统计书后习题答案
统计学课后习题参考答案
第一章复习思考题与练习题:一、思考题1.统计的基本任务是什么?2.统计研究的基本方法有哪些?3.如何理解统计总体的基本特征。
4.试述统计总体和总体单位的关系。
5.标志与指标有何区别何联系。
二、判断题1、社会经济统计的研究对象是社会经济现象总体的各个方面。
()2、在全国工业普查中,全国企业数是统计总体,每个工业企业是总体单位。
()3、总体单位是标志的承担者,标志是依附于单位的。
()4、数量指标是由数量标志汇总来的,质量指标是由品质标志汇总来的。
()5、全面调查和非全面调查是根据调查结果所得的资料是否全面来划分的()。
三、单项选择题1、社会经济统计的研究对象是()。
A、抽象的数量关系B、社会经济现象的规律性C、社会经济现象的数量特征和数量关系D、社会经济统计认识过程的规律和方法2、某城市工业企业未安装设备普查,总体单位是()。
A、工业企业全部未安装设备B、工业企业每一台未安装设备C、每个工业企业的未安装设备D、每一个工业3、标志是说明总体单位特征的名称,标志有数量标志和品质标志,因此()。
A、标志值有两大类:品质标志值和数量标志值B、品质标志才有标志值C、数量标志才有标志值D、品质标志和数量标志都具有标志值4、统计规律性主要是通过运用下述方法经整理、分析后得出的结论()。
A、统计分组法B、大量观察法C、综合指标法D、统计推断法5、指标是说明总体特征的,标志是说明总体单位特征的,所以()。
A、标志和指标之间的关系是固定不变的B、标志和指标之间的关系是可以变化的C、标志和指标都是可以用数值表示的D、只有指标才可以用数值表示答案:二、 1.× 2.× 3.√ 4.× 5.×三、 1.C 2.B 3.C 4.B 5.B第三章一、复习思考题1.什么是平均指标?平均指标可以分为哪些种类?2.为什么说平均数反映了总体分布的集中趋势?3.为什么说简单算术平均数是加权算术平均数的特例?4.算术平均数的数学性质有哪些?5.众数和中位数分别有哪些特点?6.什么是标志变动度?标志变动度的作用是什么?7.标志变动度可分为哪些指标?它们分别是如何运用的?8.平均数与标志变动度为什么要结合运用?二、练习题(教材第四章P108课后习题答案)1.某村对该村居民月家庭收入进行调查,获取的资料如下:按月收入分组(元)村民户数(户)500~600 600~700 700~800 800~900 900以上20 30 35 25 10合计120 要求:试用次数权数计算该村居民平均月收入水平。
统计学第五版课后习题答案(完整版)
统计学(第五版)课后习题答案(完整版)第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
医学统计学课后习题答案
医学统计学第一章 绪论答案名词解释:(1) 同质与变异:同质指被研究指标的影响因素相同,变异指在同质的基础上各观察单位(或个体)之间的差异。
(2) 总体和样本:总体是根据研究目的确定的同质观察单位的全体。
样本是从总体中随机抽取的部分观察单位。
(3) 参数和统计量:根据总体个体值统计算出来的描述总体的特征量,称为总体参数,根据样本个体值统计计算出来的描述样本的特征量称为样本统计量。
(4) 抽样误差:由抽样造成的样本统计量和总体参数的差别称为抽样误差。
(5) 概率:是描述随机事件发生的可能性大小的数值,用p 表示(6) 计量资料:由一群个体的变量值构成的资料称为计量资料。
(7) 计数资料:由一群个体按定性因数或类别清点每类有多少个个体,称为计数资料。
(8) 等级资料:由一群个体按等级因数的级别清点每类有多少个体,称为等级资料。
是非题:1. ×2. ×3. ×4. ×5. √6. √7. ×单选题:1. C2. E3. D4. C5. D6. B第二章 计量资料统计描述及正态分布答案名词解释:1. 平均数 是描述数据分布集中趋势(中心位置)和平均水平的指标2. 标准差 是描述数据分布离散程度(或变量变化的变异程度)的指标3. 标准正态分布 以μ服从均数为0、标准差为1的正态分布,这种正态分布称为标准状态分布。
4. 参考值范围 参考值范围也称正常值范围,医学上常把把绝大多数的某指标范围称为指标的正常值范围。
填空题:1. 计量,计数,等级2. 设计,收集资料,分析资料,整理资料。
3. σμχ-=u (变量变换)标准正态分布、0、1 4. σ± σ96.1± σ58.2± 68.27% 95% 99%5. 47.5%6.均数、标准差7. 全距、方差、标准差、变异系数8. σμ96.1± σμ58.2±9. 全距 R10. 检验水准、显著性水准、0.05、 0.01 (0.1)11. 80% 90% 95% 99% 95%12. 95% 99%13. 集中趋势、离散趋势14. 中位数15. 同质基础,合理分组16. 均数,均数,μ,σ,规律性17. 标准差18. 单位不同,均数相差较大是非题:1. ×2. √3. ×4. ×5. ×6. √7. √8. √9. √ 10. √11. √ 12. √ 13. × 14. √ 15. √ 16. × 17. × 18. × 19. √ 20. √21. √单选题:1. B2. D3. C4. A5. C6. D7. E8. A9. C 10. D11. B 12. C 13. C 14. C 15. A 16. C 17. E 18. C 19. D 20. C21. B 22. B 23. E 24. C 25. A 26. C 27. B 28. D 29. D 30. D31. A 32. E 33. D 34. A 35. D 36. D 37. C 38. E 39. D 40. B41. C 42. B 43. D 44. C 45. B问答题:1.均数﹑几何均数和中位数的适用范围有何异同?答:相同点,均表示计量资料集中趋势的指标。
统计学课后第二章习题答案
第2章练习题1、二手数据的特点是()A.采集数据的成本低,但搜集比较困难B. 采集数据的成本低,但搜集比较容易C.数据缺乏可靠性D.不适合自己研究的需要2、从含有N个元素的总体中,抽取n个元素作为样本,使得总体中的每一个元素都有相同的机会(概率)被抽中,这样的抽样方式称为()A.简单随机抽样B.分层抽样C.系统抽样D.整群抽样3、从总体中抽取一个元素后,把这个元素放回到总体中再抽取第二个元素,直至抽取n个元素为止,这样的抽样方法称为()A.重复抽样B.不重复抽样C.分层抽样D.整群抽样4、一个元素被抽中后不再放回总体,然后从所剩下的元素中抽取第二个元素,直至抽取n个元素为止,这样的抽样方法称为()A.不重复抽样B.重复抽样C.系统抽样D.多阶段抽样5、在抽样之前先将总体的元素划分为若干类,然后从各个类中抽取一定数量的元素组成一个样本,这样的抽样方式称为()A. 简单随机抽样B. 系统抽样C.分层抽样D.整群抽样6、先将总体各元素按某种顺序排列,并按某种规则确定一个随机起点,然后每隔一定的间隔抽取一个元素,直至抽取n个元素形成一个样本。
这样的抽样方式称为()A. 分层抽样B. 简单随机抽样C.系统抽样D.整群抽样7、先将总体划分为若干群,然后以群作为抽样单位从中抽取部分群,再对抽中的各个群中所包含的所有元素进行观察,这样的抽样方式称为()A. 系统抽样B. 多阶段抽样C.分层抽样D.整群抽样8、为了调查某校学生的购书费用支出,从男生中抽取60名学生调查,从女生中抽取40名学生调查,这种调查方是()A. 简单随机抽样B. 整群抽样C.系统抽样D.分层抽样9、为了调查某校学生的购书费用支出,从全校抽取4个班级的学生进行调查,这种调查方法是()A. 系统抽样B. 简单随机抽样C.分层抽样D.整群抽样10、为了调查某校学生的购书费用支出,将全校学生的名单按拼音顺序排列后,每隔50名学生抽取一名学生进行调查,这种调查方法是?()A.分层抽样B. 整群抽样C.系统抽样D.简单随机抽样11、为了了解女性对某种化妆品的购买意愿,调查者在街头随意拦截部分女性进行调查。
统计学(第三版)课后答案 袁卫等主编
统计学第一章1.什么是统计学?怎样理解统计学与统计数据的关系?答:统计学是一门收集、整理、显示和分析统计数据的科学。
统计学与统计数据存在密切关系,统计学阐述的统计方法来源于对统计数据的研究,目的也在于对统计数据的研究,离开了统计数据,统计方法以致于统计学就失去了其存在意义。
2.简要说明统计数据的来源答:统计数据来源于两个方面:直接的数据:源于直接组织的调查、观察和科学实验,在社会经济管理领域,主要通过统计调查方式来获得,如普查和抽样调查。
间接的数据:从报纸、图书杂志、统计年鉴、网络等渠道获得。
3.简要说明抽样误差和非抽样误差答:统计调查误差可分为非抽样误差和抽样误差。
非抽样误差是由于调查过程中各环节工作失误造成的,从理论上看,这类误差是可以避免的。
抽样误差是利用样本推断总体时所产生的误差,它是不可避免的,但可以控制的。
4.答:(1)有两个总体:A品牌所有产品、B品牌所有产品(2)变量:口味(如可用10分制表示)(3)匹配样本:从两品牌产品中各抽取1000瓶,由1000名消费者分别打分,形成匹配样本。
(4)从匹配样本的观察值中推断两品牌口味的相对好坏。
第二章、统计数据的描述思考题1描述次数分配表的编制过程答:分二个步骤:(1)按照统计研究的目的,将数据按分组标志进行分组。
按品质标志进行分组时,可将其每个具体的表现作为一个组,或者几个表现合并成一个组,这取决于分组的粗细。
按数量标志进行分组,可分为单项式分组与组距式分组单项式分组将每个变量值作为一个组;组距式分组将变量的取值范围(区间)作为一个组。
统计分组应遵循“不重不漏”原则(2)将数据分配到各个组,统计各组的次数,编制次数分配表。
2.解释洛伦兹曲线及其用途答:洛伦兹曲线是20世纪初美国经济学家、统计学家洛伦兹根据意大利经济学家帕累托提出的收入分配公式绘制成的描述收入和财富分配性质的曲线。
洛伦兹曲线可以观察、分析国家和地区收入分配的平均程度。
3. 一组数据的分布特征可以从哪几个方面进行测度?答:数据分布特征一般可从集中趋势、离散程度、偏态和峰度几方面来测度。
高等职业教育“十一五”规划教材《统计学》第三章课后习题及答案
高等职业教育“十一五”规划教材《统计学》第三章课后习题及答案高等职业教育“十一五”规划教材《统计学》第三章课后习题及答案一.判断题1.对于连续变量,根据“排除上限”的原则总结其组限。
对。
所谓“上组限不在内”的原则,是对连续变量分组采用重合组限时,习惯上规定一般只包括本组下限变量值的单位,而当个体的变量值恰为组的上限是时,不包括在本组。
2.统计资料的整理不仅是对原始资料的整理,而且还包括对次级资料的整理。
对。
3.确定组限时,最大组上限必须大于最大变量值,最小组下限必须小于最小变量值。
错,这意味着你也可以在封闭的小组中尝试。
4.对统计总体进行分组是由于总体各单位的“同质性”所决定的。
错,将原始数据按照某种标准化分成不同的组别。
5.对连续变量进行分组时,它们的分组极限可以用“不重叠”的形式表示。
对二.单项选择题a组的中值是550组的下限,B组的中值是550组的下限a.550b.650c.700d.750因为它是一个连续变量,所以变量的值是连续的。
由于最后一组的起始下限大于相邻组的中值,请注意这是一个递减变量序列。
一个组的最小值叫做下限。
所以这里的下限实际上是相邻群的上限。
因此,最后一组的下限=相邻组的上限,因此相邻组的上限也为600。
另一个相邻组的组中值为550,因此可以确定相邻组的组距离为100。
重新使用公式:无上限开放组的中值=下限+相邻组的组距离/2,最后一组的中值为650。
2.对一个总体选择三个标志做复合分组,按各个标志所分的组数分别为3、4、5,则所分的全部组数为(a)a、 60b。
12c。
30天。
六3.某小区居民人均月收入最高为5500元,最低为2500元,据此分为6组,形成等距数列,其组距应为(a)a、 500b。
600摄氏度。
550d。
6504.整理统计数据的主要环节是(c)a.编制统计报表b.审核汇总资料c.审核原始资料d.设计整理方案5.对于一年的收入变量序列,分组为10万元以下、10万-20万元、20万-30万元和30万元以上,则为(c)a、10万元应归入第一组b、20万元应归入第二组c、20万元应归入第三组d、30万元应归入第三组6.组号与组距的关系为(a)a.组数越多,组距越小b.级数越多,组距越大c.组数与组距无关d.组数越少,组距越小三.简答题1.简要说明统计排序的意义和内容统计整理,首先要搞清楚教材当中关于统计整理的内容,通常理解的统计整理包括制作次数分布、或者给出排秩、等级的结果,有些还可能包括对数据的类型的判别、编码和对原始数据的必要转换等.有些人认为描述统计也可以视为统计整理的内容,或者是汇总统计的内容.根据统计整理的内容再来回答其意义.主要是可以在正式的描述统计和推断统计之前,预先了解和掌握数据的大致状况,尤其是其分布和次数特征,以便根据数据的类型选择适当的统计方法(不论是描述统计还是推断统计,很重要的一点是依据数据的类型来选择统计法).有些时候,需要对数据进行必要的转换,也是为了便于后继的统计,如由量表原始数据转换成量表得分,原始数据转换成标准分数,或者转换成可统计的某种指标等.简而言之,数据整理就是服务于后续的统计过程,使原始测量数据满足统计方法的需要,为统计方法的选择提供依据。
统计学课后第一章习题答案
第1章导论1、某森林公园的一项研究试图确定哪些因素有利于成年松树长到60英尺以上的高度。
经估计,森林公园生长着25000颗成年松树,该研究需要从中随机抽取250颗成年松树并丈量它们的高度后进行分析。
该研究的总体是()A、250颗成年松树B、公园中25000颗成年松树C、所有高于60英尺的成年松树D、森林公园中所有年龄的松树2、某森林公园的一项研究试图确定成年松树的高度。
该研究需要从中随机抽取250颗成年松树并丈量它们的高度后进行分析。
该研究所感兴趣的变量是()A、森林公园中松树的年龄B、森林公园中松树的数量C、森林公园中松树的高度D、森林公园中数目的种类3、推断统计的主要功能是()A、应用总体的信息描述样本B、描述样本中包含的信息C、描述总体中包含的信息D、应用样本信息描述总体4、对高中生的一项抽样调查表明,85%的高中生愿意接受大学教育。
这一叙述是()的结果A、定性变量B、试验C、描述统计D、推断统计5、一名统计学专业的学生为了完成其统计学作业,在图书馆找到一本参考书中包含美国50个州的家庭收入中位数.在该生的作业中,他应该将此数据报告来源于()A、试验B、实际观察C、随机抽样D、已发表的资料6、某大公司的人力资源部主任需要研究公司雇员的饮食习惯.他注意到,雇员的午饭要么从家里带来,要么在公司餐厅就餐,要么在外面的餐馆就餐.该研究的目的是为了改善公司餐厅的现状。
这种数据的收集方式可以认为是()A、观察研究B、设计的试验C、随机抽样D、全面调查7、下列不属于描述统计问题的是()A、根据样本信息对总体进行的推断B、感兴趣的总体或样本C、图、表或其他数据汇总工具D、了解数据分布特征8、某大学的一位研究人员希望估计该大学一年级新生在教科书上的花费,为此,他观察了200名新生在教科书上的花费,发现他们每个学期平均在教科书上的花费是250元。
该研究人员感兴趣的总体是()A、该大学的所有学生 B、所有的大学生C、该大学所有的一年级新生D、样本中的200名新生9、某大学的一位研究人员希望估计该大学一年级新生在教科书上的花费,为此,他观察了200名新生在教科书上的花费,发现他们每个学期平均在教科书上的花费是250元。
《统计学》课后练习题答案
3.4统计图的规范
3.5如何用Excel做统计图
习题
一、单项选择题
1.统计表的结构从形式上看包括()、横行标题、纵栏标题、数字资料四个部分。(知识点3.1答案:D)
A.计量单位B.附录C.指标注释D.总标题
2.如果统计表中数据的单位都一致,我们可以把单位填写在()。(知识点3.1答案:C)
A.指标B.标志C.变量D.标志值
8.以一、二、三等品来衡量产品质地的优劣,那么该产品等级是()。(知识点:1.7答案:A)
A.品质标志B.数量标志C.质量指标D.数量指标
9.()表示事物的质的特征,是不能以数值表示的。(知识点:1.7答案:A)
A.品质标志B.数量标志C.质量指标D.数量指标
10.在出勤率、废品量、劳动生产率、商品流通费用额和人均粮食生产量五个指标中,属于数量指标的有几个()。(知识点:1.7答案:B)
1.统计调查方案的主要内容是( )( )( )( )( )。(知识点2.2答案:ABCDE)
A.调查的目的B.调查对象C.调查单位D.调查时间E.调查项目
2.全国工业普查中( )( )( )( )( )。(知识点2.2答案:ABCE)
A.所有工业企业是调查对象B.每一个工业企业是调查单位C.每一个工业企业是报告单位
频数f
(棵)
频率
(%)
向上累积
向下累积
频数(棵)
频率(%)
频数(棵)
频率(%)
80-90
8
7.3
8
7.3
110
100.0
90-100
9
8.2
17
15.5
102
92.7
100-110
统计学课后习题答案
第四章 统计描述【4.1】某企业生产铝合金钢,计划年产量40万吨,实际年产量45万吨;计划降低成本5%,实际降低成本8%;计划劳动生产率提高8%,实际提高10%。
试分别计算产量、成本、劳动生产率的计划完成程度。
【解】产量的计划完成程度=%5.112100%4045100%=⨯=⨯计划产量实际产量即产量超额完成12.5%。
成本的计划完成程=84%.96100%5%-18%-1100%-1-1≈⨯=⨯计划降低百分比实际降低百分比即成本超额完成3.16%。
劳动生产率计划完=85%.101100%8%110%1100%11≈⨯++=⨯++计划提高百分比实际提高百分比即劳动生产率超额完成1.85%。
【4.2】某煤矿可采储量为200亿吨,计划在1991~1995年五年中开采全部储量的0.1%,在五年中,该矿实际开采原煤情况如下(单位:万吨)试计算该煤矿原煤开采量五年计划完成程度及提前完成任务的时间。
【解】本题采用累计法:(1)该煤矿原煤开采量五年计划完成=100%⨯数计划期间计划规定累计数计划期间实际完成累计 =75%.12610210253574=⨯⨯ 即:该煤矿原煤开采量的五年计划超额完成26.75%。
(2)将1991年的实际开采量一直加到1995年上半年的实际开采量,结果为2000万吨,此时恰好等于五年的计划开采量,所以可知,提前半年完成计划。
【4.3】我国1991年和1994年工业总产值资料如下表:要求:(1)计算我国1991年和1994年轻工业总产值占工业总产值的比重,填入表中; (2)1991年、1994年轻工业与重工业之间是什么比例(用系数表示)? (3)假如工业总产值1994年计划比1991年增长45%,实际比计划多增长百分之几? 【解】(1)(2)是比例相对数;1991年轻工业与重工业之间的比例=96.01.144479.13800≈;1994年轻工业与重工业之间的比例=73.04.296826.21670≈(3)%37.251%)451(2824851353≈-+即,94年实际比计划增长25.37%。
2023统计学第七版贾俊平课后习题答案
2023统计学第七版贾俊平课后习题答案第一章1.1 习题答案1.答案:根据题意,我们需要求得这 60 个挑选出来的人中有多少个人来自纽约市,而纽约市占比是 5%,所以答案应为 $60 \\times 0.05 = 3$2.答案:根据题意,我们需要求得这 60 个挑选出来的人中有多少个人来自纽约市并且是女性,而纽约市总体中女性的占比是 53%,所以答案应为 $60 \\times 0.05 \\times 0.53 = 1.59$1.2 习题答案1.答案:根据题意,我们需要求得这家电视公司进入市场的概率。
已知电视公司市场占有率为 10%,而市场占有率的补集为失败率,所以电视公司进入市场的概率为1−0.10=0.902.答案:根据题意,我们需要求得这两家公司都进入市场的概率。
已知电视公司进入市场的概率为 0.90,而两家公司都进入市场的概率为两者概率相乘,所以两家公司都进入市场的概率为 $0.90 \\times 0.90 = 0.81$第二章2.1 习题答案1.答案:根据题意,我们需要求得两次抛掷硬币都为正面向上的概率。
已知硬币正面朝上的概率为 0.5,而两次抛掷硬币都为正面向上的概率为两者概率相乘,所以两次抛掷硬币都为正面向上的概率为 $0.5 \\times 0.5 = 0.25$2.答案:根据题意,我们需要求得至少一次抛掷硬币为正面向上的概率。
已知硬币正面朝上的概率为 0.5,而至少一次抛掷硬币为正面向上的概率为 1 减去两次都为背面向上的概率,所以至少一次抛掷硬币为正面向上的概率为 $1 - (0.5 \\times 0.5) = 0.75$2.2 习题答案1.答案:根据题意,我们需要求得至少一辆汽车需要检测两次才能检查到故障的概率。
已知单次检测不到故障的概率为 0.1,而至少一辆汽车需要检测两次才能检查到故障的概率为 1 减去两次都未检测到故障的概率,所以至少一辆汽车需要检测两次才能检查到故障的概率为 $1 - (0.1 \\times 0.1) = 0.99$2.答案:根据题意,我们需要求得两辆车都不需要检测两次才能检查到故障的概率。
应用统计学课后习题和参考答案解析
应用统计学课后习题与参考答案第一章一、选择题1.一个统计总体(D)。
A.只能有一个标志 B.只能有一个指标C.可以有多个标志 D.可以有多个指标2.对100名职工的工资收入情况进行调查,则总体单位是(D)。
A.100名职工 B.100名职工的工资总额C.每一名职工 D.每一名职工的工资 3.某班学生统计学考试成绩分别为65分、72分、81分和87分,这4个数字是(D)。
A.指标 B.标志C.变量 D.标志值4.下列属于品质标志的是(B)。
A.工人年龄 B.工人性别C.工人体重 D.工人工资5.某工业企业的职工数、商品销售额是(C)。
A.连续变量 B.离散变量C.前者是离散变量,后者是连续变量 D.前者是连续变量,后者是离散变量 6.下面指标中,属于质量指标的是(C)。
A.全国人口数 B.国内生产总值C.劳动生产率 D.工人工资7.以下指标中属于质量指标的是(C)。
A.播种面积 B.销售量C.单位成本 D.产量8.下列各项中属于数量指标的是(B)。
A.劳动生产率 B.产量C.人口密度 D.资金利税率二、简答题1.一项调查表明,消费者每月在网上购物的平均花费是200元,他们选择在网上购物的主要原因是“价格便宜”。
(1)这一研究的总体是什么?总体是“所有的网上购物者”。
(2)“消费者在网上购物的原因”是定类变量、定序变量还是数值型变量?分类变量。
(3)研究者所关心的参数是什么?所有的网上购物者的月平均花费。
(4)“消费者每月在网上购物的平均花费是200元”是参数还是统计量?统计量。
(5)研究者所使用的主要是描述统计方法还是推断统计方法?推断统计方法。
2.要调查某商场销售的全部冰箱情况,试指出总体、个体是什么?试举若干品质标志、数量标志、数量指标和质量指标。
总体:该商店销售的所有冰箱。
总体单位:该商店销售的每一台冰箱。
品质标志:型号、产地、颜色。
数量标志:容量、外形尺寸;数量指标:销售量、销售额。
质量指标:不合格率、平均每天销售量、每小时电消耗量。
统计学第三版书后答案第二章
第2章统计数据的描述●9.某百货公司6月份各天的销售额数据如下(单位:万元):257 276 297 252 238 310 240 236 265 278271 292 261 281 301 274 267 280 291 258272 284 268 303 273 263 322 249 269 295(1)计算该百货公司日销售额的均值、中位数和四分位数;(2)计算日销售额的标准差。
解:(1)将全部30个数据输入Excel表中同列,点击列标,得到30个数据的总和为8223,于是得该百货公司日销售额的均值:(见Excel练习题2.9)x=xn∑=822330=274.1(万元)或点选单元格后,点击“自动求和”→“平均值”,在函数EVERAGE()的空格中输入“A1:A30”,回车,得到均值也为274.1。
在Excel表中将30个数据重新排序,则中位数位于30个数据的中间位置,即靠中的第15、第16两个数272和273的平均数:M e=2722732+=272.5(万元)由于中位数位于第15个数靠上半位的位置上,所以前四分位数位于第1~第15个数据的中间位置(第8位)靠上四分之一的位置上,由重新排序后的Excel表中第8位是261,第15位是272,从而:Q L=261+2732724-=261.25(万元)同理,后四分位数位于第16~第30个数据的中间位置(第23位)靠下四分之一的位置上,由重新排序后的Excel表中第23位是291,第16位是273,从而:Q U=291-2732724-=290.75(万元)。
(2)未分组数据的标准差计算公式为:s =302 1()1iix xn=--∑利用上公式代入数据计算是个较为复杂的工作。
手工计算时,须计算30个数据的离差平方,并将其求和,()再代入公式计算其结果:得s=21.1742。
(见Excel练习题2.9)我们可以利用Excel表直接计算标准差:点选数据列(A列)的最末空格,再点击菜单栏中“∑”符号右边的小三角“▼”,选择“其它函数”→选择函数“STDEV”→“确定”,在出现的函数参数窗口中的Number1右边的空栏中输入:A1:A30,→“确定”,即在A列最末空格中出现数值:21.17412,即为这30个数据的标准差。
统计学第三版课后答案
统计学第三版答案第一章1.什么是统计学?怎样理解统计学与统计数据的关系?答:统计学是一门收集、整理、显示和分析统计数据的科学。
统计学与统计数据存在密切关系,统计学阐述的统计方法来源于对统计数据的研究,目的也在于对统计数据的研究,离开了统计数据,统计方法以致于统计学就失去了其存在意义。
2.简要说明统计数据的来源答:统计数据来源于两个方面:直接的数据:源于直接组织的调查、观察和科学实验,在社会经济管理领域,主要通过统计调查方式来获得,如普查和抽样调查。
间接的数据:从报纸、图书杂志、统计年鉴、网络等渠道获得。
3.简要说明抽样误差和非抽样误差答:统计调查误差可分为非抽样误差和抽样误差。
非抽样误差是由于调查过程中各环节工作失误造成的,从理论上看,这类误差是可以避免的。
抽样误差是利用样本推断总体时所产生的误差,它是不可避免的,但可以控制的。
4.答:(1)有两个总体:A品牌所有产品、B品牌所有产品(2)变量:口味(如可用10分制表示)(3)匹配样本:从两品牌产品中各抽取1000瓶,由1000名消费者分别打分,形成匹配样本。
(4)从匹配样本的观察值中推断两品牌口味的相对好坏。
第二章、统计数据的描述思考题1描述次数分配表的编制过程答:分二个步骤:(1)按照统计研究的目的,将数据按分组标志进行分组。
按品质标志进行分组时,可将其每个具体的表现作为一个组,或者几个表现合并成一个组,这取决于分组的粗细。
按数量标志进行分组,可分为单项式分组与组距式分组单项式分组将每个变量值作为一个组;组距式分组将变量的取值范围(区间)作为一个组。
统计分组应遵循“不重不漏”原则(2)将数据分配到各个组,统计各组的次数,编制次数分配表。
2.解释洛伦兹曲线及其用途答:洛伦兹曲线是20世纪初美国经济学家、统计学家洛伦兹根据意大利经济学家帕累托提出的收入分配公式绘制成的描述收入和财富分配性质的曲线。
洛伦兹曲线可以观察、分析国家和地区收入分配的平均程度。
统计学第四版学习指导书以及课后习题答案
附录:教材各章习题答案第1章统计与统计数据1.1〔1〕数值型数据;〔2〕分类数据;〔3〕数值型数据;〔4〕顺序数据;〔5〕分类数据。
1.2〔1〕总体是该城市所有的职工家庭〞,样本是抽取的2000个职工家庭〞;〔2〕城市所有职工家庭的年人均收入,抽取的“2000b家庭计算出的年人均收入。
1.3〔1〕所有IT从业者;〔2〕数值型变量;〔3〕分类变量;〔4〕观察数据。
1.4〔1〕总体是所有的网上购物者〞;〔2〕分类变量;〔3〕所有的网上购物者的月平均花费;〔4〕统计量;〔5〕推断统计方法。
1.5〔略〕。
1.6〔略〕。
第2章数据的图表展示2.1 〔1〕届丁顺序数据。
〔2〕频数分布表如下效劳质量等级评价的频数分布效劳质量等级家庭数/频率频率/%A1414B2121C3232D1818E1515合计100100条形图〔略〕〔4〕帕累托图〔略〕2.2 〔1〕频数分布表如下40按销售收入分组/万元企业数/个频率/%向上累积向下累积企业数频率企业数频率100以下512.5512.540100.0 100〜110922.51435.03587.5 110 〜1201230.02665.02665.0 120 〜130717.53382.51435.0 130 〜140410.03792.5717.5 140以上37.540100.037.5合计40100.0————某管理局下届个企分组表按销售收入分组/万元企业数/个频率/%先进企业1127.5良好企业1127.5一般企业922.5落后企业922.5合计40100.0频数分布表如下按销售额分组/万元频数/天频率/%25 〜30410.030 〜35615.035 〜401537.540 〜45922.545 〜50615.0合计40100.0直方图(略)。
2.4茎叶数据个数18 8 9320 1 1336888999123 1 3 5 6 954 1 2 3 6 6 7650 12 742.5 (1)排序略。
统计学(贾俊平 第四版)课后习题答案
频数
2 3 9 12 7 4 2 1 40
频率%
5.0 7.5 22.5 30.0 17.5 10.0 5.0 2.5 100.0
要求:根据上面的数据进行适当的分组,编制频数分布表,并绘制直方图。
K 1
l g 4 0 l gn ( ) 1.60206 ,取 1 1 6.3 2 k=6 lg(2) lg 2 0.30103
2、确定组距: 组距=( 最大值 - 最小值)÷ 组数=(49-25)÷6=4,取 5 3、分组频数表
要求: (1)根据上面的数据进行适当的分组,编制频数分布表,并计算出累积频数和累积频率。 1、确定组数:
K 1
l g 4 0 l gn ( ) 1.60206 ,取 1 1 6.3 2 k=6 lg(2) lg 2 0.30103
2、确定组距: 组距=( 最大值 - 最小值)÷ 组数=(152-87)÷6=10.83,取 10 3、分组频数表 销售收入
直方图:
组距4,小于等于
40
30
Frequency
20
10
Mean =4.06 Std. Dev. =1.221 N =100 0 0 2 4 6 8
组距4,小于等于
组距 5,上限为小于等于 频数 有效 <= 45.00 46.00 - 50.00 51.00 - 55.00 56.00 - 60.00 61.00+ 合计 12 37 34 16 1 100 百分比 12.0 37.0 34.0 16.0 1.0 100.0 累计频数 12.0 49.0 83.0 99.0 100.0 累积百分比 12.0 49.0 83.0 99.0 100.0
第四版统计学课后习题答案
时间在横轴,观测值绘在纵轴。一般是长宽比例10:7的长方形,纵轴下端一般从0开始,数据与0距离过大的话用折断符号折断。
3.6饼图和环形图的不同
饼图只能显示一个样本或总体各部分所占比例,环形图可以同时绘制多个样本或总体的数据系列,其图形中间有个“空洞”,每个样本或总体的数据系类为一个环。
4.6简述异众比率、四分位差、方差或标准差的适用场合
对于分类数据,主要用异众比率来测量其离散程度;对于顺序数据,虽然也可以计算异众比率,但主要使用四分位差来测量其离散程度;对于数值型数据,虽然可以计算异众比率和四分位差,但主要使用方差或标准差来测量其离散程度。
4.7标准分数有哪些用途?
4.9测度数据分布形状的统计量有哪些?
对分布形状的测度有偏态和峰态,测度偏态的统计量是偏态系数,测度峰态的统计量是峰态系数。
第五章 概率与概率分布
5.1频率与概率有什么关系?
在相同条件下随机试验n次,某事件A出现m次,则比值m/n称为事件A发生的频率。随着n的增大,该频率围绕某一常数p波动,且波动幅度逐渐减小,趋于稳定,这个频率的稳定值即为该事件的概率。
1.4解释分类数据,顺序数据和数值型数据
答案同1.3
1.5举例说明总体,样本,参数,统计量,变量这几个概念
对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
《统计学》第四版
统计课后思考题答案
第一章思考题
统计书后习题答案
第一章绪论思考题1.什么是统计学?请简要说明一下它的发展过程。
统计学是关于数据搜集、整理、归纳、分析的方法论科学。
统计学的发展主要经历了三个阶段:(1)17世纪中叶至18世纪,统计学的产生和形成阶段;(2)18世纪末至20世纪中叶,统计推断方法和理论体系确立的阶段;(3)20世纪50年代以来,统计理论、方法和应用进入了一个全面发展的阶段.2.统计学、统计数据,以及统计活动之间有什么关系?统计活动直接影响统计数据的数量和质量;统计学是统计实践活动的理论概括,同时,它又用理论和方法研究分析统计实践活动,统计学和统计活动是理论与实践的关系。
3.统计学的研究方法有哪些,它们有怎样的关系?并举例说明.主要方法有两个:(1)描述统计:搜集由试验或调查所获得的资料,进行整理、归类,计算出各种用于说明总体数量特征的数据,并运用图形或表格的形式将它们显示出来。
(2)推断统计:指利用概率论的理论,根据试验或调查获得的样本信息科学地推断总体的数量特征.关系:描述统计和推断统计都是统计方法的两个组成部分,前者是统计学的基础,后者是现代统计学的主要内容。
由于现实问题中,要获得总体数据存在很大的难度,能够获得的数据多为样本数据,因此,推断统计在现代统计学中的地位和作用越来越重要,它已成为统计学的核心内容。
当然,描述统计的重要性不可忽略,通过它得到可靠的统计数据并为后面的推断统计提供有效的样本信息,只有这样,才可以运用推断统计方法得出符合实际情况的结论。
4.简要说明总体、样本、变量的概念。
总体:根据一定的目的确定的所要研究对象的全体,它是统计问题最基本的要素;样本:从总体中随机抽取的若干单位构成的集合体,它是统计问题的第二要素;变量:可变的数量;变量的具体表现,即可变数量的不同取值,称为变量值。
5.简述SPSS统计软件的特点和应用领域。
(1) 特点:第一,工作界面友好完善、布局合理、操作简便,大部分统计分析过程可以借助鼠标,通过菜单命令的选择、对话框参数设置、点击功能按钮来完成,不需要用户记忆大量的操作命令。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章绪论思考题1.什么就是统计学?请简要说明一下它的发展过程。
统计学就是关于数据搜集、整理、归纳、分析的方法论科学。
统计学的发展主要经历了三个阶段:(1)17世纪中叶至18世纪,统计学的产生与形成阶段;(2)18世纪末至20世纪中叶,统计推断方法与理论体系确立的阶段;(3)20世纪50年代以来,统计理论、方法与应用进入了一个全面发展的阶段。
2.统计学、统计数据,以及统计活动之间有什么关系?统计活动直接影响统计数据的数量与质量;统计学就是统计实践活动的理论概括,同时,它又用理论与方法研究分析统计实践活动,统计学与统计活动就是理论与实践的关系。
3.统计学的研究方法有哪些,它们有怎样的关系?并举例说明。
主要方法有两个:(1)描述统计:搜集由试验或调查所获得的资料,进行整理、归类,计算出各种用于说明总体数量特征的数据,并运用图形或表格的形式将它们显示出来。
(2)推断统计:指利用概率论的理论,根据试验或调查获得的样本信息科学地推断总体的数量特征。
关系:描述统计与推断统计都就是统计方法的两个组成部分,前者就是统计学的基础,后者就是现代统计学的主要内容。
由于现实问题中,要获得总体数据存在很大的难度,能够获得的数据多为样本数据,因此,推断统计在现代统计学中的地位与作用越来越重要,它已成为统计学的核心内容。
当然,描述统计的重要性不可忽略,通过它得到可靠的统计数据并为后面的推断统计提供有效的样本信息,只有这样,才可以运用推断统计方法得出符合实际情况的结论。
4.简要说明总体、样本、变量的概念。
总体:根据一定的目的确定的所要研究对象的全体,它就是统计问题最基本的要素;样本:从总体中随机抽取的若干单位构成的集合体,它就是统计问题的第二要素;变量:可变的数量;变量的具体表现,即可变数量的不同取值,称为变量值。
5.简述SPSS统计软件的特点与应用领域。
(1) 特点:第一,工作界面友好完善、布局合理、操作简便,大部分统计分析过程可以借助鼠标,通过菜单命令的选择、对话框参数设置、点击功能按钮来完成,不需要用户记忆大量的操作命令。
菜单分类合理,并且可以灵活编辑菜单以及设置工具栏。
第二,具有完善的数据转换接口,可以方便地与Windows其她应用程序进行数据共享与交换。
可以读取Excel、FoxPro、Lotus等电子表格与数据库软件产生的数据文件,可以读取ASCII数据文件。
第三,提供强大的程序编辑能力与二次开发能力,方便高级用户完成更为复杂的统计分析任务的需要,具有丰富的内部函数与统计功能。
第四,附带丰富的数据资料实例与完善的使用指南,为用户学习掌握软件的使用方法提供更多的方便。
软件启动后,用户可直接上网访问SPSS公司主页获得更多的帮助与信息。
(2) 应用领域:社会科学、自然科学、经济管理、商业金融、医疗卫生、体育运动等。
6.SPSS软件的数据编辑器包括哪些内容?(1) 标题栏,显示当前工作文件名称。
(2) 主菜单栏,排列SPSS的所有菜单命令。
(3) 工具栏,排列系统默认的标准工具图标按钮,此栏图标按钮可以通过单击View菜单的Toolbars命令选择隐藏、显示或更改。
(4) 状态栏,状态栏位于SPSS窗口底部,它反映了工作状态。
当用户将光标置于不同的区域时或者进行不同的操作时将显示不同的内容。
(5) 数据编辑栏,用户通过键盘输入的数据首先显示在这里。
(6) 数据显示区域。
它就是一个二维的表格,编辑确认的数据都将在这里显示,其中每一个矩形格为单元格(Cell),其中边框加黑的单元格称为选定单元格。
数据显示区域的左边缘排列观测量序号,上边缘排列要定义的各变量名。
7、调查表明,顾客每周花在某超市蛋糕的平均费用就是30元,她们选择经常购买蛋糕的主要原因就是该蛋糕味道很好。
要求:(1) 总体就是什么?(2) 该项研究所使用的方法就是描述统计方法还就是推断统计方法?(1) 总体就是所有的购买蛋糕的顾客;(2) 推断统计方法。
第二章数据整理与描述思考题1.获取统计数据有哪两种途径?一种就是直接向调查对象搜集反映调查单位的统计数据,一般称为原始数据或第一手数据;另一种就是搜集已经加工、整理过的、说明总体现象的数据,一般称为次级数据或第二手数据。
2.统计数据的搜集有哪几种方法?直接观察法、访问法、报告法、问卷法。
3.对统计数据进行搜集时,有哪几种组织方式?普查、抽样调查、重点调查、典型调查。
4.什么就是数据分组?数据分组的方式有哪几种?(1)统计数据分组就是根据统计研究目的,按某一标志将数据分别列入不同的组,使组与组之间有比较明显的差别,而在同一组内的单位具有相对的同质性,即同一组内各单位之间具有某些共同的特征。
(2)统计数据分组可以按品质标志分组与按数量标志分组。
(一)按品质标志分组就就是按照事物的性质与属性特征进行分组。
一般来言,按品质标志分组的操作比较容易,分组也相对稳定。
如人口按性别分组、职工按文化程度分组等;(二)按数量标志分组,就就是按照事物的数量特征进行分组。
例如,企业按职工人数、产值、产量等标志分组,人口按年龄分组等。
5.简述组距、组限、组数与组中值的含义以及它们的计算方法。
(1) 组距就是指各组中最大变量值与最小变量值之差,用i表示。
计算方法为:i=R/n, 其中,n表示组数,R表示变量最大值与最小值之差(即全距);(2) 组限就是指限定各组组距的数值。
各组的较大值称上限,较小值称下限;(3) 组数就是指数据被分成的组个数。
计算方法为:1+=.3322Nn lg式中:n表示组数;N表示变量值个数;(4) 组中值就是上限到下限之间的中点数值,其计算公式为:组中值=(上限+下限)/26、向上积累与向下积累的数据有什么区别?累计频数(或频率)可以就是向上累计频数(或频率),也可以就是向下累计频数(或频率)。
(1) 向上累计频数(或频率),通常就是指由变量值小的组向变量值大的组依次累计;(2) 向下累计频数(或频率),通常就是指由变量值大的组向变量值小的组依次累计。
7、什么就是频数分布?试描述频数分布表的编制过程。
(1) 分布数列就是指在统计分组的基础上,将总体的所有单位按一定标志分组整理,并按一定顺序排列,形成总体单位在各组的分布;(2) 一、确定变量数列的形式。
根据变量的类型与变量值的多少及现象本身的特点确定就是编制单项数列还就是编制组距数列。
二、组距式变量数列编制方法:计算全距、确定组数、确定组距、确定组限、计算组中值、计算累计频数与累计频率。
8、对统计数据进行描述时,有哪几种统计图表表达方式?有统计表与统计图,其中统计图包括:直方图、折线图、曲线图。
9、直方图与折线图有什么区别与关系?折线图可以在直方图的基础上,将直方图的每个长方形的顶端中点用折线连点而成。
如果不绘直方图,也可以用组中值与频数求出坐标点,连接而成。
它们与横轴围成的区域面积相等。
10、请举出自己实际生活中的一组数据,对它进行分组,然后绘制直方图、折线图以及箱线图,分析该组数据的结构特征。
略练习题1.某地区7月份的气温数据(单位:摄氏度)如下:28 31 32 29 31 33 30 32 34 29 32 30 38 38 37 39 34 36 36 33 34 30 37 36 32 38 35 30 34 35 35(1) 对以上数据进行适当的分组;(2) 绘制直方图,说明该城市气温分布的特点。
解:(1) 频数分布如下:[28,30) 3;[30,32) 6;[32,34) 6;[34,36) 7;[36,38) 5;[38,40) 4; (2) 直方图略。
从直方图可以瞧出,该地区7月份气温集中在34~36摄氏度的天数最多,其次多的时间集中在30~32摄氏度或32~34摄氏度。
2、某人的家位于城市的A地,工作单位位于城市的B地,为了确定A、B两地的车程,她记录了60天(来回共乘车120次)内往返于A、B两地所花的时间(单位:分钟),所得数据如下:(1) 利用SPSS对以上数据进行排序。
(2) 以组距10进行等距分组,编制频数分布表,并绘制直方图。
解:(1) 略(2) 频数分布表如下:[80,90) 10,[90,100) 37,[100,110) 33,[110,120) 25,[120,130) 15; 直方图略。
(1) 用SPSS对以上数据进行适当的分组,编制频率分布表。
(2) 计算出累积频数与累积频率。
(3) 绘制直方图与折线图。
解:(1)、(2)(3) 略。
4、为评价某餐馆服务质量,随机调查了120个顾客对它的评价。
评价服务质量的等级分为五种:A、优;B、较好;C、中等;D、较差;E、极差。
调查结果如下表所示:(1) 编制频率分布表;(2) 绘制条形图,找出对该餐馆评价等级的分布。
解:(1) 频率分布表如下:(2) 略(1) 对该校四年级学生的成绩绘制直方图;(2) 根据直方图分析四年级学生的成绩分布特点。
解:(1) 略;(2) 左偏分布。
6、为了确定灯泡的使用寿命(单位:h),在一批灯泡中随机抽取100只进行测试,所得结果如下:(1) 利用SPSS对上面的数据进行排序;(2) 以10为组距进行等距分组,构建频率分布表;(3) 根据分组数据绘制茎叶图与箱线图,说明数据分布的特点。
解:(1) 略;(2)(3) 略。
第三章数据特征的度量思考题1.数据分布的特征可以从哪些方面进行度量与描述?(1) 数据集中程度度量的常用方法有均值(算术平均数)、调与平均数、几何平均数、众数、中位数。
(2) 数据离散程度的测度方法,常用的有极差、内距、标准差及离散系数。
2.简述中位数、四分位数、十分位数的概念,并举例说明。
中位数就是将顺序排列的统计数据从中间分成相等的两部分;四分位数就就是将排序后的数据4等分的三个数值,每部分包含25%的数据,其中中间的四分位数就就是中位数,其余两项分别为下四分位数(Q1)与上四分位数(Q3);十分位数与百分位数分别就是将排序后的数据10等分与100等分的数值。
3. 简述众数、中位数与均值的特点与关系。
(1) 关系:当数据呈对称分布时,均值、中位数、众数必定相等,即有Mo Me x ==; 当数据呈左偏分布时,均值小于中位数且小于众数,即有Mo Me x <<; 当数据呈右偏分布时,均值大于中位数且大于众数,即有Mo Me x >>;(2) 特点:均值就是根据所有数据计算的一般水平代表值,数据信息的提取足够充分,特别就是当用样本信息估计总体特征时,均值就更显示其良好的特征。
因而在统计数据分析中均值起着很重要的作用。
众数、中位数虽然数据信息利用不够充分,但当数据有极端值出现时,中位数的优势就显现了。
4. 简述内距、极差、标准差的概念,并举例说明。
(1) 内距:又称为四分位数差,就是指上四分位数与下四分位数之差,通常用Q d 表示; (2) 极差:也称全距,它就是一组数据的最大值与最小值之差;在组距式数列中,极差可以就是最高组的上限与最低组下限之差; (3) 标准差:也称均方差,就是各数据与均值离差平方平均数的平方根。