高考数学考试的答题技巧和方法

合集下载

数学考试答题技巧与方法

数学考试答题技巧与方法

数学考试答题技巧与方法数学考试答题技巧与方法一、“六先六后”,因人因卷制宜。

考生可依自己的解题习惯和基本功,选择执行“六先六后”的战术原则。

1.先易后难。

2.先熟后生。

3.先同后异。

先做同科同类型的题目。

4.先小后大。

先做信息量少、运算量小的题目,为解决大题赢得时间。

5.先点后面。

高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,步步为营,由点到面。

6.先高后低。

即在考试的后半段时间,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”。

二、一慢一快,相得益彰,规范书写,确保准确,力争对全。

审题要慢,解答要快。

在以快为上的前提下,要稳扎稳打,步步准确。

假如速度与准确不可兼得的话,就只好舍快求对了。

三、面对难题,以退求进,立足特殊,发散一般,讲究策略,争取得分。

对于一个较一般的问题,若一时不能取得一般思路,可以采取化第1页共5页一般为特殊,化抽象为具体。

对不能全面完成的题目有两种常用方法: 1.缺步解答。

将疑难的问题划分为一个个子问题或一系列的步骤,每进行一步就可得到一步的分数。

2.跳步解答。

若题目有两问,第一问做不上,可以第一问为“已知”,完成第二问。

四、执果索因,逆向思考,正难则反,回避结论的肯定与否定。

对一个问题正面思考受阻时,就逆推,直接证有困难就反证。

对探索性问题,不必追求结论的“是”与“否”、“有”与“无”,可以一开始,就综合所有条件,进行严格的推理与讨论,则步骤所至,结论自明。

数学考试答题技巧(总结)1.对于会做的题目,要解决会而不对,对而不全这个老大难问题.有的考生拿到题目,明明会做,但最终答案却是错的--会而不对.有的考生答案虽然对,但中间有逻辑缺陷或概念错误,或缺少关键步骤--对而不全.因此,会做的题目要特别注意高考数学解答题答题技巧及题型特点,防止被分段扣点分.(经验)表明,对于考生会做的题目,阅卷老师则更注意找其中的合理成分,分段给点分,所以做不出来的题目得一二分易,做得出来的题目得满分难.2.对绝大多数考生来说,更为重要的是如何从拿不下来的题目中分段得点分.我们说,有什么样的解题策略,就有什么样的得分策略.把你解题的真实过程原原本本写出来,就是分段得分的全部秘密。

高考数学答题技巧及方法模板

高考数学答题技巧及方法模板

高考数学答题技巧及方法模板高考数学答题技巧及方法模板对学习内容越熟悉,对解题的基本思路和方法就越熟悉,能背的数字和公式就越多,能把局部和整体有机地结合成一个整体,形成跳跃式思维,能大大加快解题速度。

下面是为大家整理的有关2021年度高考数学答题技巧及方法模板,希望对你们有帮助!高考数学答题模板1选择填空题1、答题方法高考数学选择题速解方法:排除法、假设条件法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法;数学填空题速解方法:直接法、特殊化法、数形结合法、等价转化法。

2、易错点归纳数学易混淆难记忆考点分析:概率和频率概念混淆、数列求和公式记忆错误等,强化基础知识点记忆,避开因为知识点失误造成的客观性解题错误。

2解答题数学解答题是高考数学试卷中的一类重要题型,通常是高考的把关题和压轴题。

1、三角函数考察正弦、余弦公式、三角形基本性质、三种基本三角函数之间的转化与角度的化简。

三角函数是以角度为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。

常见的三角函数包括正弦函数、余弦函数和正切函数。

不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。

答题方法:巧用数形结合、化归转化等方法解题。

例1:设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2sinabA(1)求B的大小。

(2)求cosA+sinC的取值范围。

2、概率统计考察排列、组合运用分布列罗列、期望计算等知识点。

概率所研究的内容一般包括随机事件的概率、统计独立性和更深层次上的规律性。

对于任何事件的概率值一定介于0和1之间。

有一类随机事件,它具有两个特点:第一,只有有限个可能的结果;第二,各个结果发生的可能性相同。

具有这两个特点的随机现象叫做“古典概型”。

3、数列考察通项公式和求和公式的运用。

数列是以正整数集(或它的有限子集)为定义域的函数,是一列有序的数。

数列中的每一个数都叫做这个数列的项。

排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项……排在第n位的数称为这个数列的第n。

高考数学各类题型的答题套路及技巧

高考数学各类题型的答题套路及技巧

高考数学各类题型的答题套路及技巧高考数学必考题及解题技巧篇一1、解三角形常用知识:正余弦定理、面积公式、边角互换、均值不等式,注意角范围的叙述(三角形内角和定理);三角函数与解三角形,向量相结合:化一公式、诱导公式、二倍角公式、基本关系式,均值不等式、周期的求法。

2、数列求通项an的方法:公式法、累加法、累乘法、构造法、倒数法、同除法、an与S,和Sn-1的等量关系。

求Sn的常用方法:公式法、错位相减法、裂项相消法、分组求和法等。

3、立体几何证明平行:做辅助线(中位线,平行四边形,相似三角形等)可证面面平行,线面平行性质等。

证明垂直:勾股定理;等腰,等边三角形性质;菱形,正方形性质;基本图形的垂直;线面垂直得线线垂直;面面垂直性质,直径所对的圆周角等。

求距离:解三角形,等体积法等。

求空间角:做辅助线,建系,标出相应点的坐标,求出平面的法向量,写出相应的夹角公式,线面角公式等。

高考数学答题技巧篇二1、高考数学答题带着量角器进考场带个量角器进考场,遇见解析几何马上可以知道是多少度,小题求角基本马上解了,要是求别的也可以代换,大题角度是个很重要的结论,如果你实在不会,也可以写出最后结论。

2、高考数学答题取特殊值法圆锥曲线中最后题往往联立起来很复杂导致算不出,这时你可以取特殊值法强行算出过程就是先联立,后算代尔塔,用下韦达定理,列出题目要求解的表达式,就可以了。

3、高考数学答题空间几何空间几何证明过程中有一步实在想不出把没用过的条件直接写上然后得出想不出的那个结论即可。

如果第一题真心不会做直接写结论成立则第二题可以直接用!用常规法的同学建议先随便建立个空间坐标系,做错了还有2分可以得。

4、高考数学答题图像法超越函数的导数选择题,可以用满足条件常函数代替,不行用一次函数。

如果条件过多,用图像法秒杀。

不等式也是特值法图像法。

先易后难我们在答数学试卷的时候,一定要先选择自己会的有把握的,要按照这个顺序,确保自己会都正确,我们在做其他的题。

高考数学各题型答题方法技巧总结

高考数学各题型答题方法技巧总结

高考数学各题型答题方法技巧总结数学选择题目还是比较多的,占的分值也挺大的,因此,对于不同的数学选择题,就需要掌握不同的解题技巧,数学选择题的解题方法也是多种多样的,下面是给大家带来的高考数学各题型答题方法技巧总结(大全),以供大家参考!数学各题型解题方法一、立体几何题1、证明线面位置关系,一般不需要去建系,更简单;2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。

二、导数、极值、最值、不等式恒成立(或逆用求参)问题1、先求函数的定义域,正确求出导数,特别是复合函数的导数,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号);2、注意最后一问有应用前面结论的意识;3、注意分论讨论的思想;4、不等式问题有构造函数的意识;5、恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法);6、整体思路上保6分,争10分,想14分。

三、概率问题1、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;2、搞清是什么概率模型,套用哪个公式;3、记准均值、方差、标准差公式;4、求概率时,正难则反(根据p1+p2+。

+pn=1);5、注意计数时利用列举、树图等基本方法;6、注意放回抽样,不放回抽样;7、注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;8、注意条件概率公式;9、注意平均分组、不完全平均分组问题。

四、圆锥曲线问题1、注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;2、注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等;3、战术上整体思路要保7分,争9分,想12分。

高考数学答题技巧与解题思路

高考数学答题技巧与解题思路

高考数学答题技巧与解题思路在高考中,数学是许多学生普遍感到困扰的科目之一。

它需要灵活运用各种技巧和解题思路来处理各类题目。

本文将介绍一些高考数学答题技巧和解题思路,帮助学生更好地应对数学考试。

一、选择题解题思路选择题在高考数学试卷中占有重要的比重。

解答选择题需要注意以下几点:1. 首先,仔细阅读题目,理解题目所要求的内容。

阅读题干和选项时要注意细节,避免因为粗心而丢分。

2. 其次,列出已知条件,找到相关的数学概念和定理。

有时候,选择题通过对已知条件的解析可以得到答案。

3. 利用排除法。

根据选项中的信息,可以在几个选项中排除一些明显错误的答案,从而缩小答案的范围。

4. 适时使用近似计算法。

高考中有些选择题可以通过适当的近似计算法来估算答案,从而快速获得正确答案。

二、解答计算题技巧高考数学试卷中,计算题往往需要较长时间来解答,需要学生具备一定的计算技巧。

以下是一些解答计算题的技巧:1. 简化计算:在进行长算式计算时,可以通过化简或者简化计算过程,减少繁琐的步骤,以节省时间。

2. 小数计算:小数计算是高考数学试卷中常见的计算类型之一。

处理小数时,可以采用移位运算、精确估算等方法,提高计算的准确性和效率。

3. 分数计算:分数计算也是高考数学试卷中的重要考点。

在进行分数计算时,可以通过通分、约分、倒数等方法,简化计算过程。

4. 视觉化计算:有些计算题可以通过将计算过程转化为图形或者几何形状,从而提高计算速度和准确度。

例如,通过图形的面积计算来解决几何题。

三、解答证明题方法证明题在高考数学试卷中往往是分数较高的题目,需要学生具备一定的推理和证明能力。

以下是一些解答证明题的方法:1. 利用数学知识和定理:对于证明题,学生需要熟练掌握各类数学知识和定理,并能够将其运用到具体问题中。

在解答证明题时,可以先回顾所学知识和定理,找到相关理论支撑。

2. 逻辑推理法:证明题往往需要学生进行逻辑推理,通过推导和演绎的方式来得到结论。

高考数学答题技巧与套路精选

高考数学答题技巧与套路精选

高考数学答题技巧与套路精选高考数学答题技巧一、难题先跳过手热好得分周洁娴,毕业于华师一附中理科班,高考664分。

说到去年高考数学和理科综合,周洁娴仍心有余悸。

数学开考时不顺,她几道选择题拿不准,十几分钟后越做越慌。

她决定跳过这几题往后面做,没想到思路打开了,答题很顺利,之前拿不准的题也好上手了。

“我感觉脑袋也像机器,需要预热!”二、开头最易错回头可救分“基础题得分和丢分都很容易。

”去年毕业于武汉三中的黑马陈野介绍,越容易的题越要仔细。

陈野说,自己能超常发挥,很大程度因为考试时基础题得分高,特别是理科综合和数学两门。

做选填题时,无论题目多简单,都会保证做完后再检查一遍,确保能做的题目不出错。

“既然得不到难题分,一定要保证简单题不错。

”周洁娴回忆,考数学时,离交卷还剩10分钟,她开始回头检查。

结果重新算了算看上去不对劲的答案,发现真有错误,救回10多分。

三、时间很宝贵掐表做综合对于综合考试的时间,受访学生均认为,一定要学会合理分配时间。

周洁娴回忆,做综合试卷的物理部分时,最后一题有点难。

当时她做前面部分花的时间已超出预算,结果越做越急,无奈之下只得放弃物理最后一题。

好在自己做化学时挤出了一些时间,最后回头才完成物理这道压轴题。

毕业于武汉一中的黑马梁巾认为,综合科目的答题没必要刻意按照统一的答题模式,但最好分科进行,不交叉答题。

答题时,应先做自己最拿手的科目。

四、审题别偷懒用时别吝啬“不集中精力仔细审题,一不留神就丢分。

”去年全市理科状元,武汉三中学生徐懋祺以685分考入北大。

他建议考生,不要小看题干中的每个隐含条件和细节,审题一定要非常仔细。

“要留意题目的所有条件。

”毕业于武汉四中的黑马刘恋念说,物理题有时会给出很多物理量。

这时不妨把已知的物理量都圈起来,做题时如发现所给物理量没用,肯定是答题思路有问题,一定要重新思考。

“文科综合更是重在审题。

”毕业于武汉十二中的黑马佘晔介绍,文科综合里的选择题干扰项特别多。

高考数学必考题型及答题技巧

高考数学必考题型及答题技巧

高考数学必考题型及答题技巧高考数学必考题型及答题技巧汇总数学这个学科可能是很多人从小到大心中的恐惧,因为它复杂难理解,尤其是文科生,以下是小编整理的一些高考数学必考题型及答题技巧,欢迎阅读参考。

高考数学答题注意事项(1)填写好全部考生信息,检查试卷有无问题;(2)调节情绪,尽快进入考试状态,可解答那些一眼就能看得出结论的简单选择或填空题(一旦解出,信心倍增,情绪立即稳定);(3)对于不能立即作答的题目,可一边通览,一边粗略地分为a、b两类:a类指题型比较熟悉、容易上手的题目;b类指题型比较陌生、自我感觉有困难的题目,做到心中有数。

高考数学填空题答题技巧1、三角变换与三角函数的性质问题解题方法:①不同角化同角;②降幂扩角;③化f(x)=Asin(ωx+φ)+h ;④结合性质求解。

答题步骤:①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。

②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件。

③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。

2、解三角形问题解题方法:(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。

(2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。

答题步骤:①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。

②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。

③求结果。

3、数列的通项、求和问题解题方法:①先求某一项,或者找到数列的关系式;②求通项公式;③求数列和通式。

答题步骤:①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。

②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。

③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。

高考数学无敌答题技巧总结(2篇)

高考数学无敌答题技巧总结(2篇)

高考数学无敌答题技巧总结方法一、调理大脑思绪,提前进入数学情境考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。

方法二、“内紧外松”,集中注意,消除焦虑怯场集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。

方法三、沉着应战,确保旗开得胜,以利振奋精神良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。

方法四、“六先六后”,因人因卷制宜在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了,这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行“六先六后”的战术原则。

.先易后难。

就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。

.先熟后生。

通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。

高考数学答题技巧方法及易错知识点

高考数学答题技巧方法及易错知识点

高考数学答题技巧方法及易错知识点高考即将来临,数学想得高分,要讲究方法技巧,不能盲目,今天小编在这给大家整理了一些高考数学答题的技巧及方法_高考数学易错的知识点,我们一起来看看吧!高考数学答题的技巧及方法1.调整好状态,控制好自我(1)保持清醒。

数学的考试时间在下午,建议同学们中午最好休息半个小时或一个小时,其间尽量放松自己,从心理上暗示自己:只有静心休息才能确保考试时清醒。

(2)按时到位。

今年的答题卡不再单独发放,要求答在答题卷上,但发卷时间应在开考前5-10分钟内。

建议同学们提前15-20分钟到达考场。

2.通览试卷,树立自信刚拿到试卷,一般心情比较紧张,此时不易匆忙作答,应从头到尾、通览全卷,哪些是一定会做的题要心中有数,先易后难,稳定情绪。

答题时,见到简单题,要细心,莫忘乎所以。

面对偏难的题,要耐心,不能急。

3.提高解选择题的速度、填空题的准确度数学选择题是知识灵活运用,解题要求是只要结果、不要过程。

因此,逆代法、估算法、特例法、排除法、数形结合法……尽显威力。

选择题,若能把握得好,容易的一分钟一题,难题也不超过五分钟。

由于选择题的特殊性,由此提出解选择题要求“快、准、巧”,忌讳“小题大做”。

填空题也是只要结果、不要过程,因此要力求“完整、严密”。

4.审题要慢,做题要快,下手要准题目本身就是破_这道题的信息源,所以审题一定要逐字逐句看清楚,只有细致地审题才能从题目本身获得尽可能多的信息。

找到解题方法后,书写要简明扼要,快速规范,不拖泥带水,牢记高考评分标准是按步给分,关键步骤不能丢,但允许合理省略非关键步骤。

答题时,尽量使用数学语言、符号,这比文字叙述要节省而严谨。

5.保质保量拿下中下等题目中下题目通常占全卷的80%以上,是试题的主要部分,是考生得分的主要来源。

谁能保质保量地拿下这些题目,就已算是打了个胜仗,有了胜利在握的心理,对攻克高难题会更放得开。

6.要牢记分段得分的原则,规范答题会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,防止被“分段扣点分”。

高考数学选择题、填空题的六大解题方法和技巧

高考数学选择题、填空题的六大解题方法和技巧

高考数学选择题、填空题的六大解题方法和技巧方法一:直接法直接法就是直接从题设条件出发,利用已知条件、相关概念、性质、公式、公理、定理、法则等基础知识,通过严谨推理、准确运算、合理验证,得出正确结论,此法是解选择题和填空题最基本、最常用的方法.【典例1】(1)(2021·新高考Ⅱ卷)在复平面内,复数2-i 1-3i对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【解析】选A.因为2-i1-3i =(2-i )(1+3i )(1-3i )(1+3i ) =5+5i 10 =12 +12 i ,所以复数2-i 1-3i 对应的点位于第一象限.(2)(2021·烟台二模)已知双曲线C :x 2a 2 -y 2b 2 =1(a>0,b>0)的左、右焦点分别为F 1,F 2,点A 在C 的右支上,AF 1与C 交于点B ,若2F A ·2F B =0,且|2F A |=|2F B |,则C 的离心率为( ) A . 2 B . 3 C . 6 D .7【解析】选B.由F 2A·F 2B =0且|2F A |=|2F B |知:△ABF 2为等腰直角三角形且 ∠AF 2B =π2 、∠BAF 2=π4 ,即|AB|= 2 |2F A |= 2 |2F B |, 因为⎩⎪⎨⎪⎧|F 1A|-|F 2A|=2a ,|F 2B|-|F 1B|=2a ,|AB|=|F 1A|-|F 1B|,所以|AB|=4a ,故|F 2A|=|F 2B|=2 2 a ,则|F 1A|=2( 2 +1)a ,而在△AF 1F 2中,|F 1F 2|2=|F 2A|2+|F 1A|2-2|F 2A||F 1A|cos ∠BAF 2, 所以4c 2=8a 2+4(3+2 2 )a 2-8( 2 +1)a 2,则c 2=3a 2,故e =ca = 3 . 【变式训练】1.(2021·北京高考)在复平面内,复数z 满足(1-i)z =2,则z =( ) A .1 B .i C .1-i D .1+i【解析】选D.方法一:z =21-i =2(1+i )(1-i )(1+i )=1+i.方法二:设z =a +bi ,则(a +b)+(b -a)i =2,联立⎩⎪⎨⎪⎧a +b =2,b -a =0, 解得a =b =1,所以z =1+i.2.(2021·郑州二模)已知梯形ABCD 中,以AB 中点O 为坐标原点建立如图所示的平面直角坐标系.|AB|=2|CD|,点E 在线段AC 上,且AE→ =23 EC → ,若以A ,B 为焦点的双曲线过C ,D ,E 三点,则该双曲线的离心率为( )A .10B .7C . 6D . 2【解析】选B.设双曲线方程为x 2a 2 -y 2b 2 =1,由题中的条件可知|CD|=c , 且CD 所在直线平行于x 轴, 设C ⎝ ⎛⎭⎪⎫c 2,y 0 ,A(-c ,0),E(x ,y),所以AE → =(x +c ,y),EC →=⎝ ⎛⎭⎪⎫c 2-x ,y 0-y ,c 24a 2 -y 20 b 2 =1,由AE → =23 EC →,可得⎩⎪⎨⎪⎧x =-25c y =25y 0,所以E ⎝ ⎛⎭⎪⎫-25c ,25y 0 ,因为点E 的坐标满足双曲线方程,所以4c 225a 2 -4y 2025b 2 =1, 即4c 225a 2 -425 ⎝ ⎛⎭⎪⎫c 24a 2-1 =1,即3c 225a 2 =2125 ,解得e =7 .方法二:特例法从题干出发,通过选取特殊情况代入,将问题特殊化或构造满足题设条件的特殊函数或特殊图形或特殊位置,进行判断.特例法是“小题小做”的重要策略,要注意在怎样的情况下才可以使用,特殊情况可能是:特殊值、特殊点、特殊位置、特殊函数等.【典例2】(1)(2021·郑州三模)在矩形ABCD 中,其中AB =3,AD =1,AB 上的点E 满足AE +2BE =0,F 为AD 上任意一点,则EB ·BF =( ) A .1 B .3 C .-1 D .-3 【解析】选D.(直接法)如图,因为AE +2BE =0, 所以EB =13 AB , 设AF =λAD ,则BF =BA +λAD =-AB +λAD ,所以EB ·BF =13 AB ·(-AB +λAD )=-13 |AB |2+13 λAB ·AD =-3+0=-3.(特例法)该题中,“F为AD上任意一点”,且选项均为定值,不妨取点A为F. 因为AE+2BE=0,所以EB=13AB.故EB·BF=13AB·(-AB)=-132 AB=-13×32=-3.(2)(2021·成都三模)在△ABC中,内角A,B,C成等差数列,则sin2A+sin2C-sin A sin C=________.【解析】(方法一:直接法)由内角A,B,C成等差数列,知:2B=A+C,而A+B+C=π,所以B=π3,而由余弦定理知:b2=a2+c2-2ac cos B=a2+c2-ac,结合正弦定理得:sin2B=sin2A+sin2C-sin A sin C=3 4.(方法二:特例法)该题中只有“内角A,B,C成等差数列”的限制条件,故可取特殊的三角形——等边三角形代入求值.不妨取A=B=C=π3,则sin 2A+sin2C-sin A sin C=sin2π3+sin2π3-sinπ3sinπ3=34.(也可以取A=π6,B=π3,C=π2代入求值.)答案:34【变式训练】设四边形ABCD为平行四边形,|AB→|=6,|AD→|=4,若点M,N满足BM→=3MC→,DN→=2NC → ,则AM → ·NM → 等于( ) A .20 B .15 C .9 D .6【解析】选C.若四边形ABCD 为矩形,建系如图,由BM → =3MC → ,DN → =2NC→ ,知M(6,3),N(4,4),所以AM → =(6,3),NM → =(2,-1),所以AM → ·NM → =6×2+3×(-1)=9.方法三:数形结合法对于一些含有几何背景的问题,往往可以借助图形的直观性,迅速作出判断解决相应的问题.如Veen 图、三角函数线、函数图象以及方程的曲线等,都是常用的图形.【典例3】已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是( )A .1B .2C . 2D .22【解析】选C.如图,设OA→ =a ,OB → =b ,则|OA → |=|OB → |=1,OA → ⊥OB → ,设OC → =c ,则a-c =CA → ,b -c =CB → ,(a -c )·(b -c )=0,即CA → ·CB → =0.所以CA → ⊥CB → .点C 在以AB 为直径的圆上,圆的直径长是|AB→ |= 2 ,|c |=|OC → |,|OC → |的最大值是圆的直径,长为 2 .【变式训练】1.设直线l :3x +2y -6=0,P(m ,n)为直线l 上动点,则(m -1)2+n 2的最小值为( ) A .913 B .313 C .31313 D .1313【解析】选A.(m -1)2+n 2表示点P(m ,n)到点A(1,0)距离的平方,该距离的最小值为点A(1,0)到直线l 的距离,即|3-6|13 =313,则(m -1)2+n 2的最小值为913 .2.(2021·河南联考)已知函数f(x)=⎩⎪⎨⎪⎧x ln x -2x (x>0),x 2+1(x≤0), 若f(x)的图象上有且仅有2个不同的点关于直线y =-32 的对称点在直线kx -y -3=0上,则实数k 的取值是________. 【解析】直线kx -y -3=0关于直线y =-32 对称的直线l 的方程为kx +y =0,对应的函数为y =-kx ,其图象与函数y =f(x)的图象有2个交点.对于一次函数y =-kx ,当x =0时,y =0,由f(x)≠0知不符合题意. 当x≠0时,令-kx =f(x),可得-k =f (x )x ,此时, 令g(x)=f (x )x =⎩⎨⎧ln x -2(x>0),x +1x (x<0).当x>0时,g(x)为增函数,g(x)∈R ,当x<0时,g(x)为先增再减函数,g(x)∈(-∞,-2]. 结合图象,直线y =-k 与函数y =g(x)有2个交点, 因此,实数-k =-2,即k =2. 答案:2方法四:排除法排除法也叫筛选法、淘汰法,它是充分利用单选题有且只有一个正确的选项这一特征,通过分析、推理、计算、判断,排除不符合要求的选项,从而确定正确选项.【典例4】(1)(2021·郑州二模)函数f(x)=sin x ln π-xπ+x在(-π,π)的图象大致为()【解析】选A.根据题意,函数f(x)=sin x ln π-xπ+x,x∈(-π,π),f(-x)=sin (-x)ln π+xπ-x=sin x lnπ-xπ+x=f(x),则f(x)在区间(-π,π)上为偶函数,所以排除B,C,又由f ⎝ ⎛⎭⎪⎫π2 =sin π2 ln π23π2=ln 13 <0,所以排除D.(2)(2021·太原二模)已知函数y =f(x)部分图象的大致形状如图所示,则y =f(x)的解析式最可能是( )A .f(x)=cos x e x -e -xB .f(x)=sin x e x -e -xC .f(x)=cos x e x +e -xD .f(x)=sin x e x +e -x 【解析】选A.由图象可知,f(2)<0,f(-1)<0, 对于B ,f(2)=sin 2e 2-e -2>0,故B 不正确;对于C ,f(-1)=cos (-1)e -1+e=cos 1e -1+e>0,故C 不正确; 对于D ,f(2)=sin 2e 2+e -2 >0,故D 不正确.【变式训练】1.(2021·嘉兴二模)函数f(x)=⎝⎛⎭⎪⎫1x -1+1x +1 cos x 的图象可能是()【解析】选C.由f(-x)=⎝⎛⎭⎪⎫1-x -1+1-x +1 cos (-x) =-⎝ ⎛⎭⎪⎫1x -1+1x +1 cos x =-f(x)知, 函数f(x)为奇函数,故排除B.又f(x)=⎝⎛⎭⎪⎫1x -1+1x +1 cos x =2x x 2-1 cos x , 当x ∈(0,1)时,2xx 2-1 <0,cos x>0⇒f(x)<0.故排除A ,D.2.(2021·石家庄一模)甲、乙、丙三人从红、黄、蓝三种颜色的帽子中各选一顶戴在头上,每人帽子的颜色互不相同,乙比戴蓝帽的人个头高,丙和戴红帽的人身高不同,戴红帽的人比甲个头小,则甲、乙、丙所戴帽子的颜色分别为( ) A .红、黄、蓝 B .黄、红、蓝 C .蓝、红、黄 D .蓝、黄、红【解析】选B.丙和戴红帽的人身高不同,戴红帽的人比甲个头小,故戴红帽的人为乙,即乙比甲的个头小;乙比戴蓝帽的人个头高,故戴蓝帽的人是丙. 综上,甲、乙、丙所戴帽子的颜色分别为黄、红、蓝.方法五:构造法构造法实质上是转化与化归思想在解题中的应用,需要根据已知条件和所要解决的问题确定构造的方向,通过构造新的函数、不等式或数列等模型转化为熟悉的问题求解.【典例5】(1)(2021·昆明三模)已知函数f(x)=e x -a -ln x x -1有两个不同的零点,则实数a 的取值范围是( )A .(e ,+∞)B .⎝ ⎛⎭⎪⎫e 2,+∞C .⎝ ⎛⎭⎪⎫12,+∞ D .(1,+∞)【解析】选D.方法一(切线构造):函数f(x)=e x -a -ln xx -1有两个不同的零点, 则e x -a -1=ln xx 有两个解, 令g(x)=e x -a -1,h(x)=ln xx (x>0),则g(x)与h(x)有2个交点,h′(x)=1-ln xx 2 (x>0), 当x>e 时h′(x)<0,h(x)单调递减, 当0<x<e 时h′(x)>0,h(x)单调递增, 由g′(x)=e x -a (x>0)得g(x)单调递增, 图象如下,当g(x)与h(x)相切时,设切点为⎝ ⎛⎭⎪⎫x 0,ln x 0x 0 , h′(x 0)=1-ln x 0x 2=g′(x 0)=0x ae -, 同时ln x 0x 0 =ex 0-a -1,得ln x 0x 0 +1=1-ln x 0x 2,即x0ln x0+x20=1-ln x0,(x0+1)ln x0=-(x0+1)(x0-1),又x0>0,ln x0=1-x0,所以x0=1,此时1=e1-a,所以a=1,当a>1时,可看作g(x)=e x-1-1的图象向右平移,此时g(x)与h(x)必有2个交点,当a<1时,图象向左平移二者必然无交点,综上a>1.方法二(分离参数):由题意,方程e x-a-ln xx-1=0有两个不同的解,即e-a=ln xx+1e x有两个不同的解,所以直线y=e-a与g(x)=ln xx+1e x的图象有两个交点.g′(x)=⎝⎛⎭⎪⎫ln xx+1′×e x-(e x)′×⎝⎛⎭⎪⎫ln xx+1(e x)2=-(x+1)(ln x+x-1)x2e x.记h(x)=ln x+x-1.显然该函数在(0,+∞)上单调递增,且h(1)=0,所以0<x<1时,h(x)<0,即g′(x)>0,函数单调递增;所以x>1时,h(x)>0,即g′(x)<0,函数单调递减.所以g(x)≤g(1)=ln 11+1e1=1e.又x→0时,g(x)→0;x→+∞时,g(x)→0.由直线y=e a与g(x)=ln xx+1e x的图象有两个交点,可得e -a <1e =e -1,即-a<-1,解得a>1.方法三:由题意,方程e x -a -ln x x -1=0有两个不同的解,即e x -a =ln x x +1,也就是1e a (xe x )=x +ln x =ln (xe x ).设t =xe x (x>0),则方程为1e a t =ln t ,所以1e a =ln t t .由题意,该方程有两个不同的解.设p(x)=xe x (x>0),则p′(x)=(x +1)e x (x>0),显然p′(x)>0,所以p(x)单调递增,所以t =p(x)>p(0)=0.记q(t)=ln t t (t>0),则q′(t)=1-ln t t 2 .当0<t<e 时,q′(t)>0,函数单调递增;当t>e 时,q′(t)<0,函数单调递减.所以q(t)≤q(e)=ln e e =1e .又t→0时,q(t)→0;t→+∞时,q(t)→0.由方程1e a =ln t t 有两个不同的解,可得0<1e a <1e ,解得a>1.(2)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P-ABC 为鳖臑,PA ⊥平面ABC ,PA =AB =2,AC =4,三棱锥P-ABC 的四个顶点都在球O 的球面上,则球O 的表面积为( )A .8πB .12πC .20πD .24π【解析】选C.将三棱锥P-ABC 放入长方体中,如图,三棱锥P-ABC 的外接球就是长方体的外接球.因为PA =AB =2,AC =4,△ABC 为直角三角形,所以BC =42-22 =2 3 .设外接球的半径为R ,依题意可得(2R)2=22+22+(2 3 )2=20,故R 2=5,则球O 的表面积为4πR 2=20π.【变式训练】1.已知2ln a =a ln 2,3ln b =b ln 3,5ln c =c ln 5,且a ,b ,c ∈(0,e),则( )A .a<b<cB .b<a<cC .c<b<aD .c<a<b【解析】选D.因为2ln a =a ln 2,3ln b =b ln 3,5ln c =c ln 5,且a ,b ,c ∈(0,e),化为:ln a a =ln 22 ,ln b b =ln 33 ,ln c c =ln 55 ,令f(x)=ln x x ,x ∈(0,e),f′(x)=1-ln x x 2 ,可得函数f(x)在(0,e)上单调递增,在(e ,+∞)上单调递减,f(c)-f(a)=ln 55 -ln 22 =2ln 5-5ln 210=ln 253210 <0,且a ,c ∈(0,e), 所以c<a ,同理可得a<b.所以c<a<b.2.(2021·汕头三模)已知定义在R 上的函数f(x)的导函数为f′(x),且满足f′(x)-f(x)>0,f(2 021)=e 2 021,则不等式f ⎝ ⎛⎭⎪⎫1e ln x <e x 的解集为( ) A .(e 2 021,+∞)B .(0,e 2 021)C .(e 2 021e ,+∞)D .(0,e 2 021e )【解析】选D.令t =1e ln x ,则x =e et ,所以不等式f ⎝ ⎛⎭⎪⎫1e ln x <e x 等价转化为不等式f(t)<e e et =e t ,即f (t )e t <1 构造函数g(t)=f (t )e t ,则g′(t)=f′(t )-f (t )e t, 由题意,g′(t)=f′(t )-f (t )e t>0, 所以g(t)为R 上的增函数,又f(2 021)=e 2 021,所以g(2 021)=f (2 021)e 2 021 =1,所以g(t)=f (t )e t <1=g(2 021),解得t<2 021,即1e ln x<2 021,所以0<x<e 2 021e .方法六:估算法估算法就是不需要计算出准确数值,可根据变量变化的趋势或极值的取值情况估算出大致取值范围,从而解决相应问题的方法.【典例6】(2019·全国Ⅰ卷)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是5-12 (5-12 ≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是5-12 .若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是( )A.165 cm B.175 cmC.185 cm D.190 cm【解析】选B.头顶至脖子下端的长度为26 cm,可得咽喉至肚脐的长度小于42 cm,肚脐至足底的长度小于110 cm,则该人的身高小于178 cm,又由肚脐至足底的长度大于105 cm,可得头顶至肚脐的长度大于65 cm,则该人的身高大于170 cm,所以该人的身高在170~178 cm之间.【变式训练】设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为9 3 ,则三棱锥D-ABC体积的最大值为()A.12 3 B.18 3C.24 3 D.54 3【解析】选B.等边三角形ABC的面积为9 3 ,显然球心不是此三角形的中心,所以三棱锥的体积最大时,三棱锥的高h应满足h∈(4,8),所以13×9 3 ×4<V三棱锥D-ABC <13×9 3 ×8,即12 3 <V三棱锥D-ABC<24 3 .。

高考数学各题型答题技巧及解题思路

高考数学各题型答题技巧及解题思路

高考数学各题型答题技巧及解题思路高考数学是高考三科中重要的一科,而其中数学各题型更是着重考查学生的数学基础和逻辑思维能力。

如何应对高考数学各题型,答题技巧及解题思路是重中之重,下文将对此进行详细阐述。

一、选择题型选择题型是高考数学中的必考题型,考查学生对于数学知识点的掌握以及运算技能的理解和应用。

在做选择题时,我们首先需要掌握以下答题技巧:1、理清题意,分析选项,进行排除。

首先要认真阅读题目中的条件和限制,充分理解题目意思。

接着,结合选项进行逐一排除,将不符合题目要求的选项进行剔除,尽可能缩小正确选项的范围。

2、关注题目中的关键点,确定答案。

有一些题目中会存在一些难以计算的数值,但是这些数值可能不是答案,只是一些附加信息。

因此,我们需要关注题目中的关键点,如某个几何图形的形状、数量、运算符号等,有时候答案就隐藏在其中。

3、复核答案,避免扣分。

做完选择题后,一定要检查答案的合理性和准确性,避免因为抄错、计算错误等原因导致分数的扣除。

二、填空题型填空题型是高考数学中常见的一种题型,也考查学生对于数学知识点的理解和运用,同时也是考查学生的计算技巧及对于一些表述的差别的理解。

具体答题技巧如下:1、仔细阅读题目,确定无关量并化简。

在做填空题时,首先要仔细阅读题目,将无关量进行化简,避免因为计算量过大而导致错误。

2、对于公式进行熟记熟练的运用。

对于常见的数学公式和定理,我们需要进行熟知和熟记,再进行熟练的运用。

例如对于等差数列,我们应该熟记其首项 a 和公差 d 的计算方法,并尽可能减少计算出错的可能性。

3、注意单位和精度要求。

填空题中,有时候会要求保留小数位数,或者使用特定单位。

我们需要注意这些细节,尽量减少算术粗劣的错误。

三、解答题型解答题型是高考数学中最常见的题型,也是最考验学生数学综合能力的题型之一。

其答题思路较为复杂,需要在做题时注意以下技巧:1、理解题目,寻求解题思路。

在解答题时,我们需要先仔细阅读题目,理解题目的条件、运算符号等,并寻求解题的思路。

高考数学的解题思路技巧

高考数学的解题思路技巧

高考数学的解题思路技巧高考数学的解题思路指导(一)选择题对选择题的审题,主要应清楚:是单选还是多选,是选择正确还是选择错误?答案写在什么地方,等等。

做选择题有四种基本方法:1 回忆法。

直接从记忆中取要选择的内容。

2 直接解答法。

多用在数理科的试题中,根据已知条件,通过计算、作图或代入选择依次进行验证等途径,得出正确答案。

3 淘汰法。

把选项中错误中答案排除,余下的便是正确答案。

4 猜测法。

(二) 应用性问题的审题和解题技巧解答应用性试题,要重视两个环节,一是阅读、理解问题中陈述的材料;二是通过抽象,转换成为数学问题,建立数学模型。

函数模型、数列模型、不等式模型、几何模型、计数模型是几种最常见的数学模型,要注意归纳整理,用好这几种数学模型。

(三) 最值和定值问题的审题和解题技巧最值和定值是变量在变化过程中的两个特定状态,最值着眼于变量的最大/小值以及取得最大/小值的条件;定值着眼于变量在变化过程中的某个不变量。

近几年的数学高考试题中,出现过各种各样的最值问题和定值问题,选用的知识载体多种多样,代数、三角、立体几何、解析几何都曾出现过有关最值或定值的试题,有些应用问题也常以最大/小值作为设问的方式。

分析和解决最值问题和定值问题的思路和方法也是多种多样的。

命制最值问题和定值问题能较好体现数学高考试题的命题原则。

应对最值问题和定值问题,最重要的是认真分析题目的情景,合理选用解题的方法。

(四) 计算证明题解答这种题目时,审题显得极其重要。

只有了解题目提供的条件和隐含的信息,确定具体解题步骤,问题才能解决。

在做这种题时,有一些共同问题需要注意:1 注意完成题目的全部要求,不要遗漏了应该解答的内容。

2 在平时练习中要养成规范答题的习惯。

3 不要忽略或遗漏重要的关键步骤和中间结果,因为这常常是题答案的采分点。

4 注意在试卷上清晰记录细小的步骤和有关的公式,即使没能获得最终结果,写出这些也有助于提高你的分数。

5 保证计算的准确性,注意物理单位的变换。

高考数学21种解题方法与技巧汇总

高考数学21种解题方法与技巧汇总

高考数学21种解题方法与技巧汇总今天,特地为大家整理了一份高中数学老师都推荐的数学解题方法,这里面的21种方法涵盖了高中数学的方方面面,可以说是高中数学解题方法大综合,各位同学一定要记得收藏哦!解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。

具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。

②零点分段讨论法:适用于含一个字母的多个绝对值的情况。

③两边平方法:适用于两边非负的方程或不等式。

④几何意义法:适用于有明显几何意义的情况。

因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。

因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法配方法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。

配方法的主要根据有:换元法解某些复杂的特型方程要用到“换元法”。

换元法解方程的一般步骤是:设元→换元→解元→还元待定系数法待定系数法是在已知对象形式的条件下求对象的一种方法。

适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。

其解题步骤是:①设②列③解④写复杂代数等式复杂代数等式型条件的使用技巧:左边化零,右边变形。

①因式分解型:(-----)(----)=0 两种情况为或型②配成平方型:(----)2+(----)2=0 两种情况为且型数学中两个最伟大的解题思路(1)求值的思路列欲求值字母的方程或方程组(2)求取值范围的思路列欲求范围字母的不等式或不等式组化简二次根式基本思路是:把√m化成完全平方式。

即:观察法代数式求值方法有:(1)直接代入法(2)化简代入法(3)适当变形法(和积代入法)注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。

解含参方程方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。

高考数学高分技巧,不同题型的答题套路,轻松搞定数学8大学习法

高考数学高分技巧,不同题型的答题套路,轻松搞定数学8大学习法

高考数学高分技巧,不同题型的答题套路,轻松搞定数学 8 大学习法数学习题无非就是数学概念和数学思想的组合应用,弄清数学基本概念、基本定理、基本方法是判断题目类型、知识范围的前提,是正确把握解题方法的依据。

只有概念清楚,方法全面,遇到题目时,就能很快的得到解题方法,或者面对一个新的习题,就能联想到我们平时做过的习题的方法,达到迅速解答。

弄清基本定理是正确、快速解答习题的前提条件,特别是在立体几何等章节的复习中,对基本定理熟悉和灵活掌握能使习题解答条理清楚、逻辑推理严密。

反之,会使解题速度慢,逻辑混乱、叙述不清。

01、抓好基础那么如何抓基础呢?1、看课本;2、在做练习时遇到概念题是要对概念的内涵和外延再认识,注意从不同的侧面去认识、理解概念。

3、理解定理的条件对结论的约束作用,反问:如果没有该条件会使定理的结论发生什么变化?4、归纳全面的解题方法。

要积累一定的典型习题以保证解题方法的完整性。

5、认真做好我们网校同步课堂里面的每期的练习题,采用循环交替、螺旋式推进的方法,克服对基本知识基本方法的遗忘现象。

02、制定好计划和奋斗目标复习数学时,要制定好计划,不但要有本学期大的规划,还要有每月、每周、每天的小计划,计划要与老师的复习计划吻合,不能相互冲突,如按照老师的复习进度,今天复习到什么知识点,就应该在今天之内掌握该知识点,加深对该知识点的理解,研究该知识点考查的不同侧面、不同角度。

在每天的复习计划里,要留有一定的时间看课本,看笔记,回顾过去知识点,思考老师当天讲了什么知识,归纳当天所学的知识。

可以说,每天的习题可以少做,但这些归纳、反思、回顾是必不可少的。

望你在制定计划时注意。

03、克服盲目做题而不注重归纳的现象做习题是为了巩固知识、提高应变能力、思维能力、计算能力。

学数学要做一定量的习题,但学数学并不等于做题,在各种考试题中,有相当的习题是靠简单的知识点的堆积,利用公理化知识体系的演绎而就能解决的,这些习题是要通过做一定量的习题达到对解题方法的展移而实现的,但,随着高考的改革,高考已把考查的重点放在创造型、能力型的考查上。

高考数学考试考生答题技巧

高考数学考试考生答题技巧

高考数学考试考生答题技巧关于高考四个答题技巧”技巧1:借问得分阅卷时,特别强调知识点的把握,在解题的过程中,要把定理的条件和结论写全,中间的步骤可以省略,如文科立体几何题中,第一小题只要写清垂直的条件和结论,即使不会证明,也要写上结论(只要条件和结论都有就可得分),就是中间一步不会证明,也可以写上结论,跳过去往下证,这样后面的仍可得分。

技巧2:难题“割肉”学生平时训练时,应对自己提出明确的要求,题目再难,每个题目中的条件总是可以推导出结论的,哪怕是只推导出一个结论,也可能是得分点,有了得分点,也就说明得分了。

高考阅卷时是按步骤、按得分点给分的。

技巧3:步骤规范学生在平时训练时,要明确哪些步骤是可省的,哪些是不可省的,哪些是必须写的,哪些是不可写的,在做题时,尽量按得分点、按步骤书写,严格训练。

切忌拖沓冗长,模糊不清。

技巧4:重视书写要用0.5毫米的黑色墨水签字笔作答。

因为标准的扫描试卷尺寸是十四寸,正好填满屏幕。

因为是扫描,所以如果字迹过细、过淡,可能会影响阅卷人的正常判断。

其次,答题时,字迹要工整、清楚,不要写得太细长;字距适当,行距不宜过密。

最后,要严格按照答题要求,在答题卡对应题号指定的答题区域内答题,书写在规定区域内。

要注意几个易混字的书写规范,如“z、Z、2”,“b、6、0、9、q”,“4、+”等,若不注意书写,电子卷就不太容易区分。

历年高考数学试卷的启发1.试卷上有参考公式,80%是有用的,它为你的解题指引了方向;(很多无规律的公式大家是不是都容易记混呢?如果你也有类似的困扰,也许高考数学知识点公式定理记忆口诀能帮的到你~)2.解答题的各小问之间有一种阶梯关系,通常后面的问要使用前问的结论。

如果前问是证明,即使不会证明结论,该结论在后问中也可以使用。

当然,我们也要考虑结论的独立性;3.注意题目中的小括号括起来的部分,那往往是解题的关键;二、答题策略选择1.先易后难是所有科目应该遵循的原则,而数学卷上显得更为重要。

2023年高考数学考试技巧记忆口诀

2023年高考数学考试技巧记忆口诀

2023年高考数学考试技巧记忆口诀一、基础知识记忆:1. 二次函数求顶点:x = -b / (2a),y = c - b^2 / (4a)。

2. 三角函数正弦公式:a / sinA = b / sinB = c / sinC。

3. 平行四边形面积:S = 底边长度 ×高。

4. 相似三角形定理:对应边成比例,对应角相等。

5. 圆的面积公式:S = πr^2,周长公式:C = 2πr。

二、解题方法记忆:1. 代入法:将已知条件代入方程进行求解。

2. 分类讨论法:根据不同的情况进行分类讨论,找到解决问题的方法。

3. 逆向推理法:从答案往已知条件反推,找到解题思路。

4. 图形法:将问题转化为几何图形,通过观察图形来解答问题。

5. 等价变形法:根据已知条件,将问题进行等价变形,从而简化解题过程。

三、答题技巧记忆:1. 面积题技巧:根据已知条件,选用适当的面积公式计算。

2. 几何图形分类:熟记各种几何图形的性质和特征,根据题目信息进行分类解答。

3. 快速计算技巧:掌握快速计算加减乘除的技巧,提高解题速度。

4. 注意单位转换:在题目中出现单位转换时,注意将相应的值进行转换。

5. 多角度思考:对于复杂问题,多角度思考,换位思考,寻找多种解题思路。

四、备考建议记忆:1. 制定复计划:合理安排每天的复时间,错题集、题册是必备的复材料。

2. 分段复:将数学知识进行分段复,有助于深化记忆。

3. 真题训练:多做真题,熟悉考试形式和题型,提高应试能力。

4. 积极解疑答疑:遇到困难及时向老师、同学请教,解决问题。

5. 自信心培养:相信自己的能力,保持积极心态,充满自信地面对考试。

以上是2023年高考数学考试技巧记忆口诀,希望对你的备考有所帮助!加油!。

数学考试高考经典答题技巧与方法

数学考试高考经典答题技巧与方法

数学考试高考经典答题技巧与方法数学考试高考经典答题技巧与方法(实用)高考是分步计分,多写一步可能多得些分。

那么高考数学又有哪些答题技巧呢?以下是小编整理的一些数学考试高考经典答题技巧与方法,欢迎阅读参考。

高考数学答题技巧一、巧解选择、填空题数学解选择、填空题的基本原则是“小题不可大做”。

思路:第一、直接从题干出发考虑,探求结果;第二、从题干和选择联合考虑;第三、从选择出发探求满足题干的条件。

解数学填空题基本方法有:直接求解法、图像法、构造法和特殊化法(如特殊值、特殊函数、特殊角、特殊数列、图形的特殊位置、特殊点、特殊方程、特殊模型等)。

二、细答解答题1、数学规范答题很重要,找到解题方法后,书写要简明扼要,快速规范,不拖泥带水,高考评分是按步给分,关键步骤不能丢,但允许合理省略非关键步骤。

答题时,尽量使用数学符号,这比文字叙述要节省时间且严谨。

即使过程比较简单,也要简要地写出基本步骤,否则会被扣分。

2、分步列式,尽量避免用综合或连等式。

高考数学评分是分步给分,写出每一个过程对应的式子,只要表达正确都可以得到相应的分数。

有些考生喜欢写出一个综合或连等式,这种方式就不好,因为只要发现综合式中有一处错误,就可能丢过程分。

对于没有得出最后结果的数学试题,分步列式也可以得到相应的过程分,由此增加得分机会。

数学高考答题注意什么恰当分解结论有些问题,解题的主要困难,来自结论的抽象概括,难以直接和条件联系起来,这时,不妨猜想一下,能否把结论分解为几个比较简单的部分,以便各个击破,解出原题。

确保运算准确,立足一次成功数学高考题的容量在120分钟时间内完成大小26个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。

解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从“数量”上,而且从“性质”上影响着后继各步的解答。

所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤,假如速度与准确不可兼得的说,就只好舍快求对了,因为解答不对,再快也无意义。

2024高考数学答题技巧及方法

2024高考数学答题技巧及方法

2024高考数学答题技巧及方法2024高考数学:答题技巧及方法一、熟悉试卷在开始答题前,应该花几分钟时间浏览一下试卷的内容,这可以让你对每个题型、题目难度以及分布有一个基本的了解。

这样,你就能更好地规划答题策略,合理分配时间,避免在某个难题上过度纠结。

二、仔细审题在开始解答每道题目之前,请务必认真阅读题目,理解清楚问题的要求和条件。

数学题目中常常包含一些隐藏的信息,需要你仔细挖掘。

在理解题意的基础上,再寻找合适的解题方法。

三、答题策略1、由易到难:按照题目的难易程度,优先解答那些你能快速解答的题目。

这样,你可以为解答较难的题目留出更多的时间和精力。

2、稳定心态:面对难题,不要感到恐慌和焦虑。

要保持冷静,相信自己的能力,尝试从不同角度去思考问题。

有时候,难题只是需要你理解其中的一个关键点,一旦突破,整个问题就迎刃而解了。

3、草稿纸的使用:在答题过程中,充分利用草稿纸。

将题目中的关键信息、数据和思考过程记录下来,这有助于你保持思路清晰,避免出错。

同时,草稿纸还可以帮助你在解答复杂问题时,回头检查和核对解题步骤。

4、不留空白:即使遇到不会的题目,也不要空着不做。

你可以将自己能想到的任何信息或思路都写下来,这有可能为你的解答提供一些启示。

四、检查和复查在完成答题后,预留一些时间用于检查和复查。

检查可以从以下几个方面入手:计算是否准确、解题步骤是否严谨、公式使用是否正确等。

通过仔细的检查和复查,可以避免因粗心大意或计算错误而失分。

总之,高考数学答题技巧及方法需要平时的积累和练习。

通过熟悉试卷、仔细审题、合理的答题策略以及检查和复查,大家将能够在高考中更加从容和自信地应对数学考试。

希望以上建议能对大家的备考有所帮助,祝大家考试顺利,取得优异的成绩!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学考试的答题技巧和方法?一、答题和时间的关系
整体而言,高考数学要想考好,必须要有扎实的基础知识和一定量的习题练习,在此基础上辅以一些做题方法和考试技巧。

往年考试中总有许多考生抱怨考试时间不够用,导致自己会做的题最后没时间做,觉得很“亏”。

高考考的是个人能力,要求考生不但会做题还要准确快速地解答出来,只有这样才能在规定的时间内做完并能取得较高的分数。

因此,对于大部分高考生来说,养成快速而准确的解题习惯并熟练掌握解题技巧是非常有必要的。

二、快与准的关系
在目前题量大、时间紧的情况下,“准”字则尤为重要。

只有“准”才能得分,只有“准”你才可不必考虑再花时间检查,而“快”是平时训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。

如去年第21题应用题,此题列出分段函数解析式并不难,但是相当多的考生在匆忙中把二次函数甚至一次函数都算错,尽管后继部分解题思路正确又花时间去算,也几乎得不到分,这与考生的实际水平是不相符的。

适当地慢一点、准一点,可得多一点分;相反,快一点,错一片,花了时间还得不到分。

三、审题与解题的关系
有的考生对审题重视不够,匆匆一看急于下笔,以致题目的
条件与要求都没有吃透,至于如何从题目中挖掘隐含条件、启发解题思路就更无从谈起,这样解题出错自然多。

只有耐心仔细地审题,准确地把握题目中的与量(如“至少”,“a0”,自变量的取值范围等等),从中获取尽可能多的信息,才能迅速找准解题方向。

四、“会做”与“得分”的关系
要将你的解题策略转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些考生所忽视,因此卷面上大量出现“会而不对”“对而不全”的情况,考生自己的估分与实际得分差之甚远。

如立体几何论证中的“跳步”,使很多人丢失1/3以上得分,代数论证中“以图代证”,尽管解题思路正确甚至很巧妙,但是由于不善于把“图形语言”准确地转译为“文字语言”,得分少得可怜;再如去年理17题三角函数图像变换,许多考生“心中有数”却说不清楚,扣分者也不在少数。

只有重视解题过程的语言表述,“会做”的题才能“得分”,高中生物。

语文课本中的文章都是精选的比较优秀的文章,还有不少名家名篇。

如果有选择循序渐进地让学生背诵一些优秀篇目、精彩段落,对提高学生的水平会大有裨益。

现在,不少语文教师在分析课文时,把文章解体的支离破碎,总在文章的技巧方面下功夫。

结果教师费劲,学生头疼。

分析完之后,学生收效甚微,没过几天便忘的一干二净。

造成这种事倍功半的尴尬局面的关键就是对文章读的不熟。

常言道“书读百遍,其义自见”,
如果有目的、有计划地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便可以在读中自然领悟文章的思想内容和写作技巧,可以在读中自然加强
语感,增强语言的感受力。

久而久之,这种思想内容、写作技巧和语感就会自然渗透到学生的语言意识之中,就会在写作
中自觉不自觉地加以运用、创造和发展。

五、难题与容易题的关系
拿到试卷后,应将全卷通览一遍,一般来说应按先易后难、先简后繁的顺序作答。

近年来考题的顺序并不完全是难易的顺序,如去年理19题就比理20、理21要难,因此在答题时要合理安排时间,不要在某个卡住的题上打“持久战”,那样既耗费时间又拿不到分,会做的题又被耽误了。

这几年,数学试题已从“一题把关”转为“多题把关”,因此解答题都设置了层次分明的“台阶”,入口宽,入手易,但是深入难,解到底难,因此看似容易的题也会有“咬手”的关卡,看似难做的题也有可得分之处。

所以考试中看到“容易”题不可掉以轻心,看到新面孔的“难”题不要胆怯,冷静思考、仔细分析,定能得到应有的分数。

选择题绝大部分是低中档题,所以必须争取多得分或得满分。

选择题的答法审题要慢,答题要快。

因此对选择题除直接求解外,还要做到不择手段,即小题要小做,小题要尽量巧做。

答选择题常用的方法还有:数形结合法(根据题意做出
草图,结合图象解决问题);特例检验法(利用特殊情况代替题设中的普遍条件,得出结论);筛选法(根据各选项的不同,从选项中选特殊情况检验是否符合题意);等价转化法(化陌生为熟悉);构造法(如立几中的“割补”思想)。

另外,答选择题不要恋战,要学会暂时放弃。

课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。

为什么?还是没有彻底“记死”的缘故。

要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一则名言警句即可。

可以写在后黑板的“积累专栏”上每日一换,可以在每天课前的3分钟让学生轮流讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。

这样,一年就可记300多条成语、300多则名言警句,日积月累,终究会成为一笔不小的财富。

这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会随心所欲地“提取”出来,使文章增色添辉。

填空题审题要细,答题要慢。

解填空题时更要细心、争取一次做对。

填空题也可以小题小做,因此在解填空题时还要特别注重特例求解法和数形结合法的运用。

教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。

如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,
一边幼儿反复倾听,在反复倾听中体验、品味。

相关文档
最新文档