双馈发电机工作原理

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从矢量图中可以看出,对于传统的绕线式转子电机,当运行的转差率s和转子参数确定后,定转子各相量相互之间的相位就确定了,无法进行调整。即当转子的转速超过同步转速之后,电机运行于发电机状态,此时虽然发电机向电网输送有功功率,但是同时电机仍然要从电网中吸收滞后的无功进行励磁。但从图3-4中可以看出引入了转子励磁电压之后,定子电压和电流的相位发生了变化,因此使得电机的功率因数可以调整,这样就大大改善了发电机的运行特性,对电力系统的安全运行就有重要意义。
下面考虑发电机超同步和亚同步两种运行状态下的功率流向:
2.1
顾名思义,超同步就是转子转速超过电机的同步转速时的一种运行状态,我们称之为正常发电状态。(因为对于普通的异步电机,当转子转速超过同步转速时,就会处于发电机状态)。
根据图中的功率流向和能量守恒原理,流入的功率等于流出的功率
因为发电机超同步运行,所以 ,所以上式可进一步写成:
将上述式子归纳得:超同步速, ,
2.2
即转子转速低于同步转速时的运行状态,我们可以称之为补偿发电状态(在亚同步转速时,正常应为电动机运行,但可以在转子回路通入励磁电流使其工作于发电状态)
(3-1)
同样在转子三相对称绕组上通入频率为 的三相对称电流,所产生旋转磁场相对于转子本身的旋转速度为:
(3-2)
由式3-2可知,改变频率 ,即可改变 ,而且若改变通入转子三相电流的相序,还可以改变此转子旋转磁场的转向。因此,若设 为对应于电网频率为50Hz时双馈发电机的同步转速,而 为电机转子本身的旋转速度,则只要维持 ,见式3-3,则双馈电机定子绕组的感应电势,如同在同步发电机时一样,其频率将始终维持为 不变。
二、
风力机轴上输入的净机械功率(扣除损耗后)为 ,发电机定子向电网输出的电磁功率为 ,转子输入/输出的电磁功率为 ,s为转差率,转子转速小于同步转速时为正,反之为负。 又称为转差功率,它与定子的电磁功率存在如下关系:
如果将 定义为转子吸收的电磁功率,那么将有:
此处s可正可负,即若 ,则 ,转子从电网吸收电磁功率,若 ,则 ,转子向电网馈送电磁功率。
(3-3)
双馈电机的转差率 ,则双馈电机转子三相绕组内通入的电流频率应为:
(3-4)
公式3-4表明,在异步电机转子以变化的转速转动时,只要在转子的三相对称绕组中通入转差频率(即 )的电流,则在双馈电机的定子绕组中就能产生50Hz的恒频电势。所以根据上述原理,只要控制好转子电流的频率就可以实现变速恒频发电了。
根据双馈电机转子转速的变化,双馈发电机可有以下三种运行状态:
1.亚同步运行状态:在此种状态下 ,由转差频率为 的电流产生的旋转磁场转速 与转子的转速方向相同,因此有 。
2.超同步运行状态:在此种状态下 ,改变通入转子绕组的频率为 的电流相序,则其所产生的旋转磁场的转速 与转子的转速方向相反,因此有 。
为激磁电抗
、 、 分别为定子侧电压、感应电势和电流
、 分别为转子侧感应电势,转子电流经过频率和绕组折算后折算到定子侧的值。
转子励磁电压经过绕组折算后的值, 为 再经过频率折算后的值。
普通的绕线转子电机的转子侧是自行闭合的,
根据基尔霍夫电压电流定律可以写出普通绕线式转子电机的基本方程式:
(3-6)
从等值电路和两组方程的对比中可以看出,双馈电机就是在普通绕线式转子电机的转子回路中增加了一个励磁电源,恰恰是这Hale Waihona Puke Baidu交流励磁电源的加入大大改善了双馈电机的调节特性,使双馈电机表现出较其它电机更优越的一些特性。下面我们根据两种电机的基本方程画出各自的矢量图,从矢量图中说明引入转子励磁电源对有功和无功的影响。
发电机定子侧电压电流的正方向按发电机惯例,转子侧电压电流的正方向按电动机惯例,电磁转矩与转向相反为正,转差率S按转子转速小于同步转速为正,参照异步电机的分析方法,可得双馈发电机的等效电路,如图3-1所示:
根据等效电路图,可得双馈发电机的基本方程式:
(3-5)
式中:
、 分别为定子侧的电阻和漏抗
、 分别为转子折算到定子侧的电阻和漏抗
交流励磁电机之所以有这么多优点,是因为它采用的是可变的交流励磁电流。但是,实现可变交流励磁电流的控制是比较困难的,本章的主要内容讲述一种基于定子磁链定向的矢量控制策略,该控制策略可以实现机组的变速恒频发电而且可以实现有功无功的独立解耦控制,当前的主流双馈风力发电机组均是采用此种控制策略。
一、
设双馈电机的定转子绕组均为对称绕组,电机的极对数为 ,根据旋转磁场理论,当定子对称三相绕组施以对称三相电压,有对称三相电流流过时,会在电机的气隙中形成一个旋转的磁场,这个旋转磁场的转速 称为同步转速,它与电网频率 及电机的极对数 的关系如下:
通过改变励磁频率,可改变发电机的转速,达到调速的目的。这样,在负荷突变时,可通过快速控制励磁频率来改变电机转速,充分利用转子的动能,释放或吸收负荷,对电网扰动远比常规电机小。
改变转子励磁的相位时,由转子电流产生的转子磁场在气隙空间的位置上有一个位移,这就改变了发电机电势与电网电压相量的相对位移,也就改变了电机的功率角。这说明电机的功率角也可以进行调节。所以交流励磁不仅可调节无功功率,还可以调节有功功率。
3.同步运行状态:在此种状态下 ,转差频率 ,这表明此时通入转子绕组的电流频率为0,也即直流电流,与普通的同步电机一样。
下面从等效电路的角度分析双馈电机的特性。首先,作如下假定:
1.只考虑定转子的基波分量,忽略谐波分量
2.只考虑定转子空间磁势基波分量
3.忽略磁滞、涡流、铁耗
4.变频电源可为转子提供能满足幅值、频率、功率因数要求的电源,不计其阻抗和损耗。

我们通常所讲的双馈异步发电机实质上是一种绕线式转子电机,由于其定、转子都能向电网馈电,故简称双馈电机。双馈电机虽然属于异步机的范畴,但是由于其具有独立的励磁绕组,可以象同步电机一样施加励磁,调节功率因数,所以又称为交流励磁电机,也有称为异步化同步电机。
同步电机由于是直流励磁,其可调量只有一个电流的幅值,所以同步电机一般只能对无功功率进行调节。交流励磁电机的可调量有三个:一是可调节的励磁电流幅值;二是可改变励磁频率;三是可改变相位。这说明交流励磁电机比同步电机多了两个可调量。
相关文档
最新文档