东南大学概率论与数理统计07-08(2)试卷

合集下载

东南大学概率论期末考试概率统计11123A解答

东南大学概率论期末考试概率统计11123A解答

;.东 南 大 学 考 试 卷 ( 答 案 )( A 卷)课 程 名 称 概率论与数理统计考 试 学 期1 1 - 12 -3 得分适 用 专 业 全校 考 试 形 式闭卷 考试时间长度120 分钟 题号一二三四五六七八九自 觉得分遵 ( x)守1 et 2 /2dt 表示标准正态分布的分布函数,2考 ( 1.645) 0.05; 场 (1.3) 0.9032;(0) 0.5; (1.96) 0.975;(1) 0.8413 (2)0.9772纪 一、填充题(每空格 2’,共 38’;过程班共 34’)律线1)已知 P(B)=P(A)=0.2 ,A 和 B 相互独立 ,则 P(A-B)=0.16 ;P(AUB)=0.36。

如 名2) 一盒中有 2 个白球, 3 个黑球,每次抽取一球,从中不放回地抽取两次,则第二 考 姓 次取到黑球的概率为0.6 ,取到两个球颜色相同的概率为2/5。

试 3)设随机变量 X 服从正态分布 作 封弊 2N (1 , 4), P( X1) _ 0.5。

(过程班不做)1 4)设 此 W(t ) 是参数为的Wiener 过程,则随机过程 X (t)W (t), t t0 的一答 维概率密度函数 卷 密 无 f (x ; t )1 exp{2x 2/ 2}。

(过程班做)效 5) 随机变量 X ,Y 独立同分布, 都服从正态分布 N(1 ,4),则 P(X-Y> 2 2 )=0.1587 。

号 6)随 机 变 量 X , Y 的 联 合 分 布 律 为 : P(X=0,Y=0)=0.2; P(X=0,Y=1)=0.3; 学P(X=1,Y=0)=0.3;P(X=1,Y=1)=0.2.则X+Y分 布律为p(X+Y=0)=0.2;P(X+Y=1)=0.6;P(X+Y=2)=0.2。

E[XY]= 0.2。

(过程班不做)7)随机变量 X ,Y 的相关系数为 0.5,则 5-2X ,和 Y-1 的相关系数为 -0.5。

概率论与数理统计试卷(二)

概率论与数理统计试卷(二)

课程概率论与数理统计模拟试题(二)课程代码:考核方式: 闭卷考试时量:120 分钟试卷类型:一、填空题(每题2分,共20分)P(AB)=8次取到红球的概3、已知F0.05(3,4)=6.59,则F0.95(4,3)=________________;已知F~F(5,9),则F1~_____分布4、随机变量X服从参数为λ的指数分布,则EX = EX2=5、根据泊松定理,对于成功率为p的n重伯努利试验,只要n充分大,而p充分小,其成功次数X近似的服从参数为λ= 的泊松分布。

6、设D(X)=1, D(Y)=4, 相关系数ρxy=12, 则COV(X,Y)=_______7、对于连续型随机向量,X与Y独立的充分必要条件是,对于任何(x,y)∈R2,有f(x,y)=8、T服从n个自由度的t分布,则T2服从自由度为的分布9、设总体X服从正态分布N(μ,σ2),其中μ、σ2未知,则μ的置信度1-α(0<α<1)的置信区间为__________10、设X~N(1,3) ,则(X-1)2/3~________________分布。

二、单选题(在本题的每一小题的备选答案中,只有一个答案是正确的,请把你认为正确答案的题号,填入题干的括号内,多选不给分。

每题2分,共20 分)1.设随机事件A与B互不相容,且有P(A)>0,P(B)>0,则下列关系成立的是( ).A. A,B相互独立B. A,B不相互独立C. A,B互为对立事件D. A,B不互为对立事件2、对于任意两个随机事件A 与B ,有P(A-B)为().①②③. ④.3、对任意随机变量X,若E(X)存在,则E(E(E(X)))等于( )。

①. 0 ②. X ③. (E(X))3 ④. E(X)4、设随机变量X的分布函数为F(x),. Y=2X+1,则Y的分布函数为( )①. F(y /2-1/2)②. F(y/2+1)③. 2F(x)+1④. 1/2F(y)-1/25、若E(XY)=E(X))(YE⋅,则必有( )①D(XY)=D(X)D(Y) ②D(X+Y)=D(X)+D(Y)③X与Y相互独立④X与Y不相互独立6、设随机变量X服从正态分布N(μ,σ2),则随σ的增大,概率P{}σμ≤-X应()①单调增大②单调减小③保持不变④不能确定7、设两个相互独立的随机变量X与Y分别服从正态分布N(0,1)和N(1,1)则()①P{}1≤+YX=1/2 ②P{}0≤+YX=1/2③P{}1.5X Y+≥=1/2 ④P{}0≥+YX=1/28、已知离散型随机变量X服从参数为2的泊松分布,Y=3X-2,则EY=()①10 ② 4 ③-2 ④–1/29、对正态总体的数学期望μ进行假设检验,如果的显著水平0.05下拒绝H0:μ=μ0,那么在显著水平0.01下,下列结论正确的是()第 1 页座位号第 2 页① 必接受H 0 ②可能接受,也可能拒绝H 0 ③ 必拒绝H 0 ④ 不接受也不拒绝H 0 10、设),(21X X 是来自总体X 的一个容量为2的样本,则在下列E(X)的无偏估计量中, 最有效的估计量是 ( )① 2X1/3+X2/3 ②X1/4+3X2/4 ③ 2X1/5+3X2/5 ④ X1/2+X2/2三、判断题:(共12分) A,B 一定独立。

东南大学概率论试题07-08(3)

东南大学概率论试题07-08(3)

东 南 大 学 考 试 卷( A 卷)课程名称 概率统计与随机过程 考试学期 07—08(三) 得 分适用专业 全校考试形式闭卷考试时间长度 120分钟备用数据:( 1.645)0.05Φ-=; (0.5792)0.7188Φ=; (1)0.8413Φ= (1.414)0.9213Φ=; (1.96)0.975Φ=;(2)0.9772Φ=22221515221616224~()(7.261)0.95 (24.996)0.05 (7.962)0.95 (26.2961)0.05 (12.401)0.975 n n P P P P P χχχχχχχ≥=≥=≥=≥=≥=:;;;;;224223535223699 (39.364)0.025 (22.465)0.95 (49.802)0.05 (23.269)0.95 (128.4220)0.025(P P P P P P χχχχχχ≥=≥=≥=≥=≥=;;;;;229999117.4069)0.1 (81.4493)0.9P χ≥=≥=;;1515161624~(): ( 1.3406)0.10 ( 1.7531)0.05 ( 1.3368)0.10 ( 1.7459)0.05 ( 2.0639)0.025 n T t n P T P T P T P T P TP ≥=≥=≥=≥=≥=;;;;;242525353599( 1.7109)0.05 ( 2.0595)0.025 ( 1.7081)0.05 ( 2.0301)0.025 ( 1.6869)0.05 ( 2.0281)T P T P T P T P T P T ≥=≥=≥=≥=≥=≥;;;;;990.02 ( 1.9842)0.025P T =≥=;;一、选择题(每题3分,共15分)1、设事件A 和B 同时发生必然导致C 发生,则 (A) ()()()1P C P A P B ≤++ (B) ()()()1P C P A P B ≥++ (C) ()()P C P AB =(D) ()()P C P A B =⋃2、设随机变量X 的分布函数为F (x ),Y =2X +1的分布函数为G (y )则必有 (A) 11()()22G y F y =- (B) 1()(1)2G y F y =+ (C) ()2()1G y F y =+ (D) 11()()22G y F y =-3、设随机变量~(0,1),~(1,4)X N Y N ,且X 、Y 的相关系数1ρ=-,则 (A) (21)1P Y X =--= (B) (21)1P Y X =-= (C) (21)1P Y X =-+=(D) (21)1P Y X =+=4、设12,,,n X X X 为独立同分布的随机变量序列,且都服从参数为(0)λλ>的Poisson 分布,记()x Φ为标准正态分布函数,则(A) lim )()nin Xn P x x λ→∞-≤=Φ∑(B) lim )()nin X n P x x λ→∞-≤=Φ∑(C) lim )()ni n X nP x x λ→∞-≤=Φ∑(D) lim )()nin XP x x λ→∞-≤=Φ∑5、设()11,,,,,m m n X X X X + 是来自正态分布(0,1)N 的容量为n 的简单随机样本,221111()()m ni i i i m Y X X m n m ==+=+-∑∑服从的分布是(A) (0,2)N (B)2()n χ(C)2(2)χ(D) (0,)N n3分,共15分)1、设随机变量X 、Y 独立同服从参数1λ=的指数分布(1)e ,则(m a x {,}2P X Y >=________________。

2024年概率论与数理统计试卷参考答案与评分标准

2024年概率论与数理统计试卷参考答案与评分标准

2023─2024学年第二学期《概率论与数理统计》课程考试试卷(A 卷)参考答案与评分标准一、填空题(每空3分,共30分)1.在显著性检验中,若要使犯两类错误的概率同时变小,则只有增加样本容量.2.设随机变量X 具有数学期望()E X μ=与方差2()D X σ=,则有切比雪夫不等式{}2P X μσ-≥≤14.3.设X 为连续型随机变量,a 为实常数,则概率{}P X a ==0.4.设X 的分布律为,{}1,2,k k P X x p k === ,2Y X =,若1nkk k xp ∞=∑绝对收敛(n为正整数),则()E Y =21kk k xp ∞=∑.5.某学生的书桌上放着7本书,其中有3本概率书,现随机取2本书,则取到的全是概率书的概率为17.6.设X 服从参数为λ的poisson 分布,则(2)E X =2λ.7.设(2,3)Y N ,则数学期望2()E Y =7.8.(,)X Y 为二维随机变量,概率密度为(,)f x y ,X 与Y 的协方差(,)Cov X Y 的积分表达式为(())(())(,)d d x E x y E y f x y x y +∞+∞-∞-∞--⎰⎰.9.设X 为总体N (3,4)中抽取的样本14,,X X 的均值,则{}15P X ≤≤=2(2)1Φ-.(计算结果用标准正态分布的分布函数()x Φ表示)10.随机变量2(0,)X N σ ,n X X X ,,,21 为总体X 的一个样本,221()(1)ni i Y k X χ==∑ ,则常数k =21n σ.A 卷第1页共4页二、概率论试题(45分)1、(8分)题略解:用A B C 、、,分别表示三人译出该份密码,所求概率为P A B C ()(2分)由概率公式P A B C P ABC P A P B P C ()=1-()=1-()()()(4分)1-1-1-p q r =1-()()()(2分)2、(8分)设随机变量()1,()2,()3,()4,0.5XY E X D X E Y D Y ρ=====,求数学期望()E X Y +与方差(23)D X Y -.解:(1)()E X Y +=E X E Y ()+()=1+3=4(3分)(2)(23)4()9()12ov(,)D X Y D X D Y C X Y -=+-(3分)8361244XY ρ=+--(2分)3、(8分)某种电器元件的寿命服从均值为100h 的指数分布,现随机地取16只,它们的寿命i T 相互独立,记161ii T T ==∑,用中心极限定理计算{1920}P T ≥的近似值(计算结果用标准正态分布的分布函数()x Φ表示).解:i i ET D T E T D T 2()=100,()=100,()=1600,()=160000(3分){1920}0.8}1P T P ≥=≈-Φ(0.8)(5分)(4分)4、(10分)设随机变量X 具有概率密度11()0x x f x ⎧-≤≤=⎨⎩,,其它,21Y X =+.(1)求Y 的概率密度()Y f y ;(2)求概率312P Y ⎧⎫-<<⎨⎩⎭.解:(1)12Y Y y F y y F y ≤>时()=0,时()=1(1分)A 卷第2页共4页212,{}{1}()d Y y F y P Y y P X y f x x<≤≤=+≤=()=(2分)02d 1x x y ==-(2分)概率密度函数2()=Y Y y f y F y ≤⎧'⎨⎩1,1<()=0,其它(2分)(2)3102Y YP Y F F ⎧⎫-<<=-=⎨⎬⎩⎭311()-(-1)=222.(3分)5、(11分)设随机变量(,)X Y 具有概率分布如下,且{}1103P X Y X +===.XY-101013p114q112(1)求常数,p q ;(2)求X 与Y 的协方差(,)Cov X Y ,并问X 与Y 是否独立?解:(1)1111134123p q p q ++++=+=,即(2分)由{}{}{}{}{}101011010033P X Y X P Y X pP X Y X P X P X p +====+========+,,(2分)可得16p q ==(1分)X 01Y -11P1212P7121614(2)EX 1()=2,E Y 1()=-3,E XY 1()=-6(3分),-Cov X Y E XY E X E Y ()=()()()=0(2分)由..ij i j P P P ≠可知X 与Y 不独立(1分)三、数理统计试题(25分)1、(8分)题略.A 卷第3页共4页证明:222(1)(0,1),(1)X n S N n χσ-- ,22(1)X n S σ-相互独立(4分)2(1)Xt n - ,即(1)X t n - (4分)2、(10分)题略解:似然函数2221()(,)2n i i x L μμσσ=⎧⎫-=-⎨⎬⎩⎭∑2221()ln ln(2)ln() 222ni i x n n L μπσσ=-=---∑(4分)由2222411()ln ln 0,022n ni i i i x x L L nμμμσσσσ==--∂∂===-+=∂∂∑∑可得221111ˆˆ,()n n i i i i x x n n μσμ====-∑∑为2,μσ的最大似然估计(2分)由221ˆˆ(),()n nE E μμσσ-==可知11ˆni i x n μ==∑为μ的无偏估计量,2211ˆ()ni i x n σμ==-∑为2σ的有偏估计量(4分)3、(7分)题略解:01: 4.55: 4.55H H μμ=≠(2分)检验统计量x z =,拒绝域0.025 1.96z z ≥=(2分)而0.185 1.960.036z ==>(1分)因而拒绝域0H ,即不认为总体的均值仍为4.55(2分)A 卷第4页共4页。

大学概率论与数理统计试题三套(附答案)

大学概率论与数理统计试题三套(附答案)

大学概率论与数理统计试题三套(附答案)南京工业大学概率论与数理统计课程考试试题(A 、闭)(2008/2009学年第二学期)院(系) ____班级 ___ 学号 __ 姓名 ___ 得分一、填空题(每空2分,计20分)1.设4.0)(=A P ,7.0)|(=A B P ,则(1)=)(AB P ______ (2)=-)(B A P______。

2. 设随机变量)1,0(~N X ,)1,0(~N Y 且Y X ,独立,则~Y X + ,~22Y X + 。

3. 设随机变量)1,0(~N X ,则=||X E ,=2EX。

4. 设随机变量X 与Y 相互独立,且均服从概率6.0=p 的0-1分布,则{}Y X P ==______。

5. 设随机变量)1.0,10(~B X (二项分布), )3(~πY (泊松分布3=λ),且X 与Y 相互独立,则)32(+-Y X E =__________;)32(+-Y XD =__________。

6.设总体),(~2σμN X ,),,,(21n X X X 是来自总体X 的样本,已知∑=-?ni i X X c 12)(是2σ的无偏估计量,则=c二、选择题(每题2分,计10分)1. 当事件A 和B 同时发生时,必然导致事件C 发生,则下列结论正确的是()(A )1)()()(-+≥B P A P C P (B )1)()()(-+≤B P A PC P (C ))()(B A P C P ?= (D ))()(AB P C P =2. 某人向同一目标独立重复射击,每次射击命中目标的概率为)10(<4次射击恰好第2次命中目标的概率为()(A ) 2)1(3p p - (B ) 2)1(6p p - (C ) 22)1(3p p - (D ) 22)1(6p p -3.设Y X ,独立, Y X ,的概率密度分别为)(),(y f x f Y X , 则在y Y =的条件下,X 的条件概率密度)|(|y x f Y X 为()(A ))()(y f x f Y X (B ))(/)(y f x f Y X (C ) )(x f X (D ))(y f Y 4. 下列结论正确的是()。

(完整版)概率论与数理统计试卷与答案

(完整版)概率论与数理统计试卷与答案

《概率论与数理统计》课程期中试卷班级 姓名 学号____________ 得分注意:答案写在答题纸上,标注题号,做在试卷上无效。

考试不需要计算器。

一、选择题(每题3分,共30分)1. 以A 表示事件“泰州地区下雨或扬州地区不下雨”,则其对立事件A :( ) A .“泰州地区不下雨” B .“泰州地区不下雨或扬州地区下雨” C .“泰州地区不下雨,扬州地区下雨” D .“泰州、扬州地区都下雨”2. 在区间(0,1)中任取两个数,则事件{两数之和小于25}的概率为( ) A .225 B .425 C .2125 D .23253. 已知()0.7P A =,()0.5P B =,()0.3P A B -=,则(|)P A B =( ) A .0.5 B . 0.6 C .0.7 D . 0.84. 设()F x 和()f x 分别是某随机变量的分布函数和概率密度,则下列说法正确的是( ) A .()F x 单调不增 B . ()()xF x f t dt -∞=⎰C .0()1f x ≤≤D .() 1 F x dx +∞-∞=⎰.5. 设二维随机变量(,)X Y 的概率分布为已知随机事件{X = A . a=0.2,b=0.3 B . a=0.4,b=0.1 C . a=0.3,b=0.2 D . a=0.1,b=0.4 6. 已知()0.7P A =,()0.5P B =,(|)0.8P A B =,则()P A B -=( ) A .0.1 B . 0.2 C .0.3 D . 0.47. 设两个随机变量X 和Y 相互独立且同分布:{}{}1112P X P Y =-==-=,{}{}1112P X P Y ====,则下列各式成立的是( ) A .{}12P X Y ==B {}1P X Y ==C .{}104P X Y +==D .{}114P XY == 8. 设随机变量~(2,),~(3,),X B p Y B p 若19{1}27P Y ≥=,则{1}P X ≥= ( ) A .13 B .23 C .49D .599. 连续随机变量X 的概率密度为⎪⎩⎪⎨⎧≤<-≤≤=其它,021,210,)(x x x x x f ,则随机变量X 落在区间 (0.4, 1.2) 内的概率为( )A .0.42B .0.5C .0.6D .0.64 10. 将3粒红豆随机地放入4个杯子,则杯子中盛红豆最多为一粒的概率为( ) A .332B .38C .116D .18二、填空题(每题4分,共20分)11. 设概率()0.3,()0.5,()0.6P A P B P A B ==+=, 则()P AB = . 12. 设随机变量X 服从参数为1的泊松分布,则{3}P X == . 13. 某大楼有4部独立运行的电梯,在某时刻T ,各电梯正在运行的概率均为43,则在此时刻恰好有1个电梯在运行的概率为 .14. 某种型号的电子的寿命X (以小时计)的概率密度210001000()0x f x x ⎧>⎪=⎨⎪⎩其它任取1只,其寿命大于2500小时的概率为 .15. 设随机变量X 的分布函数为:0(1),0.2(12),()0.5(23),1(3).x x F x x x <⎧⎪≤<⎪=⎨≤<⎪⎪≤⎩当时当时当时当时则 X 的分布律为 . 三、解答题(每题10分,共50分)16. 已知0.30.40.5+P A P B P AB P A A B ===()()()(|),,,求17. 从只含3红, 4白两种颜色的球袋中逐次取一球, 令1,,0,i i X i ⎧=⎨⎩第次取出红球第次取出白球,1,2i =. 在不放回模式下求12,X X 的联合分布律, 并考虑独立性(要说明原因).18. 某工厂有两个车间生产同型号家用电器,第1车间的次品率为0.15,第2车间的次品率为0.12.两个车间生产的成品都混合堆放在一个仓库中,假设1、2车间生产的成品比例为2:3,今有一客户从成品仓库中随机提台产品,求该产品合格的概率.19. 设某城市成年男子的身高()2~170,6X N (单位:cm )(1)问应如何设计公交车车门高度,使得男子与车门碰头的概率小于0.01? (2)若车门高为182cm ,求100个成年男子中没有人与车门顶碰头的概率. ( 2.330.9920.9772Φ=Φ=(),())20. 已知随机变量(,)X Y 的分布律为问:(1)当,αβ为何值时,X 和Y 相互独立;(2)在上述条件下。

东南大学07-08-3高等数学B期中考试试卷参考答案

东南大学07-08-3高等数学B期中考试试卷参考答案

07-08-3高数B 期中试卷参考答案08.4.11一.单项选择题(本题共4小题,每小题4分,满分16分) 1.级数1(1)l n nn ∞=⎛⎫-+ ⎝∑ (常数0a >) [ A ] (A ) 绝对收敛 (B ) 条件收敛 (C ) 发散 (D ) 敛散性与a 的取值有关 2. 下列反常积分发散的是 [ C ] (A)31r c t a n d 1x x x +∞+⎰(B) 21x ⎰ (C )321d l n (1)x x -⎰ (D) 1x +∞⎰ 3. 已知直线1412:235x y z L -++==与2113:324x y z L ---==-,则1L 与2L [ B ] (A )相交 (B ) 异面 (C ) 平行但不重合 (D ) 重合4. 设函数21,01()0,10x x f x x ⎧+≤<=⎨-≤<⎩,01()(c o s s i n )2n n n a S x a n x b n x ππ∞==++∑, x -∞<<+∞,其中11()c o s d (0,1,2,)n a f x n x x n π-==⎰, 11()s i n d (1,2,)n b f x n x x nπ-==⎰,则()3S = [ B ](A )12(B ) 1 (C ) 0 (D ) 2 二.填空题(本题共5小题,每小题4分,满分20分) 5. 若23-a b 垂直于+a b,且=a ,则a 与b 的夹角为4π; 6. 曲线222340x y z ⎧+=⎨=⎩绕y 轴旋转一周所成的曲面方程是2222324x y z ++=;7. 曲线22222223520x y z x y z ⎧++=⎪⎨--=⎪⎩在y O z 面上的投影曲线方程是2210y z x ⎧+=⎨=⎩; 8. 设幂级数1(1)nn n a x ∞=-∑在4x =处条件收敛, 则该幂级数的收敛半径为3; 9.幂级数210(1)(2)21nn n x n ∞+=--+∑的收敛域为[1,3]. 三. 计算下列各题(本题共4小题,每小题9分,满分36分)10.求过点(1,2,1)且与直线21010x y z x y z +-+=⎧⎨-+-=⎩及直线201x y z +==--都平行的平面方程.解 1121(1,2,3)111=-=---ij k s ,平面方程为1211230011x y z -----=--, 即 0x y z -+=11.求过点(4,6,2)--,与平面62310x y z --+=平行,且与直线113325x y z -+-==-相交的直线方程. 解 设所求直线与直线113325x y z -+-==-的交点为000(,,)x y z ,0013x t =+, 000012,35y t z t =-+=-,于是00000006(4)2(6)3(2)6(53)2(72)3(55)29(1)0x y z t t t t +---+=+--+--=+=,得01t =-,交点为(2,3,8)--,所求直线方程为4622910x y z +-+==- 12.将函数()2()ln 23f x x x =+-展开为3x -的幂级数,并求收敛域. 解 ()232()ln 23ln(1)(23)ln18ln 1ln 1(3)29x f x x x x x x -⎛⎫⎛⎫=+-=-+=++++- ⎪ ⎪⎝⎭⎝⎭11(1)12ln18(3)29nn n n n x n -∞=⎛⎫-⎛⎫=++- ⎪ ⎪ ⎪⎝⎭⎝⎭∑,15x <≤ 13. 求幂级数121(1)n n n nx ∞-=-∑的和函数,并指明收敛域.解 令2y x =,21211222111(1)(1)(1)1(1)(1)n nn n n n n n n y y x nxny y y y y y x ∞∞∞---===''⎛⎫⎛⎫-=-=-=== ⎪ ⎪+++⎝⎭⎝⎭∑∑∑,11x -<<四(14).(本题满分9分)求母线平行于向量+j k ,准线为22411x y z ⎧-=⎨=⎩的柱面方程.解 设000(,,1)M x y 是准线上一点,则010x x y y z -=-=-,则0x x =, 01y y z =-+,代入准线方程即得所求的柱面方程224(1)1x y z --+=五(15)。

概率论与数理统计试卷及答案

概率论与数理统计试卷及答案
概率。
2.设的联合概率密度为,求(1)系数A;(2)落在以(0,0)、(0,1)、(1,0)、(1,1)为顶点的正方形内的概率;(3)判断X和Y是否独立。
3.对于一个学生而言,来参加家长会的家长人数是一个随机变量。设一个学生无家长、1名家长.2名家长来参加会议的概率分别为0.05.0.8、0.15。若学校共有400名学生,设各学生参加会议的家长数相互独立,且服从同一分布,求参加会议的家长数X超过450的概率。()
4.将n个人随机地分配到N(n<N)个房间,每个房间容纳的人数不限,某一指定的房间中恰有k人的概率.______________________。
5.设连续型随机变量,为取自总体的样本,则统计量.服从_____________________分布。
6.设随机变量X的分布未知,,则根据切比雪夫不等式_____________________________。
lnL=nln(2) =nln(2) 5分
令 6分
8分
的极大似然 10分
四、证明题:(每题6分,共12分)
得分
评阅人
1.证明:因为X~, Y~
所以, 2分
因为X与Y相互独立
所以
4分
即得证X+Y~ 。6分
2.证明:设的联合概率密度函数为,的概率密度函数和分布函数分别为
和,则有
2分
4分
6分
(2) 4分
(3) 6分
8分
有f(x,y)=fX(x)fY(y),故X与Y独立10分
3.解:设表示第k个学生来参加会议的家长数,则的分布律为
0
1
2
0.05
0.8
0.15
3分
易知 4分
态分布, 6分

东南大学概率论期末考试概率统计A解答

东南大学概率论期末考试概率统计A解答

东南大学考试卷〔答案〕〔A 卷〕课程名称概率论与数理统计考试学期11-12-3得分适用专业全校考试形式闭卷考试时间长度120分钟2/2()x tx dt--∞Φ=⎰表示标准正态分布的分布函数,( 1.645)0.05(0)0.5(1)0.8413(1.3)0.9032(1.96)0.975(2)0.9772Φ-=Φ=Φ=Φ=Φ=Φ=;;;;一、填充题〔每空格2’,共38’;过程班共34’〕1)P(B)=P(A)=0.2,A和B相互独立,那么P(A-B)= ;P(AUB)= 。

2)一盒中有2个白球,3个黑球,每次抽取一球,从中不放回地抽取两次,那么第二次取到黑球的概率为,取到两个球颜色一样的概率为2/5 。

3)设随机变量X服从正态分布(1,4),(1)_0.5___N P X<=。

〔过程班不做〕4)设()W t是参数为2σ的Wiener过程,那么随机过程()(),0X t t t=>的一维概率密度函数()f x t=;2/2}x-________。

〔过程班做〕5)随机变量X,Y独立同分布,都服从正态分布N(1,4),那么P(X-Y>)=__。

6)随机变量X,Y的联合分布律为:P(X=0,Y=0)=0.2; P(X=0,Y=1)=0.3; P(X=1,Y=0);P(X=1,Y=1). 那么X+Y分布律为p(X+Y=0)=0.2;P(X+Y=1)=0.6;P(X+Y=2)=0.2。

E[XY]= 。

〔过程班不做〕7)随机变量X,Y的相关系数为,那么5-2X,和Y-1的相关系数为。

8)设随机变量序列{Xn,n=1,2,…}独立同分布,EX1=2, DX1=2,那么−→−+++pnXXXn)...(1222216 。

9)设总体X服从正态分布(1,2)N,1210,,...,X X X是来此该总体的样本,2,X S分别表示样本均值和样本方差,那么EX= 1 ,2()E XS= 2 。

10) 随机变量X 的分布律为P(X= -1)=P(X=1)=1/2,那么其分布函数为F(x)=0,x<-1;F(x)=0.5,-1<=x<1;F(x)=1,x>=1; 。

大学概率论和数理统计试题(卷)库与答案解析a

大学概率论和数理统计试题(卷)库与答案解析a

<概率论>试题一、填空题1.设 A 、B 、C 是三个随机事件。

试用 A 、B 、C 分别表示事件1)A 、B 、C 至少有一个发生2)A 、B 、C 中恰有一个发生3)A 、B 、C 不多于一个发生2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。

则P(B)A = 3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7,则α=4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)k P X k A k ===⋅⋅⋅则A=______________ 7. 已知随机变量X 的密度为()f x =⎩⎨⎧<<+其它,010,x b ax ,且{1/2}5/8P x >=,则a =________ b =________8. 设X ~2(2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为8081,则该射手的命中率为_________10.若随机变量ξ在(1,6)上服从均匀分布,则方程x 2+ξx+1=0有实根的概率是11.设3{0,0}7P X Y ≥≥=,4{0}{0}7P X P Y ≥=≥=,则{max{,}0}P X Y ≥=12.用(,X Y )的联合分布函数F (x,y )表示P{a b,c}X Y ≤≤<=13.用(,X Y )的联合分布函数F (x,y )表示P{X a,b}Y <<=14.设平面区域D 由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D 上服从均匀分布,则(x,y )关于X 的边缘概率密度在x = 1 处的值为 。

概率论与数理统计考试试卷(附答案)

概率论与数理统计考试试卷(附答案)

概率论与数理统计考试试卷(附答案)一、选择题(共6小题,每小题5分,满分30分) 1. 事件表达式B A -的意思是 ( ) (A) 事件A 与事件B 同时发生 (B) 事件A 发生但事件B 不发生 (C) 事件B 发生但事件A 不发生(D) 事件A 与事件B 至少有一件发生2. 假设事件A 与事件B 互为对立,则事件A B ( ) (A) 是不可能事件 (B) 是可能事件 (C) 发生的概率为1(D) 是必然事件3. 已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) (A) 自由度为1的χ2分布 (B) 自由度为2的χ2分布 (C) 自由度为1的F 分布(D) 自由度为2的F 分布4. 已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( )(A) X +Y ~P (4) (B) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D) X +Y ~N (0,3)5. 样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) (A) X 1+X 2+X 3是μ的无偏估计(B)1233X X X ++是μ的无偏估计(C) 22X 是σ2的无偏估计(D) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计6. 随机变量X 服从在区间(2,5)上的均匀分布,则X 的方差D (X )的值为( ) (A) 0.25(B) 3.5(C) 0.75(D) 0.5二、填空题(共6小题,每小题5分,满分30分。

把答案填在题中横线上) 1. 已知P (A )=0.6, P (B |A )=0.3, 则P (AB )= __________2. 三个人独立地向一架飞机射击,每个人击中飞机的概率都是0.4,则飞机被击中的概率为__________3. 一个袋内有5个红球,3个白球,2个黑球,任取3个球恰为一红、一白、一黑的概率为_____4. 已知连续型随机变量,01,~()2,12,0,.x x X f x x x ≤≤⎧⎪=-<≤⎨⎪⎩其它 则P {X ≤1.5}=_______.5. 假设X ~B (5, 0.5)(二项分布), Y ~N (2, 36), 则E (2X +Y )=__________6. 一种动物的体重X 是一随机变量,设E (X )=33, D (X )=4,10个这种动物的平均体重记作Y ,则D (Y )=_____________________ _______三、有两个口袋,甲袋中盛有两个白球,一个黑球,乙袋中盛有一个白球,两个黑球。

概率统计13-14-2(A).doc

概率统计13-14-2(A).doc

第 1 页 共 4 页-
别表示样本均值和样本方差, 则 E(X)
, E(S2X 3)

9) 随机变量 X 的分布律为 P(X= -2)=0.6,P(X=0)=0.4,则其分布函数



10) 随 机 变 量 X 服 从 均 值 为 1 的 指 数 分 布 , 则 Y=-4X+1 的 密 度 函 数

(1.3) 0.9032; (1.96) 0.975; (2) 0.9772
线

Tn ~ t(n) P(T35 2.0301) 0.025;
P(T35 1.6869) 0.05;
P(T36 2.0281) 0.025;
P(T36 1.6883) 0.05;

一、填充题(每空格 2’,共 36’)

设 X1,…Xn 为来自该总体的样本, (1)求参数 p 的最大似然估计量 pˆ , (2) pˆ 是否是 p


的无偏估计量,说明理由。.






七、(9’)设总体 X 服从正态分布 N ( u,4),u 未知。现有来自该总体样本容量为 16 的样本, 其
线

样本均值为 14. (1)试检验 H0: u=12.0 v.s. H1: u>12.0.(检验水平 0.05) ,(2)求 u 的置
姓名

1) 已知 P(B)=0.5,P(A|B)=0.3,则 P(AB)=
;P(AUB)-P(A)=


2) 一盒中有 4 个一级品,2 个二级品,2 个三级品,每次抽取一个产品,取后不放



回,连续抽取 4 次,则第二次取到一级品发生在第四次抽取的概率为

《概率论与数理统计》考试练习题及参考答案

《概率论与数理统计》考试练习题及参考答案

《概率论与数理统计》考试练习题及参考答案一、单选题1. 设X~N(2,9),Y~N(2,1),E(XY)=6,则D(X-Y)之值为A 、14B 、6C 、12D 、4答案:B2. 设X,Y的方差存在,且不等于0,则D(X+Y)=DX+DY是X,YA 、不相关的充分条件,但不是必要条件B 、独立的必要条件,但不是充分条件C 、不相关的必要条件,但不是充分条件D 、独立的充分必要条件答案:B3. 已知P(A)=0.3 ,P(B)=0.5 ,P(A∪B)=0.6,则P(AB)=A 、0.2B 、0.1C 、0.3D 、0.4答案:A4. 已知随机变量X服从二项分布,且EX=2.4,DX=1.44,则二项分布中的参数n,p的值分别为A 、n=4 ,p=0.6B 、n=6 ,p=0.4C 、n=8 ,p=0.3D 、n=24 ,p=0.1答案:B5. 若随机变量X与Y的方差D(X), D(Y)都大于零,且E(XY)=E(X)E(Y),则有A 、X与Y一定相互独立B 、X与Y一定不相关C 、D(XY)=D(X)D(Y)D 、D(X-Y)=D(X)-D(Y)答案:B6. 同时抛掷3枚硬币,则至多有1枚硬币正面向上的概率是A 、1/8B 、1/6C 、1/4D 、1/2答案:D7. 将长度为1的木棒随机地截成两段,则两段长度的相关系数为A 、1B 、1/2C 、2D 、-1答案:D8. 假设一批产品中一、二、三等品各占60% 、30% 、10%,今从中随机取一件产品,结果不是三等品,则它是二等品的概率为A 、1/3B 、1/2C 、2/3D 、1/4答案:A9. 袋中有50个乒乓球,其中20个黄球,30个白球,甲、乙两人依次各取一球,取后不放回,甲先取,则乙取得黄球的概率为A 、2/5B 、3/5C 、1/5D 、4/5答案:A10. 设随机变量X服从正态分布N(1 ,4) ,Y服从[0 ,4]上的均匀分布,则E(2X+Y )=A 、1B 、2C 、3D 、4答案:D11. 某电路由元件A 、B 、C串联而成,三个元件相互独立,已知各元件不正常的概率分别为:P(A)=0.1 ,P(B)=0.2 ,P(C)=0.3,求电路不正常的概率A 、0.496B 、0.7C 、0.25D 、0.8答案:A12. 一套五卷选集随机地放到书架上,则从左到右或从右到左卷号恰为1 ,2 ,3 ,4 ,5顺序的概率为A 、1/120B 、1/60C 、1/5D 、1/2答案:B13. 设随机变量X与Y独立同分布,记随机变量U=X+Y ,V=X-Y,且协方差Cov(U.V)存在,则U和V必然A 、不相关B 、相互独立C 、不独立D 、无法判断答案:A14. 设P(A)>0,P(B)>0,则下列各式中正确的是A 、P(A-B)=P(A)-P(B)B 、P(AB)=P(A)P(B)C 、P(A+B)=P(A)+P(B)D 、P(A+B)=P(A)+P(B)-P(AB)答案:D15. 随机变量X的所有可能取值为0和x ,且P{X=0}=0.3,E(X)=1,则x=A 、10/7B 、4/5C 、1D 、0答案:A16. 已知人的血型为O 、A 、B 、AB的概率分别是0.4;0.3;0.2;0.1。

概率论与数理统计习题参考答案

概率论与数理统计习题参考答案

概率论与数理统计习题参考答案概率论与数理统计习题参考答案(仅供参考)第一章第1页(共101页)概率论和数理统计的参考答案(附练习)第一章随机事件及其概率1.写出以下随机测试的样本空间:(1)同时掷两颗骰子,记录两颗骰子的点数之和;(2)在单位圆内任意一点,记录它的坐标;(3) 10种产品中有3种存在缺陷。

每次取一个,直到三个有缺陷的产品全部取出后再放回去。

记录提取次数;(4)测量汽车通过给定点的速度解:所求的样本空间如下(1) s={2,3,4,5,6,7,8,9,10,11,12}(2)s={(x,y)|x2+y2<1}(3)s={3,4,5,6,7,8,9,10}(4)s={v|v>0}2.设a、B和C为三个事件,并使用a、B和C的运算关系来表示以下事件:(1)a发生,B和C不发生;(2)a与b都发生,而c不发生;(3)a、b、c都发生;(4)a、b、c都不发生;(5)a、b、c不都发生;(6)至少出现a、B和C中的一种;(7) a、B和C的出现次数不超过一次;(8)解决方案a、B和C中至少有两个出现:请求的事件表示如下(1)abc(2) abc(3)abc(4)abc(6)a?BC(5)abc(7)ab?bc?ac(8)ab?bc?ca3.在某小学的学生中任选一名,若事件a表示被选学生是男生,事件b表示该如果学生是三年级的学生,C项意味着学生是运动员,那么(1)AB项意味着什么?(2)在什么条件下abc=c成立?(3)在什么条件下关系式c?b是正确的?(4)在什么条件下a?b成立?解决方案:请求的事件表示如下(1)事件ab表示该生是三年级男生,但不是运动员.(2)当全校运动员都是三年级男生时,abc=c成立.概率论和数理统计练习参考答案(仅供参考)第1章第2页(101)(3)当全校运动员都是三年级学生时,关系式c?b是正确的.(4)当全校女生都在三年级,并且三年级学生都是女生时,a?b成立.4.设p(a)=0.7,p(a-b)=0.3,试求p(ab)由于一个问题的解决方案?B=acab,P(a)=0.7,所以p(a?b)=p(a?ab)=p(a)??p(ab)=0.3,所以p(ab)=0.4,故p(ab)=1?0.4=0.6.5.对于事件a、B和C,已知P(a)=P(B)=P(C)=,P(AB)=P(CB)=0,P(AC)=141求a、b、c中至少有一个发生的概率.8解由于abc?ab,p(ab)?0,故p(abc)=0那么p(a+B+C)=p(a)+p(B)+p(C)CP(AB)CP(BC)CP(AC)+p(ABC)?11115 04万肆仟肆佰捌拾捌元6.设盒中有α只红球和b只白球,现从中随机地取出两只球,试求下列事件的概率: A={两个颜色相同的球},B={两个颜色不同的球}222解由题意,基本事件总数为aa?b,有利于a的事件数为aa?ab,有利于b111111中的事件数是aaab?阿巴?2aaab,2aa?ab2则p(a)?2aa?b112aaabp(b)?2aa?B7.若10件产品中有件正品,3件次品,(1)取其中任何一个三次,不放回去,计算得到三个不良品的概率;(2)每次取其中任何一个三次,计算得到三次次品的概率(1)让a={得到三次次品}33c3a316p(a)?3?.或者p(a)?3?c10120a10720(2)设b={取到三个次品},则3327p(a)?3.1010008.在一家旅行社的100名导游中,43人说英语,35人说日语,32人说日语和汉语英语,9人会讲法语、英语和日语,且每人至少会讲英、日、法三种语言中的一种,求:(1)此人可能会说英语和日语,但不会说法语;(2)此人只会说法语的可能性解设a={此人会讲英语},b={此人会讲日语},c={此人会讲法语}根据主题的意思,你可以概率论与数理统计习题参考答案(仅供参考)第一章第3页(共101页)(1) p(abc)?p(ab)?p(abc)?(2)p(abc)?p(ab)?p(abc)32923?? 100100100? p(a?b)?0 1? p(a?b)?1.p(a)?p(b)?p(ab)43353254?1一千零一亿零一十万零一百9.罐中有12颗围棋子,其中8颗白子4颗黑子,若从中任取3颗,求:(1)取到的都是白子的概率;(2)获得两个白点和一个太阳黑子的概率;(3)取到三颗棋子中至少有一颗黑子的概率;(4)取到三颗棋子颜色相同的概率.解(1)那么让a={带上所有白人孩子}3c814p(a)?3??0.255.C1255(2)设B={得到两个白点和一个太阳黑子}1c82c4p(b)??0.509.3c12(3)设c={取三颗子中至少的一颗黑子}p(c)?1?p(a).4?0.7(4)设d={取到三颗子颜色相同}33c8?c4p(d)??0.273.3c1210.(1)500人中,至少有一个的生日是7月1日的概率是多少(1年按365日计算)?(2)六个人中有一个人恰好在同一个月过生日的概率是多少?解决方案(1)设a={至少有一个人生日在7月1日},则364500? 0.746便士?1.p(a)?1.365500(2)假设计算的概率为p(b)41c6?c1?1122?0.0073p(b)?12611.将字母C、C、e、e、I、N和S7随机排列成一行,并尝试将它们精确地排列成科学的概率p.227解决方案因为两个C和两个e共享A2,所以有A2安排,基本事件的总数是a722a2p??0.0007947a7概率论与数理统计习题参考答案(仅供参考)第一章第4页(共101页)12.从5副手套中取出4副手套,并找出这4副手套未配对的可能性解要4只都不配对,我们先取出4双,再从每一双中任取一只,共有c54?24中取法.设a={4只手套都不配对},则有c54?2480便士(a)?4.210c1013.一名实习生用一台机器独立生产三个同类型零件,I零件不合格的概率为pi?为多少?假设AI={第I部分不合格},I=1,2,3,那么p(AI)?圆周率?那么p(AI)?1.圆周率?1,I=1,2,3。

概率论与数理统计考试题及答案

概率论与数理统计考试题及答案

概率论与数理统计考试题及答案一、单项选择题(每题2分,共20分)1. 随机变量X服从正态分布N(0,1),则P(X>0)的值为:A. 0.5B. 0.3C. 0.2D. 0.1答案:A2. 如果随机变量X和Y独立,那么P(X>1, Y<2)等于:A. P(X>1)P(Y<2)B. P(X>1) + P(Y<2)C. P(X>1) - P(Y<2)D. P(X>1) / P(Y<2)答案:A3. 以下哪个事件是必然事件?A. 抛一枚硬币,正面朝上B. 抛一枚硬币,正面或反面朝上C. 抛一枚硬币,反面朝上D. 抛一枚硬币,硬币立起来答案:B4. 随机变量X服从二项分布B(3,0.5),E(X)的值为:A. 1.5B. 2C. 3D. 4.55. 以下哪个分布是离散分布?A. 正态分布B. 均匀分布C. 指数分布D. 泊松分布答案:D6. 已知随机变量X服从泊松分布,λ=2,则P(X=0)的值为:A. 0.1353B. 0.0183C. 0.2707D. 0.5000答案:B7. 随机变量X和Y的相关系数ρXY的取值范围是:A. (-∞, ∞)B. (-1, 1)C. (0, ∞)D. [0, 1]答案:B8. 以下哪个统计量是度量数据集中趋势的?A. 方差B. 标准差C. 中位数D. 极差答案:C9. 以下哪个统计量是度量数据离散程度的?B. 中位数C. 众数D. 标准差答案:D10. 以下哪个统计量是度量数据偏态的?A. 偏度B. 峰度C. 标准差D. 方差答案:A二、填空题(每题2分,共20分)1. 如果随机变量X服从正态分布N(μ,σ^2),那么X的期望E(X)等于______。

答案:μ2. 随机变量X服从二项分布B(n,p),其方差Var(X)等于______。

答案:np(1-p)3. 随机变量X和Y的协方差Cov(X,Y)等于______。

概率论与数理统计模拟试题5套带答案

概率论与数理统计模拟试题5套带答案

06-07-1《概率论与数理统计》试题A一、填空题(每题3分,共15分)1. 设A ,B 相互独立,且2.0)(,8.0)(==A P B A P ,则=)(B P __________.2. 已知),2(~2σN X,且3.0}42{=<<X P ,则=<}0{X P __________.3. 设X 与Y 相互独立,且2)(=X E ,()3E Y =,()()1D X D Y ==,则=-])[(2Y X E ___4.设12,,,n X X X 是取自总体),(2σμN 的样本,则统计量2211()n i i X μσ=-∑服从__________分布.5. 设),3(~),,2(~p B Y p B X,且95}1{=≥X P ,则=≥}1{Y P __________. 二、选择题(每题3分,共15分)1. 一盒产品中有a 只正品,b 只次品,有放回地任取两次,第二次取到正品的概率为 【 】 (A)11a a b -+-;(B) (1)()(1)a a a b a b -++-;(C) a a b +;(D) 2a ab ⎛⎫ ⎪+⎝⎭.2. 设随机变量X 的概率密度为()130, 其他c x p x <<⎧=⎨⎩则方差D(X)= 【 】(A) 2; (B)12; (C) 3; (D)13.3. 设A 、B 为两个互不相容的随机事件,且()0>B P ,则下列选项必然正确的是【 】()A ()()B P A P -=1;()B ()0=B A P ;()C ()1=B A P ;()D ()0=AB P .4. 设()x x f sin =是某个连续型随机变量X 的概率密度函数,则X 的取值范围是【 】()A ⎥⎦⎤⎢⎣⎡2,0π;()B []π,0; ()C ⎥⎦⎤⎢⎣⎡-2,2ππ;()D ⎥⎦⎤⎢⎣⎡23,ππ. 5. 设()2,~σμN X ,b aX Y -=,其中a 、b 为常数,且0≠a ,则~Y 【 】()A ()222,b a b a N +-σμ; ()B ()222,b a b a N -+σμ;()C ()22,σμa b a N +; ()D ()22,σμa b a N -.三、(本题满分8分) 甲乙两人独立地对同一目标射击一次,其命中率分别为0.5和0.4,现已知目标被命中,求它是乙命中的概率.四、(本题满分12分)设随机变量X 的密度函数为xx ee Ax f -+=)(,求: (1)常数A ; (2)}3ln 210{<<X P ; (3)分布函数)(x F .五、(本题满分10分)设随机变量X 的概率密度为()⎩⎨⎧<<-=其他,010),1(6x x x x f 求12+=X Y的概率密度.六、(本题满分10分)将一枚硬币连掷三次,X 表示三次中出现正面的次数,Y 表示三次中出现正面次数与出现反面次数之差的绝对值,求:(1)(X ,Y )的联合概率分布;(2){}X Y P>.七、(本题满分10分)二维随机变量(X ,Y )的概率密度为⎩⎨⎧>>=+-其他,00,0,),()2(y x Ae y x f y x求:(1)系数A ;(2)X ,Y 的边缘密度函数;(3)问X ,Y 是否独立。

概率论与数理统计考核试卷

概率论与数理统计考核试卷
一、单项选择题(20×1分)
1. ______
2. ______
3. ______
4. ______
5. ______
6. ______
7. ______
8. ______
9. ______
10. ______
11. ______
12. ______
13. ______
14. ______
15. ______
9. ABC
10. ABC
11. ABC
12. BD
13. AC
14. ABC
15. ABCD
16. ABC
17. AB
18. AD
19. ABCD
20. ABC
三、填空题
1. [0, 1]
2. ∫f(x)dx = 1
3.均方根
4. t检验
5.完全正相关
6.样本量
7. χ²分布
8.拒绝了正确的原假设
C.数据存在异常值
D. A、B和C
20.以下哪些是时间序列分析中常用的统计方法?()
A.移动平均
B.指数平滑
C.自相关函数
D. A、B和C
(以下为答题纸):
考生姓名:答题日期:得分:判卷人:
二、多选题(20×1.5分)
1. ______
2. ______
3. ______
4. ______
5. ______
16.以下哪个选项描述的是相关系数的性质?()
A.相关系数的取值范围为-1到1
B.相关系数表示两个随机变量之间的线性关系
C.相关系数可以为负值,表示负相关
D. A、B和C都是
17.在回归分析中,以下哪个选项表示解释变量与被解释变量之间的关系?()
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。






卷 ( A 卷)
得 分 120 分钟
课 程 名 称 概率统计与随机过程 考 试 学 期 07—08(二) 适用专业 全校 考试形式 闭
考试时间长度
题号 得分








备用数据: (1.645) 0.05 ; (0.5792) 0.7188 ;
(1) 0.8413 (2) 0.9772
2
已知参数, X 度为: (A) 9 得分
1 5 1 5 X ,则 Xi X i 2 [ 5 i 1 i 1
(B) 8


2
X i ] 服从 2 分布,其自由
2 i 6
10
(C) 7
(D) 10
二、填充题(每题 3 分,共 15 分) 1、设随机变量 X、Y 独立分别服从正态分布 N (1,1) , N (2, 2) ,则:
姓名
2 P( 24 12.401) 0.975; 2 22.465) 0.95; P( 35

2 23.269) 0.95; P( 36 2 117.4069) 0.1 ; P ( 99
Tn ~ t (n):
P(T15 1.3406) 0.10; P(T16 1.3368) 0.10; P(T24 2.0639) 0.025; P(T25 2.0595) 0.025; P(T35 2.0301) 0.025; P(T99 2.0281) 0.02;
4 、 设 X 1 , X 2 , , X n , 是 独 立 同 在 区 间 [-1,1] 上 均 匀 分 布 的 随 机 变 量 序 列 , 则
n
lim P(| X i | 2
i 1
n
n ) ______________ 。 3 1 n Xi , n i 1
i (i 1, 2, , n) 个球上标有的号码,利用独立同分布的中心极限定理求 n 最小值,使
7 P | X | 0.1 0.6826 。 3
得分 六、 (10 分)设总体 X 的分布密度函数为
( x 1) f ( x, ) 0, 其它
4、设 X 1 , X 2 , , X n 是来自 Poisson 分布总体 P ( ) 的简单随机样本, X
2 1 n ( X i X ) 2 ,若 E[ X cS 2 ] 2 ,则 c ____________。 n 1 i 1
1 n Xi , n i 1
P (T t (n)) ,若 P (| T | x) ,则 x 等于________________
(A) t ( n)
2
(B) t
1

2
( n)
(C) t1 ( n)
2
(D) t1 ( n)
5、设 (X 1 , , X 10 ) 是来自正态分布 N ( , ) 的容量为 10 的简单随机样本, 和 是
(1.414) 0.9213 ; (1.96) 0.975 ;
线
2 2 n ~ 2 (n):P( 15 7.261) 0.95; 2 P( 16 7.962) 0.95;
2 P ( 15 24.996) 0.05; 2 P ( 16 26.2961) 0.05; 2 39.364) 0.025; P( 24 2 49.802) 0.05; P ( 35 2 128.4220) 0.025; P ( 99 2 P ( 99 81.4493) 0.9;
1, | y | x, 0 x 1 求: f ( x, y ) 0, 其它
1、Y 的边缘分布密度;2、Z=X+Y 的分布函数;3、EX。 得分 五、 (10 分)盒子中有 6 个相同大小的球,其中有一个球标有号码 1,有二个球标有号 码 2,有三个球标有号码 3,从盒子中有放回地抽取 n 个球。设 Xi 表示取出的第
求: X (t ) 的一维分布函数 F ( x; t ) 。
得分 九、 (10 分)设 2 个球放入甲、乙两袋中,最初甲袋中无球的概率为 概率为
1 ,有 1 个球队 2
1 1 , 有 2 个球队概率也为 。 重复做下列试验: 每次随机的选一袋, 若此袋中有球, 4 4
就从此袋中取一球放入另一袋中,若无球就不取,设 X n 是第 n 试验后甲袋中剩下的球的 个数,则 X n ; n 0 是齐次 Markov 链。 1、写出其初始分布; 2、写出其一步转移概率矩阵; 3、求 P X 1 1, X 2 1, X 4 0 。
共4页
第 1 页
1
3、设随机变量 X、Y 的数学期望和方差度存在,且 D ( X Y ) D ( X Y ) ,则下列说 法不正确的是: (A) D ( X Y ) DX DY (C) X 与 Y 不相关 (B) EXY EXEY (D) X 与 Y 独立
4、设随机变量 T 服从自由度 n 的 t-分布 t ( n) ,对给定的 (0 1) ,数 t ( n) 满足
2
共4页
第 5 页
5
3 、 设 X 1 , X 2 , , X n , 是 独 立 同 分 布 的 随 机 变 量 序 列 , 其 共 同 的 概 率 密 度 为
2e 2 x , x 0 1 n ,则 X i 依概率收敛于___________________。 f ( x) n i 1 , 其他 0
2 2
2、设随机变量 X 服从正态分布 N ( 1 , 1 ) ,Y 分布正态分布 N ( 2 , 2 ) ,且
P(| X 1 | 1) P(| Y 2 | 1) ,则必有:
(A) 1 2 (C) 1 2 (B) 1 2 (D) 1 2
P (T t (n)) ,若 P (| T | x) ,则 x 等于________________
(A) t ( n)
2
(B) t
1

2
( n)
(C) t1 ( n)
2
(D) t1 ( n)
5、设 (X 1 , , X 10 ) 是来自正态分布 N ( , ) 的容量为 10 的简单随机样本, 和 是
3、设随机变量 X、Y 的数学期望和方差度存在,且 D ( X Y ) D ( X Y ) ,则下列说 法不正确的是: (A) D ( X Y ) DX DY (C) X 与 Y 不相关 (B) EXY EXEY (D) X 与 Y 独立
4、设随机变量 T 服从自由度 n 的 t-分布 t ( n) ,对给定的 (0 1) ,数 t ( n) 满足
共4页
第 4 页
4
《概率论与数理统计》 一、选择题(每题 3 分,共 15 分) 1、设 P ( A) P ( B ) 1 ,则: (A) P ( A B ) 1 (C) P ( A | B ) P ( B | A) (B) P ( A | B ) 1 (D) P ( A | B ) P ( A B )
1 3 ) ___________________。 P( X Y 2 2
2、设 X 和 Y 是两个随机变量, EX EY 0 , DX 9 , DY 4 ,X 与 Y 的相关系 数为 XY 0.5 ,则 E (2 X 3Y ) ________________。
2 2
2、设随机变量 X 服从正态分布 N ( 1 , 1 ) ,Y 分布正态分布 N ( 2 , 2 ) ,且
P (| X 1 | 1) P(| Y 2 | 1) ,则必有:
(A) 1 2 (C) 1 2 (B) 1 2 (D) 1 2
2
已知参数, X
1 5 1 5 X i ,则 2 [ X i X 5 i 1 i 1

X
2 10
i 6
i
] 服从 2 分布,其自由
2
度为: (A) 9 (B) 8 二、填充题(每题 3 分,共 15 分)
(C) 7
(D) 10
1、设随机变量 X、Y 独立分别服从正态分布 N (1,1) , N (2, 2) ,则:
1 3 P( X Y ) ___________________。 2 2
2、设 X 和 Y 是两个随机变量, EX EY 0 , DX 9 , DY 4 ,X 与 Y 的相关系 数为 XY 0.5 ,则 E (2 X 3Y ) ________________。
S2
共4页
第 2 页
2
5 、 设 W (t ), t 0 是 参 数
2 的 Wiener 过 程 , 已 知 CW (2, 4) 8 , 则
D W (4) W (2) _______________。
得分 三、 (10 分)某实验室从甲、乙、丙三个芯片制造商处购得某芯片,数量比为 1:2:2, 已知甲、乙、丙三个芯片制造商制造的芯片次品率分别为 0.001、0.005、0.01,求: 1、实验室随机使用的芯片是次品的概率; 2、若该实验室随机使用的芯片是次品,该次品是购自制造商甲或丙的概率。 得分 四 、( 12 分 ) 设 二 维 连 续 型 随 机 变 量 ( X , Y ) 的 联 合 概 率 密 度 函 数 为
ቤተ መጻሕፍቲ ባይዱ
P(T15 1.7531) 0.05; P(T16 1.7459) 0.05; P(T24 1.7109) 0.05; P(T25 1.7081) 0.05; P(T35 1.6869) 0.05; P(T99 1.9842) 0.025;
相关文档
最新文档