凸轮机构的应用实例教学资料

合集下载

机构应用举例

机构应用举例

机构应用举例【篇一:机构应用举例】凸轮机构应用举例范文一:第三章凸轮机构典型例题例 1 在图示的对心移动滚子从动件盘形凸轮机构中,凸轮的实际廓线为一圆,其圆心在a点,半径r=40mm,凸轮转动方向如图所示,loa=25mm,滚子半径rt=10mm,试问:(1)凸轮的理论廓线为何种曲线?(2)凸轮的基圆半径r b=?(3)从动件的升距h=?解:选取适当的比例尺作机构图如图(b)所示(2)凸轮的基圆半径r br b=l ac - lao =(r+rt)-lao=(40+10)-25=25mm(3)从动件的升距hh=(lao+r+rt)-r b=25+40+10-25=50mm例2 如图(a)所示为凸轮机构推杆的速度曲线,它由四段直线组成。

要求:画出推杆的位移线图和加速度线图;判断那几个位置有冲击存在,是刚性冲击还是柔性冲击;在图示的f位置。

凸轮与推杆之间有无惯性力作用,有无冲击存在。

解:由图(a)所示推杆的速度线图可知在oa段内,因推杆的速度v=0,故此段为推杆的近休止,推杆的位移及加速度均为零,即s=0,a=0,如图(b)(c)所示。

解:在de段内,因v由推杆速度线图(a)和加速度线图(c)可知,在d及e处,有速度突变,且在加速度线图上分别为负无穷大和正无穷大。

故在在d及e处有刚性冲击。

在加速度线图上a在f处有正的加速度值,故有惯性力,但既无速度突变,也无加速度突变,因此,f处无冲击存在。

例3 图示为一移动滚子从动件盘形凸轮机构,滚子中心位于b0点时为该机构的起始位置。

试求:解(1)这是灵活运用反转法的一种情况,即已知凸轮廓线,求当从动件与凸轮廓线上从一点到另一点接触时,凸轮转过的角度。

求解步骤如下:1)正确作出偏距圆,如图(b)所示3)找出滚子与凸轮在b1点接触时滚子中心的位置b1。

(2)这是灵活运用反转法的另一种情况,即已知凸轮廓线,求当凸轮从图示位置转过某一角度到达另一位置时,凸轮机构的压力角。

凸轮机构的应用实例

凸轮机构的应用实例

工厂自动化设备中的凸轮机构应用
1
冲压机
通过凸轮机构精确控制冲头的起伏和下压,实现对金属板材的切割、成型等操作。
2
装配线
通过凸轮机构控制自动化装配线上各种器械、工具等的动作和运动,实现生产制 造的自动管控。
3
搬运系统
通过凸轮机构管理自动化搬运系统,控制机器人和输送带等设备的动作和运动, 加快生产效率。
3
案例3:工业机器人
在工业生产线上使用凸轮机构控制机器人的动作,提高生产效率和生产质量。
包装行业中的凸轮机构应用
瓶盖机
通过凸轮机构自动打开和关闭瓶盖,提高工作 效率和生产质量。
充填机
通过不同形状和大小的凸轮,调整不同的流量 和充填速度,提高生产效率。
打包机
利用凸轮机构控制设备自动完成打包、定位和 封口的复杂工序,加快生产速度。
钢轨切割机中的凸轮机构应用
作用
凸轮机构用来操纵钢轨机床上的 切割刀具,通过其形状和动作来 控制切割深度、速度等参数。
特点
由于钢轨体积巨大,重量很重, 凸轮机构必须具有高承载能力和 噪声小的特点。
应用
广泛使用于铁路建设、工矿企业 和岛屿工程等领域。
工厂生产线中的凸轮机构应用
封装机械
凸轮机构控制设备的运动和位 移,实现物流流程中的自动化 精度控制。
3 应用前景
新材料、机器人、人工智 能、自然语言识别、区块 链等技术和应用和智能化 的发展,为凸轮机构应用 和发展带来了新的机遇和 挑战。
裹料机
凸轮机构可以控制裹料北京体育彩票网到食品, 提高裹料的精确度和均匀度。
其他应用
凸轮机构还可以应用在巧克力机、挂面机、粉 丝机、水饺机等食品加工设备中。
木工机械中的凸轮机构应用

凸轮机构的应用实例及原理论文

凸轮机构的应用实例及原理论文

凸轮机构的应用实例及原理一、引言凸轮机构是一种常见的机械传动装置,广泛应用于各个行业中。

本文将介绍凸轮机构的应用实例以及其原理。

二、凸轮机构的应用实例以下是凸轮机构在各个领域中的实际应用实例:1.汽车发动机:凸轮机构在汽车发动机中扮演着关键的角色。

它通过控制气门的开关时机,调节进、排气量和提高发动机的效率。

凸轮机构可以用来控制汽缸的气门开闭时间和顺序,通过调整凸轮的形状和凸轮轴的位置,可以实现不同的气门开闭方式。

2.纺织机械:在纺织机械中,凸轮机构常用于控制织布机或织机的各种运动。

例如,凸轮机构可以用来控制织布机上的梭子的来回往复运动,实现织布机的正常工作。

3.包装机械:在包装机械中,凸轮机构用于控制每个包装步骤的运动顺序和节奏。

凸轮机构可以根据设计要求,通过调整凸轮的形状和凸轮轴的位置,实现不同包装步骤的精确控制。

4.机械手臂:在工业自动化领域中,凸轮机构常用于控制机械手臂的运动。

凸轮机构可以通过凸轮的形状和凸轮轴的位置来实现机械手臂的各种运动,如旋转、举升、摆动等。

凸轮机构的使用可以使机械手臂的运动更加稳定和精确。

5.医疗设备:在医疗设备中,凸轮机构常用于控制手术台、诊断设备等的运动。

凸轮机构可以用来实现设备的高度调节、角度调整等运动。

三、凸轮机构的原理凸轮机构的原理是基于凸轮的形状和凸轮轴的位置来实现运动控制的。

以下是凸轮机构的基本原理:•凸轮的形状:凸轮的形状是决定凸轮机构运动方式的关键因素之一。

凸轮的形状可以根据所需的运动方式进行设计,例如圆形凸轮常用于控制线性运动,心形凸轮常用于控制往复运动等。

•凸轮轴的位置:凸轮轴的位置也是影响凸轮机构运动方式的重要因素之一。

凸轮轴的位置可以决定凸轮与承载凸轮的部件之间的运动关系,从而实现所需的运动控制。

•凸轮与部件的运动关系:凸轮与承载凸轮的部件之间的运动关系是凸轮机构实现运动控制的核心。

凸轮可以通过与部件的接触或配合来实现运动控制,例如凸轮的高点与部件的接触可以使部件运动,凸轮的低点与部件的接触可以使部件停止运动。

机械基础凸轮机构教案

机械基础凸轮机构教案

机械基础凸轮机构教案第一章:凸轮机构概述1.1 凸轮机构的定义凸轮机构是由凸轮、从动件和机架组成的机械传动机构。

凸轮是具有曲线轮廓或凹槽的旋转构件,用于转换转动运动为线性或其他形式的运动。

1.2 凸轮的分类按形状分类:盘形凸轮、移动凸轮、圆柱凸轮等。

按工作原理分类:正凸轮、逆凸轮、复合凸轮等。

1.3 凸轮机构的特点和应用特点:简单、紧凑、易于控制和调节。

应用:印刷机械、包装机械、机床、汽车等。

第二章:凸轮的轮廓设计2.1 凸轮轮廓的基本参数基圆半径:凸轮与从动件接触点的圆的半径。

顶圆半径:凸轮最高点或最低点的圆的半径。

工作圆半径:凸轮轮廓的最小圆的半径。

2.2 凸轮轮廓的计算按运动规律计算:正弦、余弦、直线等运动规律。

按压力角计算:凸轮轮廓的压力角与基圆压力角的关系。

2.3 凸轮轮廓的设计方法按运动要求设计:确定凸轮的升程、降程和回程。

按力学要求设计:计算凸轮的强度和刚度。

按加工要求设计:选择合适的加工方法和刀具。

第三章:凸轮机构的从动件设计3.1 从动件的分类和特点按形状分类:摆动从动件、直线从动件、滚子从动件等。

按驱动方式分类:曲柄摇杆机构、摆线机构、蜗轮蜗杆机构等。

3.2 从动件的设计要点确定从动件的运动规律和运动要求。

选择合适的从动件形状和尺寸,满足力学和运动要求。

考虑从动件与凸轮的接触条件和磨损情况。

3.3 从动件的设计实例以摆动从动件为例,介绍其设计步骤和注意事项。

分析不同形状和尺寸的从动件对凸轮机构性能的影响。

第四章:凸轮机构的动力特性4.1 凸轮机构的压力角和啮合角压力角:凸轮和从动件接触点处的压力角。

啮合角:凸轮和从动件啮合点处的啮合角。

4.2 凸轮机构的动态特性冲击和振动:凸轮和从动件的接触冲击和振动。

传动误差:凸轮和从动件的啮合误差。

4.3 凸轮机构的动力分析和优化分析凸轮机构的动力特性对整个机械系统的影响。

优化凸轮的形状和参数,减小冲击和振动,提高传动效率。

第五章:凸轮机构的应用实例5.1 印刷机械中的凸轮机构介绍印刷机械中凸轮机构的作用和应用。

凸轮机构的应用实例资料

凸轮机构的应用实例资料

在右图所示的巧克 力输送凸轮机构中 (圆柱凸轮机构), 当带有凹槽的圆柱 凸轮1连续等速转动 时,通过嵌于其槽 中的滚子驱动从动 件2往复移动,凸轮 1每转动一周,从动 件2即从喂料器中推 出一块巧克力并将 其送至待包装位置。
根据运动形式的不同
• • • • 以上三种从动件还可分为: 直动从动件 摆动从动件 作平面复杂运动从动件
1)直动从动件
对心直动尖顶从动件凸轮机 构
偏直动尖顶从动件凸轮机 构
对心直动滚子从动件凸轮机构
对心直动平底从动件凸轮机构
2)摆动从动件
摆动平底从动件动滚子从动件凸轮机构
3机构是一个盘形凸轮机构原动凸轮1连续等速转动通过凸轮高副驱动从动件2阀杆按预期的输出特性启闭阀门使阀门既能充分开启又具有较小的惯性力绕线机排线凸轮机构绕线轴3连续快速转动经蜗杆传动带动凸轮1缓慢转动通过凸轮高副驱动从动件2往复摆动从而使线均匀地缠绕在绕线轴上可以看成是移动凸轮机构原动凸轮1固定于冲头上当其随冲头往复上下运动时通过凸轮高副驱动从动件2以一定规律往复水平移动从而使机械手按预期的输出特性装卸工件冲床装卸料凸轮机构罐头盒封盖机构右图所示的罐头盒封盖机构是一个圆柱凸轮机构凸轮机构
二、凸轮机构的一些应用实例
如图所示的内燃机配 气凸轮机构,是一个 盘形凸轮机构,原动 凸轮1连续等速转动, 通过凸轮高副驱动从 动件2(阀杆)按预 期的输出特性启闭阀 门,使阀门既能充分 开启,又具有较小的 惯性力
• 绕线轴3连续快速转 动,经蜗杆传动带 动凸轮1缓慢转动, 通过凸轮高副驱动 从动件2往复摆动, 从而使线均匀地缠 绕在绕线轴上。
3)圆柱凸 轮
2、按从动件运动副元素形状分类
• (1)尖顶从动件:尖顶能与任意复杂凸轮轮廓保持接 触,因而能实现任意预期的运动规律。尖顶与凸轮 呈点接触,易磨损,故只宜用于受力不大的场合。 • (2)滚子从动件:为克服尖顶从动件的缺点,在尖顶 处安装一个滚子,即成为滚子从动件。它改善了从 动件与凸轮轮廓间的接触条件,耐磨损,可承受较 大载荷,故在工程实际中应用最为广泛。 • (3)平底从动件:平底从动件与凸轮轮廓接触为一平 面,显然它只能与全部外凸的凸轮轮廓作用。其优 点是:压力角小,效率高,润滑好,故常用于高速 运动场合。

第6章 凸轮机构 (教案)

第6章  凸轮机构 (教案)

第6章 凸轮机构1.教学目标(1)了解凸轮机构的分类及应用;(2)了解推杆常用运动规律的选择原则;(3)掌握在确定凸轮机构的基本尺寸时应考虑的主要问题;(4)能根据选定的凸轮类型和推杆运动规律设计凸轮的轮廓曲线。

2.教学重点和难点(1)推杆常用运动规律特点及选择原则;(2)盘形凸轮机构凸轮轮廓曲线的设计;(3)凸轮基圆半径与压力角及自锁的关系。

难点:“反转法原理”与压力角的概念。

3.讲授方法多媒体课件4.讲授时数8学时6.1 凸轮机构的应用及分类6.1.1凸轮机构的应用凸轮机构是由凸轮、从动件、机架以及附属装置组成的一种高副机构。

其中凸轮是一个具有曲线轮廓的构件,通常作连续的等速转动、摆动或移动。

从动件在凸轮轮廓的控制下,按预定的运动规律作往复移动或摆动。

在各种机器中,为了实现各种复杂的运动要求,广泛地使用着凸轮机构。

下面我们先看两个凸轮使用的实例。

图6.1所示为内燃机的配气凸轮机构,凸轮1作等速回转,其轮廓将迫使推杆2作往复摆动,从而使气门3开启和关闭(关闭时借助于弹簧4的作用来实现的),以控制可燃物质进入气缸或废气的排出。

图6.2所示为自动机床中用来控制刀具进给运动的凸轮机构。

刀具的一个进给运动循环包括:1)刀具以较快的速度接近工件;2)刀具等速前进来切削工件;3)完成切削动作后,刀具快速退回;4)刀具复位后停留一段时间等待更换工件等动作。

然后重复上述运动循环。

这样一个复杂的运动规律是由一个作等速回转运动的圆柱凸轮通过摆动从动件来控制实现的。

其运动规律完全取决于凸轮凹槽曲线形状。

由上述例子可以看出,从动件的运动规律是由凸轮轮廓曲线决定的,只要凸轮轮廓设计得当,就可以使从动件实现任意给定的运动规律。

同时,凸轮机构的从动件是在凸轮控制下,按预定的运动规律运动的。

这种机构具有结构简单、运动可靠等优点。

但是,由于是高副机构接触应力较大,易于磨损,因此,多用于小载荷的控制或调节机构中。

6.1.2 凸轮机构的分类根据凸轮及从动件的形状和运动形式的不同,凸轮机构的分类方法有以下四种:1.按凸轮的形状分类(1)盘形凸轮:如图6.1所示,这种凸轮是一个具有变化向径的盘形构件,当他绕固定轴转动时,可推动从动件在垂直于凸轮轴的平面内运动。

生活中运用凸轮机构的例子

生活中运用凸轮机构的例子

生活中运用凸轮机构的例子
凸轮机构是一种常见的机械传动装置,可以通过它将旋转运动转换成直线运动,应用广泛,下面介绍一些实际应用的例子:
1. 发动机中的凸轮机构:汽车发动机中的凸轮机构可以控制气门的开关和进气歧管的进气量,从而实现燃油在汽缸中的燃烧。

2. 纺织机械中的凸轮机构:纺织机械中常常使用凸轮机构来控制纱线的升降、牵伸以及缠绕等动作,有效提高了生产效率。

3. 医疗器械中的凸轮机构:人工心脏起搏器、呼吸机等医疗器械中都使用了凸轮机构,控制机器的工作状态和工作节奏,使其更加稳定可靠。

4. 游乐设施中的凸轮机构:部分游乐设施中,如云霄飞车、摩天轮等,通过凸轮机构控制保护装置和安全阀门,确保游客的安全。

这些例子仅仅是凸轮机构应用的冰山一角,它们在生活中的应用广泛,不管你意识到与不意识到,在你的日常生活中,凸轮机构的应用无处不在。

机械零件设计 凸轮机构(2)

机械零件设计 凸轮机构(2)
回程:在重力或弹簧的作 用下,从动件由B’回到最 近位置A的过程。
s2
B’
D δ’s
h
A rmin
o δt δs
回程运动角h :与回程对应的 凸轮转角h称为回程运动角。
δt
δh
ω1
δs 设计:潘存云 B
t δh δs’ δ1
近休止角s’ :从动件在最近 位置停留不动时,凸轮的转角。
C
图3-5 盘形凸轮机构
12
10
顶等条曲在光分④线各滑③①②各、将等曲运基等确选各分线动圆分定比点尖。角r位反例b占顶和,移转尺据点偏确曲后的距连l定,线从位圆接作反及动置e成位。转反件。一移向后尖 11
9
对应于各等分点的从动件的
位置。
10 9
3、对心滚子直动从动件盘形凸轮
滚子直动从动件凸轮机构中,已知凸轮的基圆
半径rmin,角速度ω1和从动件的运动规律,设
根据工作要求选定推杆运动规律,正确绘制运动简图 是凸轮轮廓曲线设计的基础。
一、名词术语与基本概念
名词术语:如图3-5所示 。
基圆:以凸轮轮廓的最小向径rmin为半径所绘的圆。
rmin (r0)——基圆半径
推程:凸轮以角速度1推动 从动件以一定运动规律由最 低 位 置 A 到 达 最 高 位 置 B' 的 过程。
运动规律:推杆在推程或回程时,其位移S2、速度V2、和加速
度a2 随时间t 的变化规律。 S2=S2(t)
V2=V2(t)
a2=a2(t)
s2 位移曲线
B’
以直角坐标中的横轴代表 凸轮转角δ1(t),纵轴代表
h
A
t
D δ’s rmin
o δt δs δh δ’s δ1

03机械设计基础-凸轮机构

03机械设计基础-凸轮机构
2 t
s2 = h
2h
(δ t δ 1 )
2
a2 =
4hω
2 1
δ t2
如图3-8所示。
等加速部分可按下述方法画出:在横坐标 轴上分成若干等份,得1、2、3各点,过这些点 作横轴的垂线。再过点O作任意的斜线OO`,在 其上以适当的单位长度自点O按1:4:9量取对 应长度,得1、4、9各点。连接直线9-3”,并分 别过4、1两点,作其平行线4-2”和1-1”,分别 与S2轴相交于2”、1”点。最后由1”、2”、3”点 分别向过1、2、3各点的垂线投影,得1`、2`、 3`点,将这些点连接成光滑的曲线,同样可得 等减速度段的抛物线。
§3-2 从动件的常用运动规律
从动件的运动规律即是从动件的位移s、 速度v和加速度a随时间t变化的规律。当凸 轮作匀速转动时,其转角δ与时间t成正比 (δ=ωt),所以从动件运动规律也可以用 从动件的运动参数随凸轮转角的变化规律来 表示,即s=s(δ),v=v(δ),a=a(δ)。 通常用从动件运动线图直观地表述这些关系。
图3-15偏置移动尖顶从动件盘形凸轮
5.摆动从动件盘形凸轮轮廓
已知从动件的角位移线图(图3-16b), 凸轮与摆动从动件的中心距lOA,摆动从动 件的长度lAB,凸轮的基圆半径rmin,以及凸 轮以等角速度ω1逆时针回转,要求绘出此凸 轮的轮廓。仍用“反转法”求凸轮轮廓 。
图3-16 尖顶摆动从动件盘形凸轮
2.对心移动滚子从动件盘形凸轮
其凸轮轮廓设计方法如图3-13所示。首 先,把滚子中心看作尖顶从动件的尖顶,按照 上面的方法画出一条轮廓曲线β0。再以β0上各 点为中心,以滚子半径为半径,画一系列圆, 最后作这些圆的内包络线β,它便是使用滚子 从动件时凸轮的实际轮廓,而β0称为此凸轮的 理论轮廓。由作图过程可知,滚子从动件凸轮 轮廓的基圆半径rmin应当在理论轮廓上度量。

凸轮机构的应用实例

凸轮机构的应用实例

A
12
罐头盒封盖机构
右图所示的罐头盒封盖
机构,是一个圆柱凸轮
机构凸轮机构。
原动件1连续等速转动,
通过带有凹槽的固定凸
轮3的高副导引从动件
2上的端点C沿预期的
轨迹——接合缝S运动 ,
从而完成罐头盒的封
盖任务。
A
13
在右图所示的巧克力 输送凸轮机构中(圆 柱凸轮机构),当带 有凹槽的圆柱凸轮1 连续等速转动时,通 过嵌于其槽中的滚子 驱动从动件2往复移 动,凸轮1每转动一 周,从动件2即从喂 料器中推出一块巧克 力并将其送至待包装 位置。
A
14
A
4
3)圆柱凸轮
A
5
2、按从动件运动副元素形状分类
• (1)尖顶从动件:尖顶能与任意复杂凸轮轮廓保持接 触,因而能实现任意预期的运动规律。尖顶与凸轮 呈点接触,易磨损,故只宜用于受力不大的场合。
• (2)滚子从动件:为克服尖顶从动件的缺点,在尖顶 处安装一个滚子,即成为滚子从动件。它改善了从 动件与凸轮轮廓间的接触条件,耐磨损,可承受较 大载荷,故在工程实际中应用最为广泛。
凸轮机构的应用
Page ▪ 1
高鹏 讲
A
一、凸轮机构的分类
1.按凸轮的形状分类 1)盘形凸轮 2)移动凸轮(盘形凸轮的回转中心趋于无穷
远演化来的) 3)圆柱凸轮
A
2
1)盘形凸轮:它是凸轮的基本型式。是一个 相对机架作定轴转动或为机架且具有变化向 径的盘形构件
A
3
2)移动凸轮:
它可视为盘形凸轮 的演化型式。 是一个相对机架作 直线移动或为机架 且具有变化轮廓的 构件,
A
10
• 绕线轴3连续快速转 动,经蜗杆传动带 动凸轮1缓慢转动, 通过凸轮高副驱动 从动件2往复摆动, 从而使线均匀地缠 绕在绕线轴上。

凸轮机构的应用实例

凸轮机构的应用实例

2、(06年高考)从动件行程较短,应用最为广泛的凸轮形式(例如内燃
机的气门机构)是(A )
A、盘形凸轮
B、移动凸轮 C 、圆柱凸轮 D、圆锥凸轮
3、(07年高考题)移动(直动)从动杆凸轮机构中,从动杆与机架构成
的运动副是(D )
A、高副 B、螺旋副 C、转动副 D、移动副
4、(07年高考题)凸轮机构应用广泛,下列对凸轮机构的叙述中不正确
①盘形凸轮是凸轮的最基本形式。 ②盘形凸轮是一个绕固定轴转动且径向尺寸变化的盘形 构件,其轮廓曲线位于外缘处(如图)。 ③当凸轮转动时,可使从动杆在垂直平面内运动。(平面凸轮)
优点:结构 简单 ,应用最为广泛。 缺点:从动杆的 行程 不能太大。 应用:多用于行程 较短 的场合。
(2)移动凸轮
移动凸轮又称为 板状凸轮。盘形凸轮回转中心 趋向无穷远 时就变成移动凸轮,可以相对机架作 往复直线移动。当凸轮 移动时,可推动从动杆得到预定要求的运动(图6-21b)。
3. 按从动杆的端部结构形式分
(1)尖顶式从动杆
如图所示,这种从动杆做成尖顶与凸轮轮廓接触。 优点:构造简单、动作灵敏; 缺点:从动杆和凸轮轮廓都容易磨损,
适用于:低速、传力小和动作灵敏等场合,如用于仪表机构中。
(2)滚子式从动杆
如图6-23b所示,这种从动杆顶端装有滚子。 由于滚子与凸轮之间为滚动摩擦 ,所以凸轮接触 摩擦阻力小 ,解决了凸轮机构磨损过快的问题, 故可用来传递较大的动力。
图6-20
② 自动车床横刀架进给机构(如图6-24)
当凸轮转动时,依靠凸轮的轮廓可使从动杆做往复 摆动。从动杆上装有扇形齿轮,通过它可带动横刀 架完成进刀和退刀的动作。
图6-24
③ 车床仿形机构(如图6-25)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
凸轮机构的应用实例
1)盘形凸轮:它是凸轮的基本型式。是一个 相对机架作定轴转动或为机架且具有变化向 径的盘形构件
2)移动凸轮:
它可视为盘形凸轮 的演化型式。 是一个相对机架作 直线移动或为机架 且具有变化轮廓的 构件,
3)圆柱凸 轮
2、按从动件运动副元素形状分类
• (1)尖顶从动件:尖顶能与任意复杂凸轮轮廓保持接 触,因而能实现任意预期的运动规律。尖顶与凸轮 呈点接触,易磨损,故只宜用于受力不大的场合。
二、凸轮机构的一些应用实例
如图所示的内燃机配 气凸轮机构,是一个 盘形凸轮机构,原动 凸轮1连续等速转动 ,通过凸轮高副驱动 从动件2(阀杆)按 预期的输出特性启闭 阀门,使阀门既能充 分开启,又具有较小 的惯性力
• 绕线轴3连续快速转 动,经蜗杆传动带 动凸轮1缓慢转动, 通过凸轮高副驱动 从动件2往复摆动, 从而使线均匀地缠 绕在绕线轴上。
绕线机排线凸轮机构
冲床装卸料凸轮机构
• 可以看成是移动凸轮 机构,原动凸轮1固 定于冲头上,当其随 冲头往复上下运动时 ,通过凸轮高副驱动 从动件2以一定规律 往复水平移动,从而 使机械手按预期的输 出特性装卸工件。
罐头盒封盖机构
右图所示的罐头盒封盖 机构,是一个圆柱凸轮 机构凸轮机构。 原动件1连续等速转动, 通过带有凹槽的固定凸 轮3的高副导引从动件 2上的端点C沿预期的 轨迹——接合缝S运动
根据运动形式的不同
• 以上三种从动件还可分为: • 直动从动件 • 摆动从动件 • 作平面复杂运动从动件
1)直动从动件
对心直动尖顶从动件凸轮机 构
偏直动尖顶从动件凸轮机 构
对心直动滚子从动件凸轮机构
对心直动平底从动件凸轮机构
2)摆动从动件
摆动平底从动件凸轮机构 摆动滚子从动件凸轮机构
摆动尖顶从动件凸轮机构
• (2)滚子从动件:为克服尖顶从动件的缺点,在尖顶 处安装一个滚子,即成为滚子从动件。它改善了从 动件与凸轮轮廓间的接触条件,耐磨损,可承受较 大载荷,故在工程实际中应用最为广泛。
• (3)平底从动件:平底从动件与凸轮轮廓接触为一平 面,显然它只能与全部外凸的凸轮轮廓作用。其优 点是:压力角小,效率高,润滑好,故常用于高速 运动场合。
, 从而完成罐头盒的封 盖任务。
在右图所示的巧克
力输送凸轮机构中
(圆柱凸轮机构)
,当带有凹槽的圆 柱凸轮1连续等速转 动时,通过嵌于其
槽中的滚子驱动从 动件2往复移动,凸 轮1每转动一周,从 动件2即从喂料器中 推出一块巧克力并
将其送至待包装位 置。
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
相关文档
最新文档