电路原理(邱关源)习题答案第一章 电路模型和电路定理练习

合集下载

《电路》邱关源第五版课后习题解答

《电路》邱关源第五版课后习题解答

电路习题解答第一章 电路模型和电路定律【题1】:由U A B =5V 可得:I AC .=-25A :U D B =0:U S .=125V 。

【题2】:D 。

【题3】:300;-100。

【题4】:D 。

【题5】:()a i i i =-12;()b u u u =-12;()c ()u u i i R =--S S S ;()d ()i i R u u =--S SS 1。

【题6】:3;-5;-8。

【题7】:D 。

【题8】:P US1=50 W ;P U S 26=- W ;P U S 3=0;P I S 115=- W ;P I S 2 W =-14;P I S 315=- W 。

【题9】:C 。

【题10】:3;-3。

【题11】:-5;-13。

【题12】:4(吸收);25。

【题13】:0.4。

【题14】:3123I +⨯=;I =13A 。

【题15】:I 43=A ;I 23=-A ;I 31=-A ;I 54=-A 。

【题16】:I =-7A ;U =-35V ;X 元件吸收的功率为P U I =-=-245W 。

【题17】:由图可得U E B =4V ;流过2 Ω电阻的电流I E B =2A ;由回路ADEBCA 列KVL 得 U I A C =-23;又由节点D 列KCL 得I I C D =-4;由回路CDEC 列KVL 解得;I =3;代入上 式,得U A C =-7V 。

【题18】:P P I I 12122222==;故I I 1222=;I I 12=; ⑴ KCL :43211-=I I ;I 185=A ;U I I S =-⨯=218511V 或16.V ;或I I 12=-。

⑵ KCL :43211-=-I I ;I 18=-A ;U S =-24V 。

第二章电阻电路的等效变换【题1】:[解答]I=-+9473A=0.5A;U Ia b.=+=9485V;IU162125=-=a b.A;P=⨯6125.W=7.5W;吸收功率7.5W。

(完整版)电路原理课后习题答案

(完整版)电路原理课后习题答案

因此, 时,电路的初始条件为
t〉0后,电路的方程为
设 的解为
式中 为方程的特解,满足
根据特征方程的根
可知,电路处于衰减震荡过程,,因此,对应齐次方程的通解为
式中 。由初始条件可得
解得
故电容电压
电流
7-29RC电路中电容C原未充电,所加 的波形如题7—29图所示,其中 , 。求电容电压 ,并把 :(1)用分段形式写出;(2)用一个表达式写出。
或为
第六章“储能元件”练习题
6—8求题6-8图所示电路中a、b端的等效电容与等效电感.
(a) (b)
题6—8图
6—9题6—9图中 , ; 。现已知 ,求:(1)等效电容C及 表达式;(2)分别求 与 ,并核对KVL。
题6-9图
解(1)等效电容
uC(0)=uC1(0)+uC2(0)=-10V
(2)
6—10题6-10图中 , ; , , ,求:(1)等效电感L及 的表达式;(2)分别求 与 ,并核对KCL。
应用规则2,有 ,代入以上方程中,整理得

又因为
当 时,
即电流 与负载电阻 无关,而知与电压 有关.
5—7求题5-7图所示电路的 和输入电压 、 之间的关系。
题5-7图
解:采用结点电压法分析。独立结点 和 的选取如图所示,列出结点电压方程,并注意到规则1,得(为分析方便,用电导表示电阻元件参数)
应用规则2 ,有 ,代入上式,解得 为
(f)理想电流源与外部电路无关,故i=—10×10—3A=—10—2A
1-5试求题1—5图中各电路中电压源、电流源及电阻的功率(须说明是吸收还是发出)。
(a) (b) (c)
题1-5图
解(a)由欧姆定律和基尔霍夫电压定律可知各元件的电压、电流如解1—5图(a)故电阻功率 (吸收20W)

电路第五版(邱关源)课后习题答案(全)

电路第五版(邱关源)课后习题答案(全)

!!第一章电路模型和电路定律学习要求!"了解电路模型的概念和电路的基本变量!#"理解电压"电流的参考方向与实际方向的关系#电压与电流的关联参考方向的概念!$"掌握功率的计算"功率的吸收与发出!%"掌握电阻"电容"电感"独立电源和受控源的定义及伏安关系!&"掌握基尔霍夫定律$’()和’*)!!知识网络图电路模型和电路定律电路和电路模型电流和电压的参考方向关联%非关联电功率和能量电路元件电阻元件电容元件"#$电感元件电压源和电流源独立电源%受控电源基尔霍夫定律’()%"#$’*)&!&!!电路同步辅导及习题全解!课后习题全解%!!!!说明题!!!图’+("’,(中$’!(""#的参考方向是否关联)’#(""#乘积表示什么功率)’$(如果在题!!!图’+(中"&-##’-*图’,(中"&-##&-#元件实际发出还是吸收功率)题!!!图解!’!(当流过元件的电流的参考方向#从该元件的标示电压正极性的一端指向负极性的一端#即电流的参考方向与元件两端电压降落的方向一致#称电压和电流的参考方向关联#所以’+(图中""#的参考方向是关联的*’,(图中""#的参考方向是非关联的!’#(当取元件的""#参考方向为关联参考方向时#定义$%"#为元件吸收的功率*当取元件的""#参考方向为非关联时#定义$%"#为元件发出的功率!所以’+(图中的"#表示元件吸收的功率*’,(图中的"#表示元件发出的功率!’$(在电压"电流参考方向关联的条件下#代入""#数值#经计算#若$%"#&-#表示元件实际吸收了功率*若$’-#表示元件吸收负功率#实际是发出功率!’+(图中#若"&-##’-#则$%"#’-#表示元件吸收了负功率#实际发出功率!在电压"电流参考方向非关联的条件下#代入"##数值#经计算#若$%"#&-#为正值#表示元件实际是发出功率*若$’-#为负值#表示元件发出负功率#实际是吸收功率!所以’,(图中#当"&-##&-#则$%"#&-#表示元件实际发出功率!%!!#!若某元件端子上的电压和电流取关联参考方向#而"%!.-/01’!--!&(*##%.123’!--!&(4!求$’!(该元件吸收功率的最大值*’#(该元件发出功率的最大值!解!!!!!!!!!!$’&(%"’&(#’&(%!.-/01’!--!&(’.123’!--!&(%&5&123’#--!&(6’!(当123’#--!&(&-时#$’&(&-#元件实际吸收功率*当123’#--!&(%!时#元件吸收最大功率$&&"第一章!电路模型和电路定律$7+8%&5&6’#(当123’#--!&(’-时#$’&(’-#元件实际发出功率*当123’#--!&(%!!时#元件发出最大功率$$7+8%&5&6题!!$图%!!$!试校核题!!$图中电路所得解答是否满足功率平衡!’提示$求解电路以后#校核所得结果的方法之一是核对电路中所有元件的功率平衡#即元件发出的总功率应等于其它元件吸收的总功率(!解!由题!!$图可知#元件4的电压"电流为非关联参考方向#其余元件的电压"电流均为关联参考方向!所以各元件的功率分别为$$4%9-’’!&(%!$--6’-#为发出功率$:%9-’!%9-6&-#为吸收功率$(%9-’#%!#-6&-#为吸收功率$;%%-’#%<-6&-#为吸收功率$=%#-’#%%-6&-#为吸收功率电路吸收的总功率为$%$:)$()$;)$=%9-)!#-)<-)%-%$--6即#元件4发出的总功率等于其余元件吸收的总功率#满足功率平衡!%!!%!在指定的电压"和电流#参考方向下#写出各元件"和#的约束方程’元件的组成关系(!题!!%图解!’+(图为线性电阻元件#其电压"电流关系满足欧姆定律!’+(图电阻元件"和#的约束方程为$"%!*#%!!-’!-$#’,(图为线性电感元件!’,(图电感元件"和#的约束方程为$"%!#-’!-!$>#>&&#&!!电路同步辅导及习题全解’/(图为线性电容元件!’/(图电容元件"和#的约束方程为$#%!-’!-!9>">&%!-!&>">&’>(图是理想电压源!’>(图的约束方程为$"%!&*’?(图是理想电流源!’?(图的约束方程为$#%#4(!!&!题!!&图’+(电容中电流#的波形如题!!&图’,(所示#现已知"’-(%-#试求&%!1#&%#1和&%%1时的电容电压"!题!!&图分析!电容两端电压"电流的关系为#’&(%(>"’&(>&#"’&(%!()&-!@#’!(>!)!()&&-#’!(>!#根据公式求解即可!解!已知电容的电流#’&(#求电压"’&(时#有"’&(%!()&-!@#’!(>!)!()&&-#’!(>!%"’&-(!!()&&-#’!(>!式中#"’&-(为电容电压的初始值!本题中电容电流#’&(的函数表示式为#’&(%-!!!&*-&&!!!-’&*#1!!-&&"#$#1根据"##积分关系#有&%!1时#"’!(%"’-()!()!-#’&(>&%-)!#)!-&&>&%!#’’&#&#(!-%!+#&*&%#1时#&$&第一章!电路模型和电路定律"’#(%"’-()!()#-#’&(>&%-)!#)#-&&>&%!#’’&#&#(#-%&*&%%1时#"’%(%"’#()!()%##’&(>&%&)!#)%#’!!-(>&%&)!#’’!!-&(%#%!&*%!!9!题!!9图’+(中,%%A #且#’-(%-#电压的波形如题!!9图’,(所示!试求当&%!1#&%#1#&%$1和&%%1时的电感电流#!题!!9图解!电感元件"##关系的积分形式为#’&(%#’&-()!,)&&-"’!(>!本题中电感电压的函数表示式为"’&(%-&*-!--’&*#1-#’&*$1!-&!%-$’&*%1-&&"#$%应用"##积分关系式#有&%!1时##’!(%#’-()!,)!-"’&(>&%-)!%)!-!->&%!%’’!-&(!-%#+&4&%#1时#&%&!!电路同步辅导及习题全解#’#(%#’!()!,)#!"’&(>&%#+&)!%)#!!->&%#+&)!%’’!-&(#!%&4&%$1时##’$(%#’#()!,)$#"’&(>&%&)!%)$#->&%&4&%%1时##’%(%#’$()!,)%$"’&(>&%&)!%)%$’!-&!%-(>&%&)!%’’&&#!%-&(%$%$+.&4(!!.!若已知显像管行偏转圈中的周期性扫描电流如题!!.图所示#现已知线圈电感为-+-!A #电阻略而不计#试求电感线圈所加电压的波形!题!!.图!!!!!!!!!!!!!题解!!.图!!分析!根据图示可写出#’&(的表达式#由"(’&(%,>#’&(>&即可求解!解!电流#’&(的函数表示式为#’&(%!+#9-’!-9&-*&*9-"1$’!-&’9%’!-!9!&(9-’&*9%""#$1根据电感元件"##的微分关系#得电压的函数表示式为"’&(%-+-!>#’&(>&%#’!-#!!!-*&*9-"1!$’!-$!!9-’&*9%"%1"’&(的波形如题解!!.图#说明电感的电压可以是时间的间断函数!%!!<!#"B 的电容上所加电压"的波形如题!!<图所示!求$’!(电容电流#*&&&第一章!电路模型和电路定律题!!<图’#(电容电荷-*’$(电容吸收的功率$!解!’!(电压"’&(的函数表示式为"’&(%-&*-!-$&-’&*#71%!!-$&#’&*%71-&&"#$%71根据电容元件"##的微分关系#得电流#’&(的函数表示式为$#’&(%#’!-!9>"’&(>&%-&*-#’!-!$-’&*#71!#’!-!$#’&*%71-&&"#$%71’#(因为(%-"#所以有-’&(%("’&(%-&*-#’!-!$&-’&*#71#’!-!9’%!!-$&(#’&*%71-&&"#$%71’$(在电容元件上电压"电流参考方向关联时#电容元件吸收的功率为$’&(%"’&(#’&(%-&*-#&-’&*#71!#’!-!$’%!!-$&(#’&*%71-&&"#$%71#’&(#-’&(#$’&(波形如题解!!<图所示!题解!!<图(!!5!电路如题!!5图所示#其中*%#"#,%!A #(%-+-!B #"(’-(%-#若电路的输入电流为$’!(#%#123’#&)!$(4*&’&!!电路同步辅导及习题全解题!!5图’#(#%?!&4!试求两种情况下#当&&-时的"*"",和"(值!分析!电阻两端的电压与电流关系为"*%#*#电感端电压为",%,>#>&#电容端电压为"(%"(’-()!()&-#’!(>!#根据公式求解即可!解!根据*#,和(的"##关系有’!(若#%#123’#&)!$(4#则有!!!!!"*’&(%*#’&(%#’#123’#&)!$(%%123’#&)!$(*!!!!",’&(%,>#’&(>&%!’#+/01’#&)!$(,’#%%/01’#&)!$(*!!!!!!!"(’&(%"(’-()!()&-#’!(>!%-)!-+-!)&-#123’#!)!$(>!%&-!!--/01’#&)!$(*’#(若#%?!&4#则有!!!!!!!!"*’&(%*#’&(%#’?!&*!!!!!!",’&(%,>#’&(>&%!’’!?!&(%!?!&*!!!"(’&(%"(’-()!()&-#’!(>!题!!!-图%!-+-!)&-?!!>!%!--’!!?!&(*%!!!-!电路如题!!!-题图所示#设"C ’&(%.7/01’#&(##C ’&(%/?!$&#试求",’&(和#(#’&(!解!可以看出#流过电感的电流等于电流源的电流#C #电容(#上的电压为"C #故由,#(元件的"##约束方程可得&(&第一章!电路模型和电路定律",’&(%,>#C ’&(>&%,/?!$&’’!$(%!,/$?!$&*!!!#(#’&(%(#>"C ’&(>&%(#.7+D 123’#&(,#%!#(#.7123’#&(*%!!!!!电路如题!!!!图所示#其中#C %#4#"C %!-*!’!(求#4电流源和!-*电压源的功率*’#(如果要求#4电流源的功率为零#在4:线段内应插入何种元件)分析此时各元件的功率*题!!!!图’$(如果要求!-*电压源的功率为零#则应在:(间并联何种元件)分析此时各元件的功率!解!’!(电流源发出的功率$%"C #C %!-’#%#-6电压源吸收的功率$%"C #C %!-’#%#-6’#(若要#4电流源的功率为零#则需使其端电压为零!在4:间插入"C0%!-*电压源#极性如题解!!!!图’+(所示!此时#电流源的功率为$%-’#C %-6!插入的电压源发出功率#-6#原来的电压源吸收功率#-6!’$(若要!-*电压源的功率为零#则需使流过电压源的电流为零!可以采取在:(间并联#0C %#4的电流源#如题解!!!!图’,(所示#或并联*%"C -#C %!--#%&"的电阻#如题解!!!!图’/(所示!题解!!!!图’,(中#因#C %#0C #由’()可知#流经"C 的电流为零!所以"C 的功率为零!原电流源发出功率为$%"C #C %!-’#%#-6并入电流源吸收功率为$%"C #0C %!-’#%#-6题解!!!!图’/(中#流经电阻的电流为#*%"C*%!-&%#4由’()可知#流经"C 的电流为零#因此#"C 的功率为零!此时#电流源发出功率$%"C #C %!-’#%#-6电阻消耗功率$%"#C*%!-#&%#-6(!!!#!试求题!!!#图所示电路中每个元件的功率!&)&!!电路同步辅导及习题全解题解!!!!图题!!!#图分析!电阻消耗的功率1%/#*#电压源吸收的功率1%.2/2#电流源发出的功率1%/2.#根据公式求解即可!解!’+(图中#由于流经电阻和电压源的电流为-E &4#所以电阻消耗功率1*%*/#%#’-E &#%-E &6电压源吸收功率1.%.C /C %!’-E &%-E &6由于电阻电压.*%*/%#’-E &%!*得电流源端电压.%.*).C %!)!%#*电流源发出功率1F %/C.%-E &’#%!6’,(图中#"电阻的电压.*%#!!%!*所以有/!%.*#%!#%-E &4/#%!!%!4由’()得/$%/!!/#%-E &!!%!-E &4故#*电压源发出功率1%#’/!%#’-E &%!6&*!&第一章!电路模型和电路定律!*电压源发出功率1%!’’!/$(%!’-E&%-E&6#"电阻消耗功率1%#’/#!%#’-E&#%-E&6!"电阻消耗功率1%!’/##%!’!#%!6%!!!$!试求题!!!$图中各电路的电压.#并讨论其功率平衡!题!!!$图解!应用’()先计算电阻电流/*#再根据欧姆定律计算电阻电压.G#从而得出端电压.#最后计算功率!’+(图中/*%#)9%<4.%.*%#’/*%#’<%!9*所以输入电路的功率为1%.’#%!9’#%$#6电流源发出功率1F%9’.%9’!9%596电阻消耗功率1*%#’/#*%#’<#%!#<6&!!&!!电路同步辅导及习题全解显然1)1F%1*#即输入电路的功率和电源发出的功率都被电阻消耗了!’,(图中/*%9!#%%4.%.*%#’/*%#’%%<*所以输入电路的功率为1%!.’#%!<’#%!!96电流源发出功率1F%9’.%9’<%%<6电阻消耗功率1*%#’/*#%#’%#%$#6显然仍满足1)1F%1*实际上电流源发出的功率被电阻消耗了$#6#还有!96输送给了外电路!’/(图中/*%#!%%!#4.%.*%$’/*%$’’!#(%!9*所以输入电路的功率为1%.’#%!9’#%!!#6电流源发出功率1F%%’9%#%6电阻消耗功率1*%$’/#*%$’’!#(#%!#6显然仍满足1)1F%1*’>(图中/*%&!$%#4.%.*%%’/*%%’#%<*所以输入电路的功率为1%.’&%<’&%%-6电流源发出功率1F%!$’.%!$’<%!#%6电阻消耗功率1*%%’/*#%%’’!#(#%!96显然仍满足1)1F%1* %!!!%!电路如题!!!%图所示#试求$&"!&第一章!电路模型和电路定律’!(电流#!和"+,+图’+(,*’#(电压"/,+图’,(,!题!!!%图解!’!(受控电流源的电流为-E 5#!%#%!-&%#4所以#!%#-E 5+#E ###4!!!"+,%%’#+,%%’’#!!#(%%’’#!!-E 5#!(%%’-E !#!%%’-E !’#-5+-E <<5*’#(因为"!%#’&%!-*#所以受控电流源的电流为#%-E -&"!%-E -&’!-%-E &4"+/%#-’#%#-’-E &%!-*因为"+,%!$*所以"/,%!"+/)"+,%!!-!$%!!$*,!!!&!对题!!!&图示电路$题!!!&图’!(已知图’+(中#*%#"##!%!4#求电流#*’#(已知图’,(中#"C %!-*##!%#4#*!%%E &"#*#%!"#求##!分析!根据图’+(右边回路的’*)方程即可求解##由图’,(左边回路’*)方程即可求出"!!解!’!(对图’+(中右边的回路列’*)方程’顺时针方向绕行(有&#!&!!电路同步辅导及习题全解*#!!-!&#!%-所以#%!-)&#!*%!-)&’!#%.E &4’#(图’,(中#电路*!两端的电压为"*!%*!#!%%E &’#%5*对左边回路列’*)方程顺时针方向绕行有"*!!"C )"!%-所以"!%"C !"*!%!-!#’%E &%!-!5%!*从图’,(中右边回路的’*)方程顺时针方向绕行得*###)$"!!"*!%-所以##%"*!!$"!*#%#’%E &!$’!!%94小结!掌握回路的’*)方程是本题的解题关键!%!!!9!’!(#%%!4##&%!$4*’#(#!%!-$4###%!$4##$%!!!$4##%%!4##&%!$4!(!!!.!在题!!!.图所示电路中#已知"!#%#*#"#$%$*#"#&%&*#"$.%$*#"9.%!*#尽可能多地确定其它各元件的电压!分析!求解各元件的电压只需根据各个回路的’*)方程即可求解!题!!!.图解!已知",%"!#%#*#">%"#$%$*#"/%"#&%&*#"H %"9.%!*#选取回路列’*)方程!对回路’#$%#(有"+%"!&%"!#)"#&%#)&%.*对回路’#$&#(有"I %"!$%"!#)"#$%#)$%&*对回路’$&’()%$(有"#$)"$.!"9.!"&9!"#&%-所以!!!"J %"&9%"#$)"$.!"9.!"#&%$)$!!!&%-对回路’&’()&(有"?%"$9%"$.!"9.%$!!%#*&$!&第一章!电路模型和电路定律对回路’%)(%(有"2%"&.%"&9)"9.%-)!%!*%!!!<!对上题所示电路#指定各支路电流的参考方向#然后列出所有结点处的’()方程#并说明这些方程中有几个是独立的!解!支路电流的参考方向如题!!!.图所示#各结点的’()方程分别为’以流出结点的电流为正(!!!!!##+)#,)#I%-!!!!$!#,)#/)#>%-!!!!!&!#>)#?)#K!#I%-%!#+!#/)#J)#2%-!!!!!)!#?!#J)#H%-(!#H!#2!#K%-把以上9个方程相加#得到-%-的结果#说明这9个方程不是相互独立的#但其中任意&个方程是相互独立的!%!!!5!略%!!#-!利用’()和’*)求解题!!#-图示电路中的电压"!题!!#-图解!在’+(图中#设电流##右边网孔的’*)方程为###)<<#%!-解得#%!-!!-+-E-5!4所以"%<<#%<<’!-!!-%<*在’,(图中#设电流#!#####$##号结点上的’()方程为#!)##)#$%<题!!#!图对右边大孔和其中的小孔分别按顺时针列出的’*)方程为#!)#!$#$%-#!!#!!###%-由以上三个方程解得#$%#4所以&%!&!!电路同步辅导及习题全解"%$#$%$’#%9*,!!#!!试求题!!#!图示电路中控制量/!及.-!分析!根据图示电路列出结点的’()及回路的’*)方程即可求解!解!设电流/!#/##/$!对结点#和两个网孔列’()’电流流入为正#流出为负(和’*)方程#有/!!/#!/$%-!---/!)&--/#)</!%#-</!)&--/#!!---/$%"#$-应用行列式求解以上方程组#有%%!!!!!!!!!!--<!&--!!-<!!&--!!!---%!#--<’!-$%!%-!!!!!!!#-!&--!!--!!&--!!!---%!$-’!-$%$%!!!!!!!-!--<!&--!#-<!!&--!!-%!!-!9-则/!%%!%%!$-’!-$!#--<’!-$%!%E 5%74/$%%$%%!!-!9-!#--<’!-$%&E -974所以.-%!---’/$%!---’!-!9-#--<’!-$%&E -9*小结!求解电路中的变量#利用’()"’*)方程是最基本的方法!%!!##!"!%#-*#"%#--*&&!&!!第二章电阻电路的等效变换学习要求!+理解等效变换的概念#利用等效变换分析电路!#+掌握电阻的等效变换$串并混联"L-.的等效变换!$+理解"掌握两种电源的等效变换!%+深刻理解单口电路输入电阻*23的定义#并会计算!&"理解二端电阻电路等效电阻的定义#熟练掌握求等效电阻的方法!!知识网络图电阻电路的等效变换电阻的等效变换电阻的串联电阻的并联电阻的L"#$-.电源的串联"并联等效变换3个电压源串联3个电流源并联3个电压源并联$要求电压相同3个电流源串联$"#$要求电流相同.实际电源/的等效变换实际电压源/实际电流源实际电流源/实际电压源等效互换的原则$端口*4G"#$不变输入电阻输入电阻的定义输入电阻的求法电阻变换法外加电压-%"#$"#$电流法&’!&!!电路同步辅导及习题全解!课后习题全解题#D!图%#!!!电路如题#!!图所示#已知"C%!--*#*!%#I"#*#%<I"!若$’!(*$%<I"*’#(*$%@’*$处开路(*’$(*$%-’*$处短路(!试求以上$种情况下电压"#和电流####$!解!’!(*#和*$为并联且相等#其等效电阻*%<#%%I"#则#!%"C*!)*%!--#)%%&-$74##%#$%#!#%&-9%<E$$$74"#%*###%<’&-9%99E99.*’#(因*$%@#则有!!!#$%-##%"C*!)*#%!--#)<%!-74"#%*###%<’!-%<-*’$(因*$%-#则有##%-#得"#%-##$%"C*!%!--#%&-74%#!#!电路如题#!#图所示#其中电阻"电压源和电流源均为已知#且为正值!求$’!(电压"#和电流##*’#(若电阻*!增大#对哪些元件的电压"电流有影响)影响如何)解!’!(因为*#和*$为并联#且该并联部分的总电流为电流源的电流#C#根据分流公式#有##%*$*#)*$#C"#%*###%*#*$*#)*$#C’#(由于*!和电流源串接支路对其余电路来说可以等效为一个电流源!因此当*!增大#对*##*$#*%及"C的电流和端电压都没有影响!但*!增大#*!上的电压增大#将影响电流源两端的电压#即"#C%*!#C)"#!"C显然#"#C随*!的增大而增大!&(!&第二章!电阻电路的等效变换题#!#图!!!!!!!!!!题#!$图(#!$!电路如题#!$图所示!’!(求"0"C *’#(当*,0*!1*#’%*!*#*!)*#(时#"0"C可近似为*#*!)*##此时引起的相对误差为"0"C!*#*!)*#"0"C’!--4当*,为’*!1*#(的!--倍"!-倍时#分别计算此相对误差!分析!*#与*,并联#然后与*!串联#则"5"2%*#1*,*#1*,)*!!解!’!(*%*#’*,*#)*,#%"C*!)*!!"0%*#%"C**!)*所以"0"C%**!)*%*#*,*!*#)*!*,)*#*,’#(设*,%6*!*#*!)*##代入上述"0"C式子中#可得"0"C%*#’6*!*#*!)*#*!*#)’*!)*#(’6*!*#*!)*#%6’!)6(’*#*!)*#相对误差为!!&%’"0"C!*#*!)*#(’!--M "0"C%6!)6*#*!)*#!*#*!)*#6!)6*#*!)*#’!--M &)!&!!电路同步辅导及习题全解%6!)6!!6!)6’!--M %!!6’!--M 当6%!--时#&%!!M *6%!-时#&%!!-M !(#!%!求题#!%图示各电路的等效电阻*+,#其中*!%*#%!"#*$%*%%#"#*&%%"#7!%7#%!C #*%#"!题#!%图分析!根据串联"并联#8-2变换等电阻电路的等效方法即可求解!解!图’+(中将短路线缩为点后#可知*%被短路#*!#*#和*$为并联#于是有*+,%+*!1*#1*$,)*&%+!1!1#,)%%%E %"图’,(中7!和7#所在支路的电阻*%!7!)!7#%#"所以*+,%+*1*%,)*$%+#1#,)#%$"图’/(改画后可知#这是一个电桥电路#由于*!%*##*$%*%处于电桥平衡#故开关闭合与打开时的等效电阻相等!即*+,%’*!)*$(1’*#)*%(%’!)#(1’!)#(%!E &"&*"&第二章!电阻电路的等效变换图’>(中结点!#!0同电位’电桥平衡(#所以!!!0间跨接电阻*#可以拿去’也可以用短路线替代(#故!!!!!!!!!!*+,%’*!)*#(1’*!)*#(1*!%’!)!(1’!)!(1!%-E &"图’?(为非串联电路#其具有某种对称结构#称之为平衡对称网络!因为该电路为对称电路#因此可将电路从中心点断开’因断开点间的连线没有电流(如题解#!%图’+(所示!题解#!%图!+"则*+,%#*)’#*1#*(#%$#*%$"图’J (中’!"#!"##"(和’#"##"#!"(构成两个L 形连接#分别将两个L 形转化成等值的三角形连接#如题解#!%图’,(所示!等值三角形的电阻分别为题解#!%图!,"*!%’!)!)!’!#(%#E &"*#%’!)#)!’#!(%&"*$%*#%&"*0!%#)#)#’#!%<"*0#%!)#)!’##%%"&!"&!!电路同步辅导及习题全解*0$%*0#%%"并接两个三角形#最后得题解#!%图’/(所示的等效电路#所以!!!*+,%+#1’*#1*0#()’*!1*0!(,1’*$1*0$(%+#1’&1%()’#E &1<(,1’&1%(%+#-!5)%-#!,1#-5%!E #95"图’K(也是一个对称电路!根据电路的结构特点#设#从+流入#则与+相连的$个电阻*中流过的电流均为#$!同理#从!0点分流的支流*对称#故支流为#9#得各支路电流的分布如题解#!%图’>(所示!由此得端口电压"+,%!$#’*)!9#’*)!$#’*%&9#’*所以*+,%"+,#%&9*%!E 99."题解#!%图!/"!!!!!!!!!!!!题解#!%图!>"!!%#!&!在题#!&图’+(电路中#"1!%#%*#"1#%9*#*!%!#"#*#%9"#*$%#"!图’,(为经电源变换后的等效电路!’!(求等效电路的#C 和**’#(根据等效电路求*$中电流和消耗功率*’$(分别在图’+(#’,(中求出*!#*#及*消耗的功率*’%(试问"1!#"1#发出的功率是否等于#C 发出的功率)*!#*#消耗的功率是否等于*消耗的功率)为什么)题#!&图&""&第二章!电阻电路的等效变换题解#!&图解!’!(利用电源的等效变换#图’+(中电阻与电压源的串联可以用电阻与电流源的并联来等效!等效后的电路如题解#!&图所示#其中#1!%"1!*!%#%!#%#4#1#%"1#*#%99%!4对题解#!&图电路进一步简化为题#!&图’,(所示电路#故#1%#1!)#1#%#)!%$4*%*!1*#%!#’9!#)9%%"’#(由图’,(可解得三条并联支路的端电压"%’*1*$(’#C %%’#%)#’$%%*所以*$的电流和消耗的功率分别为#$%"*$%%#%#41$%*$##$%#’##%<6’$(根据’*)#图’+(电路中*!#*#两端的电压分别为"!%"1!!"%#%!%%#-*"#%"1#!"%9!%%#*则*!#*#消耗的功率分别为1!%"!#*!%’#-(#!#%!--$%$$E $$61#%"##*#%##9%#$6图’,(中*消耗的功率1%"#*%%#%%%6’%(图’+(中"1!和"1#发出的功率分别为&#"&!!电路同步辅导及习题全解1"1!%"1!’"!*!%#%’#-!#%%-61"1#%"1#’"#*#%9’#9%#6图’,(图中#1发出的功率1#1%"#1%%’$%!#6显然1#131"1!)1"1#由’$(的解可知131!)1#以上结果表明#等效电源发出的功率一般并不等于电路中所有电源发出的功率之和*等效电阻消耗的功率一般也并不等于原电路中所有电阻消耗的功率之和!这充分说明#电路的.等效/概念仅仅指对外电路等效#对内部电路’变换的电路(则不等效!%#!9!对题#!9图所示电桥电路#应用L!三角形等效变换求$’!(对角线电压.*’#(电压.+,!解!把’!-"#!-"#&"(构成的三角形等效变换为L形#如题解#!9图所示!由于两条并联支路的电阻相等#因此得电流/!%/#%&#%#E&4应用’*)得电压.%9’#E&!%’#E&%&*又因输入电阻*+,%’%)%(1’9)#()#)#%%$-"所以.+,%&’*+,%&’$-%!&-*(#!.!题#!.图为由桥N电路构成的衰减器!’!(试证明当*#%*!%*,时#*+,%*,#且有"0"23%-E&*’#(试证明当*#%#*!*#,$*#!!*#,时#*+,%*,#并求此时电压比"0"23!分析!平衡电桥等位点间的电阻可省去!证明!’!(当*!%*#%*,时#此电路为一平衡电桥#9">两点为等位点#故可将连于这两点之间的*!支路断开#从而得到一串并联电路#则*+,%’*!)*!(1’*#)*,(%*,"0%!#"23即"0"23%!#%-E&&$ "&第二章!电阻电路的等效变换’#(把由$个*!构成的L形电路等效变换为三角形电路#则原电路等效为题解#!.图所示#其中*%$*!!根据题意#即*#%#*!*#,$*#!!*#,时#不难得出电路的等效电阻*+,为*+,%$*!*,$*!!*,$*!$*!*,$*!!*,)$*!%5*#!*,5*#!%*,"0%$*!*,$*!)*,$*!*#$*!)*#)$*!*,$*!)*,"23%$*!!*,$*!)*,"23"0"23%$*!!*,$*!)*,%#!<!在题#!<图’+(中#"1!%%&*#"1#%#-*#"1%%#-*#"1&%&-***!%*$ %!&"#*#%#-"#*%%&-"#*&%<"*在图’,(中#"1!%#-*#"1&%$-*##1#%<4##1%%!.4#*!%&"#*$%!-"#*&%!-"!利用电源的等效变换求图’+(和图’,(中电压"+,!解!图’+(利用电源的等效变换#将图’+(中的电压源等效为电流源#得题解#!<所示!&%"&!!电路同步辅导及习题全解题#!<图#1!%"1!*!%%&!&%$4#1#%"1#*#%#-#-%!4#1%%"1%*%%#-&-%-E %4#1&%"1&*&%&-<%9E #&4&&"&第二章!电阻电路的等效变换题解#!<图把所有电源流合并#得#C %#1!)#1#!#1%)#1&%$)!!-E %)9E #&%5E <&4把所有电阻并联#有*%*!1*#1*$1*%1*&%!&1#-1!&1&-1<%9--!5."所以"+,%#C*%5E <&’9--!5.%$-*图’,(的求解方法同图’+(#可得"+,%!&*!%#!5!#%!<4%#!!-!利用电源的等效变换#求题#D !-图所示电路中电压比"0"C!已知*!%*#%#"#*$%*%%!"!解!因为受控电流源的电流为#"$%##$*$%##$’!#即受控电流源的控制量可以改为#$#则"0%*%#%%*%’#$)##$(%$#$即#$%"0$又因#$%!%"C !"0#即"0$%!%"C !"0#所以"0"C%-E $%#!!!!"!-%-E .&"1&’"&!!电路同步辅导及习题全解题#!!-图,#!!#!试求题#!!#图’+(和’,(的输入电阻*+,!题#!!#图分析!输入电阻*23%"##""#分别为端口电压和端口电流#由公式求解即可!解!’!(在图’+(中#设端口电流#的参考方向如图所示#因"!%*!##根据’*)#有"+,%*##!""!)*!#%*##!"’*!#()*!#%’*!)*#!"*!(#故得+#,端的输入电阻*+,%"+,#%*!)*#!"*!’#(在图’,(中#设电阻*#中的电流##的参考方向如图所示#由’*)和’()可得电压"+,%*!#!)*###%*!#!)*#’#!)’#!(所以+#,端的输入电阻*+,%"+,#!%*!)*#’!)’(小结!若求解纯电阻电路的输入电阻可利用等效变换求解!电路中若出现有受控源#则常用*23%"端口#端口求解!&("&第二章!电阻电路的等效变换%#!!$!*23%*!*$’!!"(*$)*!,#!!%!题#!!%图所示电路中全部电阻均为!"#求输入电阻*23!题#!!%图题解#!!%图分析!对电阻电路进行等效变换#即可容易求解!解!+#,端右边的电阻电路是一平衡电桥#故可拿去/#>间连接的电阻#然后利用电阻的串"并联对电路进行简化并进行受控源的等效变换#得题解#!!%图’+(所示电路#再进行简化得题解#!!%图’,(所示电路#图解#!!%图’,(电路的’*)方程为"%!E9#!!E##%-E%#*23%"#%-E%"小结!平衡电桥是一种特殊的电路#/">间连接的电阻可拿去#特殊的电路用特殊的求解方式!&)"&!!第三章电阻电路的一般分析学习要求!+要求会用手写法列出电路方程!#+了解图的基本概念#掌握独立结点"独立回路的数目及选取#’()和’*)的独立方程数!$+掌握支路电流法"回路电流法"结点电压法!线性电阻电路方程建立的方法及电压"电流的求解#是全书的重点内容之一#是考试考研的必考内容!!知识网络图电阻电路的一般分析基本概念结点支路回路电路的图"#$树电路方程’()独立方程’*)%独立方程电路分析方法支路电流法网孔电流法回路电流法"#$"#$结点电压法&*#&!课后习题全解%$!!!在以下两种情况下#画出题$!!图所示电路的图#并说明其结点数和支路数$’!(每个元件作为一条支路处理*’#(电压源’独立或受控(和电阻的串联组合#电流源和电阻的并联组合作为一条支路处理!题$!!图解!’!(题$!!图’+(和题$!!图’,(电路的拓扑图分别如题解$!!图’+(和题解$!!图’,(所示!’#(题$!!图’+(和题$!!图’,(电路的拓扑图分别如题解$!!图’/(和题解$!!图’>(所示!题解$!!图’+(中结点数3%9#支路数:%!!*题解$!!图’,(中结点数3%.#支路数:%!#!题解$!!图’/(中结点数3%%#支路数:%<*题解$!!图’>(中结点数3%&#支路数:%5!题解$!!图($!#!指出题$!!中两种情况下#’()"’*)独立方程各为多少)分析!独立的’()方程个数为3!!#独立的’*)方程个数为:!3)!#根据公式求解即可!解!电路题$!!图’+(对应题解$!!图’+(和题解$!!图’/(两种情况!题解$!!图’+(中#独立的’()方程个数为3!!%9!!%&独立的’*)方程个数为:!3)!%!!!9)!%9&&!#题解$!!图’/(中#独立的’()方程个数为3!!%%!!%$独立的’*)方程个数为:!3)!%<!%)!%&题$!!图’,(对应题解$!!图’,(和题解$!!图’>(两种情况!题解$!!图’,(中#独立的’()方程个数为3!!%.!!%9独立的’*)方程个数为:!3)!%!#!.)!%9题解$!!图’>(中#独立’()方程个数为3!!%&!!%%独立的’*)方程个数为:!3)!%5!&)!%& ($!$!对题$!$图’+(和题$!$图’,(所示7!和7##各画出%个不同的树#树支数各为多少)题$!$图分析!遍后历所有顶点且支路数最少即构成树!解!题$!$图’+(的%个不同的树如题解$!$图’+(所示!题解$!$图!+"题$!$图’,(的%个不同的树如题解$!$图’,(所示!题解$!$图!,"&&"#题$!%图%$!%!题$!%图所示桥形电路共可画出!9个不同的树#试一一列出’由于结点数为%#故树支数为$#可按支路号递增的方法列出所有可能的组合#如!#$#!#%#0!#9#!$%#!$&0等#从中选出树(!解!!9个不同的树的支路组合为’!#$(#’!#%(#’!#&(#’!$&(#’!$9(#’!%&(#’!%9(#’!&9(’#$%(#’#$&(#’#$9(#’#%9(#’#&9(#’$%&(#’$%9(#’%&9(%$!&!对题$!$图所示的7!和7##任选一树并确定其基本回路组#同时指出独立回路数和网孔数各为多少)解!如题$!$图所示!独立回路数%网孔数%连支数!对题$!$图’+(以如题解$!&’+(图所选树’##&#.#<#5(为例#其基本回路组即单连支回路组为’##$#&(#’<#5#!-(#’&#9#.#<#5(#’!###&#.#<(#’%#&#.#<(’划线数字为连支(!对题$!$图’,(以如题解$!&图’,(所选树’%#9#<#5#!-(为例#其基本回路组即单连支回路组为’##5#!-(#’$#%#9#<(#’%#9#<#!-#!!(#’%#.#<(#’!#9#<#5#!-(#’&#9#5#!-(!题解$!&图%$!9!对题$!9图所示非平面图#设$’!(选择支路’!###$#%(为树*’#(选择支路’&#9#.#<(为树!问独立回路各有多少)求其基本回路组!题$!9图解!3%&#:%!-独立回路数;%:!3)!%!-!&)!%9’!(以’!###$#%(为树#对应的基本回路组为’!###$#.(#’!###$#%#&(#’!###9(#’##$#5(#’$#%#!-(#’##$#%#<(!’#(以’&#9#.#<(为树#对应的基本回路组为’!#&#<(#’$#9#.(#’%#&#.(#’##&#9#<(#’&#.#<#5(#’&#9#!-(!&##&%$!.!题$!.图所示电路中*!%*#%!-"#*$%%"#*%%*&%<"#*9%#"#"C $%#-*#"C 9%%-*#用支路电流法求解电流#&!解!各支路电流的参考方向如题解$!.图所示!题$!.图!!!!!!!!!!题解$!.图列支路电流方程结点##!)##)#9%-结点$!##)#$)#%%-结点&!#%)#&!#9%-回路*##*#)#$*$!#!*!%!"C $回路+#%*%)#&*&!#$*$%"C $回路,!##*#!#%*%)#9*9%!"C 9代入数据#整理得!!-#!)!-##)%#$%!#-!%#$)<#%)<#&%#-!!-##!<#%)##9%!"#$%-联立求解以上方程组#得#&%!-+5&94%$!<!用网孔电流法求解题$!.图中电流#&!解!设网孔电流为#;!##;###;$#绕行方向如题解$!<图所示#列网孔电流方程为’*!)*#)*$(#;!!*$#;#!*##;$%!"C $!*$#;!)’*$)*%)*&(#;#!*%#;$%"C $!*##;!!*%#;#)’*#)*%)*9(#;$%!""#$C 9代入数据整理#得#%#;!!%#;#!!-#;$%!#-!%#;!)#-#;#!<#;$%#-!!-#;!!<#;#)#-#;$%!"#$%-解方程#得#;#%#&%!-+5&94&$#&。

电路第五版邱关源课后习题详解.pdf

电路第五版邱关源课后习题详解.pdf
$
%
&)
! %

’&&#
%
!%-&( $
% $+.&4
(!!.! 若已知显像管行偏转圈中的周期性扫描电流如题!!.图所示#现已知线圈
电 感 为-+-!A#电 阻 略 而 不 计 #试 求 电 感 线 圈 所 加 电 压 的 波 形 !
题!!.图 !!!!!!!!!!!!! 题解!!.图 !!
分析 ! 根据图示可写出#’&(的表达式#由"(’&(% ,>#>&’&(即可求解! 解 ! 电流#’&(的函数表示式为
#的约束方程为$
" %!*# %!!-’!-$#
’,(图为线性电感元件!’,(图电感元件" 和# 的约束方程为$
"
%!#-’!-!$
># >&
&# &
!! 电路同步辅导及习题全解
’/(图为线性电容元件!’/(图电容元件" 和# 的约束方程为$
#
%
!-’!-!9
>" >&
%
!-!&
>" >&
’>(图 是 理 想 电 压 源 !’>(图 的 约 束 方 程 为 $
%!!# ! 若某元件端子上的电压和电流取关联参考方向#而" %!.-/01’!--!&(*## % .123’!--!&(4!求 $ ’!(该 元 件 吸 收 功 率 的 最 大 值 * ’#(该 元 件 发 出 功 率 的 最 大 值 !
解 ! !!!!!!!!!$’&(%"’&(#’&( % !.-/01’!--!&(’.123’!--!&( % &5&123’#--!&(6

电路第五版邱关源课后习题详解

电路第五版邱关源课后习题详解

&% #1时 # &$ &
第一章 ! 电路模型和电路定律
) "’#(%"’-()
! (
#
#’&(>&
-
) %-)
! #
#
&&>&%
-
! #

’&&# #
#
(
-
% &*
&% %1时 #
) "’%(%"’#()
! (
%
#’&(>&
#
) %&)

! #
%
’!!-(>&%
#
&)
! #

’!!-&(
% #
%!&*
’!(当123’#--!&(&-时 #$’&(&-#元 件 实 际 吸 收 功 率 *当123’#--!&(%!时 # 元件吸收最大功率$ &" &
第一章 ! 电路模型和电路定律
$7+8 %&5& 6
’#(当 123’#--!&(’ - 时 #$’&(’ -#元 件 实 际 发 出 功 率 *当 123’#--!&(%!!
) !
!
!"(
’&(%
"(
’-()
! (
&
#’!(>!
-
) %
! -+-!
&
?!!>!
-
%
!--’!!?!&(*

《电路》邱关源第五版课后习题答案解析

《电路》邱关源第五版课后习题答案解析

题 10】: 3;-3。

题 11】: -5;-13。

题 12】: 4(吸收);25。

题 13】: 0.4。

题 14】: 3I +12=3; I = A 。

3题 15】: I =3A ; I = -3A ; I = -1A ; I = -4A 。

题 16】: I =-7A ;U =-35V ;X 元件吸收的功率为 P =-IU =-245W 。

题 17】:由图可得U =4V ;流过 2电阻的电流I =2A ;由回路 ADEBCA 列 KVL 得=2-3I ;又由节点 D 列 KCL 得 I =4-I ;由回路 CDEC 列 KVL 解得; I =3;代入上式,得 U =-7V 。

P 1 = 2I 12 = 2 ;故I 12 =I 22;I 1=I 2;P2 I23 8 8⑴ KCL : 4- I = I ; I = A ; U =2I -1I = V 或 1.6 V ;或 I =-I 。

3⑵ KCL :4-I =- I ;I = -8 A ;U =-24 V 。

电路答案——本资料由张纪光编辑整理(C2-241 内部专用)第一章 电路模型和电路定律题 1 】: 题 2 】:题 3 】:题 4 】:题 5 】:题 6 】:题 7 】:题 8 】: 题 9 】:由U =5V 可得: I = -2.5 A :U =0:U =12.5V 。

D 。

300;-100。

D 。

(a ) i =i -i ;(b ) u =u -u ;(c ) u =u S -(i -i S )R S; ( d ) i =i S- 1(u -u S)。

1 2 1 2R S3;-5;-8。

D 。

P US1 =50 W ; P US 2=-6 W ; P US3 =0; P IS1=-15 W ; P IS2=-14 W ;P IS3=-15 W 。

C 。

题 18】:第二章电阻电路的等效变换题 1 】:[解答]I= A=0.5 A;U ab =9I+4=8.5V;I1=U ab -6=1.25 A;P =6 1.25 W=7.5 W;吸收12功率7.5W。

电路(邱关源第五版)习题答案

电路(邱关源第五版)习题答案

!!第一章电路模型和电路定律学习要求!"了解电路模型的概念和电路的基本变量!#"理解电压"电流的参考方向与实际方向的关系#电压与电流的关联参考方向的概念!$"掌握功率的计算"功率的吸收与发出!%"掌握电阻"电容"电感"独立电源和受控源的定义及伏安关系!&"掌握基尔霍夫定律$’()和’*)!!知识网络图电路模型和电路定律电路和电路模型电流和电压的参考方向关联%非关联电功率和能量电路元件电阻元件电容元件"#$电感元件电压源和电流源独立电源%受控电源基尔霍夫定律’()%"#$’*)&!&!!电路同步辅导及习题全解!课后习题全解%!!!!说明题!!!图’+("’,(中$’!(""#的参考方向是否关联)’#(""#乘积表示什么功率)’$(如果在题!!!图’+(中"&-##’-*图’,(中"&-##&-#元件实际发出还是吸收功率)题!!!图解!’!(当流过元件的电流的参考方向#从该元件的标示电压正极性的一端指向负极性的一端#即电流的参考方向与元件两端电压降落的方向一致#称电压和电流的参考方向关联#所以’+(图中""#的参考方向是关联的*’,(图中""#的参考方向是非关联的!’#(当取元件的""#参考方向为关联参考方向时#定义$%"#为元件吸收的功率*当取元件的""#参考方向为非关联时#定义$%"#为元件发出的功率!所以’+(图中的"#表示元件吸收的功率*’,(图中的"#表示元件发出的功率!’$(在电压"电流参考方向关联的条件下#代入""#数值#经计算#若$%"#&-#表示元件实际吸收了功率*若$’-#表示元件吸收负功率#实际是发出功率!’+(图中#若"&-##’-#则$%"#’-#表示元件吸收了负功率#实际发出功率!在电压"电流参考方向非关联的条件下#代入"##数值#经计算#若$%"#&-#为正值#表示元件实际是发出功率*若$’-#为负值#表示元件发出负功率#实际是吸收功率!所以’,(图中#当"&-##&-#则$%"#&-#表示元件实际发出功率!%!!#!若某元件端子上的电压和电流取关联参考方向#而"%!.-/01’!--!&(*##%.123’!--!&(4!求$’!(该元件吸收功率的最大值*’#(该元件发出功率的最大值!解!!!!!!!!!!$’&(%"’&(#’&(%!.-/01’!--!&(’.123’!--!&(%&5&123’#--!&(6’!(当123’#--!&(&-时#$’&(&-#元件实际吸收功率*当123’#--!&(%!时#元件吸收最大功率$&&"第一章!电路模型和电路定律$7+8%&5&6’#(当123’#--!&(’-时#$’&(’-#元件实际发出功率*当123’#--!&(%!!时#元件发出最大功率$$7+8%&5&6题!!$图%!!$!试校核题!!$图中电路所得解答是否满足功率平衡!’提示$求解电路以后#校核所得结果的方法之一是核对电路中所有元件的功率平衡#即元件发出的总功率应等于其它元件吸收的总功率(!解!由题!!$图可知#元件4的电压"电流为非关联参考方向#其余元件的电压"电流均为关联参考方向!所以各元件的功率分别为$$4%9-’’!&(%!$--6’-#为发出功率$:%9-’!%9-6&-#为吸收功率$(%9-’#%!#-6&-#为吸收功率$;%%-’#%<-6&-#为吸收功率$=%#-’#%%-6&-#为吸收功率电路吸收的总功率为$%$:)$()$;)$=%9-)!#-)<-)%-%$--6即#元件4发出的总功率等于其余元件吸收的总功率#满足功率平衡!%!!%!在指定的电压"和电流#参考方向下#写出各元件"和#的约束方程’元件的组成关系(!题!!%图解!’+(图为线性电阻元件#其电压"电流关系满足欧姆定律!’+(图电阻元件"和#的约束方程为$"%!*#%!!-’!-$#’,(图为线性电感元件!’,(图电感元件"和#的约束方程为$"%!#-’!-!$>#>&&#&!!电路同步辅导及习题全解’/(图为线性电容元件!’/(图电容元件"和#的约束方程为$#%!-’!-!9>">&%!-!&>">&’>(图是理想电压源!’>(图的约束方程为$"%!&*’?(图是理想电流源!’?(图的约束方程为$#%#4(!!&!题!!&图’+(电容中电流#的波形如题!!&图’,(所示#现已知"’-(%-#试求&%!1#&%#1和&%%1时的电容电压"!题!!&图分析!电容两端电压"电流的关系为#’&(%(>"’&(>&#"’&(%!()&-!@#’!(>!)!()&&-#’!(>!#根据公式求解即可!解!已知电容的电流#’&(#求电压"’&(时#有"’&(%!()&-!@#’!(>!)!()&&-#’!(>!%"’&-(!!()&&-#’!(>!式中#"’&-(为电容电压的初始值!本题中电容电流#’&(的函数表示式为#’&(%-!!!&*-&&!!!-’&*#1!!-&&"#$#1根据"##积分关系#有&%!1时#"’!(%"’-()!()!-#’&(>&%-)!#)!-&&>&%!#’’&#&#(!-%!+#&*&%#1时#&$&第一章!电路模型和电路定律"’#(%"’-()!()#-#’&(>&%-)!#)#-&&>&%!#’’&#&#(#-%&*&%%1时#"’%(%"’#()!()%##’&(>&%&)!#)%#’!!-(>&%&)!#’’!!-&(%#%!&*%!!9!题!!9图’+(中,%%A #且#’-(%-#电压的波形如题!!9图’,(所示!试求当&%!1#&%#1#&%$1和&%%1时的电感电流#!题!!9图解!电感元件"##关系的积分形式为#’&(%#’&-()!,)&&-"’!(>!本题中电感电压的函数表示式为"’&(%-&*-!--’&*#1-#’&*$1!-&!%-$’&*%1-&&"#$%应用"##积分关系式#有&%!1时##’!(%#’-()!,)!-"’&(>&%-)!%)!-!->&%!%’’!-&(!-%#+&4&%#1时#&%&!!电路同步辅导及习题全解#’#(%#’!()!,)#!"’&(>&%#+&)!%)#!!->&%#+&)!%’’!-&(#!%&4&%$1时##’$(%#’#()!,)$#"’&(>&%&)!%)$#->&%&4&%%1时##’%(%#’$()!,)%$"’&(>&%&)!%)%$’!-&!%-(>&%&)!%’’&&#!%-&(%$%$+.&4(!!.!若已知显像管行偏转圈中的周期性扫描电流如题!!.图所示#现已知线圈电感为-+-!A #电阻略而不计#试求电感线圈所加电压的波形!题!!.图!!!!!!!!!!!!!题解!!.图!!分析!根据图示可写出#’&(的表达式#由"(’&(%,>#’&(>&即可求解!解!电流#’&(的函数表示式为#’&(%!+#9-’!-9&-*&*9-"1$’!-&’9%’!-!9!&(9-’&*9%""#$1根据电感元件"##的微分关系#得电压的函数表示式为"’&(%-+-!>#’&(>&%#’!-#!!!-*&*9-"1!$’!-$!!9-’&*9%"%1"’&(的波形如题解!!.图#说明电感的电压可以是时间的间断函数!%!!<!#"B 的电容上所加电压"的波形如题!!<图所示!求$’!(电容电流#*&&&第一章!电路模型和电路定律题!!<图’#(电容电荷-*’$(电容吸收的功率$!解!’!(电压"’&(的函数表示式为"’&(%-&*-!-$&-’&*#71%!!-$&#’&*%71-&&"#$%71根据电容元件"##的微分关系#得电流#’&(的函数表示式为$#’&(%#’!-!9>"’&(>&%-&*-#’!-!$-’&*#71!#’!-!$#’&*%71-&&"#$%71’#(因为(%-"#所以有-’&(%("’&(%-&*-#’!-!$&-’&*#71#’!-!9’%!!-$&(#’&*%71-&&"#$%71’$(在电容元件上电压"电流参考方向关联时#电容元件吸收的功率为$’&(%"’&(#’&(%-&*-#&-’&*#71!#’!-!$’%!!-$&(#’&*%71-&&"#$%71#’&(#-’&(#$’&(波形如题解!!<图所示!题解!!<图(!!5!电路如题!!5图所示#其中*%#"#,%!A #(%-+-!B #"(’-(%-#若电路的输入电流为$’!(#%#123’#&)!$(4*&’&!!电路同步辅导及习题全解题!!5图’#(#%?!&4!试求两种情况下#当&&-时的"*"",和"(值!分析!电阻两端的电压与电流关系为"*%#*#电感端电压为",%,>#>&#电容端电压为"(%"(’-()!()&-#’!(>!#根据公式求解即可!解!根据*#,和(的"##关系有’!(若#%#123’#&)!$(4#则有!!!!!"*’&(%*#’&(%#’#123’#&)!$(%%123’#&)!$(*!!!!",’&(%,>#’&(>&%!’#+/01’#&)!$(,’#%%/01’#&)!$(*!!!!!!!"(’&(%"(’-()!()&-#’!(>!%-)!-+-!)&-#123’#!)!$(>!%&-!!--/01’#&)!$(*’#(若#%?!&4#则有!!!!!!!!"*’&(%*#’&(%#’?!&*!!!!!!",’&(%,>#’&(>&%!’’!?!&(%!?!&*!!!"(’&(%"(’-()!()&-#’!(>!题!!!-图%!-+-!)&-?!!>!%!--’!!?!&(*%!!!-!电路如题!!!-题图所示#设"C ’&(%.7/01’#&(##C ’&(%/?!$&#试求",’&(和#(#’&(!解!可以看出#流过电感的电流等于电流源的电流#C #电容(#上的电压为"C #故由,#(元件的"##约束方程可得&(&第一章!电路模型和电路定律",’&(%,>#C ’&(>&%,/?!$&’’!$(%!,/$?!$&*!!!#(#’&(%(#>"C ’&(>&%(#.7+D 123’#&(,#%!#(#.7123’#&(*%!!!!!电路如题!!!!图所示#其中#C %#4#"C %!-*!’!(求#4电流源和!-*电压源的功率*’#(如果要求#4电流源的功率为零#在4:线段内应插入何种元件)分析此时各元件的功率*题!!!!图’$(如果要求!-*电压源的功率为零#则应在:(间并联何种元件)分析此时各元件的功率!解!’!(电流源发出的功率$%"C #C %!-’#%#-6电压源吸收的功率$%"C #C %!-’#%#-6’#(若要#4电流源的功率为零#则需使其端电压为零!在4:间插入"C0%!-*电压源#极性如题解!!!!图’+(所示!此时#电流源的功率为$%-’#C %-6!插入的电压源发出功率#-6#原来的电压源吸收功率#-6!’$(若要!-*电压源的功率为零#则需使流过电压源的电流为零!可以采取在:(间并联#0C %#4的电流源#如题解!!!!图’,(所示#或并联*%"C -#C %!--#%&"的电阻#如题解!!!!图’/(所示!题解!!!!图’,(中#因#C %#0C #由’()可知#流经"C 的电流为零!所以"C 的功率为零!原电流源发出功率为$%"C #C %!-’#%#-6并入电流源吸收功率为$%"C #0C %!-’#%#-6题解!!!!图’/(中#流经电阻的电流为#*%"C*%!-&%#4由’()可知#流经"C 的电流为零#因此#"C 的功率为零!此时#电流源发出功率$%"C #C %!-’#%#-6电阻消耗功率$%"#C*%!-#&%#-6(!!!#!试求题!!!#图所示电路中每个元件的功率!&)&!!电路同步辅导及习题全解题解!!!!图题!!!#图分析!电阻消耗的功率1%/#*#电压源吸收的功率1%.2/2#电流源发出的功率1%/2.#根据公式求解即可!解!’+(图中#由于流经电阻和电压源的电流为-E &4#所以电阻消耗功率1*%*/#%#’-E &#%-E &6电压源吸收功率1.%.C /C %!’-E &%-E &6由于电阻电压.*%*/%#’-E &%!*得电流源端电压.%.*).C %!)!%#*电流源发出功率1F %/C.%-E &’#%!6’,(图中#"电阻的电压.*%#!!%!*所以有/!%.*#%!#%-E &4/#%!!%!4由’()得/$%/!!/#%-E &!!%!-E &4故#*电压源发出功率1%#’/!%#’-E &%!6&*!&第一章!电路模型和电路定律!*电压源发出功率1%!’’!/$(%!’-E&%-E&6#"电阻消耗功率1%#’/#!%#’-E&#%-E&6!"电阻消耗功率1%!’/##%!’!#%!6%!!!$!试求题!!!$图中各电路的电压.#并讨论其功率平衡!题!!!$图解!应用’()先计算电阻电流/*#再根据欧姆定律计算电阻电压.G#从而得出端电压.#最后计算功率!’+(图中/*%#)9%<4.%.*%#’/*%#’<%!9*所以输入电路的功率为1%.’#%!9’#%$#6电流源发出功率1F%9’.%9’!9%596电阻消耗功率1*%#’/#*%#’<#%!#<6&!!&!!电路同步辅导及习题全解显然1)1F%1*#即输入电路的功率和电源发出的功率都被电阻消耗了!’,(图中/*%9!#%%4.%.*%#’/*%#’%%<*所以输入电路的功率为1%!.’#%!<’#%!!96电流源发出功率1F%9’.%9’<%%<6电阻消耗功率1*%#’/*#%#’%#%$#6显然仍满足1)1F%1*实际上电流源发出的功率被电阻消耗了$#6#还有!96输送给了外电路!’/(图中/*%#!%%!#4.%.*%$’/*%$’’!#(%!9*所以输入电路的功率为1%.’#%!9’#%!!#6电流源发出功率1F%%’9%#%6电阻消耗功率1*%$’/#*%$’’!#(#%!#6显然仍满足1)1F%1*’>(图中/*%&!$%#4.%.*%%’/*%%’#%<*所以输入电路的功率为1%.’&%<’&%%-6电流源发出功率1F%!$’.%!$’<%!#%6电阻消耗功率1*%%’/*#%%’’!#(#%!96显然仍满足1)1F%1* %!!!%!电路如题!!!%图所示#试求$&"!&第一章!电路模型和电路定律’!(电流#!和"+,+图’+(,*’#(电压"/,+图’,(,!题!!!%图解!’!(受控电流源的电流为-E 5#!%#%!-&%#4所以#!%#-E 5+#E ###4!!!"+,%%’#+,%%’’#!!#(%%’’#!!-E 5#!(%%’-E !#!%%’-E !’#-5+-E <<5*’#(因为"!%#’&%!-*#所以受控电流源的电流为#%-E -&"!%-E -&’!-%-E &4"+/%#-’#%#-’-E &%!-*因为"+,%!$*所以"/,%!"+/)"+,%!!-!$%!!$*,!!!&!对题!!!&图示电路$题!!!&图’!(已知图’+(中#*%#"##!%!4#求电流#*’#(已知图’,(中#"C %!-*##!%#4#*!%%E &"#*#%!"#求##!分析!根据图’+(右边回路的’*)方程即可求解##由图’,(左边回路’*)方程即可求出"!!解!’!(对图’+(中右边的回路列’*)方程’顺时针方向绕行(有&#!&!!电路同步辅导及习题全解*#!!-!&#!%-所以#%!-)&#!*%!-)&’!#%.E &4’#(图’,(中#电路*!两端的电压为"*!%*!#!%%E &’#%5*对左边回路列’*)方程顺时针方向绕行有"*!!"C )"!%-所以"!%"C !"*!%!-!#’%E &%!-!5%!*从图’,(中右边回路的’*)方程顺时针方向绕行得*###)$"!!"*!%-所以##%"*!!$"!*#%#’%E &!$’!!%94小结!掌握回路的’*)方程是本题的解题关键!%!!!9!’!(#%%!4##&%!$4*’#(#!%!-$4###%!$4##$%!!!$4##%%!4##&%!$4!(!!!.!在题!!!.图所示电路中#已知"!#%#*#"#$%$*#"#&%&*#"$.%$*#"9.%!*#尽可能多地确定其它各元件的电压!分析!求解各元件的电压只需根据各个回路的’*)方程即可求解!题!!!.图解!已知",%"!#%#*#">%"#$%$*#"/%"#&%&*#"H %"9.%!*#选取回路列’*)方程!对回路’#$%#(有"+%"!&%"!#)"#&%#)&%.*对回路’#$&#(有"I %"!$%"!#)"#$%#)$%&*对回路’$&’()%$(有"#$)"$.!"9.!"&9!"#&%-所以!!!"J %"&9%"#$)"$.!"9.!"#&%$)$!!!&%-对回路’&’()&(有"?%"$9%"$.!"9.%$!!%#*&$!&第一章!电路模型和电路定律对回路’%)(%(有"2%"&.%"&9)"9.%-)!%!*%!!!<!对上题所示电路#指定各支路电流的参考方向#然后列出所有结点处的’()方程#并说明这些方程中有几个是独立的!解!支路电流的参考方向如题!!!.图所示#各结点的’()方程分别为’以流出结点的电流为正(!!!!!##+)#,)#I%-!!!!$!#,)#/)#>%-!!!!!&!#>)#?)#K!#I%-%!#+!#/)#J)#2%-!!!!!)!#?!#J)#H%-(!#H!#2!#K%-把以上9个方程相加#得到-%-的结果#说明这9个方程不是相互独立的#但其中任意&个方程是相互独立的!%!!!5!略%!!#-!利用’()和’*)求解题!!#-图示电路中的电压"!题!!#-图解!在’+(图中#设电流##右边网孔的’*)方程为###)<<#%!-解得#%!-!!-+-E-5!4所以"%<<#%<<’!-!!-%<*在’,(图中#设电流#!#####$##号结点上的’()方程为#!)##)#$%<题!!#!图对右边大孔和其中的小孔分别按顺时针列出的’*)方程为#!)#!$#$%-#!!#!!###%-由以上三个方程解得#$%#4所以&%!&!!电路同步辅导及习题全解"%$#$%$’#%9*,!!#!!试求题!!#!图示电路中控制量/!及.-!分析!根据图示电路列出结点的’()及回路的’*)方程即可求解!解!设电流/!#/##/$!对结点#和两个网孔列’()’电流流入为正#流出为负(和’*)方程#有/!!/#!/$%-!---/!)&--/#)</!%#-</!)&--/#!!---/$%"#$-应用行列式求解以上方程组#有%%!!!!!!!!!!--<!&--!!-<!!&--!!!---%!#--<’!-$%!%-!!!!!!!#-!&--!!--!!&--!!!---%!$-’!-$%$%!!!!!!!-!--<!&--!#-<!!&--!!-%!!-!9-则/!%%!%%!$-’!-$!#--<’!-$%!%E 5%74/$%%$%%!!-!9-!#--<’!-$%&E -974所以.-%!---’/$%!---’!-!9-#--<’!-$%&E -9*小结!求解电路中的变量#利用’()"’*)方程是最基本的方法!%!!##!"!%#-*#"%#--*&&!&!!第二章电阻电路的等效变换学习要求!+理解等效变换的概念#利用等效变换分析电路!#+掌握电阻的等效变换$串并混联"L-.的等效变换!$+理解"掌握两种电源的等效变换!%+深刻理解单口电路输入电阻*23的定义#并会计算!&"理解二端电阻电路等效电阻的定义#熟练掌握求等效电阻的方法!!知识网络图电阻电路的等效变换电阻的等效变换电阻的串联电阻的并联电阻的L"#$-.电源的串联"并联等效变换3个电压源串联3个电流源并联3个电压源并联$要求电压相同3个电流源串联$"#$要求电流相同.实际电源/的等效变换实际电压源/实际电流源实际电流源/实际电压源等效互换的原则$端口*4G"#$不变输入电阻输入电阻的定义输入电阻的求法电阻变换法外加电压-%"#$"#$电流法&’!&!!电路同步辅导及习题全解!课后习题全解题#D!图%#!!!电路如题#!!图所示#已知"C%!--*#*!%#I"#*#%<I"!若$’!(*$%<I"*’#(*$%@’*$处开路(*’$(*$%-’*$处短路(!试求以上$种情况下电压"#和电流####$!解!’!(*#和*$为并联且相等#其等效电阻*%<#%%I"#则#!%"C*!)*%!--#)%%&-$74##%#$%#!#%&-9%<E$$$74"#%*###%<’&-9%99E99.*’#(因*$%@#则有!!!#$%-##%"C*!)*#%!--#)<%!-74"#%*###%<’!-%<-*’$(因*$%-#则有##%-#得"#%-##$%"C*!%!--#%&-74%#!#!电路如题#!#图所示#其中电阻"电压源和电流源均为已知#且为正值!求$’!(电压"#和电流##*’#(若电阻*!增大#对哪些元件的电压"电流有影响)影响如何)解!’!(因为*#和*$为并联#且该并联部分的总电流为电流源的电流#C#根据分流公式#有##%*$*#)*$#C"#%*###%*#*$*#)*$#C’#(由于*!和电流源串接支路对其余电路来说可以等效为一个电流源!因此当*!增大#对*##*$#*%及"C的电流和端电压都没有影响!但*!增大#*!上的电压增大#将影响电流源两端的电压#即"#C%*!#C)"#!"C显然#"#C随*!的增大而增大!&(!&第二章!电阻电路的等效变换题#!#图!!!!!!!!!!题#!$图(#!$!电路如题#!$图所示!’!(求"0"C *’#(当*,0*!1*#’%*!*#*!)*#(时#"0"C可近似为*#*!)*##此时引起的相对误差为"0"C!*#*!)*#"0"C’!--4当*,为’*!1*#(的!--倍"!-倍时#分别计算此相对误差!分析!*#与*,并联#然后与*!串联#则"5"2%*#1*,*#1*,)*!!解!’!(*%*#’*,*#)*,#%"C*!)*!!"0%*#%"C**!)*所以"0"C%**!)*%*#*,*!*#)*!*,)*#*,’#(设*,%6*!*#*!)*##代入上述"0"C式子中#可得"0"C%*#’6*!*#*!)*#*!*#)’*!)*#(’6*!*#*!)*#%6’!)6(’*#*!)*#相对误差为!!&%’"0"C!*#*!)*#(’!--M "0"C%6!)6*#*!)*#!*#*!)*#6!)6*#*!)*#’!--M &)!&!!电路同步辅导及习题全解%6!)6!!6!)6’!--M %!!6’!--M 当6%!--时#&%!!M *6%!-时#&%!!-M !(#!%!求题#!%图示各电路的等效电阻*+,#其中*!%*#%!"#*$%*%%#"#*&%%"#7!%7#%!C #*%#"!题#!%图分析!根据串联"并联#8-2变换等电阻电路的等效方法即可求解!解!图’+(中将短路线缩为点后#可知*%被短路#*!#*#和*$为并联#于是有*+,%+*!1*#1*$,)*&%+!1!1#,)%%%E %"图’,(中7!和7#所在支路的电阻*%!7!)!7#%#"所以*+,%+*1*%,)*$%+#1#,)#%$"图’/(改画后可知#这是一个电桥电路#由于*!%*##*$%*%处于电桥平衡#故开关闭合与打开时的等效电阻相等!即*+,%’*!)*$(1’*#)*%(%’!)#(1’!)#(%!E &"&*"&第二章!电阻电路的等效变换图’>(中结点!#!0同电位’电桥平衡(#所以!!!0间跨接电阻*#可以拿去’也可以用短路线替代(#故!!!!!!!!!!*+,%’*!)*#(1’*!)*#(1*!%’!)!(1’!)!(1!%-E &"图’?(为非串联电路#其具有某种对称结构#称之为平衡对称网络!因为该电路为对称电路#因此可将电路从中心点断开’因断开点间的连线没有电流(如题解#!%图’+(所示!题解#!%图!+"则*+,%#*)’#*1#*(#%$#*%$"图’J (中’!"#!"##"(和’#"##"#!"(构成两个L 形连接#分别将两个L 形转化成等值的三角形连接#如题解#!%图’,(所示!等值三角形的电阻分别为题解#!%图!,"*!%’!)!)!’!#(%#E &"*#%’!)#)!’#!(%&"*$%*#%&"*0!%#)#)#’#!%<"*0#%!)#)!’##%%"&!"&!!电路同步辅导及习题全解*0$%*0#%%"并接两个三角形#最后得题解#!%图’/(所示的等效电路#所以!!!*+,%+#1’*#1*0#()’*!1*0!(,1’*$1*0$(%+#1’&1%()’#E &1<(,1’&1%(%+#-!5)%-#!,1#-5%!E #95"图’K(也是一个对称电路!根据电路的结构特点#设#从+流入#则与+相连的$个电阻*中流过的电流均为#$!同理#从!0点分流的支流*对称#故支流为#9#得各支路电流的分布如题解#!%图’>(所示!由此得端口电压"+,%!$#’*)!9#’*)!$#’*%&9#’*所以*+,%"+,#%&9*%!E 99."题解#!%图!/"!!!!!!!!!!!!题解#!%图!>"!!%#!&!在题#!&图’+(电路中#"1!%#%*#"1#%9*#*!%!#"#*#%9"#*$%#"!图’,(为经电源变换后的等效电路!’!(求等效电路的#C 和**’#(根据等效电路求*$中电流和消耗功率*’$(分别在图’+(#’,(中求出*!#*#及*消耗的功率*’%(试问"1!#"1#发出的功率是否等于#C 发出的功率)*!#*#消耗的功率是否等于*消耗的功率)为什么)题#!&图&""&第二章!电阻电路的等效变换题解#!&图解!’!(利用电源的等效变换#图’+(中电阻与电压源的串联可以用电阻与电流源的并联来等效!等效后的电路如题解#!&图所示#其中#1!%"1!*!%#%!#%#4#1#%"1#*#%99%!4对题解#!&图电路进一步简化为题#!&图’,(所示电路#故#1%#1!)#1#%#)!%$4*%*!1*#%!#’9!#)9%%"’#(由图’,(可解得三条并联支路的端电压"%’*1*$(’#C %%’#%)#’$%%*所以*$的电流和消耗的功率分别为#$%"*$%%#%#41$%*$##$%#’##%<6’$(根据’*)#图’+(电路中*!#*#两端的电压分别为"!%"1!!"%#%!%%#-*"#%"1#!"%9!%%#*则*!#*#消耗的功率分别为1!%"!#*!%’#-(#!#%!--$%$$E $$61#%"##*#%##9%#$6图’,(中*消耗的功率1%"#*%%#%%%6’%(图’+(中"1!和"1#发出的功率分别为&#"&!!电路同步辅导及习题全解1"1!%"1!’"!*!%#%’#-!#%%-61"1#%"1#’"#*#%9’#9%#6图’,(图中#1发出的功率1#1%"#1%%’$%!#6显然1#131"1!)1"1#由’$(的解可知131!)1#以上结果表明#等效电源发出的功率一般并不等于电路中所有电源发出的功率之和*等效电阻消耗的功率一般也并不等于原电路中所有电阻消耗的功率之和!这充分说明#电路的.等效/概念仅仅指对外电路等效#对内部电路’变换的电路(则不等效!%#!9!对题#!9图所示电桥电路#应用L!三角形等效变换求$’!(对角线电压.*’#(电压.+,!解!把’!-"#!-"#&"(构成的三角形等效变换为L形#如题解#!9图所示!由于两条并联支路的电阻相等#因此得电流/!%/#%&#%#E&4应用’*)得电压.%9’#E&!%’#E&%&*又因输入电阻*+,%’%)%(1’9)#()#)#%%$-"所以.+,%&’*+,%&’$-%!&-*(#!.!题#!.图为由桥N电路构成的衰减器!’!(试证明当*#%*!%*,时#*+,%*,#且有"0"23%-E&*’#(试证明当*#%#*!*#,$*#!!*#,时#*+,%*,#并求此时电压比"0"23!分析!平衡电桥等位点间的电阻可省去!证明!’!(当*!%*#%*,时#此电路为一平衡电桥#9">两点为等位点#故可将连于这两点之间的*!支路断开#从而得到一串并联电路#则*+,%’*!)*!(1’*#)*,(%*,"0%!#"23即"0"23%!#%-E&&$ "&第二章!电阻电路的等效变换’#(把由$个*!构成的L形电路等效变换为三角形电路#则原电路等效为题解#!.图所示#其中*%$*!!根据题意#即*#%#*!*#,$*#!!*#,时#不难得出电路的等效电阻*+,为*+,%$*!*,$*!!*,$*!$*!*,$*!!*,)$*!%5*#!*,5*#!%*,"0%$*!*,$*!)*,$*!*#$*!)*#)$*!*,$*!)*,"23%$*!!*,$*!)*,"23"0"23%$*!!*,$*!)*,%#!<!在题#!<图’+(中#"1!%%&*#"1#%#-*#"1%%#-*#"1&%&-***!%*$ %!&"#*#%#-"#*%%&-"#*&%<"*在图’,(中#"1!%#-*#"1&%$-*##1#%<4##1%%!.4#*!%&"#*$%!-"#*&%!-"!利用电源的等效变换求图’+(和图’,(中电压"+,!解!图’+(利用电源的等效变换#将图’+(中的电压源等效为电流源#得题解#!<所示!&%"&!!电路同步辅导及习题全解题#!<图#1!%"1!*!%%&!&%$4#1#%"1#*#%#-#-%!4#1%%"1%*%%#-&-%-E %4#1&%"1&*&%&-<%9E #&4&&"&第二章!电阻电路的等效变换题解#!<图把所有电源流合并#得#C %#1!)#1#!#1%)#1&%$)!!-E %)9E #&%5E <&4把所有电阻并联#有*%*!1*#1*$1*%1*&%!&1#-1!&1&-1<%9--!5."所以"+,%#C*%5E <&’9--!5.%$-*图’,(的求解方法同图’+(#可得"+,%!&*!%#!5!#%!<4%#!!-!利用电源的等效变换#求题#D !-图所示电路中电压比"0"C!已知*!%*#%#"#*$%*%%!"!解!因为受控电流源的电流为#"$%##$*$%##$’!#即受控电流源的控制量可以改为#$#则"0%*%#%%*%’#$)##$(%$#$即#$%"0$又因#$%!%"C !"0#即"0$%!%"C !"0#所以"0"C%-E $%#!!!!"!-%-E .&"1&’"&!!电路同步辅导及习题全解题#!!-图,#!!#!试求题#!!#图’+(和’,(的输入电阻*+,!题#!!#图分析!输入电阻*23%"##""#分别为端口电压和端口电流#由公式求解即可!解!’!(在图’+(中#设端口电流#的参考方向如图所示#因"!%*!##根据’*)#有"+,%*##!""!)*!#%*##!"’*!#()*!#%’*!)*#!"*!(#故得+#,端的输入电阻*+,%"+,#%*!)*#!"*!’#(在图’,(中#设电阻*#中的电流##的参考方向如图所示#由’*)和’()可得电压"+,%*!#!)*###%*!#!)*#’#!)’#!(所以+#,端的输入电阻*+,%"+,#!%*!)*#’!)’(小结!若求解纯电阻电路的输入电阻可利用等效变换求解!电路中若出现有受控源#则常用*23%"端口#端口求解!&("&第二章!电阻电路的等效变换%#!!$!*23%*!*$’!!"(*$)*!,#!!%!题#!!%图所示电路中全部电阻均为!"#求输入电阻*23!题#!!%图题解#!!%图分析!对电阻电路进行等效变换#即可容易求解!解!+#,端右边的电阻电路是一平衡电桥#故可拿去/#>间连接的电阻#然后利用电阻的串"并联对电路进行简化并进行受控源的等效变换#得题解#!!%图’+(所示电路#再进行简化得题解#!!%图’,(所示电路#图解#!!%图’,(电路的’*)方程为"%!E9#!!E##%-E%#*23%"#%-E%"小结!平衡电桥是一种特殊的电路#/">间连接的电阻可拿去#特殊的电路用特殊的求解方式!&)"&!!第三章电阻电路的一般分析学习要求!+要求会用手写法列出电路方程!#+了解图的基本概念#掌握独立结点"独立回路的数目及选取#’()和’*)的独立方程数!$+掌握支路电流法"回路电流法"结点电压法!线性电阻电路方程建立的方法及电压"电流的求解#是全书的重点内容之一#是考试考研的必考内容!!知识网络图电阻电路的一般分析基本概念结点支路回路电路的图"#$树电路方程’()独立方程’*)%独立方程电路分析方法支路电流法网孔电流法回路电流法"#$"#$结点电压法&*#&!课后习题全解%$!!!在以下两种情况下#画出题$!!图所示电路的图#并说明其结点数和支路数$’!(每个元件作为一条支路处理*’#(电压源’独立或受控(和电阻的串联组合#电流源和电阻的并联组合作为一条支路处理!题$!!图解!’!(题$!!图’+(和题$!!图’,(电路的拓扑图分别如题解$!!图’+(和题解$!!图’,(所示!’#(题$!!图’+(和题$!!图’,(电路的拓扑图分别如题解$!!图’/(和题解$!!图’>(所示!题解$!!图’+(中结点数3%9#支路数:%!!*题解$!!图’,(中结点数3%.#支路数:%!#!题解$!!图’/(中结点数3%%#支路数:%<*题解$!!图’>(中结点数3%&#支路数:%5!题解$!!图($!#!指出题$!!中两种情况下#’()"’*)独立方程各为多少)分析!独立的’()方程个数为3!!#独立的’*)方程个数为:!3)!#根据公式求解即可!解!电路题$!!图’+(对应题解$!!图’+(和题解$!!图’/(两种情况!题解$!!图’+(中#独立的’()方程个数为3!!%9!!%&独立的’*)方程个数为:!3)!%!!!9)!%9&&!#题解$!!图’/(中#独立的’()方程个数为3!!%%!!%$独立的’*)方程个数为:!3)!%<!%)!%&题$!!图’,(对应题解$!!图’,(和题解$!!图’>(两种情况!题解$!!图’,(中#独立的’()方程个数为3!!%.!!%9独立的’*)方程个数为:!3)!%!#!.)!%9题解$!!图’>(中#独立’()方程个数为3!!%&!!%%独立的’*)方程个数为:!3)!%5!&)!%& ($!$!对题$!$图’+(和题$!$图’,(所示7!和7##各画出%个不同的树#树支数各为多少)题$!$图分析!遍后历所有顶点且支路数最少即构成树!解!题$!$图’+(的%个不同的树如题解$!$图’+(所示!题解$!$图!+"题$!$图’,(的%个不同的树如题解$!$图’,(所示!题解$!$图!,"&&"#题$!%图%$!%!题$!%图所示桥形电路共可画出!9个不同的树#试一一列出’由于结点数为%#故树支数为$#可按支路号递增的方法列出所有可能的组合#如!#$#!#%#0!#9#!$%#!$&0等#从中选出树(!解!!9个不同的树的支路组合为’!#$(#’!#%(#’!#&(#’!$&(#’!$9(#’!%&(#’!%9(#’!&9(’#$%(#’#$&(#’#$9(#’#%9(#’#&9(#’$%&(#’$%9(#’%&9(%$!&!对题$!$图所示的7!和7##任选一树并确定其基本回路组#同时指出独立回路数和网孔数各为多少)解!如题$!$图所示!独立回路数%网孔数%连支数!对题$!$图’+(以如题解$!&’+(图所选树’##&#.#<#5(为例#其基本回路组即单连支回路组为’##$#&(#’<#5#!-(#’&#9#.#<#5(#’!###&#.#<(#’%#&#.#<(’划线数字为连支(!对题$!$图’,(以如题解$!&图’,(所选树’%#9#<#5#!-(为例#其基本回路组即单连支回路组为’##5#!-(#’$#%#9#<(#’%#9#<#!-#!!(#’%#.#<(#’!#9#<#5#!-(#’&#9#5#!-(!题解$!&图%$!9!对题$!9图所示非平面图#设$’!(选择支路’!###$#%(为树*’#(选择支路’&#9#.#<(为树!问独立回路各有多少)求其基本回路组!题$!9图解!3%&#:%!-独立回路数;%:!3)!%!-!&)!%9’!(以’!###$#%(为树#对应的基本回路组为’!###$#.(#’!###$#%#&(#’!###9(#’##$#5(#’$#%#!-(#’##$#%#<(!’#(以’&#9#.#<(为树#对应的基本回路组为’!#&#<(#’$#9#.(#’%#&#.(#’##&#9#<(#’&#.#<#5(#’&#9#!-(!&##&%$!.!题$!.图所示电路中*!%*#%!-"#*$%%"#*%%*&%<"#*9%#"#"C $%#-*#"C 9%%-*#用支路电流法求解电流#&!解!各支路电流的参考方向如题解$!.图所示!题$!.图!!!!!!!!!!题解$!.图列支路电流方程结点##!)##)#9%-结点$!##)#$)#%%-结点&!#%)#&!#9%-回路*##*#)#$*$!#!*!%!"C $回路+#%*%)#&*&!#$*$%"C $回路,!##*#!#%*%)#9*9%!"C 9代入数据#整理得!!-#!)!-##)%#$%!#-!%#$)<#%)<#&%#-!!-##!<#%)##9%!"#$%-联立求解以上方程组#得#&%!-+5&94%$!<!用网孔电流法求解题$!.图中电流#&!解!设网孔电流为#;!##;###;$#绕行方向如题解$!<图所示#列网孔电流方程为’*!)*#)*$(#;!!*$#;#!*##;$%!"C $!*$#;!)’*$)*%)*&(#;#!*%#;$%"C $!*##;!!*%#;#)’*#)*%)*9(#;$%!""#$C 9代入数据整理#得#%#;!!%#;#!!-#;$%!#-!%#;!)#-#;#!<#;$%#-!!-#;!!<#;#)#-#;$%!"#$%-解方程#得#;#%#&%!-+5&94&$#&。

电路第五版邱关源习题及答案全解

电路第五版邱关源习题及答案全解

电路第五版邱关源习题及答案全解电路学科作为电子与通信工程专业的基础课程,在培养学生的电路分析与设计能力方面起着至关重要的作用。

邱关源所著的《电路第五版》无疑是电路学科的经典教材之一,为学生提供了大量的习题来巩固和拓展所学的电路分析知识。

本文将为大家提供《电路第五版邱关源》的习题及答案全解,以帮助学生更好地理解和应用电路原理。

以下为详细内容:第一章电路基本概念习题1:题目:一个电子学家发明了一种新型的无线电通信系统,可以在2千米的范围内进行通信。

请问,在空旷平坦的场地上,这个无线电通信系统的有效覆盖面积是多少?解答:根据题意可知,通信系统的有效覆盖范围为2千米,假设该范围为一个圆形区域,求解其面积。

根据圆的面积公式S = πr²,其中 r 为圆的半径,将半径 r = 2千米代入计算即可得到答案。

S = π(2²) = 4π(千米²)习题2:题目:在一个电路中,有一个电阻元件 R1,其电阻值为 4 欧姆。

现将 R1 改为两个串联连接的电阻 R2 和 R3,求解 R2 和 R3 的电阻值。

解答:根据串联电阻的计算公式 R = R2 + R3,将已知条件 R = 4 欧姆代入计算即可。

R2 + R3 = 4第二章电压与电流习题3:题目:一个电压源 U = 12 V 与一个电阻 R = 6 欧姆连接在一起,求解通过电阻 R 的电流 I。

解答:根据欧姆定律可知 U = RI,将已知条件 U = 12 V,R = 6 欧姆代入计算即可。

I = U / R = 12 / 6 = 2 A习题4:题目:在一个电路中,有一个电流表和一个电阻 R。

现将电流表接入电路中,发现电流表示数为0 A。

请问此时电阻R 的电阻值是多少?解答:根据电流表示数为 0 A 可知,此时通过电阻 R 的电流为零。

根据欧姆定律可知,当 I = 0 时,U = 0,即两点之间电势差为零。

因此,可以得出结论:此时电阻 R 的电阻值为任意值。

《电路》邱关源第五版课后习题答案解析

《电路》邱关源第五版课后习题答案解析

电路答案——本资料由张纪光编辑整理(C2-241 内部专用)第一章电路模型和电路定律【题 1】:由UAB 5 V可得: I AC 2.5A: U DB0 : U S12.5V。

【题 2】: D。

【题 3】: 300; -100 。

【题 4】: D。

【题5】:a i i1i 2;b u u1u2;c u u S i i S R S;d i i S 1R Su u S。

【题 6】: 3;-5 ; -8。

【题 7】: D。

【题 8】:P US150 W ;P US26W;P US30 ; P IS115 W ; P IS214W ;P IS315W。

【题 9】: C。

【题 10】:3; -3 。

【题 11】:-5 ; -13 。

【题 12】:4(吸收); 25。

【题 13】:0.4 。

【题 14】:31I 2 3; I 1A 。

3【题 15】:I43A; I23A; I31A; I5 4 A。

【题 16】:I7A;U35 V;X元件吸收的功率为 P UI245W。

【题 17】:由图可得U EB 4 V;流过 2电阻的电流 I EB 2 A;由回路ADEBCA列KVL得U AC 2 3I ;又由节点D列KCL得 I CD 4I ;由回路CDEC列KVL解得;I 3 ;代入上式,得 U AC7 V。

【题 18】:P122 I12;故 I 22; I 1I 2;P2I 221I 2⑴ KCL:4I 13I 1;I 18;U S 2I1 1 I 18V或16.V;或I I。

2 5 A512⑵ KCL:4I 13I1;I18A;U S。

224 V第二章电阻电路的等效变换【题 1】:[解答 ]94A = 0.5 A ;U ab9I 4 8.5 V;I73U ab66 125. W = 7.5 W ;吸收I 12 1.25 A;P功率 7.5W。

【题 2】:[解答 ]【题 3】:[解答]C 。

【题 4】: [ 解答 ]等效电路如图所示,I 005. A。

邱关源《电路》笔记和课后习题(含考研真题)详解-第一章至第二章【圣才出品】

邱关源《电路》笔记和课后习题(含考研真题)详解-第一章至第二章【圣才出品】
6 / 81
圣才电子书 十万种考研考证电子书、题库视频学习平台

理想电压源的符号如图 1-1-4(a)所示。其特点是其两端电压总能保持一定或一定的 时间函数,且电压值大小由电压源本身决定,与流过它的电流值无关,如图 1-1-4(b)所 示。
图 1-1-4(a)
图 1-1-4(b) 说明:a.电压源为一种理想模型;b.与电压源并联的元件,其端电压为电压源的值; c.理想电压源的功率从理论上来说可以为无穷大。 ②理想电流源 理想电流源的符号如图 1-1-5(a)所示。其特点是输出电流总能保持一定或一定的时 间函数,且电流值大小由电流源本身决定,与外部电路及它的两端电压值无关,如图 1-1-5

电阻元件、电源元件和受控电源元件是常用的电路元件。电路元件可分为无源元件及有 源元件两大类。
1.无源元件及其伏安特性 表 1-1-2 无源元件及其伏安特性
功率和能量比较: (1)电阻元件 P=ui=Ri2=u2/R≥0(关联参考方向);
W t Ri2 d t0 电阻是耗能元件。 (2)电容元件
5 / 81
圣才电子书 十万种考研考证电子书Fra bibliotek题库视频学习平台

P=ui=Cu(du/dt)(u,i 取关联参考方向);吸收功率,电容是无源元件。
WC C
ut2 udu 1 Cu 2
ut1
2
t2
1 Cu 2 2
t1
WC t2 WC t1
电容是储能元件。
2 / 81
圣才电子书 十万种考研考证电子书、题库视频学习平台

图 1-1-2 电压的参考方向 3.关联参考方向 对于一个元件或支路来说:如果指定元件的电流的参考方向是从电压参考极性的“+” 指向“-”,即两者的参考方向一致,则把电流和电压的这种参考方向称为关联参考方向; 反之称为非关联参考方向。如图 1-1-3 所示,对 A 而言,u 和 i 为非关联方向;对 B 而言, u 和 i 为关联方向。

电路习题集含答案邱关源第五版.pdf

电路习题集含答案邱关源第五版.pdf

选用的公式不同 , 其结果有时为吸收功率,有时为产生功率。
[]
.14. 根据P =UI , 对于额定值 220V、40W的灯泡 , 由于其功率一定,电源电压越高则其电
流必越小。
[]
.15. 阻值不同的几个电阻相串联,阻值大的电阻消耗功率小。
[]
.16. 阻值不同的几个电阻相并联,阻值小的电阻消耗功率大。
西安交通大学
目录
附录一:电路试卷 ........................................................ 附录二:习题集部分答案 ...................................................
面朝大海
38 58
第一章 电路模型和电路定律
的,也与外电路无关。
[]
.8. 理想电流源的端电压为零。
[]
.9. 若某元件的伏安关系为 u=2i+4 ,则该元件为线性元件。
[]
.10. 一个二端元件的伏安关系完全是由它本身所确定的,与它所接的外电路毫无关系。
[]
.11. 元件短路时的电压为零 , 其中电流不一定为零。元件开路时电流为零
, 其端电压不一
10 Ω
I=? +

2A
- 10V
(1)
U= - 10V


AB
12V 3Ω
8V
C
UCD
D
6Ω 9V

4V I=3A
+-
10A

U=?
(2)
6. 电路如附图所示。试求: (1) 求电压 u; (2) 如果原为 1Ω 、 4Ω 的电阻和 1A的电流源 对结果有无影响。

电路原理习题答案第一章 电路模型和电路定理练习

电路原理习题答案第一章  电路模型和电路定理练习

第一章电路模型和电路定律电路理论主要研究电路中发生的电磁现象,用电流、电压和功率等物理量来描述其中的过程。

因为电路是由电路元件构成的,因而整个电路的表现如何既要看元件的联接方式,又要看每个元件的特性,这就决定了电路中各支路电流、电压要受到两种基本规律的约束,即:(1)电路元件性质的约束。

也称电路元件的伏安关系(VCR),它仅与元件性质有关,与元件在电路中的联接方式无关。

(2)电路联接方式的约束(亦称拓扑约束)。

这种约束关系则与构成电路的元件性质无关。

基尔霍夫电流定律(KCL)和基尔霍夫电压定律(KVL)是概括这种约束关系的基本定律。

掌握电路的基本规律是分析电路的基础。

1-1说明图(a),(b)中,(1)的参考方向是否关联?(2)乘积表示什么功率?(3)如果在图(a)中;图(b)中,元件实际发出还是吸收功率?解:(1)当流过元件的电流的参考方向是从标示电压正极性的一端指向负极性的一端,即电流的参考方向与元件两端电压降落的方向一致,称电压和电流的参考方向关联。

所以(a)图中的参考方向是关联的;(b)图中的参考方向为非关联。

(2)当取元件的参考方向为关联参考方向时,定义为元件吸收的功率;当取元件的参考方向为非关联时,定义为元件发出的功率。

所以(a)图中的乘积表示元件吸收的功率;(b)图中的乘积表示元件发出的功率。

(3)在电压、电流参考方向关联的条件下,带入数值,经计算,若,表示元件确实吸收了功率;若,表示元件吸收负功率,实际是发出功率。

(a)图中,若,则,表示元件实际发出功率。

在参考方向非关联的条件下,带入数值,经计算,若,为正值,表示元件确实发出功率;若,为负值,表示元件发出负功率,实际是吸收功率。

所以(b)图中当,有,表示元件实际发出功率。

1-2 若某元件端子上的电压和电流取关联参考方向,而,,求:(1)该元件吸收功率的最大值;(2)该元件发出功率的最大值。

解:(1)当时,,元件吸收功率;当时,元件吸收最大功率:(2)当时,,元件实际发出功率;当时,元件发出最大功率:1-3 试校核图中电路所得解答是否满足功率平衡。

邱关源《电路》第5版课后习题答案1-8章之欧阳美创编

邱关源《电路》第5版课后习题答案1-8章之欧阳美创编

答案第一章 电路模型和电路定律【题1】:由U A B =5V 可得:I AC .=-25A :U D B =0:U S .=125V 。

【题2】:D 。

【题3】:300;-100。

【题4】:D 。

【题5】:()a i i i =-12;()b u u u =-12;()c ()uu i i R =--S S S ;()d ()i i R u u =--S SS 1。

【题6】:3;-5;-8。

【题7】:D 。

【题8】:P US1=50 W ;P U S 26=- W ;P U S 3=0;P I S 115=- W ;P I S 2 W =-14;P I S 315=- W 。

【题9】:C 。

【题10】:3;-3。

【题11】:-5;-13。

【题12】:4(吸收);25。

【题13】:0.4。

【题14】:3123I +⨯=;I =13A 。

【题15】:I 43=A ;I 23=-A ;I 31=-A ;I 54=-A 。

【题16】:I =-7A;U =-35V ;X 元件吸收的功率为P U I =-=-245W 。

【题17】:由图可得U E B =4V ;流过2 Ω电阻的电流I E B =2A ;由回路ADEBCA 列KVL 得U I A C =-23;又由节点D 列KCL 得I I C D =-4;由回路CDEC 列KVL 解得;I =3;代入上 式,得U A C =-7V 。

【题18】:P P I I 12122222==;故I I 1222=;I I 12=; ⑴KCL :43211-=I I ;I 185=A ;U I I S =-⨯=218511V或16.V ;或I I 12=-。

⑵KCL :43211-=-I I ;I 18=-A ;U S =-24V 。

第二章 电阻电路的等效变换【题1】:[解答]I =-+9473A =0.5 A ;U I a b .=+=9485V ; I U 162125=-=a b .A ;P =⨯6125. W =7.5 W;吸收功率7.5W 。

(完整版)电路原理课后习题答案

(完整版)电路原理课后习题答案

因此, 时,电路的初始条件为
t〉0后,电路的方程为
设 的解为
式中 为方程的特解,满足
根据特征方程的根
可知,电路处于衰减震荡过程,,因此,对应齐次方程的通解为
式中 。由初始条件可得
解得
故电容电压
电流
7-29RC电路中电容C原未充电,所加 的波形如题7—29图所示,其中 , 。求电容电压 ,并把 :(1)用分段形式写出;(2)用一个表达式写出。
题4-17图
解:首先求出 以左部分的等效电路.断开 ,设 如题解4-17图(a)所示,并把受控电流源等效为受控电压源。由KVL可得
故开路电压
把端口短路,如题解图(b)所示应用网孔电流法求短路电流 ,网孔方程为
解得
故一端口电路的等效电阻
画出戴维宁等效电路,接上待求支路 ,如题解图(c)所示,由最大功率传输定理知 时其上获得最大功率。 获得的最大功率为
(a)(b)
题3—1图
解:(1)每个元件作为一条支路处理时,图(a)和(b)所示电路的图分别为题解3-1图(a1)和(b1)。
图(a1)中节点数 ,支路数
图(b1)中节点数 ,支路数
(2)电压源和电阻的串联组合,电流源和电阻的并联组合作为一条支路处理时,图(a)和图(b)所示电路的图分别为题解图(a2)和(b2)。
电容电流
t=2 ms时
电容的储能为
7—20题7—20图所示电路,开关合在位置1时已达稳定状态,t=0时开关由位置1合向位置2,求t0时的电压 .
题7-20图
解:
用加压求流法求等效电阻
7-26题7—26图所示电路在开关S动作前已达稳态;t=0时S由1接至2,求t0时的 .
题7-26图
解:由图可知,t>0时

电路习题集(含答案邱关源第五版)

电路习题集(含答案邱关源第五版)

西安交通大学 面朝大海目 录附录一:电路试卷 ........................................................ 38 附录二:习题集部分答案 (58)第一章 电路模型和电路定律一、是非题 (注:请在每小题后[ ]内用"√"表示对,用"×"表示错).1. 电路理论分析的对象是电路模型而不是实际电路。

[ ] .2. 欧姆定律可表示成 u R i =?, 也可表示成u R i =-?,这与采用的参考方向有关。

[ ].3. 在节点处各支路电流的方向不能均设为流向节点,否则将只有流入节点的电流而无流出节点的电流。

[ ] .4. 在电压近似不变的供电系统中,负载增加相当于负载电阻减少。

[ ] .5.理想电压源的端电压是由它本身确定的,与外电路无关,因此流过它的电流则是一定的,也与外电路无关。

[ ] .6. 电压源在电路中一定是发出功率的。

[ ] .7. 理想电流源中的电流是由它本身确定的,与外电路无关。

因此它的端电压则是一定的,也与外电路无关。

[ ] .8. 理想电流源的端电压为零。

[ ] .9. 若某元件的伏安关系为u =2i+4,则该元件为线性元件。

[ ] .10. 一个二端元件的伏安关系完全是由它本身所确定的,与它所接的外电路毫无关系。

[ ] .11.元件短路时的电压为零,其中电流不一定为零。

元件开路时电流为零,其端电压不一定为零。

[ ] .12. 判别一个元件是负载还是电源,是根据该元件上的电压实际极性和电流的实际方向是否一致(电流从正极流向负极)。

当电压实际极性和电流的实际方向一致时,该元件是负载,在吸收功率;当电压实际极性和电流的实际方向相反时,该元件是电源(含负电阻),在发出功率 [ ].13.在计算电路的功率时,根据电压、电流的参考方向可选用相应的公式计算功率。

若选用的公式不同,其结果有时为吸收功率,有时为产生功率。

邱关源《电路》第5版课后习题答案1-8章之欧阳歌谷创编

邱关源《电路》第5版课后习题答案1-8章之欧阳歌谷创编

答案欧阳歌谷(2021.02.01)第一章 电路模型和电路定律【题1】:由U A B =5V 可得:I AC .=-25A :U D B =0:U S .=125V 。

【题2】:D 。

【题3】:300;-100。

【题4】:D 。

【题5】:()a i i i =-12;()b u u u =-12;()c ()u u i i R =--S S S ;()d ()i i R u u =--S SS 1。

【题6】:3;-5;-8。

【题7】:D 。

【题8】:P US1=50 W ;P U S 26=- W ;P U S 3=0;P I S 115=- W ;P I S 2 W =-14;P I S 315=- W 。

【题9】:C 。

【题10】:3;-3。

【题11】:-5;-13。

【题12】:4(吸收);25。

【题13】:0.4。

【题14】:3123I +⨯=;I =13A 。

【题15】:I 43=A ;I 23=-A ;I 31=-A ;I 54=-A 。

【题16】:I =-7A ;U =-35V ;X 元件吸收的功率为P U I =-=-245W 。

【题17】:由图可得U E B =4V ;流过2 Ω电阻的电流I E B =2A ;由回路ADEBCA 列KVL 得U I A C =-23;又由节点D 列KCL 得I I C D =-4;由回路CDEC 列KVL 解得;I =3;代入上 式,得U A C =-7V 。

【题18】:P P I I 12122222==;故I I 1222=;I I 12=; ⑴KCL :43211-=I I ;I 185=A ;U I I S =-⨯=218511V 或16.V ;或I I 12=-。

⑵KCL :43211-=-I I ;I 18=-A ;U S =-24V 。

第二章 电阻电路的等效变换【题1】:[解答]I =-+9473A =0.5 A ;U I a b .=+=9485V ; I U 162125=-=a b .A ;P =⨯6125. W =7.5 W;吸收功率7.5W 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 电路模型和电路定律电路理论主要研究电路中发生的电磁现象,用电流i 、电压u 和功率p 等物理量来描述其中的过程。

因为电路是由电路元件构成的,因而整个电路的表现如何既要看元件的联接方式,又要看每个元件的特性,这就决定了电路中各支路电流、电压要受到两种基本规律的约束,即:(1)电路元件性质的约束。

也称电路元件的伏安关系(VCR ),它仅与元件性质有关,与元件在电路中的联接方式无关。

(2)电路联接方式的约束(亦称拓扑约束)。

这种约束关系则与构成电路的元件性质无关。

基尔霍夫电流定律(KCL )和基尔霍夫电压定律(KVL )是概括这种约束关系的基本定律。

掌握电路的基本规律是分析电路的基础。

1-1 说明图(a ),(b )中,(1),u i 的参考方向是否关联?(2)ui 乘积表示什么功率?(3)如果在图(a )中0,0<>i u ;图(b )中0,0u i <>,元件实际发出还是吸收功率?解:(1)当流过元件的电流的参考方向是从标示电压正极性的一端指向负极性的一端,即电流的参考方向与元件两端电压降落的方向一致,称电压和电流的参考方向关联。

所以(a )图中i u ,的参考方向是关联的;(b )图中i u ,的参考方向为非关联。

(2)当取元件的i u ,参考方向为关联参考方向时,定义ui p =为元件吸收的功率;当取元件的i u ,参考方向为非关联时,定义ui p =为元件发出的功率。

所以(a )图中的ui 乘积表示元件吸收的功率;(b )图中的ui 乘积表示元件发出的功率。

(3)在电压、电流参考方向关联的条件下,带入i u ,数值,经计算,若0>=ui p ,表示元件确实吸收了功率;若0<p ,表示元件吸收负功率,实际是发出功率。

(a )图中,若0,0<>i u ,则0<=ui p ,表示元件实际发出功率。

在i u ,参考方向非关联的条件下,带入i u ,数值,经计算,若0>=ui p ,为正值,表示元件确实发出功率;若0<p ,为负值,表示元件发出负功率,实际是吸收功率。

所以(b )图中当0,0>>i u ,有0>=ui p ,表示元件实际发出功率。

1-2 若某元件端子上的电压和电流取关联参考方向,而170cos(100)u t V π=,7sin(100)i t A π=,求:(1)该元件吸收功率的最大值;(2)该元件发出功率的最大值。

解:()()()170cos(100)7sin(100)595sin(200)p t u t i t t t t W πππ==⨯=(1)当0)200sin(>t π时,0)(>t p ,元件吸收功率;当1)200sin(=t π时,元件吸收最大功率:max 595p W =(2)当0)200sin(<t π时,0)(<t p ,元件实际发出功率;当1)200sin(-=t π时,元件发出最大功率:max 595p W =1-3 试校核图中电路所得解答是否满足功率平衡。

(提示:求解电路以后,校核所得结果的方法之一是核对电路中所有元件的功率平衡,即元件发出的总功率应等于其他元件吸收的总功率)。

解:由题1-3图可知,元件A 的电压、电流为非关联参考方向,其余元件的电压电流均为关联参考方向。

所以各元件的功率分别为:6053000A p W =⨯=>,为发出功率601600B p W =⨯=>,为吸收功率60201200C p W =⨯=>,为吸收功率402800D p W =⨯=>,为吸收功率202400E p W =⨯=>,为吸收功率电路吸收的总功率601208040300B D C E p p p p p W =+++=+++=即,元件A 发出的总功率等于其余元件吸收的总功率,满足功率平衡。

注:以上三题的解答说明,在电路中设电压、电流参考方向是非常必要的。

在计算一段电路或一个元件的功率时,如果不设电流、电压的参考方向,就无法判断该段电路或元件是发出还是吸收功率。

此外还需指出:对一个完整的电路来说,它产生(或发出)的功率与吸收(或消耗)的功率总是相等的,这称为功率平衡。

功率平衡可以做为检验算得的电路中的电压、电流值是否正确的一个判据。

1-4 在指定的电压u 和电流i 参考方向下,写出各元件u 和i 的约束方程(元件的组成关系)。

解:(a )图为线性电阻,其电压、电流关系满足欧姆定律。

需要明确的是:(1)欧姆定律只适用于线性电阻;(2)如果电阻R 上的电流、电压参考方向非关联,欧姆定律公式中应冠以负号,即)()(t Ri t u -=。

由以上两点得(a )图电阻元件u 和i 的约束方程为i i R u 31010⨯-=-=欧姆定律表明,在参数值不等于零、不等于无限大的电阻上,电流与电压是同时存在、同时消失的。

即电阻是无记忆元件,也称即时元件。

(b )图为线性电感元件,其电压、电流关系的微分形式为:dt t di L t u )()(=。

如果电压、电流参考方向为非关联,上式中应冠以负号,所以(b )图电感元件u 和i 的约束方程为dt diu 31020-⨯-=电感元件的电压、电流微分关系表明:(1)任何时刻,其电压与该时刻的电流变化率成正比,显然直流时,电感电压为零,电感相当于短路。

因此,电感是一个动态元件。

(2)当电感上的电压为有限值时,电感中的电流不能跃变,应是时间的连续函数。

(c )图为线性电容元件,其电压、电流关系的微分形式为:dt t du C t i )()(=。

如果电压、电流的参考方向为非关联,上式中应冠以负号,即dt t du C t i )()(-=。

所以(b )图电容元件u 和i 的约束方程为dt du dt du i 56101010--=⨯=电容元件的电压。

电流微分关系表明:(1)任何时刻,通过电容的电流与该时刻其上的电压变化率成正比,即电容是一个动态元件。

显然直流时,电容电流为零,电容相当于开路。

(2)当电容上的电流为有限值时,电容上的电压不能跃变,必须是时间的连续函数。

(d )图是理想电压源。

理想电压源的特点为:(1)其端电压与流经它的电流方向、大小无关。

(2)其电压由它自身决定,与所接外电路无关,而流经它的电流由它及外电路所共同决定。

由以上特点得(d )图的约束方程为V u 5-=(e )图是理想电流源。

理想电流源的特点为:(1)其发出的电流)(t i 与其两端电压大小、方向无关。

(2)其输出电流由它自身决定,与所接外电路无关,而它两端电压由它输出的电流和外部电路共同决定。

由以上特点得(e )图的约束方程为A i 2=注:以上五个理想元件是电路分析中常遇到的元件。

元件电压、电流的约束方程,反映了每一元件的特性和确定的电磁性质。

不论元件接入怎样的电路,其特性是不变的,即它的,u i 约束方程是不变的。

因而深刻地理解和掌握这些方程,就是掌握元件的特性,对电路分析是非常重要的。

1-5 图(a )电容中电流i 的波形如图(b )所示现已知0)0(=C u ,试求s t 1=时,s t 2=和s t 4=时的电容电压。

解:已知电容的电流)(t i 求电压)(t u 时,有0000111()()()()()t t t t t u t i d i d u t i d C C C ξξξξξξ-∞=+=+⎰⎰⎰ 式中)(0t u 为电容电压的初始值。

本题中电容电流)(t i 的函数表示式为⎪⎩⎪⎨⎧>-<≤≤=21020500)(t t t t t i根据,u i 积分关系,有1t s =时 101(1)(0)()C C u u i t dt C =+⎰V t tdt 25.1)25(21521010210=⨯=+=⎰s t 2=时 ⎰+=20)(1)0()2(dt t i C u u C CV t tdt 5)25(21521020220=⨯=+=⎰ 4t s =时 ⎰+=42)(1)2()4(dt t i C u u C C V t tdt 5)10(215102154242-=-⨯+=-+=⎰注:电路元件,u i 关系的积分形式表明,t 时刻的电压与t 时刻以前的电流的“全部历史”有关,即电容有“记忆”电流的作用,故电容是有记忆的元件。

因此在计算电容电压时,要关注它的初始值()0c u t ,()0c u t 反映了电容在初始时刻的储能状况,也称为初始状态。

电感元件也具有类似的性质,参见1-6题。

1-6 图(a )中H L 4=,且i ,电压的波形如图(b )所示。

试求当 s t 1=,s t 2=,s t 3=和s t 4=时的电感电流i 。

解:电感元件i u ,关系的积分形式为001()()()t t i t i t u d L ξξ=+⎰上式表明,电感元件有“记忆”电压的作用,也属于记忆元件。

式中)(o t i 为电感电流的初始值,反映电感在初始时刻的储能状况。

本题中电感电压的函数表示式为⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<-<<<<<=t t t t t t t u 40434010320201000)( 应用i u ,积分关系式,有s t 1=时,101(1)(0)()i i u t dt L =+⎰A t dt 5.2)10(41104101010=⨯=+=⎰s t 2=时,⎰+=21)(1)1()2(dt t u L i i21112.510 2.5(10)544dt t A =+=+⨯=s t 3=时,⎰+=32)(1)2()3(dt t u L i i A dt 5041532=+=⎰s t 4=时,⎰+=43)(1)3()4(dt t u L i i 4315(1040) 3.754t dt A =+-=⎰1-7 若已知显像管行偏转线圈中的周期性行扫描电流如图所示,现已知线圈电感为H 01.0,电阻略而不计,试求电感线圈所加电压的波形。

解:电流)(t i 的函数表达式为⎪⎩⎪⎨⎧<<-⨯⨯<<⨯=-s t t s t t t i μ6460)1064(103μ60010602.1)(656 根据电感元件i u ,的微分关系,得电压的函数表达式为⎩⎨⎧<<⨯-<<⨯==s t s t dt t di t u μ6460103μ600102)(01.0)(32)(t u 的波形如题解1-7图,说明电感的电压可以是时间的间断函数。

1-8 F μ2电容上所加电压的波形如图所示。

求:(1)电容电流i ;(2)电容电荷q ;(3)电容吸收的功率p 。

相关文档
最新文档