安培定律.ppt
合集下载
安培定律
0 I1 , 其中 B1 2x
2
§6.安培定律 / 四、利用安培定律解题方法
分割的所有电流 元受力方向都向上, 离 I1 近的电流元受力 大,离 I1 远的电流元 受力小,所以 I2 受到 的安培力为:
aL
I 1 dF
x o a
dx
L B1
I2
x
F dF I 2 B1 sin dx 2 a aL 0 I1 dx 0 I1 I 2 a L I2 ln 2 x a 2 a
用矢量式表示:
dF Idl B
Idl
dF
dF
B
外磁场
方向:从 dl 右旋 到 B,大拇指指向。
B
Idl
§6.安培定律 / 一、安培定律
二、一段电流在磁场中受力 计算一段电流 在磁场中受到的安 培力时,应先将其 分割成无限多电流 元,将所有电流元 受到的安培力矢量 求和----矢量积分。
2 ( a R cos )
0 I
§6.安培定律 / 四、利用安培定律解题方法
F I2
2 0
2 ( a R cos )
0 I1
R cos d
1 0 I1 I 2 1 2 2 a R
§6.安培定律 / 四、利用安培定律解题载流 直导线 I1 傍,平行放 置另一长为L的载流 直导线 I2 ,两根导线 相距为 a,求导线 I2 所受到的安培力。
解:
I1
I2
a
L
由于电流 I2 上各点到电流 I1 距离相同, I2 各点处的 B 相同,
§6.安培定律 / 四、利用安培定律解题方法
dFy dF dl R dFx
新版 第四节 安培力(共47张PPT)学习PPT
[问题]该磁场是否匀强磁场? 该磁场并非匀强磁场
[问题]该磁场的特点?
在以铁芯为中心的圆圈上,
各点的磁感应强度B的大小是相等的.
2、电流表的工作原理
1、蹄形磁铁和铁芯间的磁场是均匀地辐射分布的,不管
磁通铁对电桌面线的压力圈增大转,不到受桌面什摩擦么力作角用 度,它的平面都跟磁感应线平行,当
表盘的刻度均匀,θ∝I
b
(2)两个电流不平行时,总有作用到方
向相同的趋势。
3.电流元分析法:
把整段电流分成很多小段直线电流,其中每一小段 就是一个电流元。先用左手定则判断出每小段电流元 受到的安培力的方向,再判断整段电流所受安培力的 方向,从而确定导体的运动方向。
例:如图,把轻质导线圈用绝缘细线悬
挂在磁铁N极附近,磁铁的轴线穿过线 圈的圆心且垂直于线圈平面。当线圈内
导线拓在的平面与匀强磁场垂直,匀强磁场的
磁感应强度为B,求导线abc所受安培力的大
小和方向.
a
Fab BIL Fabc 2BIL
Fbc BIL
b
c
【例3】如图所示,两平行光滑导轨相距,与水平 面夹角为450,金属棒MN的质量为,处在竖直向上 磁感应强度为1T的匀强磁场中,电源电动势为6V, 内阻为1Ω,为使MN处于静止状态,则电阻R应为多 少?(其他电阻不计)
与导线的长度、电流强度 磁铁对桌面的压力减小,受桌面的摩擦力作用
通电线圈在磁场中受安培力的作用发生转动
都成正比,其比值与该处 F = ILBsinθ
欲使棒ab在轨道上保持静止,滑动变阻器的使用电阻R应为多大?(g取10m/s2,其它电阻不计)
的磁场强弱有关。导线与 如图所示,通电直导线A与通电导线环B固定放置在同一水平面上,通有如图所示的电流时,通电直导线受到水平向
[问题]该磁场的特点?
在以铁芯为中心的圆圈上,
各点的磁感应强度B的大小是相等的.
2、电流表的工作原理
1、蹄形磁铁和铁芯间的磁场是均匀地辐射分布的,不管
磁通铁对电桌面线的压力圈增大转,不到受桌面什摩擦么力作角用 度,它的平面都跟磁感应线平行,当
表盘的刻度均匀,θ∝I
b
(2)两个电流不平行时,总有作用到方
向相同的趋势。
3.电流元分析法:
把整段电流分成很多小段直线电流,其中每一小段 就是一个电流元。先用左手定则判断出每小段电流元 受到的安培力的方向,再判断整段电流所受安培力的 方向,从而确定导体的运动方向。
例:如图,把轻质导线圈用绝缘细线悬
挂在磁铁N极附近,磁铁的轴线穿过线 圈的圆心且垂直于线圈平面。当线圈内
导线拓在的平面与匀强磁场垂直,匀强磁场的
磁感应强度为B,求导线abc所受安培力的大
小和方向.
a
Fab BIL Fabc 2BIL
Fbc BIL
b
c
【例3】如图所示,两平行光滑导轨相距,与水平 面夹角为450,金属棒MN的质量为,处在竖直向上 磁感应强度为1T的匀强磁场中,电源电动势为6V, 内阻为1Ω,为使MN处于静止状态,则电阻R应为多 少?(其他电阻不计)
与导线的长度、电流强度 磁铁对桌面的压力减小,受桌面的摩擦力作用
通电线圈在磁场中受安培力的作用发生转动
都成正比,其比值与该处 F = ILBsinθ
欲使棒ab在轨道上保持静止,滑动变阻器的使用电阻R应为多大?(g取10m/s2,其它电阻不计)
的磁场强弱有关。导线与 如图所示,通电直导线A与通电导线环B固定放置在同一水平面上,通有如图所示的电流时,通电直导线受到水平向
安培力(精华版)课件
安培力的方向
根据左手定则判断,即伸开左手,让大拇指与四指在同一平面内并垂直,然后将左手放入 磁场中,让磁感线穿过掌心,四指指向电流方向,大拇指所指方向即为安培力的方向。
安培力的大小和方向
安培力的大小
根据公式F=BILsinθ计算,其中B为磁感应强度,I为电流强度,L为导线在磁场 中的有效长度,θ为电流与磁场的夹角。
左手定则
将左手伸开,让大拇指与其余四指垂直,然后将左手放入磁 场中,让磁感线垂直穿过手心,四指指向电流方向,大拇指 所指方向即为安培力方向。
判断安培力的方向
电流方向与磁场方向垂直时,安培力方向与电流方向垂直; 电流方向与磁场方向平行时,安培力方向与电流方向平行。
右手定则:将右手伸开,让大拇指与其余四指垂直,然后将 右手放入磁场中,让磁感线垂直穿过手心,大拇指指向电流 方向,四指所指方向即为安培力方向。
感谢观看
磁悬浮列车的工作原理
总结词
磁悬浮列车利用安培力实现列车与轨道 的完全分离,减少摩擦力,提高运行速 度。
VS
详细描述
磁悬浮列车通过在轨道和列车底部安装电 磁铁,当电流通过轨道上的电磁铁时,产 生磁场,与列车底部电磁铁的磁场相互作 用,产生向上的安培力,使列车悬浮在轨 道上方。由于没有接触,摩擦力大大减少 ,因此列车可以高速运行。
安培力计算中的单位换算
• 安培力单位为牛(N),电流单位为安(A),磁感应强度单位 为特(T),长度单位为米(m)。在进行单位换算时,需要将 各个物理量的单位统一到国际单位制中。例如,可以将安培力 的单位换算为牛米(Nm),电流的单位换算为安秒(As), 磁感应强度的单位换算为特米(Tm)等。
THANKS
根据安培力的公式F=BIL,安培力的大小与电流的大小成正比,电流越大,安培力越大。
安培环路定理课件
电磁感应的概念
电磁感应是指因磁通量变化而引起感应电动势的现象,它是 能量转换的一种形式。
电磁感应在安培环路定理中扮演着重要的角色,它可以解释 磁场和电流之间的相互作用和变化规律。
03
CATALOGUE
安培环路定理的证明
证明方法一:利用积分
总结词
通过在闭合曲线上的积分,我们可以证明安培环路定理。
实验二:电磁力测量
总结词
电磁力测量是研究安培环路定理的重要实验,通过测量通电导线在磁场中所受的力,可 以验证安培环路定理的推论。
详细描述
该实验采用电磁力测量仪和不同大小的电流源,通过测量通电导线在磁场中所受的力, 可以验证安培环路定理的推论。在实验过程中,需要注意保持电流的稳定和避免空气阻
力的影响。
安培环路定理的应用场景
要点一
总结词
安培环路定理的应用场景广泛,包括电力工程、电子设备 、磁力设备和科学研究等。
要点二
详细描述
在电力工程中,安培环路定理可以用于计算电流产生的磁 场,从而设计合适的磁路和电磁铁。在电子设备中,安培 环路定理可以用于分析电磁干扰和射频干扰等问题。在磁 力设备中,安培环路定理可以用于设计磁力控制器和磁力 泵等装置。此外,安培环路定理也是科学研究的重要工具 ,可以用于研究电磁场和电磁波等物理现象。
有节点电流的求和。
基尔霍夫定律的应用
03
基尔霍夫定律在电路理论、电子工程、电力工程等领域都有广
泛的应用。
06
CATALOGUE
安培环路定理实验及解析
实验一:磁场分布测量
总结词
磁场分布测量是研究安培环路定理的基础实 验,通过测量不同电流下磁场的分布情况, 可以验证安培环路定理的正确性。
《安培环路定理》课件
安培环路定理的应用实例
应用实例
在复杂电路中,可以利用安培环路定理来计算磁场分布和电流之间的关系,从而确定电流的大小和方向,为电路设计和分析提供重要的理论支持。
总结词
安培环路定理在电路分析中具有重要应用,能够简化复杂电路的分析过程。
详细描述
在电路分析中,安培环路定理可以用来计算磁场分布和电流之间的关系,从而确定电流的大小和方向,为电路设计和分析提供重要的理论支持。
《安培环路定理》PPT课件
目录
CONTENTS
安培环路定理的概述安培环路定理的公式及推导安培环路定理的应用实例安培环路定理的深入思考习题与思考
安培环路定理的概述
安培环路定理是描述磁场与电流之间关系的物理定理。
安培环路定理表述为在磁感应线圈中,磁场与电流之间的关系满足闭合回路的定律,即磁场沿闭合回路的积分等于穿过该回路的电流代数和。
安培环路定理是麦克斯韦方程组中的一个组成部分,它描述了磁场与电流之间的关系。
随着科学技术的发展,安培环路定理的应用范围越来越广泛,特别是在新能源、新材料等领域中有着广泛的应用前景。
发展趋势
未来对于安培环路定理的研究将更加深入,需要进一步探索其在复杂电磁场问题中的应用,以及与其他物理场的相互作用机制。同时,也需要加强与其他学科的交叉研究,推动安培环路定理在各个领域中的应用和发展。
总结词
总结词
安培环路定理公式中的物理量包括磁感应强度B、电流I、半径r等。
详细描述
磁感应强度B是描述磁场强弱的物理量,其单位是特斯拉(T)。电流I是指穿过导体的电流大小,其单位是安培(A)。半径r是指环绕导线的圆心到导线之间的距离,其单位是米(m)。这些物理量在安培环路定理公式中具有特定的数学关系,反映了磁场与电流之间的相互作用。
7-2 安培定律
安培定律的微观解释 洛伦兹力
f m evd B
vd
B
f m evd B sin
dF nevd SdlB sin
Idl
dl
fm
I
S
dF IdlB sin IdlB sin
I nevd S
由于自由电子与晶格之间的相互作用,使导线在 宏观上看起来受到了磁场的作用力 (称为安培力).
解 把线圈分为JQP和PKJ两部分
y
B
FJQP BI (2R)k 0.64kN I FPKJ BI (2R)k 0.64kN Q
z
J
o
x
R
× dF
以Oy为轴, l 所受磁力矩大小 Id
d
K
x
P
dM xdF IdlBx sin
x R sin , dl Rd
lab为连接弯曲导线两端而成的矢量,亦即整个
F Ilab B
F 0
二、均匀磁场对载流线圈的作用力矩
如图 均匀磁场中有一矩形载流线圈MNOP
设bc和ad两边所受安培力为F1和 F1′,则
F1 F BIl1 sin
' 1
F1和F1′方向相反,作用在同一直线上,因此合力为零。 设ab和cd两边所受安培力为F2和 F2′,则
m NISen
en与 I 成右螺旋
在磁力矩作用下,线圈将转动,使其磁矩的方 向与外磁场方向相同而达到稳定平衡状态。
如果载流线圈放置在不均匀的磁场中,载 流线圈除受力矩作用之外,还会受到一个力的 作用,力矩的作用使载流线圈偏转;力的作用 使载流线圈从磁场较弱处向磁场较强处移动。
8-5磁场的高斯定理和安培环路定律PPT(课件)-最新高中物理竞赛
B
I 0
c2
r2
2r c2 b2
(4) r>c I I I 0
B0
关于对称性分析还有较简单的方法:
dl
环路正方向如图。 1)有人说:“因回路不环绕电流时,环路上磁场必为零,由此可证圆柱面内无磁场”,这样的说法对吗?
三、用安培环路定理求磁场
(C)
,且环路上任意一点B 0.
电流从内圆柱流去,从外筒流回,电流均匀的分布在横截面上。
计算 Bdl B2πr 磁感线是在垂直于轴线的平面内以轴线为中心的同心圆。
§3 安培的高斯定理和环路定理 一、磁场的高斯定理 1.磁通量 定义:通过某面积S的磁通量等于通过S的磁感 线的条数。
(1)均匀磁场,S是平面,且与磁场线垂直
B N S
S
B
磁通量 Φm BS
(2)均匀磁场, S是平面,与磁场线不垂直
Φ mBS BcSo s
n
Φ mB SB S n
sB
课堂练习:磁场的磁
1 2
n
B ......B
n1
nk
磁感应强度的环流
B d l 0 ( I 1 I 2 .. I . n ) .0 .... 0 ....
L
n
安培环路定理
Bdl
L
0
Ii
i1
适用任意稳恒磁场
3.稳恒磁场的性质
高斯定理: SBdS0
无源场
n
安培环路定理:
Bdl
L
0
Ii
i1
比较静电场:
L
L 内
2 验证(用特例说明)
设闭合回路L为圆形回路,在垂直于导线的平面
内,与电流成右手螺旋。 载流长直导线的磁感强度为
安培ppt
档消耗一个共享文档下载特权。
ቤተ መጻሕፍቲ ባይዱ
年VIP
月VIP
连续包月VIP
享受100次共享文档下载特权,一次 发放,全年内有效
赠每的送次VI的发P类共放型的享决特文定权档。有下效载期特为权1自个V月IP,生发效放起数每量月由发您放购一买次,赠 V不 我I送 清 的P生每 零 设效月 。 置起1自 随5每动 时次月续 取共发费 消享放, 。文一前档次往下,我载持的特续账权有号,效-自
安培(AndréMarie Ampè1775~1836年)
安培,法国物理学家,1825年提出了著 名的安培定律。他从1820年开始在测量电 流的磁效应中,发现两个载流导线可以相 互吸引又可以相互排斥。这一发现成为研 究电学的基本定律,为电动机的发明作了 理论上的准备。他对数学和化学也有贡献。
第1页
前一页
包权
人书友圈7.三端同步
年VIP
月VIP
连续包月VIP
VIP专享文档下载特权
享受60次VIP专享文档下载特权,一 次发放,全年内有效。
VIP专享文档下载特权自VIP生效起每月发放一次, 每次发放的特权有效期为1个月,发放数量由您购买 的VIP类型决定。
每月专享9次VIP专享文档下载特权, 自VIP生效起每月发放一次,持续有 效不清零。自动续费,前往我的账号 -我的设置随时取消。
互相吸引,电流方向相反的两条平行载流导线互相排 斥。对两个线圈之间的吸引和排斥也作了讨论。
③发明了电流计 安培还发现,电流在线圈中流动的时候表现出来的
磁性和磁铁相似,创制出第一个螺线管,在这个基础 上发明了探测和量度电流的电流计。
④提出分子电流假说 他根据磁是由运动的电荷产生的这一观点来说明地
安培力PPT教学课件
总结词
安培力是一个涉及磁场、电流和相对运动的基本物理现象。然而,尽管安培力的基本性质已经被研究了很长时间,但在实际应用中,尤其是在复杂环境和多物理场条件下,安培力的微观机制和演化过程仍存在许多未解决的问题。此外,现有的安培力调控方法往往局限于特定的材料和结构,缺乏普适性,这也限制了安培力在实际应用中的广泛使用。
安培力在电磁炉中的应用
加热原理
电磁炉利用安培力产生的涡流效应,将电能转化为热能,实现对锅具和食物的加热。
驱动电机
电动车的驱动电机利用安培力实现车辆的加速和减速,电机输出的转矩通过传动系统传递到车轮。
安培力在电动车中的应用
电磁制动器
电动车的电磁制动器利用安培力进行制动,通过在制动盘上产生制动力矩来实现车辆减速或停车。
通过实验数据验证安培力的计算公式:F=BILsinθ。
04
安培力的应用与案例
03
电动压缩机
电动压缩机使用安培力来驱动活塞运动,实现制冷剂的压缩和输送。
安培力在工业中的应用
01
直线电机
安培力驱动的直线电机能够实现精准的直线运动,广泛应用于机械加工、装配线等工业领域。
02
电磁起重机
利用安培力原理,电磁起重机可以轻松地提起和搬运重物,极大提高了工业生产效率。
安培力的定义
安培力的性质
安培力具有作用力与反作用力、共线性和左手定则等性质。
总结词
安培力是磁场对通电导线的相互作用力,满足牛顿第三定律,作用力与反作用力大小相等、方向相反;通电导线在磁场中受到的安培力与导线放置的方向有关,当导线放置方向与磁场方向平行时,安培力为零;当导线放置方向与磁场方向垂直时,安培力最大。
根据安培力公式,我们可以计算出安培力的大小为:$F = 0.5 \times 5 \times 2 \times \sin 30^{\circ} = 2.5 N$。
安培力是一个涉及磁场、电流和相对运动的基本物理现象。然而,尽管安培力的基本性质已经被研究了很长时间,但在实际应用中,尤其是在复杂环境和多物理场条件下,安培力的微观机制和演化过程仍存在许多未解决的问题。此外,现有的安培力调控方法往往局限于特定的材料和结构,缺乏普适性,这也限制了安培力在实际应用中的广泛使用。
安培力在电磁炉中的应用
加热原理
电磁炉利用安培力产生的涡流效应,将电能转化为热能,实现对锅具和食物的加热。
驱动电机
电动车的驱动电机利用安培力实现车辆的加速和减速,电机输出的转矩通过传动系统传递到车轮。
安培力在电动车中的应用
电磁制动器
电动车的电磁制动器利用安培力进行制动,通过在制动盘上产生制动力矩来实现车辆减速或停车。
通过实验数据验证安培力的计算公式:F=BILsinθ。
04
安培力的应用与案例
03
电动压缩机
电动压缩机使用安培力来驱动活塞运动,实现制冷剂的压缩和输送。
安培力在工业中的应用
01
直线电机
安培力驱动的直线电机能够实现精准的直线运动,广泛应用于机械加工、装配线等工业领域。
02
电磁起重机
利用安培力原理,电磁起重机可以轻松地提起和搬运重物,极大提高了工业生产效率。
安培力的定义
安培力的性质
安培力具有作用力与反作用力、共线性和左手定则等性质。
总结词
安培力是磁场对通电导线的相互作用力,满足牛顿第三定律,作用力与反作用力大小相等、方向相反;通电导线在磁场中受到的安培力与导线放置的方向有关,当导线放置方向与磁场方向平行时,安培力为零;当导线放置方向与磁场方向垂直时,安培力最大。
根据安培力公式,我们可以计算出安培力的大小为:$F = 0.5 \times 5 \times 2 \times \sin 30^{\circ} = 2.5 N$。
10.5 10.6 10.7 安培定律
F
.
B
10.5~10.7 安培定律
第十章 真空中的稳恒磁场
结论: 均匀磁场中,任意形状刚性闭合平面 通电线圈所受的力和力矩为
F 0, M m B 0 稳定平衡 m // B, M 0
m B , M M max mB , π / 2
Fm qvB sin
dF Fm qvd B dN
方向:右手螺旋
由于自由电子受到了磁场的作用力,使导线在宏 观上看起来受到了磁场的作用力 (安培定律的微观意 义)。
洛仑兹力的功: A Fm dl Fm vd dt 0
结论:洛仑兹力恒不作功。
dF2 B1I 2dl2 sin
90 ,sin 1
2π d 0 I 2 I1dl1 dF1 B2 I1dl1 2π d dF2 B1 I 2 dl2
d
dF2 dF1 0 I1I 2 dl2 dl1 2π d
0 I1 I 2 dl2
10.5~10.7 安培定律
2)方向相反 非稳定平衡
3)方向垂直
力矩最大
.
.
.
.
. .
.
. . I
F
. I . . + + + + + + F . . . I
+ F + + + + + + + + + +B+
.
0 ,M 0
π π , M 0 2 , M M max
.
.
.B .
安培环路定理磁介质的磁导率PPT课件
是否回路 L 内无电流穿过?
7-4 安培环路定理 磁介质的磁导率 二、安培环路定理的应用
当磁场有一定 的对称性时,可用安培环路定理求
磁感应强度 B
B dl
L
μ0
Ii内
具体步骤: 1. 对称性分析 2. 选择适当的回路
3. 求磁感应强度
7-4 安培环路定理 磁介质的磁导率
SUCCESS
THANK YOU
B dl
C1
0 (I2 I1)
对闭合回路 C2
B dl
C2
0 (I2 I4 I1 I3)
C2
I1
C1
I3
I2
I4
I5
7-4 安培环路定理 磁介质的磁导率
Bdl
L
0 (I1
I1
I1
I2)
(0 I1
I
)
2
I1
I2 I3
I1
L
I1
问 1) B是否与回路 L外电流有关?
2)若 B d l 0 ,是否回路 L上各处 B 0? L
7-4 安培环路定理 磁介质的磁导率
例2 无限长载流圆柱体的磁场
解 1)对称性分析2)选取回路
rR
Bdl
l
0I
dI
r
2π rB 0I
dB
B 0I
2π r
I
RR
L
r
B
I .
dI
dB
B
7-4 安培环路定理 磁介质的磁导率
0rR
l
Bdl
0
πr2 π R2
I
I
RR
r B
2π
rB
0r2
R2
I
1.1 安培力 课件(45张PPT)
答案:2π
L
g+a
典例分析
答案:2π
L
g+a
解析:单摆的平衡位置在竖直位置,若摆球相对升降机静止,
则摆球受重力 mg 和绳拉力 F,根据牛顿第二定律:F-mg=ma,此
F
时摆球的视重 mg′=F=m(g+a),所以单摆的等效重力加速度 g′=m
=g+a,因而单摆的周期为 T=2π
L
=2π
g′
L
.
g+a
实验4:定量探究单摆周期与摆球的摆长的关系
把单摆从平衡位置拉开一个角度(θ<5o)由静止释
放,用秒表测量单摆完成30次全振动所用的时间t,
改变摆线长度重复实验
次数n
摆线长L
球直径d
摆长 l
周期 T
1
2
∝
3
4
t
T
n
5
∝
在摆角很小的情况下,单摆的周期大小与摆长的二次方根成正比
三、单摆的周期
道的圆心(图中未画出),紧贴N点左侧还固定有绝缘竖直挡板。自零时刻起将一带正
电的小球自轨道上的M点由静止释放。小球与挡板碰撞时无能量损失,碰撞时间不计,
运动周期为T,MN间的距离为L并且远远小于轨道半径,重力加速度为g,以下说法正确
的是(
)
A.圆弧轨道的半径为
gT 2
2
B.空间加上竖直向下的匀强电场,小球的运动周期会增大
典例分析
【典例6】(多选)如下图所示为同一地点的两单摆甲、乙的振动图
象,下列说法中正确的是(
)
A.甲、乙两单摆的摆长相等
B.甲摆的振幅比乙摆大
C.甲摆的机械能比乙摆大
D.在t= 0.5 s时有正向最大加速度的是乙摆
安培环路定理ppt
要点二
磁场与电场的关系
安培环路定理与麦克斯韦方程组的电流产生 ,而电流又会产生电场,因此磁场和电场之间存在密切 的联系。
与法拉第定律的关系
法拉第定律的表述
法拉第定律描述了电磁感应现象中电动势与磁通量变化 率之间的关系。根据安培环路定理,磁场穿过某一区域 的面积发生变化时,会在该区域产生感生电动势,两者 表述了不同的电磁感应现象。
特点
安培环路定理具有普遍性,适用于各种类型的磁场和电流, 是电磁场理论的基础之一。
安培环路定理的重要性
磁场与电流的关系是电磁场理论的核心内容之一,安培环路 定理作为磁场与电流相互关系的数学表述,具有重要的实际 应用价值。
安培环路定理的应用范围广泛,包括电力工程、电磁测量、 电子学、电磁波传播、电磁兼容等领域。
安培环路定理可以应用于各种不同的领域,如电磁场、电 磁学、光学等,它也是麦克斯韦方程组中的一个重要组成 部分。
定理的证明
安培环路定理的证明方法有多种,其中最常用的方法是基于斯托克斯定理和安培定律的证明。该证明过程可以简述为:首先, 假设磁场中存在一个闭合电流分布;其次,应用斯托克斯定理可以得到该电流分布所产生的电场分布;最后,应用安培定律可 以得到该电场分布所产生的磁场分布,从而证明了安培环路定理的正确性。
需要注意的是,安培环路定理只有在电流和磁场都是连续的情况下才成立,如果存在间断点或奇异点,需要采用其他方法进行 证明。
定理的应用
01
安培环路定理在许多领域都有广泛的应用。例如,在电力工程中,可以利用安 培环路定理来计算和预测电缆、线圈和其他电流分布所产生的磁场分布,从而 可以进行电磁干扰(EMI)预测和电磁屏蔽设计等。
详细描述:安培环路定理是电磁学中的一个重要基础定理,它表述了磁场中电流 和磁场的相互作用关系。根据安培环路定理,电流产生的磁场可以通过对环路积 分来计算,这为分析和解决许多电磁学问题提供了方便。
大学物理10.4 安培环路定理及其应用Xiao.ppt
例筒.形有导两体个,半在径它分们别之为间充R1以和相R对2 的磁“导无率限为长r”同的轴磁圆介
质,圆筒外为真空。当两圆筒通有相反方向的电流 I
时,试 求(1)磁介质中任意点 P
的磁感应强度的大小;(2)圆柱体
外面一点 Q 的磁感应强度.
解 对称性分析
R1 r R2
H dl I
(3)安培环路定理说明磁场性质—磁场是有旋场 (非保
守场)。
比较:静电场
LE dl 0
(无旋场,保守场)
(4) 安培环路定理提供了一种计算 B 的方法。
问
1)B 是否与回路 L
外电流有关?
是, 但回路外电流对环流 LB d l 的贡献为零。
2)若 B d l 0 ,是否回路 L 上各处 B 0?
定则时,电流 I 取正;反 之取负。
(2) 空间中任意一点的B 都是由环路内外所有电流激
发的,而 B dl 仅与穿过环路的电流有关。 L 环流由环路内电流决定
B dl 0 Ii L内
由环路内外电流产生 环路所包围的电流
南京理工大学应用物理系
10.4 安培环路定理及其应用
说明: (1)管内磁场是均匀的。
作安培环路MNOPM
M
N
P ++
B1
+B+2+
+
L
++
+
O ++
+
B
B dl L
MN B1 dl
B dl
NO
安培定律 PPT
L
B
P
f I ( dl ) B
L
o
x
dl op Li
L
f ILi B ILBj
f I ( dl ) B
L
结论: 任意平面载流导线在均匀磁场中所受 的力 ,与其始点和终点相同的载流直导线所受 的磁场力相同. 平面闭合载流导线在均匀磁场中所受的 安培力
v qB
粒子单位时间内圆周运动的圈数(频率)
1 qB f T 2π m
2)螺旋运动 如果粒子的速度不垂直于外磁场的方向,设粒 子的初速度为 v ,与外磁场的夹角为θ
——安培定律
df IdlB sin
右手螺旋法培力
f
( Idl B )
l
B
例1 求如图不规则的平面 载流导线在均匀磁场中所 受的力,已知 I . B 和 解:一段载流导线在均 匀磁场中所受的安培力
y
I
+
对转轴的磁力矩 l1 ' l1 M f 2 sin f 2 sin Il2 Bl1 sin Il1l2 B sin 2 2 矩形线圈受到的磁力矩
f2
n
B
M BIS sin
用矢量形式表示为 M ISn B
平面载流线圈的磁矩
Pm ISn
M NBIS sin
3 或 时 线圈所受的磁力矩最大 2 2
即磁场与线圈平面平行时所受的磁力矩最大
M NBIS 50 0.05 2 (0.2)2 N m
M 0.2 N m
问题:对于任意平面载流线圈以下结论成立吗?
f 0,
B
P
f I ( dl ) B
L
o
x
dl op Li
L
f ILi B ILBj
f I ( dl ) B
L
结论: 任意平面载流导线在均匀磁场中所受 的力 ,与其始点和终点相同的载流直导线所受 的磁场力相同. 平面闭合载流导线在均匀磁场中所受的 安培力
v qB
粒子单位时间内圆周运动的圈数(频率)
1 qB f T 2π m
2)螺旋运动 如果粒子的速度不垂直于外磁场的方向,设粒 子的初速度为 v ,与外磁场的夹角为θ
——安培定律
df IdlB sin
右手螺旋法培力
f
( Idl B )
l
B
例1 求如图不规则的平面 载流导线在均匀磁场中所 受的力,已知 I . B 和 解:一段载流导线在均 匀磁场中所受的安培力
y
I
+
对转轴的磁力矩 l1 ' l1 M f 2 sin f 2 sin Il2 Bl1 sin Il1l2 B sin 2 2 矩形线圈受到的磁力矩
f2
n
B
M BIS sin
用矢量形式表示为 M ISn B
平面载流线圈的磁矩
Pm ISn
M NBIS sin
3 或 时 线圈所受的磁力矩最大 2 2
即磁场与线圈平面平行时所受的磁力矩最大
M NBIS 50 0.05 2 (0.2)2 N m
M 0.2 N m
问题:对于任意平面载流线圈以下结论成立吗?
f 0,
安培定则、左手定则和右手定则PPT课件
解析:本题考查学生对直线电流周围磁场分布及电流在磁 场中所受的安培力等基础知识的掌握情况。 导线a在c处产生的磁场方向由安培定则可判断,即垂直ac 向左下,同理导线b在c处产生的磁场方向垂直bc向右下,则由 平行四边形定则,过c点的合磁场方向平行于ab向下,根据左 手定则可判断导线c受到的安培力垂直ab边,指向左边。
• 答案:C • 分析 • 考查楞次定律(或右手定则)判断感应电流 方向、交变电流图像的识别;本质上考查了 学生识别电路的能力。题述太繁,实际很简 单,学生容易被蒙住。
安培定则、左手定则、右手定则的区别
关键是抓住因果关系: 1、因电而生磁(I B) 安培定则 2、因动而生电(v、B I) 右手定则 3、因电而受力(I、B F) 左手定则
洛 伦 兹 力 的 方 向
洛 伦 兹 力 的 方 向
洛伦兹力方向:伸开左 手,使拇指与其余四指 垂直且处于同一平面内; 让磁感线从掌心进入, 四指指向电荷运动形成 等效电流的方向,拇指 所指的方向就是电荷所 受洛伦兹力的方向
(09年宁夏卷)16.医生做某些特殊手术时,利用电磁血流计来监测通过动 脉的血流速度。电磁血流计由一对电极a和b以及磁极N和S构成,磁极间的磁 场是均匀的。使用时,两电极a、b均与血管壁接触,两触点的连线、磁场方 向和血流速度方向两两垂直,如图所示。由于血液中的正负离子随血流一起 在磁场中运动,电极a、b之间会有微小电势差。在达到平衡时,血管内部的 电场可看作是匀强电场,血液中的离子所受的电场力和磁场力的合力为零。 在某次监测中,两触点的距离为3.0mm,血管壁的厚度可忽略,两触点间的 电势差为160µV,磁感应强度的大小为0.040T。则血流速度的近似值和电极a、 b的正负为( ) A.1.3m/s,a正、b负 B.2.7m/s , a正、b负 C.1.3m/s,a负、b正 D.2.7m/s , a负、b正
• 答案:C • 分析 • 考查楞次定律(或右手定则)判断感应电流 方向、交变电流图像的识别;本质上考查了 学生识别电路的能力。题述太繁,实际很简 单,学生容易被蒙住。
安培定则、左手定则、右手定则的区别
关键是抓住因果关系: 1、因电而生磁(I B) 安培定则 2、因动而生电(v、B I) 右手定则 3、因电而受力(I、B F) 左手定则
洛 伦 兹 力 的 方 向
洛 伦 兹 力 的 方 向
洛伦兹力方向:伸开左 手,使拇指与其余四指 垂直且处于同一平面内; 让磁感线从掌心进入, 四指指向电荷运动形成 等效电流的方向,拇指 所指的方向就是电荷所 受洛伦兹力的方向
(09年宁夏卷)16.医生做某些特殊手术时,利用电磁血流计来监测通过动 脉的血流速度。电磁血流计由一对电极a和b以及磁极N和S构成,磁极间的磁 场是均匀的。使用时,两电极a、b均与血管壁接触,两触点的连线、磁场方 向和血流速度方向两两垂直,如图所示。由于血液中的正负离子随血流一起 在磁场中运动,电极a、b之间会有微小电势差。在达到平衡时,血管内部的 电场可看作是匀强电场,血液中的离子所受的电场力和磁场力的合力为零。 在某次监测中,两触点的距离为3.0mm,血管壁的厚度可忽略,两触点间的 电势差为160µV,磁感应强度的大小为0.040T。则血流速度的近似值和电极a、 b的正负为( ) A.1.3m/s,a正、b负 B.2.7m/s , a正、b负 C.1.3m/s,a负、b正 D.2.7m/s , a负、b正
安培定则、左手定则和右手定则PPT教学课件
(09年宁夏卷)19.如图所示,一导体圆环位于纸面内,O为圆 心。环内两个圆心角为90°的扇形区域内分别有匀强磁场,两
磁场磁感应强度的大小相等,方向相反且均与纸面垂直。导体 杆OM可绕O转动,M端通过滑动触点与圆环良好接触。在圆心 和圆环间连有电阻R。杆OM以匀角速度逆时针转动,t=0时恰好 在图示位置。规定从a到b流经电阻R的电流方向为正,圆环和导 体杆的电阻忽略不计,则杆从t=0开始转动一周的过程中,电流 随变化的图象是( )
安培定则 右手定则 左手定则
第第6节 植物生殖方式的多样性
一、被子植物的生殖
1、开花
( ! ) 花瓣
(2)
柱头
(3)
花柱
( 4 ) 花药 雄
雌
( 5 ) 花丝 蕊
( 6 ) 萼片 ( 7 ) 胚珠
(8)
( 9 ) 花托
蕊
子房
第第6节 植物生殖方式的多样性
一、被子植物的生殖
1、开花 2、传粉 花粉落到柱头上的过程
脉的血流速度。电磁血流计由一对电极a和b以及磁极N和S构成,磁极间的磁
场是均匀的。使用时,两电极a、b均与血管壁接触,两触点的连线、磁场方
向和血流速度方向两两垂直,如图所示。由于血液中的正负离子随血流一起
在磁场中运动,电极a、b之间会有微小电势差。在达到平衡时,血管内部的
电场可看作是匀强电场,血液中的离子所受的电场力和磁场力的合力为零。
R
r
子房 胚珠 卵卵子子
P
z
F
U
T
,,
,
, ,
6 第 节 植物生殖方式的多样性
一、被子植物的有性生殖
1、开花 2、传粉
受 3、
精
自花传粉 异花传粉
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
θ
= I d (B S cosθ ) = I dΦ m
p
m
A = I dΦ m
例 一半径为R的半圆形闭合线圈,通有电流I,线 圈放在均匀外磁场B中,B的方向与线圈平面成300 角,如右图,设线圈有N匝,问:
(1)线圈的磁矩是多少?
(2)此时线圈所受力矩的 大小和方向?
(3)图示位置转至平衡位置时, 磁力矩作功是多少?
. . . 1. 载流导线在磁场中移动时 ... . . A = FΔ x= B I lΔ x = IΔΦm I
. . . 2. 载流线圈在磁场中转动时
BI
..... F ..... l
ε Δx
M
=
p m
×
B
M
=
p m
B
sinθ
=I SB sinθ
.B M.
dA = M dθ = B I Ssinθ dθ
? 论 它们之间的相互作用力
电流元 I1dl1 所受作用力
df1
0 4
I1dl1 I2dl2 r2
r
I1dl1
电流元 I2dl2 所受作用力
df2 0
? df1 df2
I 2dl2
牛顿第三定律
动量守恒
磁场 动量
均匀磁场中载流导线所受安培力
1、载流直导线
➢取电流元 Idl
受力大小
Idl ×
F2
θ cn
F1
BIl2 d
l1
a(b sin
)
F2
d l1
nθ θ
Pm
.
F2 B
d(c)
Pm ISn
M Fd BIl2l1 sin B IS sin BPm sin
M BPm sin
如果线圈为N匝
Pm
NISn
dx dl cosa
dy dl sina
Y df
B Idl
O a X
建坐标系 dfx df sina BIdl sina 取 分 量 df y df cosa BIdl cosa
积分
f x df x BI dy 0 f y df y BI dx BIab j
14-5 安培定律 磁场对载流导线的作用
一、 安培定律
安培力
电流元在磁场中受到的磁力
df Idl B
大小 df IdlBsin sin( Idl , B)
方向判断
右手螺旋
B
a
I
Idl
I
df
载流导线受到的磁力 f L Idl B
讨 图示为相互B2
a
df1 0 I1I2 dl1 2a
Idl1
df1
df 2
Idl2
df2 0 I1 I2
dl2 2a
I1
I2
B1
例
求一无限长直载流导线的磁场对另
一直载流导线ab的作用力。
已知: I , I , μ , d , L 12
解 df BI2dl
B
df BIdl sin
df
方向
I
➢积分 f BIdl sin BILsin L
结论
f BLI sin 方向
讨
论
B
0
f 0
I
2
3
2
fmax BLI
B
I
2、任意形状导线
取电流元 Idl
受力大小
df BIdl
方向如图所示
0 I1I2 dx
I1
2x
df
a
b
x Idl
I2
f
L df
dd L
0 I1 I 2 2x
dx
d
L
0I1I2 ln d L
2
d
非均匀磁场中载流导线所受安培力
如图 求导线ab所受安培力
已知 I1, I2 , L, d
I 直导线ab垂直于长直导线 1
解: 如图取微元
M Pm B
F1
讨
论
F2
F2
F1
. F2
F2
B
F2
FF12
F 1
二、 磁力的功
W NIm NI2m 1m
NI B R2 B R2 cos 600 NIB R2
2
2
4
可见,磁力矩作正功
(2)此时线圈所受力矩的大小为
M pmB sin 600 NIB
3 R2
4
磁力矩M的方向由 Pm B 确定,为垂直于B的
B 600
解 (1)线圈的磁矩
Pm
NISn
NI
2
R2n
Pm的方向与B成600 夹角
(2)此时线圈所受力矩的大小为
M pmB sin 600 NIB
3 R2
4
磁力矩M的方向由 Pm B 确定,为垂直于B的
方向向上。即从上往下俯视,线圈是逆时针
(3)线圈旋转时,磁力矩作功为
df
BI2dl
0 I1 I 2 2x
dx
df
a
b
x Idl
I2
d
L
f d L 0 I1I2 dx 0 I1I2 ln d L 竖直向上
d 2x
2
d
14-6 磁场对载流线圈的作用
一、磁场对载流线圈作用的磁力矩
F2 F2
F1
a
l 2
I
b
F2
l1
d
B
推论
在均匀磁场中
任意形状闭合载流线圈受合力为零
练习 如图 求半圆导线所受安培力
f 2BIR
方向竖直向上
c
B
I
R
a b
平行电流的相互作用力
df1 B2 I1dl1
B2
0I2 2a
导线1、2单位长度上
上所受的磁力为
df2 B1I2dl2
B1
方向向上。即从上往下俯视,线圈是逆时针
(3)线圈旋转时,磁力矩作功为
W NIm NI2m 1m
NI B R2 B R2 cos 600 NIB R2
2
2
4
可见,磁力矩作正功