用泰勒级数展开法得到设定参数的正弦波形输出,达到设计目的。

该信号发生器弥补了通常信号发生器模式固定,波形不可编程的缺点,其具有实时性强,波形精度高,可方便调节频率和幅度、稳定性好等优点。

关键词:数字信号处理器;信号发生器;多通道缓冲串行口;独立键盘随着计算机技术的飞速发展,对信号发生器波形的要求越来越高。

目前,常用信号发生器大部分是由模拟电路构成,当这种模拟信号发生器用于低频输出时,由于需要较大的RC值,导致参数准确度难以保证,且造成体积和功耗偏大,而数字式波形发生器,因其输出幅值稳定、输出频率连续可调的优点,已逐渐取代了模拟电路信号发生器。

由于其运算速度高,系统集成度强的优势,可以设计基于DSP的正弦信号发生器,该发生器实时性强、可扩展性好、波形精度高、可调节频率和幅度、稳定性好、用途广泛,各方面均优于模拟信号发生器和数字信号发生器。

因此,本文提出了一种基于TMS320C5402的正弦信号发生器的设计方法。

1 系统硬件设计1.1 系统硬件框图该正弦信号发生器的硬件结构框图如图1所示,主要由TMS320C5402芯片,D/A转换器,独立键盘等几部分组成。

1.2 TMS320C5402简介TMS320C5402芯片采用先进的修正哈佛结构,片内有8条总线、在片存储器和在片外围电路等硬件,同时还有高度专业化的指令系统,具有功耗小、高度并行等优点。

此外,其支持C语言和汇编语言混合编程,高效的流水线操作和灵活的寻址方式使其适合高速实时信号处理。

1.3 数模转换部分设计McBSP(M ulti-channel Buffered Serial)即多通道缓冲串口,包括一个数据通道和一个控制通道。

数据通道通过D X引脚发送数据、DR引脚接收数据。

dsp课程设计基于DSP的信号发生器设计

dsp课程设计基于DSP的信号发生器设计

目录一、摘要 (3)二、概述 (4)2.1设计要求 (4)2.2 基本组成 (4)三、系统设计 (4)四、硬件设计 (5)4.1组成及实现功能 (5)4.2硬件电路方案及电路原理 (5)4.3核心电路芯片TMS320VC5402 (6)4.4 D/A转换器TLC7528设计 (6)4.5电源电路复位电路和晶振电路设计 (8)五、软件设计 (11)5.1方波的设计方案 (11)5.1余弦波的设计方案 (13)5.3三角波的设计方案 (17)六、实验结果 (19)七、总结 (20)八、参考文献 (21)附录 (22)摘要根据已掌握的《手把手教你学DSP》课程知识,完成课程设计要求的项目。

了解正弦波方波三角波的产生,以及幅值和频率的调整方法,掌握信号产生的一般方法并学习使用CCS图形显示功能进行程序调试。

通过硬件设计和程序编写过程,加深对课程知识的理解和掌握,培养应用系统设计的能力,以及分析问题和解决问题的方法,并进一步拓宽专业知识面,培养实践应用技能和创新意识。

信号发生器发展到今天,在电子测试、电子设计、模拟仿真、通信工程中,扮演着一个相当重要的角色,有着相当广泛的应用,极大加快了电子测试与设计工作中的效率,在电子技术和信号仿真应用中已发挥了巨大的作用。

本文主要介绍了基于TMS320VC5402 DSP的信号发生器的设计情况。

这是一个以DSP为核心来实现信号发生器的系统,该系统具有结构简单灵活,抗干扰能力强、产生频率较高、应用广泛等特点。

该系统的组成核心TMS320VC5402 DSP芯片,这个设计的硬件部分是有该DSP 芯片和D/A转换芯片TLC7528组成,DSP芯片用于产生各种波形,D/A转换芯片用于把数字信号转换为模拟信号。

在以上硬件的基础上,通过软件编程来实现三角波,方波和余弦波等波形。

关键词:DSP,D/A转换器,波形概述2.1设计要求:(1)绘制出系统框图;(2)包括电源设计、复位电路设计、时钟电路设计、JTAG 接口设计等,绘制原理图;(3)给出程序流程图;(4)能够实现方波信号(余弦信号、三角波信号)通过对系统的全面分析得出设计结论(被处理信号的频率范围、采用的信号处理算法等);2.2 基本组成:硬件电路是由TMS320VC5402 DSP芯片和D/A转换芯片TLC 7528组成,通过ICETEK-5100USB V2.0A连接PC机和DSP芯片。

基于DSP的正弦信号发生器

基于DSP的正弦信号发生器

武汉理工大学华夏学院设计报告课程名称《DSP技术》结业论文题目基于DSP的正弦信号发生器班级自动化1122学号____姓名_2015__年__10__ 月__24___日一、摘要数字信号处理(Digital Signal Processing,简称DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。

数字信号处理是围绕着数字信号处理的理论、实现和应用等几个方面发展起来的。

数字信号处理在理论上的发展推动了数字信号处理应用的发展。

反过来,数字信号处理的应用又促进了数字信号处理理论的提高。

而数字信号处理的实现则是理论和应用之间的桥梁。

数字信号处理是以众多的学科为理论基础的,它所涉及的范围及其广泛。

例如,在数学领域,微积分、概率统计、随机过程、数值分析等都是数字信号处理的基本工具,与网络理论、信号与系统、控制论、通信理论、故障诊断等也密切相关。

一些新兴的学科,如人工智能、模式识别、神经网络等,都与数字信号处理密不可分。

可以说,数字信号处理是把许多经典的理论体系作为自己的理论基础,同时又使自己成为一系列新兴学科的理论基础。

长期以来,信号处理技术—直用于转换或产生模拟或数字信号。

其中应用得最频繁的领域就是信号的滤波。

此外,从数字通信、语音、音频和生物医学信号处理到检测仪器仪表和机器人技术等许多领域中,都广泛地应用了DSP。

数字信号处理己经发展成为一项成熟的技术,并且在许多应用领域逐步代替了传统的模拟信号处理系统。

世界上三大DSP芯片生产商:1.德克萨斯仪器公司(TI) 2.模拟器件公司(ADI) 3.摩托罗拉公司(Motorola).这三家公司几乎垄断了通用DSP芯片市场。

数字信号处理的书籍很多,其中以麻省理工学院奥本海姆编著的《Discrete Time Signal Processing》最为经典,有中译本《离散时间信号处理》由西安交通大学出版。

现在是第二版。

关键字:数字信号处理正弦信号发生器DSP 信号处理技术二、设计目的分析一般情况,产生正弦波的方法有两种:查表法和泰勒级数展开法。

基于泰勒级数展开法的DSP正弦信号发生器设计

基于泰勒级数展开法的DSP正弦信号发生器设计

I 1 _ _ 竺 兰 辫
集成层是基 础层和服务层 连接 的桥梁 , 它从基础层取得相关数 据, 为服务层的相关服务提供数据定义 、 信息传输和 交换 、 业务过程 定 义等 。 3 . 3服 务层 服务层是第 四方物流服务平 台的各种具体应用服务实现 的核 心层 。 包括各种功 能模块 , 如会 员管理 、 客户关系管理 、 物 流交易管 理、 第三方物 流企业 的选择 和评价 、 公 共信息服务 、 系统管理等 。 3 . 4用 户 层
设 计 开 发
动态评价管理子模块 是根 据客户评价值动态 修正各个3 P L 评价 指 标值 、 为3 P L 优化选择提供 数据来源的功能模块 。
4 . 3交 易过程 管理 模 块
交易过程管理模块是第 四方物流信息平台的核心功能模块 , 主 要负责对物流交易 的管理和优化 , 是第 四方物流对物流供应链优化 核心思想的实 现 。 该模块主要包 括了 : 需求信息 发布 、 3 P L优化选 择、 多任务路径优化管理 、 物 流订 单跟踪和交易记录管理五个 子模 块。 其中, 需求信息发布模块是在物流交易丌始时, 物 流需求方发布 用户层 是第 四方物流服务平 台的操作层 。 用户层主要包括三种 物流需求信息 的功能模块 ; 3 P L 优化选择模块是 当某个任务有多个 角色: 客户 /客户企业 , 3 P L 和4 P L I  ̄ 务商 ( 平 台管理者) 。 备选3 P L 可行时 , 通过汇总3 P L 动态评价管理子模块的相应3 P L ¥  ̄ z 价 指标值 , 经过计算得 到各3 P L 相应 的优劣权重 , 以供物流需 求方选 4基于E P C 第四方物流信息平台功能模块设计 择最优的3 P L 承接任 务 : 多任务路径优化管理子模块是为同时接收 依 照第 四方物 流信息平 台体 系结构 , 可将个功 能模块归纳如 多任务的3 P L 提供配送路径优化 的功能模块 ; 物流订 单跟踪子模 块 下: 是为物流需求方对货物进行实时查询跟踪的功能模块 ; 交易记录管 4 . 1 需 求方 注册 及 管理 模 块 理子模块是第 四方 物流信息平 台记录物 流交易的功能模块 。 需求方 注册 及管 理模 块主要完成第 四方物流对 物流需求方的 4 . 4 公 共 信 息服务 管理模 块 管理 以及需求方对 自身相 关信息 的管理 。 主要包括 了: 商业实体注 公共信息服务管理模块是为平 台用户提供 附加物流服务的功 册、 物流需求方服务发布 、 物流状态查询 、 3 P L 评价及反馈管理和服 能模块 。 它主要包括 了: 行业资讯 、 法律 法规 、 3 P L 推荐 和物流新动 务安全认证五个子模块。 其中商业实体注册模块和服务安全认证模 态各 子模 块 。 为 平台用户提供不 同的附加信息 。 块, 保障只有 经过 系统认证 的物流需 求方才能够使 用平台 , 并管理 4 . 5系统 管理模 块 物流需求方的注册信息; 物 流 需求 方 服 务 发 布 子模 块是 物 流 需 求 方 系统管理模块是平台管理员对 第四方物流信息 平台进行 管理 发布需求方物流需求信息 的功能模块; 物流状 态查询是物流需求方 的功 能模 块。 它主要包括 了: 系统初始化、 角色管理 、 权限管理和 日 对其所有物流任务信息查询 的功能模块 ; 3 P L 评价及反馈管理模块 常信 息维护四个予模块 。 为平 台的正常运 转提供 了保 障。 是物流需求方在物流任务完成后对3 P L 评价打分 、 反馈物流满意度 参 考 文 献 的功 能模块 。 [ 1 ] 李强, 赵颖奇, 石红红. 第四方物流 的概念与内涵. 科技和产业, 2 0 0 8 4 . 2 3 P L 加 盟及 管理模 块

DSP课程设计--正弦信号发生器的设计

DSP课程设计--正弦信号发生器的设计

DSP课程设计–正弦信号发生器的设计简介正弦信号发生器是一种常见的电子信号发生器。

在数字信号处理中,正弦信号是非常重要的一种基础信号。

在本次课程设计中,我们将使用MATLAB软件设计一个正弦信号发生器。

设计步骤步骤一:信号采样我们的信号采样频率为fs,即每秒采样多少个点。

首先我们需要设置采样频率。

信号采样频率的选取需要满足采样定理,保证采样信号能够完全还原原信号。

我们使用MATLAB的“fs”命令设置采样频率。

假设我们的采样频率为10KHz,代码为:fs = 10000; % 设置采样频率为10KHz步骤二:生成时域正弦信号根据正弦波方程,我们可以生成时域上的正弦信号:f0 = 1000; % 正弦信号的频率为1kHzA = 1; % 正弦信号的幅度为1Vt = 0:1/fs:1; % 假设信号长度为1秒y = A * sin(2 * pi * f0 * t);代码中,我们生成了一个正弦信号,频率为1kHz,幅度为1V,信号长度为1秒,并将其存放在y变量中。

步骤三:对信号进行FFT变换为了验证我们生成的信号是否正确,我们需要对信号进行FFT变换。

FFT变换可以将一个时域信号转化为频域信号。

我们使用MATLAB的“fft”命令对信号进行FFT变换。

代码如下:Y = fft(y); % 对信号y进行FFT变换,得到频域信号YL = length(y); % 计算信号的长度P2 = abs(Y/L); % 取FFT变换结果的绝对值,然后除以长度LP1 = P2(1:L/2+1);P1(2:end-1) = 2*P1(2:end-1);f = fs*(0:(L/2))/L; % 生成频率坐标轴代码中,我们使用FFT变换对信号y进行变换,并将结果存放在Y变量中。

然后我们根据FFT变换结果,得到频率分量以及对应的幅度分量。

步骤四:绘制频域正弦信号最后,我们使用MATLAB的plot函数绘制频域信号采样结果图。

基于dsp的正弦波发生器课程设计概要

基于dsp的正弦波发生器课程设计概要

第1章 绪论1.1 DSP 简介数字信号处理(Digital Signal Processing ,简称DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。

20世纪60年代以来,随着计算机和信息技术的飞速发展,数字信号处理技术应运而生并得到迅速的发展。

数字信号处理是一种通过使用数学技巧执行转换或提取信息,来处理现实信号的方法,这些信号由数字序列表示。

在过去的二十多年时间里,信号处理已经在通信等领域得到极为广泛的应用。

图一是数字信号处理系统的简化框图。

此系统先将模拟信号转换为数字信号,经数字信号处理后,再转换成模拟信号输出。

其中抗混叠滤波器的作用是将输入信号x (t)中高于折叠频率的分量滤除,以防止信号频谱的混叠。

随后,信号经采样和A/D 转换后,变成数字信号x(n)。

数字信号处理器对x(n)进行处理,得到输出数字信号y (n),经D/A 转换器变成模拟信号。

此信号经低通滤波器,滤除不需要的高频分量,最后输出平滑的模拟信号y(t)。

图1.1 数字信号处理系统简化框图数字信号处理是以众多学科为理论基础的,它所涉及的范围极其广泛。

例如,在数学领域,微积分、概率统计、随机过程、数值分析等都是数字信号处理的基本工具,与网络理论、信号与系统、控制论、通信理论、故障诊断等也密切相关。

近来新兴的一些学科,如人工智能、模式识别、神经网络等,都与数字信号处理密不可分。

可以说,数字信号处理是把许多经典的理论体系作为自己的理论基础,同时又使自己成为抗混叠 滤波器A/D数字信号处理D/A低通滤波器x(n)y(n) x(t)y(t)一系列新兴学科的理论基础。

1.2课题研究的目的意义科技的进步带动了DSP技术的发展,现代控制设备的性能和结构发生了巨大的变化,我们已经进入了高速发展的信息时代,DSP技术也成为当今科技的主流之一,被广泛地应用于生产的各个领域。

对于本次设计,其目的在于:(1) 了解DSP及DSP控制器的发展过程及其特点。

基于DSP的正弦波信号发生器本科毕业设计论文

基于DSP的正弦波信号发生器本科毕业设计论文

基于DSP的正弦波信号发生器本科毕业设计论文摘要:本文以数字信号处理(DSP)为基础,设计并实现了一种正弦波信号发生器,该发生器能够生成高质量、稳定的正弦波信号。

通过对DSP算法和各模块的设计,实现了信号的频率、幅度和相位的可调节,以及频谱图的显示功能。

在硬件实现方面,本文采用了TMS320F2808型号的DSP芯片,并结合了一些外围电路,使得信号的输出更加稳定和准确。

实验结果表明,本设计具有较高的性能和可靠性,达到了预期的设计要求。

关键词:数字信号处理,正弦波信号发生器,DSP芯片,频率可调节,幅度可调节,相位可调节1.引言正弦波信号在很多领域中应用广泛,如通信、电子音乐、声音合成等。

传统的正弦波信号发生器一般是采用模拟电路实现的,但其稳定度和精度受到一些固有的限制。

随着数字信号处理(DSP)技术的发展和普及,利用DSP芯片实现正弦波信号发生器成为可能。

本文基于DSP技术,设计并实现了一种高性能的正弦波信号发生器。

2.正弦波信号发生器的算法设计通过对正弦波信号的数学表示和DSP算法的分析,本文设计了一种高效的正弦波信号生成算法。

算法的核心是离散傅里叶变换(DFT),通过将正弦波信号分解为多个频率分量的叠加,从而实现了频率可调节的功能。

另外,为了实现幅度和相位的可调节,本文还引入了振幅缩放和相位偏移的技术。

3.正弦波信号发生器的硬件设计本文选取了TMS320F2808型号的DSP芯片作为核心控制器,并结合了一些外围电路,实现了正弦波信号的输出。

其中,DSP芯片负责信号的计算和控制,外围电路则负责信号的放大和滤波以及频谱图的显示。

为了提高信号的稳定性和准确性,本文还采用了高精度的时钟模块,以及稳定的电源供应。

4.正弦波信号发生器的实验结果通过在实验中对正弦波信号发生器进行功能测试和性能评估,本文验证了该设计的有效性。

实验结果表明,该正弦波信号发生器具有较高的稳定性和精度,能够生成高质量的正弦波信号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

loop3:
loop4: sinx:
table_s
d_coef_s d_xs d_squr_xs d_temp_s d_sinx d_1_s
STL STM STM STM PORTW B
A,*AR6+ #sin_x,AR6 #1,AR0 #360,BK *AR6+0%,PA0 loop4
.def .data .word .word .word .word .usect .usect .usect .usect .usect .usect .text SSBX STM RPT MVPD STM STM STM ST
cosx: d_coef_c table_c
d_xc d_squr_xc
SQUR ST ||LD MASR MPYA STH MASR MPYA St ||LD MASR MPYA ST ||LD MASR MPYA STH RET
.def .usect .data .word .word .word .word .usect .usect
4. 设计方案
本设计采用TMS320C54X系列的DSP作为正弦信号发生器的核心控 制芯片。
通过计算一个角度的正弦值和余弦值程序可实现正弦波,其步骤如 下: 1. 利用sinx和cosx子程序,计算0°~45°(间隔为0.5°)的正弦和
余弦值 2. 利用sin(2x)=2sin(x)cos(x)公式,计算0°~90°的正弦值(间隔
:>EPROM
PAGE 0
:>EPROM
PAGE 0
:>SPRAM
PAGE 1
:>DARAM1 PAGE 1
:>DARAM1 PAGE 1
:>DARAM2 PAGE 1
:>DARAM2 PAGE 1
: align(512){} >
:>VECS PAGE 0结果及分析
将程序装载到DSP目标芯片中,波形实现结果可以在CCS图形显示界面直观地表示出来
*AR2+,A A,*AR2 *AR4,B *AR2+,*AR3+,B,A A A,*AR2 *AR2-,*AR3+,B,A *AR2+ B,*AR2 *AR4,B *AR2-,*AR3+,B,A *AR2+ B,*AR2 *AR4,B *AR2-,*AR3+,B,A d_xs B,d_sinx
d_xc,d_cosx "coef_c", 4
1. 设计目的
设计一个基于DSP的正弦信号发生器
2. 设计内容
利用基于CCS开发环境中的C54X汇编语言来实现正弦信号发生装 置。
三.设计原理
一般情况,产生正弦波的方法有两种:查表法和泰勒级数展开法。 查表法是使用比较普遍的方法,优点是处理速度快,调频调相容易,精 度高,但需要的存储器容量很大。泰勒级数展开法需要的存储单元少, 具有稳定性好,算法简单,易于编程等优点,而且展开的级数越多,失 真度就越小。本文采用了泰勒级数展开法。一个角度为θ的正弦和余弦 函数,可以展开成泰勒级数,取其前5项进行近似得:
为1°) 3. 通过复制,获得0°~359°的正弦值 4. 将0°~359°的正弦值重复从PA口输出,便可得到正弦波
3. 软件操作
利用 CCS 集成开发环境,用户可以在一个开发环境下完成工程 定义、程序 编辑、编译链接、调试和数据分析等工作环节。
1. 创建工程(project)文件 选择 Project→New,在“Project”文本框中键入将要创建
286
PA0
.set 0
start:
loop1: loop2:
.text STM STM STM STM STM RPTB LDM LD STL STL CALL CALL LD LD MPYA STH MAR STM STM RPTB LD STL STM STM RPTB LD NEG
#STACK+10,SP k_theta,AR0 0,AR1 #sin_x,AR6 #90,BRC loop1-1 AR1,A #d_xs,DP A,@d_xs A,@d_xc sinx cosx #d_sinx,DP @d_sinx,16,A @d_cosx B,1,*AR6+ *AR1+0 #sin_x+89,AR7 #88,BRC loop2-1 *AR7-,A A,*AR6+ #179,BRC #sin_x,AR7 loop3-1 *AR7+,A A
输出结果显示,在CCS图形观察窗口得到了频率稳定,信号干扰小,波 形失真度较小的正弦信号;
7. 设计总结心得
通过这次的课程设计使我进一步加深了对于DSP这门课程的学习 以及对于平时所学内容的实际应用。在设计中发现问题和同学互 相讨论研究增加了团队合作的能力。在输入程序时发现编程确实 是要求很认真细心的,如果稍有差错就会导致整个程序的错误, 也由此体现了DSP这门课程的严谨性。相信在以后的学习中一定 会更好的应用所学内容的。
选择 Project→Build,系统提示没有出错信息后,系统自动 生成一个可执行文件,sine.out 文件。 4.载入可执行文件
选择 File→Load Program 载入编译链接好的可执行文件 sine.out 5.运行程序
选择 Debug→Run运行,可以通过查看内存表等方法,看到 程序运行的结果。 6.观察数据和图形 选择 View→Graph→Time/Frequence
0249H 0444H 0AABH 4000H "cos_vars",1 "cos_vars",1
d_temp_c d_cosx c_1_c
.usect .usect .usect .text SSBX STM RPT MVPD STM STM STM ST SQUR ST ||LD MASR MPYA STH MASR MPYA ST ||LD MASR SFTA NEG MPYA MAR RETD
PAGE 1: SPRAM: org=0060H, len=0020H DARAM1: org=0080H, len=0010H DARAM2: org=0090H, len=0010H DARAM3: org=0200H, len=0200H
}
SECTIONS {
.text .data STACK sin_vars coef_s cos_vars coef_c sin_x 1 .vectors }
ADD
*AR4,16,B
STH
B,*AR2
RET
.end
正弦波程序链接命令文件sin.cmd -x.\Debug\vectors.obj -x.\Debug\sin.obj -o sin.out -m sin.map -e start MEMORY {
PAGE 0: EPROM: org=0E00H,len=1000H VECS: org=0FF80H,len=0080H
的工程项目名,本例工程项目名为“sin” 2. 向工程中添加文件 选择 Project→Add Files to Project,将 sine.asm文件自
动添加到 Project→Source 中。 用同样的方法 将 sine.cmd 文 件添加到对应的目录中。
3. 构建工程,工程所需文件编辑完成后,可以对该工程进行 编译链接,产生可执行文件, 为调试做准备。
"cos_vars",1 "cos_vars",1 "cos_vars",1
FRCT #d_coef_c,AR5 #3 #table_c,*AR5+ #d_coef_c,AR3 #d_xc,AR2 #c_1_c,AR4 #7FFFH,c_1_c *AR2+,A A,*AR2 *AR4,B *AR2+,*AR3+,B,A A A,*AR2 *AR2-,*AR3+,B,A *AR2+ B,*AR2 *AR4,B *AR2-,*AR3+,B,A A,-1,A A *AR2+ *AR2+
d_xs,d_sinx
01C7H 030BH 0666H 1556H "coef_s",4 "sin_vars",1 "sin_vars",1 "sin_vars",1 "sin_vars",1 "sin_vars",1
FRCT #d_coef_s,AR5 #3 #table_s,*AR5+ #d_coef_s,AR3 #d_xs,AR2 #d_1_s,AR4 #7FFFH,d_1_s
式中:x为θ的弧度值,x=2πf/fs(fs是采样频率;f是所要发生 的信号频率。
正弦波的波形可以看作由无数点组成,这些点与x轴的每一个角度 值相对应,可以利用DSP处理器处理大量重复计算的优势来计算x轴每一 点对应的y的值(在x轴取N个点进行逼近)。整个系统软件由主程序和基 于泰勒展开法的SIN子程序组成,相应的软件流程图如图。
调整输出图形参数
5. 源程序
正弦波源程序sin.asm .title "sin.asm"
.mmregs
.def start
.def
d_xs,d_sinx,d_xc,d_cosx,sinx,cosx
sin_x:
.usect "sin_x",360
STACK:
.usect "STACK",10
k_theta .set
相关文档
最新文档