最优化大作业
小学奥数 最优化问题 知识点+例题+练习 (分类全面)
拓展.小强给客人沏茶,烧开水需要12分钟,洗茶杯要2分钟,买茶叶要8分钟,放茶叶泡茶要1分钟。为了让客人早点喝上茶,你认为最合理的安排,多少分钟就可以了?
拓展.在早晨起床后的1小时内,小欣要完成以下事情:叠被3分钟,洗脸刷牙8分钟,读外语30分钟,吃早餐10分钟,收碗擦桌5分钟,收听广播30分钟。最少需要多少分钟?
课后作业
1.用一只平底锅烙大饼,锅里只能同时放两个。烙熟大饼的一面需要3分钟,现在要烙3个大饼,最少要用几分钟?
2、小虎早晨要完成这样几件事:烧一壶开水需要10分钟,把开水灌进热水瓶需要2分钟,取奶需要5分钟,整理书包需要4分钟。他完成这几件事最少需要多少分钟?
3、甲、乙、丙三人分别拿着2个、3个、1个热水瓶同时到达开水供应点打热水。热水龙头只有一个,怎样安排他们打水的次序,可以使他们打热水所花的总时间最少?
例3、五(1)班赵明、孙勇、李佳三位同学同时到达学校卫生室,等候校医治病。赵明打针需要5分钟,孙勇包纱布需要3分钟,李佳点眼药水需要1分钟。卫生室只有一位校医,校医如何安排三位同学的治病次序,才能使三位同学留在卫生室的时间总和最短?
拓展.甲、乙、丙三人到商场批发部洽谈业务,甲、乙、丙三人需要的时间分别是10分钟、16分钟和8分钟。怎样安排,使3人所花的时间最少?最少时间是多少?
例1、 用一只平底锅煎饼,每次只能放两个,煎一个展.烤面包时,第一面需要2分钟,第二面只要烤1分钟,即烤一片面包需要3分钟。小丽用来烤面包的架子,一次只能放两片面包,她每天早上吃3片面包,至少要烤多少分钟?
拓展.小华用平底锅烙饼,这只锅同时能放4个大饼,烙一个要用4分钟(每面各需要2分钟)。可小华烙6个大饼只用了6分钟,他是怎样烙的?
最优化方法大作业答案
1.用薄钢板制造一体积5m 3,长度不小于4m ,无上盖的货箱,要求钢板耗量最小。
确定货箱的长x 1、宽x 2和高x 3。
试列出问题的数学模型。
解:min 32312122x x x x x x z ++= s.t 5321=x x x 41≥x 0,,321≥x x x2.将下面的线性规划问题表示为标准型并用单纯形法求解max f=x 1+2x 2+x 3s .t .2x 1+x 2-x 3≤2 -2x 1+x 2-5x 3≥-6 4x 1+x 2+x 3≤6 x i ≥0 i=1,2,3 解:先化标准形:Min 321x x x z -+=224321=+-+x x x x 6525321=++-x x x x646321=+++x x x x列成表格:121610011460105122001112-----可见此表已具备1°,2°,3°三个特点,可采用单纯形法。
首先从底行中选元素-1,由2/2,6/2,6/4最小者决定选第一行第一列的元素2,标以记号,迭代一次得121210231040116201002121211--------再从底行中选元素-2/3,和第二列正元素1/2,迭代一次得12123230210231040116201002121211-------再从底行中选元素-3,和第二列正元素2,迭代一次得4233410120280114042001112---再迭代一次得1023021062210231010213000421021013--选取最优解:01=x 42=x 23=x3. 试用DFP 变尺度法求解下列无约束优化问题。
min f (X )=4(x 1-5)2+(x 2-6)2取初始点X=(8,9)T ,梯度精度ε=0.01。
解:取IH=0,初始点()TX 9,8=2221)6()5(4)(-+-=x x x f⎥⎦⎤⎢⎣⎡--=∇122408)(21x x x f⎪⎪⎭⎫⎝⎛=∇624)()0(xfTx f d )6,24()()0()0(--=-∇=)0(0)0()1(dxxα+=T)69,248(00αα--=])669()5248(4min[)(min 2020)0(0)0(--+--⨯=+αααdxf 0)6()63(2)24()2458(8)(00)0(0)0(=-⨯-+-⨯--=+ααααd d xdf13077.0130170≈=α⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛--⨯+⎪⎪⎭⎫ ⎝⎛=21538.886153.462413077.098)1(x⎪⎪⎭⎫⎝⎛-=∇43077.410784.1)()1(xf进行第二次迭代:⎥⎦⎤⎢⎣⎡--=-=78463.013848.31)0()1(xxδ⎥⎦⎤⎢⎣⎡--=∇-∇=56924.110783.25)()(1)0()1(xf xf γ101011011101γγγγγδδδH HH H H TTTT-+=03172.8011=γδT86614.6321101==γγγγH T⎥⎦⎤⎢⎣⎡=61561.046249.246249.285005.911Tδδ⎥⎦⎤⎢⎣⎡==46249.240022.3940022.3940363.630110110TTHH γγγγ所以:⎪⎪⎭⎫⎝⎛--=0038.103149.003149.012695.01H⎪⎪⎭⎫⎝⎛-⨯⎪⎪⎭⎫⎝⎛---=∇-=43076.410784.10038.103149.003149.012695.0)()1(1)1(xf H d⎪⎪⎭⎫⎝⎛-=48248.428018.0令 )1(1)1()2(dx x α+=利用)()1()1(=+ααd dxdf ,求得49423.01=α,所以⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫⎝⎛=+=21538.213848.021538.886152.449423.0)1()1()2(dxx⎪⎪⎭⎫ ⎝⎛=65因)()2(=∇xf ,于是停,)2(x 即为最优解。
最优化 马昌凤 第三章作业
最优化方法及其Matlab程序设计习题作业暨实验报告学院:数学与信息科学学院班级:12级信计一班姓名:李明学号:1201214049第三章 最速下降法和牛顿法一、上机问题与求解过程1、用最速下降法求212221216423),(x x x x x x f --+=的极小值。
解:仿照书上编写最速下降法程序如下:function [x,val,k]=grad(fun,gfun,x0) %功能:用最速下降法求解无约束化问题:min f(x) %输入:x0是初始点,fun,gfun 分别是目标函数和梯度 %输出:x,val 分别是近似嘴有点和最优值,k 是迭代次数 maxk=5000;rho=0.5;sigma=0.4;%一开始选择时选择的rho 和sibma 选择的数据不够合理,此处我参照书上的数据编写数据 k=0;epsilon=1e-5; while (k<maxk)g=feval(gfun,x0); %计算梯度 d=-g;%计算搜索方向if (norm(d)<epsilon),break ;end m=0;mk=0; while (m<20)%Armijo 搜索if (feval(fun,x0+rho^m*d)<feval(fun,x0)+sigma*rho^m*g'*d) mk=m;break ;%直接利用Armijo 搜索公式,一开始的时候没有记住公式编写出现错误 end m=m+1; endx0=x0+rho^mk*d; k=k+1; end x=x0;val=feval(fun,x0) %求得每一个的函数值然后仿照书上建立两个目标函数和梯度的M 文件:function f=fun(x)f=3*x(1)^2+2*x(2)^2-4*x(1)-6*x(2); function g=gfun(x) g=[6*x(1)-4,4*x(2)-6]';选取初始点为']0,0[,调用函数程序,得出最小极值点为']500.1,6667.0[,极小值为8333.5-,在界面框中输入的程序如下:[x,val,k]=grad('fun','gfun',x0) val = -5.8333 x =0.6667 1.5000 val =-5.8333 k = 10从结果可以看出迭代次数为10次,如果选取不同的初值点则迭代次数不一样,但是极小值相同。
北航最优化大作业
北航最优化大作业1.引言旅行商问题(Traveling Salesman Problem,TSP)是一种经典的组合优化问题,目标是找到一条路径,使得旅行商从起点出发,途经所有城市一次后返回起点,并且总路径长度最短。
TSP问题具有NP-hard的特性,寻找最优解是一个非常具有挑战性的任务。
本文将基于禁忌算法,探讨TSP问题的求解方法。
2.禁忌算法简介禁忌算法是一种基于局部的元启发式算法,通过在过程中禁止一定的动作来跳出局部最优解,以期望获得更好的全局最优解。
算法通过引入禁忌表和禁忌长度等机制,避免过程中陷入局部最优解。
3.TSP问题的数学建模假设有n个城市,城市之间的距离可以表示为一个n×n的距离矩阵D。
TSP问题的目标可以定义为:min ∑_(i=1)^n ∑_(j=1)^(n) D_ij*x_ijs.t. ∑_(i=1)^n x_ij=1,∑_(j=1)^n x_ij=1,∀i ≠ jx_ij∈{0,1}, 1≤i,j≤n其中x_ij表示城市i与城市j之间的路径是否存在,1表示存在,0表示不存在。
4.禁忌算法在TSP问题中的应用(1)初始化选取一个起始解x,计算其路径长度f(x)。
将x设为当前解x_best,将f(x)设为当前解的最优值f_best。
(2)选择邻域解选择当前解的一个邻域解x',使得x'与x只有一个位置上的交换。
通过随机选择两个位置,进行交换操作。
(3)禁忌判断如果邻域解x'的路径长度f(x')小于当前解的最优值f_best,则更新f_best为f(x'),并将x'设为新的当前解。
否则,比较x'与当前解的禁忌情况。
(4)禁忌更新如果x'未在禁忌表中,或者禁忌表中对应的禁忌周期已过,则将x'设为新的当前解。
否则,选择一个路径长度较短的邻域解x'',即使其路径长度f(x'')大于f_best。
最优化第一次作业
无约束优化算法最优化课程作业(一)姓名:丁敏学号:31130510012014/6/24一、无约束优化算法无约束优化计算方法是数值计算领域中十分活跃的研究课题。
快速地求解无约束优化问题已经成为当今的焦点,除了其自身的重要性外,还由于目前求解约束优化问题的基本思想之一就是把约束问题变换为一系列无约束子问题进行求解。
因此,无约束优化算法的求解效率将直接影响到约束问题的求解,尤其是在大规模优化问题中。
所以,对无约束优化算法的研究具有重要的理论意义和实际价值。
无约束优化问题,是指优化问题的可行集为n R ,无约束的标准形式(1-1)为:R R f x f n→:)(m i n求解无约束优化问题时将会涉及到以下概念:(1) 驻点、鞍点:若f (x )在点x*处可微,并且0f (x*)∇=,则称x*为f (x )的一个驻点(或者平稳点)。
既不是极小点,也不是极大点的驻点称为鞍点。
(2) 全局最优解:若n x*Z,x R ∈∀∈均有f (x )f (x*)≥,则称x*为问题(1-1)的全局 最优解(3) 局部最优解:若*x D ∈且存在0δ>使得()()()**f x f x ,x DN x δ≥∀∈则称x*为问题(1-1)的一个局部最优解(极小点);若*x D ∈且存在0δ>使得()()()**f x f x ,x DN x δ≤∀∈则称x*为问题(1-1)的一个局部最优解(极大点);当目标函数 f ( x )为凸函数时,我们认为全局最优解即是局部最优解,然而,通常寻求全局最优解并不容易。
因此,在非线性优化中我们认为局部最优解即为所求。
无约束优化算法可以分为两大类: 一类是借助目标函数的导数信息来构造下降的搜索方向。
另一类是由目标函数值信息直接搜索求解的方法。
本文章重点介绍最速下降法,阻尼牛顿法以及共轭梯度法。
二、最速下降法1、最速下降法思想经典最速下降法是由 Cauchy 于 1847 年提出的,Forsythe 和 Motzkin 在 1951 年对它做了初步的分析。
北航最优化大作业
图 18: 前两行为迭代点 xk, 后面一行为梯度的 2 范数,显然,前两行行都趋于无穷大,发散,梯度的 2 范数 趋于 13.4536(从 matlab 变量表格中得到)。 4: 初始点 x(0) = (10, 20)T 前两行为迭代点 xk, 后面一行为梯度的 2 范数,显然,前两行行都趋于无穷大,发散,梯度的 2 范数 趋于 13.4536(从 matlab 变量表格中得到)。
33
图 57: 7、9、11、13 迭代停止测试。
当 n=50 时,解 x*=[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1] 判断矩阵:
图 58: 可以发现,没有发现负曲率的情况,第 1 和第 2 次的迭代到了边界,第 4、6、8、10、12、14、16 次 迭代到了边界。
▽f (x) = g = −400x1(x2 − x21) + 2x1 − 2
200(x2 − x21)
[
]
▽2f (x) = G = 1200x21 − 400x2 + 2 −400x1
−400x1
200
14
4.1 最速下降法
代码和流程图:
图 33:
图 34: 15
4.1.1 初始点为 (1.2,1.2)
++
)
x1 + x12 − 100
x11
x1
−
50 1
−
x2
−10 − µ(
++
)
x1 + x2 − 100 x2 −x1 + 50 + x2
(完整版)四年级奥数举一反三第七课最优化问题附作业
第7讲最优化问题一、知识要点在日常生活和生产中,我们经常会遇到下面的问题:完成一件事情,怎样合理安排才能做到用的时间最少,效果最佳。
这类问题在数学中称为统筹问题。
我们还会遇到“费用最省”、“面积最大”、“损耗最小”等等问题,这些问题往往可以从极端情况去探讨它的最大(小)值,这类问题在数学中称为极值问题。
以上的问题实际上都是“最优化问题”。
二、精讲精练【例题1】用一只平底锅煎饼,每次只能放两个,剪一个饼需要2分钟(规定正反面各需要1分钟)。
问煎3个饼至少需要多少分钟?【思路导航】先将两个饼同时放入锅中一起煎,一分钟后两个饼都熟了一面,这时可将一个取出,另一个翻过去,再放入第三个。
又煎了一分钟,将两面都熟的那个取出,把第三个翻过去,再将第一个放入煎,再煎一分钟就会全部煎好。
所以,煎3个饼至少需要3分钟。
练习1:1.烤面包时,第一面需要2分钟,第二面只要烤1分钟,即烤一片面包需要3分钟。
小丽用来烤面包的架子,一次只能放两片面包,她每天早上吃3片面包,至少要烤多少分钟?2.用一只平底锅烙大饼,锅里只能同时放两个。
烙熟大饼的一面需要3分钟,现在要烙3个大饼,最少要用几分钟?3.小华用平底锅烙饼,这只锅同时能放4个大饼,烙一个要用4分钟(每面各需要2分钟)。
可小华烙6个大饼只用了6分钟,他是怎样烙的?【例题2】妈妈让小明给客人烧水沏茶。
洗水壶需要1分钟,烧开水需要15分钟,洗茶壶需要1分钟,洗茶杯需要1分钟。
要让客人喝上茶,最少需要多少分钟?【思路导航】经验表明,能同时做的事,尽量同时做,这样可以节省时间。
水壶不洗,不能烧开水,因此,洗水壶和烧开水不能同时进行。
而洗茶壶、洗茶杯和拿茶叶与烧开水可以同时进行。
根据以上的分析,可以这样安排:先洗水壶用1分钟,接着烧开水用15分钟,同时洗茶壶、洗茶杯、拿茶叶,水开了就沏茶,共需要16分钟。
练习2:1.小虎早晨要完成这样几件事:烧一壶开水需要10分钟,把开水灌进热水瓶需要2分钟,取奶需要5分钟,整理书包需要4分钟。
最优化方法与应用大作业(一)最速下降法
最优化方法与应用大作业(一)
---最速下降法部分:
1.问题描述:
用梯度下降法求解以下优化问题
min f(x)=(x1+10*x2)^2+5(x3-x4)^2+(x2-2*x3)^4+10*(x1-x4)^4
2.编程感想:
该算法需要计算Hesse矩阵,C语言在向量运算时没有Matlab方便,所以手工完成了理论计算,再输入,破坏了程序的移植性。
同时,实验表明当初始值离理想点较远且精度要求较高时,最速下降法的收敛速率极慢,迭代几乎不可能完成,这对初值的选取提出了一定限制。
3.结果分析:
编译界面(Mac os X,Xcode环境)
输入参数(设定为(0.1,0.2,0.3,0.4)):
结果(此处列出每次迭代结果)。
明显的看到,最速下降法的收敛较慢,最终结果接近理论值(F(0,0,0,0)=0)所以该结果可以满意。
4.算法代码见下页
西安电子科技大学电子工程学院020951
李骏昊02095005。
最优化理论和算法: 大作业(一)
最优化理论和算法:大作业(一)简介:这个大作业的主要目的是在Matlab下自己编写单纯形法算法来求解标准型线性规划问题:min c T xs.t.Ax=bx≥0其中b≥0,A是m×n(m≤n)的矩阵。
假设A的秩是m.特别的,A并不一定包含单位矩阵。
按照要求编写下列小程序。
程序(一):实现单步单纯形法程序格式:function[istatus,iB,iN,xB]=simplex_step(A,b,c,iB,iN,xB)%实现一步单纯形法%输入参数:%A-(n,m)系数矩阵%b-(m,1)(正)右端向量%c-(n,1)目标函数系数%iB-(1,m)整数向量记录当前基本变量的指标数%iN-(1,n-m)整数向量记录当前非基本变量的指标数%xB-(m,1)向量代表当前基本变量的值%输出参数:%istatus-整数标记单纯形法执行状态%istatus=0正常单纯形法步完成% istatus=32问题无界% istatus=-1找到最优基本可行解%iB-(1,m)整数向量记录运行单纯形法之后的基本变量的指标数%iN-(1,n-m)整数向量记录运行单纯形法之后的非基本变量的指标数%xB-(m,1)向量记录运行单纯形法之后的基本变量的值注:该程序不考虑退化情形。
程序(二):利用两步法中的第一步来求解一个初始基本可行解程序格式:function[istatus,iB,iN,xB]=simplex_init(A,b)%实现两步法中的第一步来求解一个初始基本可行解,通过求解下面的问题:%min y_1+...+y_m%s.t.Ax+y=b%x>=0,y>=0%A是m x n矩阵。
%输入参数:%A-(n,m)系数矩阵%b-(m,1)正的右端向量%输出参数:%istatus-整数标记初始化状态% istatus=1找到原问题的一个基本可行解% istatus=4问题可行域是空集% istatus=16初始化过程失败%iB-(1,m)整数向量记录运行初始化之后的基本变量的指标数(对应原问题)%iN-(1,n-m)整数向量记录运行初始化之后的非基本变量的指标数(对应原问题)%xB-(m,1)向量记录运行初始化之后的基本变量的值(对应原问题)注:为了简单化程序,若初始化过程找到的初始基本可行解包含某些人工变量y j,设置istatus=16(初始化失败)。
北航最优化方法大作业参考
1 流量工程问题1.1 问题重述定义一个有向网络G=(N,E),其中N是节点集,E是弧集。
令A是网络G的点弧关联矩阵,即N×E阶矩阵,且第l列与弧里(I,j)对应,仅第i行元素为1,第j行元素为-1,其余元素为0。
再令b m=(b m1,…,b mN)T,f m=(f m1,…,f mE)T,则可将等式约束表示成:Af m=b m本算例为一经典TE算例。
算例网络有7个节点和13条弧,每条弧的容量是5个单位。
此外有四个需求量均为4个单位的源一目的对,具体的源节点、目的节点信息如图所示。
这里为了简单,省区了未用到的弧。
此外,弧上的数字表示弧的编号。
此时,c=((5,5…,5)1 )T,×13)。
根据上述四个约束条件,分别求得四个情况下的最优决策变量x=((x12,x13,…,x75)1×13图 1 网络拓扑和流量需求1.2 7节点算例求解1.2.1 算例1(b1=[4;-4;0;0;0;0;0]T)转化为线性规划问题:Minimize c T x1Subject to Ax1=b1x1>=0利用Matlab编写对偶单纯形法程序,可求得:最优解为x1*=[4 0 0 0 0 0 0 0 0 0 0 0 0]T对应的最优值c T x1=201.2.2 算例2(b2=[4;0;-4;0;0;0;0]T)Minimize c T x2Subject to Ax2=b2X2>=0利用Matlab编写对偶单纯形法程序,可求得:最优解为x2*=[0 4 0 0 0 0 0 0 0 0 0 0 0]T对应的最优值c T x2=201.2.3 算例3(b3=[0;-4;4;0;0;0;0]T)Minimize c T x3Subject to Ax3=b3X3>=0利用Matlab编写对偶单纯形法程序,可求得:最优解为x3*=[4 0 0 0 4 0 0 0 0 0 0 0 0]T对应的最优值c T x3=401.2.4 算例4(b4=[4;0;0;0;0;0;-4]T)Minimize c T x4Subject to Ax4=b4X4>=0利用Matlab编写对偶单纯形法程序,可求得:最优解为x4*=[4 0 0 4 0 0 0 0 0 4 0 0 0]T对应的最优值c T x4=601.3 计算结果及结果说明1.3.1 算例1(b1=[4;-4;0;0;0;0;0]T)算例1中,由b1可知,节点2为需求节点,节点1为供给节点,由节点1将信息传输至节点2的最短路径为弧1。
北航最优化方法大作业参考
北航最优化方法大作业参考旅行商问题是一个经典的组合优化问题,目标是找到一条最短路径,使得旅行商能够在访问所有城市后回到起始城市。
在实际应用中,旅行商问题有着广泛的应用,例如物流配送、城市规划等领域。
为了解决旅行商问题,我们可以采用启发式算法,其中一个常用的方法是遗传算法。
遗传算法是一种模拟自然进化过程的优化算法,通过模拟生物遗传的选择、交叉和变异等操作,逐步优化问题的解。
首先,我们需要对问题进行建模。
假设有N个城市,我们可以通过一个N*N的距离矩阵来表示各个城市之间的距离。
同时,我们需要定义一个染色体表示一条路径,其中每个基因表示一个城市的编号。
接下来,我们可以采用遗传算法来求解最优解。
遗传算法一般包括以下几个步骤:1.初始化种群:随机生成初始的染色体种群,每个染色体都表示一条路径。
2.适应度评价:根据染色体的路径长度来评估每个染色体的适应度,路径越短适应度越高。
3.选择操作:选择适应度较高的染色体作为父代,采用轮盘赌选择算法确定父代。
4.交叉操作:采用部分映射交叉算子对父代进行交叉操作,生成新的子代。
5.变异操作:对子代进行变异操作,以增加种群的多样性。
6.环境选择:根据适应度选择下一代种群,同时保留精英个体,避免解的丢失。
7.终止条件:当达到预设的迭代次数或者达到最优解时,终止算法。
通过以上步骤的迭代,我们可以逐步优化路径的长度,最终得到一条最短路径。
除了遗传算法,我们还可以尝试其他的优化算法,例如模拟退火算法、蚁群算法等。
这些算法在求解旅行商问题时都有一定的优势和适用性。
总结起来,旅行商问题是一个经典的组合优化问题,在北航最优化方法大作业中可以选择使用启发式算法来解决。
我们可以尝试使用遗传算法来求解最优路径,并根据实际情况选择合适的算法参数和终止条件。
通过不断地迭代和优化,我们可以得到一条最短路径,满足旅行商的需求。
以上是关于北航最优化方法大作业的参考内容,希望对你的写作有所帮助。
如果有其他疑问,欢迎继续提问。
北航最优化方法作业答案co_theory
原始问题
min-max问题是研究对偶问题的基础!各种对偶的区别: 的定义方式不同! 原始问题(primal problem)
◎ 前提: 两人采取理性行为 不管对方采取何种策略,该行为都能保证自己的最大获益 该行为都能保证自己的最大获益 -不管对方采取何种策略 Peter: 选 最多要支付 Harriet: 选 最少收到 需要解决的问题: max-min问题←→对偶问题
第 7 章 约束优化:理论 数学规划基础 LHY‐SMSS‐BUAA 第 7 章 约束优化:理论 数学规划基础 LHY‐SMSS‐BUAA
4
线性规划的对偶理论
线性规划的对偶理论: 原始问题←→对偶问题 • 原始问题-minimize,对偶问题-maximize • 原始问题最优解所对应的单纯形乘子是对偶问题的解 • 弱对偶性 • 强对偶性(之一有解,则另一个必有解,且最优值相等)
其中 是凸函数. 定理. 凸规划的任一KKT点是全局极小点. 注1. 凸规划的所有局部解也是全局解. 注2. 线性规划是凸规划;二次规划中目标函数的Hessian阵 半正定时,也是凸规划.
第 7 章 约束优化:理论 数学规划基础 LHY‐SMSS‐BUAA
则 . 从而 Lagrange乘子的解释:最优值关于约束的灵敏度,即 约束函数变化时,对应的最优值的变化率!
原始问题(primal problem) 例1.
Lagrange对偶-例
其中 的其它约束. 对任意的
, 是凸函数,X是凸集,是希望分别处理 ,定义对偶函数 定义对偶函数(dual (d l function) f ti )
对偶函数
对偶问题: 对偶问题(dual problem):
注:如果要求 ci(x) = 0,则对偶问题中与之对应的变量没 有符号限制.
西电最优化大作业
p0 f x0 , 当 搜 索 到
xk 1
时
,
共
轭
方
向
为
pk 1 f xk 1 k pk , k 0,1,...,n 2 ,此时, pk 1 与 pk A 共轭,用 Apk 右乘上式得
T pk 1 Apk f xk 1 Apk k pk Apk
m 2 理解为拉格朗日乘子法: minT X ; M min f x M min0, g i x i 1
其中
min0, g i x 2
g i 0,i 1 ~ m
当g i x 0,
,
由
T pk 1 Apk 0
得
f x k 1 Ap k k k 0,1,...,n 2 ,若不满足条件,进行下一次迭代。 pT p Ap k
T
1.2.2 问题求解 本程序编程语言为 MATLAB,终止条件为 f x k x0 =[1 1]。 程序代码见附件conjugate.m 1.2.3 计算结果如下:
三、此次实验的收获
经过几个晚上的艰苦奋斗,努力学习,不断调试程序,最终才得以成功运行 程序并得到满意的结果。 有过山重水复疑无路的困境,但最终迎来的还是柳暗花 明又一村的喜悦。通过此次实验,我的收获主要有以下几点: 以前自己在求解函数最优化问题时都是通过求导、画图等方法,而这几个算法都 是通过不断迭代寻找最优解, 相对来说更有利于电脑编程的实现和推广,对函数 本身性质的要求也不是太高。 在最速下降法中, 沿负梯度方向函数值很快的说法容易使我们相信这一定是 最理想的搜索方向, 沿该方向搜索时收敛速度应该很快,然而在算法实现过程中 发现,梯度法的收敛速度并不快(迭代次数为 45 次) ,比其它算法收敛速度都要 慢。而共轭梯度法仅需要利用一阶导数信息,也不再要求精确的直线搜索,进而 克服了最速下降法收敛慢的缺点(迭代次数为 2 次) 。 内点法和外点法的实质都是构造 “惩罚函数” 或者 “围墙函数 (或障碍函数) ” , 将约束函数其转化为非约束函数, 其中外点法在将函数转化为非约束函数后调用 了“牛顿法”来求解,内点法也尝试过用“牛顿法”来求解非约束函数,但由于 障碍函数为倒数形式, 导致了程序在求矩阵逆的时候产生了无穷大的量,函数无 解,所以内点法采用“直接求导”来求解非约束函数。此外,我也尝试了用求极 限的方法来求解最优点,根据手算的步骤,在求得偏导数为 0 的点后,令障碍因 子 mk→0,求得最优解,方法简单,算法易于实现。 这门课在学习过程中多以理论学习为主,如果平时不注重实践,将自己所学 运用到实际中, 就很难会有太大的收获,通过自己的努力用课堂上的算法解决了 实际问题,无疑加深了自己对算法理论的理解。
化学反应器大作业-二氧化硫转换器最优化
化学反应器理论大作业二氧化硫转换器最优化二氧化硫转换器最优化反应方程式:SO 2+1/2O 2=SO 3 (放热反应)四段绝热反应器,级间间接换热,常压下反应。
1. 基础数据• 混合物恒压热容Cp =0.2549 [kcal/kgK] • -ΔH =23135 [kcal/kmol] • 催化剂堆密度 ρb =554 [kg/m 3]• 进口SO 2浓度8.0 mol%,O 2浓度9.0 mol%,其余为氮气 • 处理量131 [kmol SO 2/hr],要求最终转化率98%2..动力学方程 式中:3. 基本要求• 在T -X 图上,做出平衡线;至少4条等速率线。
• 以一维拟均相平推流模型为基础,在催化剂用量最少的前提下,求总()()()[]sec ./11-2232323222gcat mol P P K P PB B P P K P k R SO SO SO SO SO SO O eff SO +-+-=ξ()()987.1,3.11295exp 1026203.227200exp 103.25.7355exp 48148600475,35992exp 105128.1475420,76062exp 106915.75218718223=⎪⎪⎭⎫⎝⎛⨯=⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⨯=⎪⎪⎭⎫⎝⎛-=-⎪⎪⎭⎫⎝⎛-⨯=-⎪⎪⎭⎫⎝⎛-⨯=--R T K P P K P RT K T B C RT k C RT k P O SO P SOoeff oeff ξ的及各段的催化剂装量,进出口温度、转化率并在T-X 图上标出折线。
•程序用C、Fortran、BASIC语言之一编制。
4.讨论•要求的最终转化率从98%变化到99%对催化剂用量的影响;•y O2+y SO2=21%,SO2进口浓度在7-9%之间变化,对催化剂装量的影响。
一.T-X图绘制平衡线与等反应速率线本次大作业计算程序,使用Matlab编程实现。
最优化 马昌凤 第二章作业
最优化方法及其Matlab程序设计习题作业暨实验报告学院:数学与信息科学学院班级:12级信计一班姓名:李明学号:1201214049第二章 线搜索技术一、上机问题与求解过程 1、用0.618法求解 .1)(min 2--=x x x f 初始区间]1,1[-,区间精度为50.=0δ. 解:当初始时不限制近似迭代函数值得大小,编写程序运行结果为:从结果可以看出迭代次数为9次,极小点为5016.0,极小点的函数值为2500.1-。
根据人工手算,极小值点应该为500.0,所以在设计程序的时候添加函数值误差范围,并取范围为10101-⨯。
编写的设计函数程序并调试改正如下:function [s,fs,k,G,FX,E]=gold(f,a,b,H,F) %输入:% f:目标函数,a :搜索区间左侧端点;b:搜索区间右侧端点; % H :搜索区间允许范围;F :搜索区间函数值允许范围; %输出:% s:近似极小值点:fa :近似极小点数值;k:迭代次数:% FX :近似迭代函数值;E=[h,fh],h 为近似区间误差,fh 为函数值误差 t=(sqrt(5)-1)/2;h=b-a; p=a+(1-t)*h;q=a+t*h;fa=feval(f,a);fb=feval(f,b); fp=feval(f,p);fq=feval(f,q); k=1;G(k,:)=[a,p,q,b];%初始时错误语句:G(1,:)=[a,p,q,b]; %初始调试的时候没有注意到后面需要开辟k 行空间 FX(k,:)=[fa,fp,fq,fb];while (abs(fa-fb)>F) ((b-a)>H) if (fp<fq)b=q;fb=fq;q=p;fq=fp;h=b-a;p=a+(1-t)*h;fp=feval(f,p); %初始时错误语句:b=q;fb=fq;h=b-a;q=a+t*h;fq=feval(f,q); %初始调试的时候对0.618方法没有充分理解所以出现错误 elsea=p;fa=fp;p=q;fp=fq;h=b-a;q=a+t*h;fq=feval(f,q);%初始时错误语句:a=p;fa=fp;h=b-a;p=a+(1-t)*h;fp=feval(f,p); %初始调试的时候对0.618方法没有充分理解所以出现错误 end极小点(s) 迭代次数搜索区间误差 函数值误差 0.501690.04260.0006k=k+1;G(k,:)=[a,p,q,b];%初始时错误语句:G(1,:)=[a,p,q,b]; %初始调试的时候没有注意到前面已经开辟k 行空间 FX(k,:)=[fa,fp,fq,fb]; end if (fp<fq) s=p;fs=fp; elses=q;fs=fq; endh=b-a;fh=abs(fb-fa);%选取试探点最小的数值为近似点,并且计算出以上为搜索区间的的最后误差以及函数值误差 E=[h,fh];在命令窗口内输入如下命令:[s,fs,k,G,FX,E]=gold(inline('s^2-s-1'),-1,1,0.05,1e-10) 回车之后得到如下数据结果:附:在窗口中输出的结果如下>> [s,fs,k,G,FX,E]=gold(inline('s^2-s-1'),-1,1,0.05,1e-10) s = 0.5000 fs = -1.2500 k = 24 G =-1.0000 -0.2361 0.2361 1.0000 -0.2361 0.2361 0.5279 1.0000 0.2361 0.5279 0.7082 1.0000极小点 极小点数值 迭代次数 搜索区间误差 函数值误差 0.500-1.250024410321.0-⨯0000.00.2361 0.4164 0.5279 0.70820.4164 0.5279 0.5967 0.70820.4164 0.4853 0.5279 0.59670.4164 0.4590 0.4853 0.52790.4590 0.4853 0.5016 0.52790.4853 0.5016 0.5116 0.52790.4853 0.4953 0.5016 0.51160.4953 0.5016 0.5054 0.51160.4953 0.4992 0.5016 0.50540.4953 0.4977 0.4992 0.50160.4977 0.4992 0.5001 0.50160.4992 0.5001 0.5006 0.50160.4992 0.4997 0.5001 0.50060.4997 0.5001 0.5003 0.50060.4997 0.5000 0.5001 0.50030.4997 0.4999 0.5000 0.50010.4999 0.5000 0.5000 0.50010.5000 0.5000 0.5000 0.50010.5000 0.5000 0.5000 0.50000.5000 0.5000 0.5000 0.50000.5000 0.5000 0.5000 0.5000 FX =1.0000 -0.7082 -1.1803 -1.0000 -0.7082 -1.1803 -1.2492 -1.0000 -1.1803 -1.2492 -1.2067 -1.0000 -1.1803 -1.2430 -1.2492 -1.2067 -1.2430 -1.2492 -1.2406 -1.2067 -1.2430 -1.2498 -1.2492 -1.2406 -1.2430 -1.2483 -1.2498 -1.2492 -1.2483 -1.2498 -1.2500 -1.2492 -1.2498 -1.2500 -1.2499 -1.2492 -1.2498 -1.2500 -1.2500 -1.2499 -1.2500 -1.2500 -1.2500 -1.2499 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.25001.0e-04*0.3121 0.00002、用0.618法求解.12)(min 3+-=x x x f的近似最优解,初始搜索区间为]3,0[,区间精度为50.=1δ. 解:当初始时不限制近似迭代函数值得大小,编写程序运行结果为:从结果可以看出迭代次数为8次,极小点为8115.0,极小点的函数值为0886.0-。
最优化方法大作业
学号《最优化方法》课程实践完成时间:2015年5月30日星期六选择题目:题目一使用优化软件,编写重要算法的程序1.第一大题:(1)学习最优流量工程问题,nonsmooth_MCFP.pdf(2)问题重述:Figure 1一个简单的网络拓扑和流量需求如Figure 1所示,网络有7 个节点,13 条弧,每条弧的容量是5 个单位. 此外有四个需求量均为4个单位的源-目的对(M=4),具体的源节点、目的节点信息如图所示. 这里为了简单,省去了未用到的弧,此外弧上的数字表示弧的编号。
(3)极小化MAU设定变量x,为531⨯的向量,其中(53)x即为变量z。
使用linprog 函数求解极小化问题得到x。
之前确定三个约束条件。
1、Ax b⨯的矩阵,b为131⨯的向量。
≤,其中A为13532、eq eq x b A =,其中eq A 为2853⨯的矩阵,eq b 为281⨯的向量。
3、x lb ≥,其中lb 为153⨯的向量 编程计算后得到结果如下:(4) 极小化FT 成本函数设定变量x ,为651⨯的向量,其中(53:65)x 即为变量l z 。
使用linprog 函数求解极小化问题得到x 。
之前确定三个约束条件。
1、Ax b ≤,其中A 为7865⨯的矩阵,b 为781⨯的向量。
2、eq eq x b A =,其中eq A 为2865⨯的矩阵,eq b 为281⨯的向量。
3、x lb ≥,其中lb 为165⨯的向量 编程计算后得到结果如下:2. 第二大题: 2.1. 习题5.6 2.1.1. 问题分析问题2112212()(101810)/241513q x x x x x x x =-++-+ 通过matlab 画出其等高线为:2.1.2. 最速下降法最速下降法中,取值:k k p g =-==()()k k k kk T k k T k g p g g p Gp g Ggα- x1x 2等高线-224681012(1)()k x k x k p α+=+2.1.3. 算法流程图如下图所示:2.1.4. 初始值(0,0)编程运行结构为:收敛过程曲线为:2.1.5. 初始值(-0.4,0)编程运行结构为:收敛过程曲线为:x1x 2等高线-2246810122.1.6. 初始值(10,0)编程运行结构为:收敛过程曲线为:x1x 2-2246810122.1.7. 初始值(11,0)编程运行结构为:收敛过程曲线为:x1x 2-2246810122.2. 习题5.7 2.2.1. 问题分析问题()94ln(7)f x x x =--497g x =-- 24(7)G x =- Matlab 画出在区间(7 10)的函数、一阶导数、二阶导数的变化曲线为x1x 2-22468101277.588.599.510707274767880828486xf函数变化曲线77.588.599.510-35-30-25-20-15-10-50510xg一阶导数g 变化曲线2.2.2. 牛顿法牛顿法中,取值:k k k G s g =- 1k k k s xx +=+其中,如果G 不是半正定,则采用修正牛顿法(+)k k k G I s g λ=-77.588.599.51050100150200250300350400xg二阶导数G 变化曲线2.2.3.算法流程图如下图所示:2.2.4.初始值7.40编程运行结构为:收敛过程曲线为:2.2.5. 初始值7.20编程运行结构为:收敛过程曲线为:7.397.47.417.427.437.447.457.4670.24570.2570.25570.2670.265xf2.2.6. 初始值7.01编程运行结构为:收敛过程曲线为:7.17.27.37.47.57.67.770.270.470.670.87171.271.471.6xf2.2.7. 初始值7.80编程运行结构为:收敛过程曲线为:6.856.9 6.9577.057.17.157.27.257.37.35727476788082xf2.2.8. 初始值7.88编程运行结构为:收敛过程曲线为:7.17.27.37.47.57.67.77.87.97070.57171.572xf2.2.9. 分析函数在区间(7,7.8888)内是凸函数,G 恒大于零,所以单纯牛顿法保证收敛。
最优化方法课程设计-最优化大作业-用优化算法求解函数最值问题
最优化方法大作业---------用优化算法求解函数最值问题摘要最优化(optimization) 是应用数学的重要研究领域.它是研究在给定约束之下如何寻求某些因素(的量),以使某一(或某些)指标达到最优的一些学科的总称。
最优化问题一般包括最小化问题和最大化问题,而最大化问题可以通过简单的转化使之成最最小化问题。
最小化问题分为两类,即约束最小化和无约束最小化问题。
在此报告中,前两个问题属于无约束最小化问题的求解,报告中分别使用了“牛顿法”和“共轭梯度法”。
后两个问题属于有约束最小化问题的求解,报告中分别用“外点法”和“内点法”求解。
虽然命名不一样,其实质都是构造“惩罚函数”或者“障碍函数”,通过拉格朗日乘子法将有约束问题转化为无约束问题进行求解。
再此报告中,“外点法”和“内点法”分别用了直接求导和调用“牛顿法”来求解无约束优化问题。
在此实验中,用“共轭梯度法”对“牛顿法”所解函数进行求解时出现错误,报告中另取一函数用“共轭梯度法”求解得到正确的结果。
此实验中所有的函数其理论值都是显见的,分析计算结果可知程序正确,所求结果误差处于可接受范围内。
报告中对所用到的四种方法在其使用以前都有理论说明,对“外点法”中惩罚函数和“内点法”中障碍函数的选择也有相应的说明,另外,对此次试验中的收获也在报告的三部分给出。
本报告中所用程序代码一律用MATLAB编写。
【关键字】函数最优化牛顿法共轭梯度法内点法外点法 MATLAB一,问题描述1,分别用共轭梯度发法和牛顿法来求解一下优化问题()()()()()441432243221102510min x x x x x x x x x f -+-+-++=2, 分别用外点法和内点发求解一下优化问题⎩⎨⎧≥-++01.min 212231x x t s x x二、问题求解1.1 用牛顿法求解()()()()()441432243221102510min x x x x x x x x x f -+-+-++=1.1.1问题分析:取步长为1而沿着牛顿方向迭代的方法称为牛顿法,在牛顿法中,初始点的取值随意,在以后的每次迭代中,()[]()k k k k x f x f x x ∇∇-=-+121,直到终止条件成立时停止。
机械优化设计大作业
一、问题描述1.1结构特点(1)体积小、重量轻、结构紧凑、传递功率大、承载能力高;(2传)动效率高,工作高;(3)传动比大。
1.2用途和使用条件某行星齿轮减速器主要用于石油钻采设备的减速,其高速轴转速为1300r/min;工作环境温度为-20°C〜60°C,可正、反两向运转。
按该减速器最小体积准则,确定行星减速器的主要参数。
二、分析传动比u=4・64,输入扭矩T=1175・4N・m,齿轮材料均选用38SiMnMo钢,表面淬火硬度HRC45〜55,行星轮个数为3。
要求传动比相对误差A u<0.02。
弹性影响系数Z E=189.8MPa i/2;载荷系数k=1.05;齿轮接触疲劳强度极限[°]H=1250MPa;齿轮弯曲疲劳强度极限[。
]F=1000MPa;齿轮的齿形系数Y Fa=2・97;应力校正系数Y Sa=1.52;小齿轮齿数z取值范围17--25;模数m取值范围2—6。
注:优化目标为太阳轮齿数、齿宽和模数,初始点[24,52,5]T三、数学建模建立数学模型见图1,即用数学语言来描述最优化问题,模型中的数学关系式反映了最优化问题所要达到的目标和各种约束条件。
3.1设计变量的确定影响行星齿轮减速器体积的独立参数为中心轮齿数、齿宽、模数及行星齿轮的个数,将他们列为设计变量,即:x=[xxxx]T=[zbmc]T[1]12341式中:Z]_太阳轮齿数;b—齿宽(mm);m一模数(mm);行星轮的个数。
通常情况下,行星轮个数根据机构类型以事先选定,由已知条件c=3。
这样,设计变量为:x=[xxx]T=[Z bm】T[i]12313.2目标函数的确定为了方便,行星齿轮减速器的重量可取太阳轮和3个行星轮体积之和来代替,即:V=n/4(d2+Cd2)b12式中:d「-太阳轮1的分度圆直径,mm;d2--行星轮2的分度圆直径,mm。
将d=mzd=mz,z=z(u—2)/2代入(3)式整理,目标函11,2221数则为:F(x)=0.19635m2z2b[4+(u-2)2c][1]式中U--减速器传动比;C--行星轮个数由已知条件c=3,u=4.64,因此目标函数可简化为:F(x)=4.891x2x2x3123.3约束条件的建立3.3.1限制齿宽系数b/m的范围5W b/m W17,得:g(x)=5x—xWO[1]132g(x)=x—17WO[1]223.3.2保证太阳轮z1不发生跟切,得:g(x)=17—xWO[1]313.3.3限制齿宽最小值,得:g(x)=10—xWO】i]423.3.4限制模数最小值,得:g(x)=2—xWO】i]533.3.5按齿面接触疲劳强度条件,有:g(x)=750937.3/(xxx1/2)—[o]W0〔i]6123H式中:[。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最优化大作业
所在院系:电子工程学院
学号:02115088
姓名: 张赛捷
第一题
问题描述
分别用最速下降法和共轭梯度法求优化问题2212112min ()242f x x x x x x =+--
一、 最速下降法
1、 算法简介
在基本迭代公式k k k k p t x x +=+1中,每次迭代搜索方向k p 取为目标函数)(x f 的负梯度方向,即)(k k x f p -∇=,而每次迭代的步长k t 取为最优步长,由此确定的算法为最速下降法
2、 迭代步骤
给定控制误差0ε>
步骤1:取初始点)0(x ,令k=0;
步骤2:计算)(k p =)()(k x f ∇-;
步骤3:若ε≤)(k p ,取)(*k x x ≈,停止计算;否则,转下一步; 步骤4:求0>k α,使得)(min )()()(0
)()(k p x f p x f k k k k ααα+=+≥,转步骤2; 3、 实验结果
初始点为(1,1),运行结果为)9980.1,9941.3(*=x 。
4、 总结
最速下降法的优点是算法简单,每次迭代计算量小,占用内存量小,即使从一个不好的初始点出发,往往也能收敛到局部极小值点。
但从全局来看,由于锯齿现象的影响,即使向着极小点移近不太大的距离,也要经历不小的“弯路”,因此收敛速度大为减慢。
二、 共轭梯度法
1、 算法简介
在共轭方向法中初始的共轭向量0P 恰好取为初始点0X 处的负梯度00(X )g f -=-∇,而以下各共轭方向k P 由第k 迭代点k X 处的负梯度k g -与已经得到的共轭向量1k P -的线性组合来确定,那么就构成了一种具体的共轭方向法。
因为每一个共轭向量都是依赖于迭代点处的负梯度而构造出来的,所以称为共轭梯度法。
2、 迭代步骤
步骤1:选0,0>εx ;
步骤2:若)(0x f ∇,ε≤∇)(0x f 停止,输出0x ;否则转步骤3;
步骤3:构造初始搜索方向,)(00x f p -∇=,令k=0,转步骤4;
步骤4:进行一维搜索,求k t 使得)(m i n )(0
k k t k k k tp x f p t x f +=+≥,令 k k k k p t x x +=+1,转步骤5;
步骤5:)(1+∇k x f ,若ε≤∇)(0x f ,停止,输出1+k x ;否则,转步骤6; 步骤6:若k+1=n ,令k x x =0,转步骤3;否则转步骤7;
步骤7:构造共轭方向,取221)()(k k k x f x f ∇∇=
+λ,令k k k k p x f p λ+-∇=++)(11,令 k=k+1,
转步骤4;
3、 实验结果
选取初始点(0,1),得到最优解*(4.0000,2.0000)T x =。
,
4、 总结
共轭梯度法是介于最速下降法和牛顿法之间的一个方法,仅仅储存向量,因而储存量小,克服了最速下降法收敛慢的缺点,又避免了牛顿法需要存储和计算Hesse 矩阵并求逆的缺点,适合于维数较高的优化的问题。
第二题
问题描述
利用外点法和内点法求解下列约束优化问题
⎪⎪⎩
⎪⎪⎨⎧≥≥-++=001..)1(121)(min 21231x x t s x x x f 一、 外点法
1、 算法简介
根据约束的特点构造某种惩罚函数,并把惩罚函数添加到目标函数上去,从而得到一个增广目标函数,使约束优化问题的求解转化为一系列无约束极小优化问题的求解。
2、 迭代步骤
步骤1:构建函数)()(),(X a M X f M X F k k +=.
步骤2:输入初始点X.
步骤3:用最速下降法求)],(min[k M X F 得到较优点k X .
步骤4:若ε≤)(X a M k ,则k X 就是所求最优点,打印结果。
否则转5. 步骤5:1+=k k M M ,k=k+1,转3.
3、 实验结果
选取初始点(0,0),迭代后得到最优解T x )0,9999.0(*=。
4、 结论
外点法是通过一系列惩罚因子{M ,k 0,1,2,...}k =,求(X ,M)k F 的极小点逼
近原约束问题的最优点。
随着惩罚因子的增大,迫使惩罚项的值逐渐减小,从而使(X,M )k F 的极小点*(M )k X 沿着某一运动轨迹逐渐接近等式约束面与起作用的不等式约束面上的最优点*X ,当k M 趋于无穷大时,(X,M )k F 的极小点就是原问题的最优点*X 。
但是k M 越大,增广目标函数(X,M )k F 的Hesse 矩阵的条件数越坏,给无约束问题求解增加越来越多的困难,甚至无法求解。
所以,在迭代开始时不得不把k M 取小一些,因而增加了运算量。
二、 内点法
1、 算法简介
内点法将新目标函数 Φ( x , r ) 构筑在可行域 D 内,随着惩罚因子 r(k) 的不断递减,生成一系列新目标函数 Φ(xk ,r(k)),在可行域内逐步迭代,产生的极值点 xk*(r(k)) 序列从可行域内部趋向原目标函数的约束最优点 x* 。
2、 迭代步骤
构造增广目标函数
11(X,)(X)(X)
l k k i i F r f r g ==+∑
终止限0ε>。
步骤1:选定初始点0X D ∈,初始障碍因子110r =,障碍因子的缩小系数1c <;1k =。
步骤2:假设已获迭代点1k X -,以1k X -为初始点,求解min (X,)k f r ,设其最优解为()k X r 。
步骤3:若11(X())
l k i i k r g r ε=≤∑
,则()k X r 是最优解,打印(X(),(X()))k k r f r ,结束;否则,转步骤4。
步骤4:1k k r cr +=,1k k =+,转步骤2。
3、 实验结果
选取初始点(2,2),迭代后得到最优解*(1.0000,0.0067)T x =。
4、 结论
内点法的优点在于每次迭代都是可行点,当迭代到一定次数时,尽管可能没有达到约束最优点,但可以被接受为一个较好的近似最优点。
然而,内点法要求初始点位于可行域内部,即所有的约束需按严格不等式满足,对于复杂的优化问题,就要采用求可行点的算法。
实验心得
通过本次大作业,我对最速下降法,共轭梯度法,内点法和外点法有了更深的了解,也对最优化这门课程有了更深的认识。
通过matlab 程序的实现,让我对每种方法各自的优势与不足有了新的体会。
在完成这两道题的过程中,我锻炼了动手能力,提高了分析问题以及解决问题的能力,这些是通过看书难以得到的收获。