大物(2)期末复习..

合集下载

02级大物上册期末试题

02级大物上册期末试题

02级大学物理(上册)期末试题一、选择题:1、一光滑的内表面半径为10cm 的半球形碗,以匀角速度ω绕其对称轴OC 旋转。

已知放在碗内表面上的一个小球 P 相对碗静止,其位置高于碗底4cm ,则碗旋转的角速度约为:2、一质点作匀速率圆周运动时,A )它的动量不变,对圆心的角动量也不变。

B )它的动量不变,对圆心的角动量不断变化。

C )它的动量不断变化,对圆心的角动量不变。

D )它的动量不断变化,对圆心的角动量也不断变化。

3、两质量分别为m 1 、m 2的小球,用一倔强系数为k 的轻弹簧相连,放在水平光滑桌面上,今以等值反向的力分别作用于两小球时,若以两小球和弹簧为系统,则系统的A )动量守恒,机械能守恒。

B )动量守恒,机械能不守恒。

C )动量不守恒,机械能守恒。

D )动量不守恒,机械能不守恒。

4、一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,射来两个质量相同,速度大小相同,方向相反的子弹,子弹射入圆盘并留在盘内,则子弹射入后的瞬间,圆盘的角速度:A )增大。

B )不变。

C )减小。

D )不能确定。

5、下列各图所示的速率分布曲线,哪一图中的两条曲线能是同一温度下氮气和氦气的分子速率分布曲线6、一定量的理想气体,经历某过程后,它的温度升高了。

则根据热力学定律可以断定: ① 理想气体系统在此过程中吸了热。

② 在此过程中外界对理想气体系统作了功。

③ 理想气体系统的内能增加了。

④ 理想气体系统既从外界吸了热,又对外作了功。

A ) ① ③B ) ② ③C ) ③D ) ③ ④E ) ④7、用余弦函数描述一简谐振子的振动。

若其速度~ 时间关系曲线如图,则振动的初相位为:( ) 6/5)3/2)2/)3/)6/)πππππE D C B A 8、沿着相反方向传播的两列相干波,其波动方程为:)/(2cos 和)/(2cos 21λνπλνπx t A y x t A y +=-= 叠加后形成的驻波中,波节的位置坐标为:9、波长的单色光垂直照射到宽度a 的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一接受屏。

大学物理期末备考要点

大学物理期末备考要点

大学物理期末备考要点一、力学1. 牛顿运动定律a. 第一定律:惯性定律b. 第二定律:力的大小与加速度的关系c. 第三定律:作用力与反作用力2. 动能与动量a. 动能定理b. 质点系的动量定理c. 动量守恒定律3. 万有引力与重力a. 万有引力定律b. 重力加速度c. 重力势能d. 行星运动4. 平衡与静力学a. 平衡条件b. 杠杆原理c. 原则与应用5. 力学中的摩擦a. 特点与原因b. 静摩擦力与滑动摩擦力c. 摩擦力的计算与应用二、热学1. 热与温度a. 热量的传递方式b. 温标与温度转换2. 热力学第一定律a. 能量守恒定律b. 内能变化与热交换c. 等容、等压、等温过程3. 热力学第二定律a. 热机与卡诺定理b. 极限温度与热机效率c. 热力学不可逆性4. 热力学第三定律a. 绝对零度的定义与测量b. 熵及其性质c. 热力学函数及其应用5. 气体状态方程a. 状态方程的表示与转换b. 理想气体状态方程c. 一般气体状态方程三、电磁学1. 静电学a. 电荷与电场b. 电场强度c. 高斯定理d. 电势与电势能e. 电容与电容器2. 电流与电阻a. 电流的定义与测量b. 电阻与电阻器c. 欧姆定律d. 串、并联电路3. 磁场与电磁感应a. 磁场的产生与性质b. 电流产生的磁场c. 安培环路定理d. 磁感应强度e. 法拉第电磁感应定理4. 电磁波与光学a. 电磁波的性质与传播b. 光的传播与反射c. 光的折射与色散d. 几何光学5. 电磁波谱a. 可见光与光学仪器b. 红外线与微波c. 紫外线与X射线d. γ射线与辐射治疗四、量子物理1. 微观粒子的波粒二象性a. 波粒二象性的实验证据b. 普朗克常数与光子能量c. 德布罗意假设与波长2. 波函数与薛定谔方程a. 波函数的本质与物理意义b. 波函数的概率解释与测量c. 薛定谔方程及其应用3. 稳定原子结构a. 氢原子能级与能量b. 多电子原子的壳层结构c. 系统的波函数与能量4. 分子结构与化学键a. 原子、分子与化学键的关系b. 电子云模型与共价键c. 键的强度与化学键理论5. 核物理与放射性a. 原子核的组成与性质b. 放射性衰变与半衰期c. 核反应与核能的利用五、相对论与宇宙学1. 狭义相对论a. 狭义相对论的基本原理b. 时间与空间的相对性c. 相对论动力学与质能关系2. 广义相对论a. 弯曲时空与引力b. 爱因斯坦场方程c. 引力透镜效应与黑洞3. 宇宙的结构与演化a. 宇宙学原理与宇宙模型b. 宇宙的膨胀与暗能量c. 大爆炸理论与宇宙学红移以上为大学物理期末备考的要点,涵盖了力学、热学、电磁学、量子物理、相对论与宇宙学的基本知识。

大学物理2复习资料

大学物理2复习资料

大学物理2复习资料大学物理2是物理系及相关专业中的重要课程,它主要涉及电磁学、光学和热学三大方面。

这门课程不仅重要,难度也不小,需要大量的复习资料作为支撑。

本文就来给大家分享一些适合复习大学物理2的资料。

1. 课本大学物理2的课本是我们学习的主要教材,原理深入浅出,内容全面。

建议大家通过阅读课本,对知识点进行理解和记忆,加深对物理概念的理解。

同时,也可以参考课本上的案例和例题,巩固自己的应用能力。

2. 讲义讲义是教授在课上授课时所使用的笔记,一般会对重点知识点进行讲解和解释。

由于讲义是教授精心制作的,因此一些细节和重点都会被深入阐述。

复习时,我们可以通过阅读讲义,巩固自己对知识点的理解,并做好笔记。

同时,也可以针对不懂的问题向教授请教,加深理解。

3. 习题集习题集是我们巩固知识点的重要方式之一。

通过做习题,我们可以深入理解并掌握课本和讲义中的知识点。

在背诵公式的同时,练习能够让我们了解公式的运用,帮助我们更好地解决问题。

建议大家选择习题难度适中的题目,做到掌握基础知识和能力的同时,也可以探索一些难点。

4. 复习资料除了课本、讲义和习题集外,我们还可以通过一些复习资料来巩固知识点。

例如一些复习笔记、学生整理的课堂笔记、老师提供的有关资料等等。

这些资料可能会对我们难以理解的知识点有很大的帮助。

一些基础知识比较薄弱的同学可以先通过相关的资料进行复习,在知识点掌握的基础上再去加深理解。

5. 思维导图对于复杂的知识点,我们可以试着制作一些思维导图,将知识点分门别类地进行整理。

思维导图可以帮助我们对知识点有一个整体的观念,并方便我们找到相关的知识点和公式。

同时,在制作思维导图的过程中,也可以帮助我们加深对知识点的理解,达到熟练掌握的效果。

总的来说,要想复习好大学物理2,就需要充分利用各种复习资料。

在复习中,我们需要注重理解和记忆,同时也需要强化应用能力。

希望本文能够帮助大家更好地复习大学物理2,取得更好的成绩。

大物期末考试题及答案

大物期末考试题及答案

大物期末考试题及答案一、选择题(每题2分,共20分)1. 根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成反比。

以下哪个选项正确描述了这一定律?A. F = maB. F = ma^2C. F = m/aD. F = 1/(ma)答案:A2. 一个物体从静止开始自由下落,其下落距离与时间的关系为:A. s = gtB. s = 1/2 gtC. s = 1/2 g(t^2)D. s = gt^2答案:C3. 根据能量守恒定律,以下哪个选项正确描述了能量守恒?A. 能量可以被创造或消灭B. 能量守恒定律只适用于封闭系统C. 能量可以在不同形式之间转换,但总量保持不变D. 能量守恒定律不适用于微观粒子答案:C4. 以下哪个选项正确描述了动量守恒定律?A. 动量守恒定律只适用于碰撞过程B. 动量守恒定律适用于所有物理过程C. 动量守恒定律只适用于没有外力作用的系统D. 动量守恒定律只适用于宏观物体答案:C5. 以下哪个选项正确描述了波的干涉条件?A. 波源必须相同B. 波源必须不同C. 波的频率必须相同D. 波的振幅必须相同答案:C6. 以下哪个选项正确描述了光的折射现象?A. 光线在不同介质中传播速度会改变B. 光线在不同介质中传播方向不变C. 光线在不同介质中传播速度不变D. 光线在不同介质中传播方向总是改变答案:A7. 根据热力学第一定律,以下哪个选项正确描述了能量的转换?A. ΔE = Q + WB. ΔE = Q - WC. ΔE = Q / WD. ΔE = W / Q答案:B8. 以下哪个选项正确描述了理想气体的状态方程?A. PV = nRTB. PV = nT/RC. PV = RTD. PV = nR答案:A9. 以下哪个选项正确描述了电磁感应现象?A. 变化的磁场可以产生电流B. 电流可以产生磁场C. 磁场可以产生电流D. 电流可以产生变化的磁场答案:A10. 以下哪个选项正确描述了相对论中时间膨胀现象?A. 运动的物体在运动方向上的长度会变长B. 运动的物体在运动方向上的时间会变慢C. 运动的物体在垂直于运动方向上的长度会变短D. 运动的物体在垂直于运动方向上的时间会变慢答案:B二、填空题(每空1分,共10分)11. 牛顿第一定律又称为________定律。

大学物理学专业《大学物理(二)》期末考试试卷-附答案

大学物理学专业《大学物理(二)》期末考试试卷-附答案

大学物理学专业《大学物理(二)》期末考试试卷附答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。

2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。

一、填空题(共10小题,每题2分,共20分)1、一质点作半径为0.1m的圆周运动,其运动方程为:(SI),则其切向加速度为=_____________。

2、一平行板空气电容器的两极板都是半径为R的圆形导体片,在充电时,板间电场强度的变化率为dE/dt.若略去边缘效应,则两板间的位移电流为__________________。

3、长为、质量为的均质杆可绕通过杆一端的水平光滑固定轴转动,转动惯量为,开始时杆竖直下垂,如图所示。

现有一质量为的子弹以水平速度射入杆上点,并嵌在杆中. ,则子弹射入后瞬间杆的角速度___________。

4、两列简谐波发生干涉的条件是_______________,_______________,_______________。

5、一弹簧振子系统具有1.OJ的振动能量,0.10m的振幅和1.0m/s的最大速率,则弹簧的倔强系数为_______,振子的振动频率为_______。

6、动方程当t=常数时的物理意义是_____________________。

7、花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为,角速度为;然后将两手臂合拢,使其转动惯量变为,则转动角速度变为_______。

8、在主量子数n=2,自旋磁量子数的量子态中,能够填充的最大电子数是______________。

9、一长直导线旁有一长为,宽为的矩形线圈,线圈与导线共面,如图所示. 长直导线通有稳恒电流,则距长直导线为处的点的磁感应强度为___________;线圈与导线的互感系数为___________。

10、一个中空的螺绕环上每厘米绕有20匝导线,当通以电流I=3A时,环中磁场能量密度w =_____________ .()二、名词解释(共6小题,每题2分,共12分)1、能量子:2、受激辐射:3、黑体辐射:4、布郎运动:5、熵增加原理:6、瞬时加速度:三、选择题(共10小题,每题2分,共20分)1、气体在状态变化过程中,可以保持体积不变或保持压强不变,这两种过程()。

大学物理2期末考试复习题

大学物理2期末考试复习题

11章10-5如题10-5所示,在两平行载流的无限长直导线的平面内有一矩形线圈.两导线中的电流方向相反、大小相等,且电流以tId d 的变化率增大,求: (1)任一时刻线圈内所通过的磁通量; (2)线圈中的感应电动势. 解: 以向外磁通为正则(1)]ln [ln π2d π2d π2000d a d b a b Il r l r I r l r I ab ba d d m +-+=-=⎰⎰++μμμΦ(2)t Ib a b d a d l t d d ]ln [ln π2d d 0+-+=-=μΦε10-7 如题10-7图所示,长直导线通以电流I =5A ,在其右方放一长方形线圈,两者共面.线圈长b =0.06m ,宽a =0.04m ,线圈以速度v =0.03m ·s -1垂直于直线平移远离.求:d =0.05m 时线圈中感应电动势的大小和方向.题10-7图解: AB 、CD 运动速度v ϖ方向与磁力线平行,不产生感应电动势. DA 产生电动势⎰==⋅⨯=AD I vb vBb l B v d2d )(01πμεϖϖϖBC 产生电动势)(π2d )(02d a Ivbl B v CB+-=⋅⨯=⎰μεϖϖϖ∴回路中总感应电动势8021106.1)11(π2-⨯=+-=+=ad d Ibv μεεε V 方向沿顺时针.10-9 一矩形导线框以恒定的加速度向右穿过一均匀磁场区,B ϖ的方向如题10-9图所示.取逆时针方向为电流正方向,画出线框中电流与时间的关系(设导线框刚进入磁场区时t =0).解: 如图逆时针为矩形导线框正向,则进入时0d d <Φt,0>ε; 题10-9图(a)题10-9图(b)在磁场中时0d d =tΦ,0=ε; 出场时0d d >tΦ,0<ε,故t I -曲线如题10-9图(b)所示. 题10-10图10-15 一无限长的直导线和一正方形的线圈如题10-15图所示放置(导线与线圈接触处绝缘).求:线圈与导线间的互感系数.解: 设长直电流为I ,其磁场通过正方形线圈的互感磁通为⎰==32300122ln π2d π2a a Iar rIaμμΦ∴ 2ln π2012aI M μΦ==10-16 一矩形线圈长为a =20cm ,宽为b =10cm ,由100匝表面绝缘的导线绕成,放在一无限长导线的旁边且与线圈共面.求:题10-16图中(a)和(b)两种情况下,线圈与长直导线间的互感.解:(a)见题10-16图(a),设长直电流为I ,它产生的磁场通过矩形线圈的磁通为2ln π2d 2πd 020)(12Iar r Ia S B b b S μμΦ⎰⎰==⋅=ϖϖ∴ 6012108.22ln π2-⨯===a N I N M μΦ H (b)∵长直电流磁场通过矩形线圈的磁通012=Φ,见题10-16图(b) ∴ 0=M题10-16图题10-17图13章12-7 在杨氏双缝实验中,双缝间距d =0.20mm ,缝屏间距D =1.0m ,试求: (1)若第二级明条纹离屏中心的距离为6.0mm ,计算此单色光的波长; (2)相邻两明条纹间的距离.解: (1)由λk dDx =明知,λ22.01010.63⨯⨯=, ∴ 3106.0-⨯=λmm oA 6000=(2) 3106.02.010133=⨯⨯⨯==∆-λd D x mm 12-11 白光垂直照射到空气中一厚度为3800 oA 的肥皂膜上,设肥皂膜的折射率为1.33,试问该膜的正面呈现什么颜色?背面呈现什么颜色? 解: 由反射干涉相长公式有λλk ne =+22 ),2,1(⋅⋅⋅=k得 122021612380033.14124-=-⨯⨯=-=k k k ne λ 2=k , 67392=λo A (红色) 3=k , 40433=λ oA (紫色)所以肥皂膜正面呈现紫红色.由透射干涉相长公式 λk ne =2),2,1(⋅⋅⋅=k 所以 kk ne 101082==λ 当2=k 时, λ =5054oA (绿色) 故背面呈现绿色.14章13-13 用橙黄色的平行光垂直照射一宽为a=0.60mm 的单缝,缝后凸透镜的焦距f=40.0cm ,观察屏幕上形成的衍射条纹.若屏上离中央明条纹中心1.40mm 处的P 点为一明条纹;求:(1)入射光的波长;(2)P 点处条纹的级数;(3)从P 点看,对该光波而言,狭缝处的波面可分成几个半波带?解:(1)由于P 点是明纹,故有2)12(sin λϕ+=k a ,⋅⋅⋅=3,2,1k由ϕϕsin tan 105.34004.13≈=⨯==-f x 故3105.3126.0212sin 2-⨯⨯+⨯=+=k k a ϕλ3102.4121-⨯⨯+=k mm 当 3=k ,得60003=λo A4=k ,得47004=λoA(2)若60003=λoA ,则P 点是第3级明纹;若47004=λoA ,则P 点是第4级明纹. (3)由2)12(sin λϕ+=k a 可知,当3=k 时,单缝处的波面可分成712=+k 个半波带; 当4=k 时,单缝处的波面可分成912=+k 个半波带.13-14 用5900=λoA 的钠黄光垂直入射到每毫米有500条刻痕的光栅上,问最多能看到第几级明条纹?解:5001=+b a mm 3100.2-⨯= mm 4100.2-⨯=o A 由λϕk b a =+sin )(知,最多见到的条纹级数m ax k 对应的2πϕ=,所以有39.35900100.24max ≈⨯=+=λba k ,即实际见到的最高级次为3max =k .第五章5-7 质量为kg 10103-⨯的小球与轻弹簧组成的系统,按)SI ()328cos(1.0ππ+=x 的规律作谐振动,求:(1)振动的周期、振幅和初位相及速度与加速度的最大值;(2)最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等? (3)s 52=t 与s 11=t 两个时刻的位相差;解:(1)设谐振动的标准方程为)cos(0φω+=t A x ,则知:3/2,s 412,8,m 1.00πφωππω===∴==T A 又 πω8.0==A v m 1s m -⋅ 51.2=1s m -⋅2.632==A a m ω2s m -⋅(2) N 63.0==m m a FJ 1016.32122-⨯==m mv E J 1058.1212-⨯===E E E k p当p k E E =时,有p E E 2=, 即)21(212122kA kx ⋅= ∴ m 20222±=±=A x (3) ππωφ32)15(8)(12=-=-=∆t t5-8 一个沿x 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表示.如果0=t 时质点的状态分别是:(1)A x -=0;(2)过平衡位置向正向运动; (3)过2Ax =处向负向运动; (4)过2A x -=处向正向运动.试求出相应的初位相,并写出振动方程.解:因为 ⎩⎨⎧-==000sin cos φωφA v A x将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相.故有)2cos(1πππφ+==t T A x)232cos(232πππφ+==t T A x)32cos(33πππφ+==t T A x)452cos(454πππφ+==t T A x5-11 图为两个谐振动的t x -曲线,试分别写出其谐振动方程.题5-11图解:由题4-8图(a),∵0=t 时,s 2,cm 10,,23,0,0000===∴>=T A v x 又πφ 即 1s rad 2-⋅==ππωT故 m )23cos(1.0ππ+=t x a 由题4-8图(b)∵0=t 时,35,0,2000πφ=∴>=v A x01=t 时,22,0,0111ππφ+=∴<=v x又 ππωφ253511=+⨯=∴ πω65=故 m t x b )3565cos(1.0ππ+= 5-16 一质点同时参与两个在同一直线上的简谐振动,振动方程为⎪⎩⎪⎨⎧-=+=m)652cos(3.0m )62cos(4.021ππt x t x 试分别用旋转矢量法和振动合成法求合振动的振动幅和初相,并写出谐振方程。

大物(2)期末复习

大物(2)期末复习

练习一 静电场中的导体三、计算题1. 已知某静电场在xy 平面内的电势函数为U =Cx/(x 2+y 2)3/2,其中C 为常数.求(1)x 轴上任意一点,(2)y 轴上任意一点电场强度的大小和方向.解:. E x =-∂U/∂x=-C [1/(x 2+y 2)3/2+x (-3/2)2x /(x 2+y 2)5/2]= (2x 2-y 2)C /(x 2+y 2)5/2E y =-∂U/∂y=-Cx (-3/2)2y /(x 2+y 2)5/2=3Cxy /(x 2+y 2)5/2x 轴上点(y =0) E x =2Cx 2/x 5=2C /x 3 E y =0E =2C i /x 3 y 轴上点(x =0) E x =-Cy 2/y 5=-C /y 3 E y =0E =-C i /y 32.如图,一导体球壳A (内外半径分别为R 2,R 3),同心地罩在一接地导体球B (半径为R 1)上,今给A 球带负电-Q , 求B 球所带电荷Q B 及的A 球的电势U A .静电场中的导体答案解: 2. B 球接地,有 U B =U ∞=0, U A =U BAU A =(-Q+Q B )/(4πε0R 3)U BA =[Q B /(4πε0)](1/R 2-1/R 1)得 Q B =QR 1R 2/( R 1R 2+ R 2R 3- R 1R 3)U A =[Q/(4πε0R 3)][-1+R 1R 2/(R 1R 2+R 2R 3-R 1R 3)]=-Q (R 2-R 1)/[4πε0(R 1R 2+R 2R 3-R 1R 3)]练习二 静电场中的电介质三、计算题1. 如图6.6所示,面积均为S 2的两金属平板A ,B 平行对称放置,间距为d =1mm,今给A , B 两板分别带电 Q 1×10-9C, Q 2×10-9C.忽略边缘效应,求:(1) 两板共四个外表的面电荷密度 σ1, σ2, σ3, σ4;(2) 两板间的电势差V =U A -U B .解:1. 在A 板体内取一点A , B 板体内取一点B ,它们的电场强度是四-Q图5.6Q2σ 2 σ 4个外表的电荷产生的,应为零,有E A =σ1/(2ε0)-σ2/(2ε0)-σ3/(2ε0)-σ4/(2ε0)=0E A =σ1/(2ε0)+σ2/(2ε0)+σ3/(2ε0)-σ4/(2ε0)=0而 S (σ1+σ2)=Q 1 S (σ3+σ4)=Q 2 有 σ1-σ2-σ3-σ4=0σ1+σ2+σ3-σ4=0 σ1+σ2=Q 1/S σ3+σ4=Q 2/S解得 σ1=σ4=(Q 1+Q 2)/(2S ⨯10-8C/m 2σ2=-σ3=(Q 1-Q 2)/(2S ⨯10-8C/m 2两板间的场强 E=σ2/ε0=(Q 1-Q 2)/(2ε0S )V=U A -U B ⎰⋅=BAl E d=Ed=(Q 1-Q 2)d /(2ε0S )=1000V四、证明题1. 如图所示,置于静电场中的一个导体,在静电平衡后,导体外表出现正、负感应电荷.试用静电场的环路定理证明,图中从导体上的正感应电荷出发,终止于同一导体上的负感应电荷的电场线不能存在.解:1.ACB 作环路ACBA ,导体内直线BA 的场强为零,ACB 的电场与环路同向于是有=⋅⎰l E d l+⋅⎰ACBl E d ⎰⋅AB l E d 2=⎰⋅ACBl E d ≠0与静电场的环路定理=⋅⎰l E d l0相违背,故在同一导体上不存在从正感应电荷出发,终止于负感应电荷的电场线.练习三 电容 静电场的能量三、计算题1. 半径为R 1的导体球带电Q ,球外一层半径为R 2相对电容率为εr 的同心均匀介质球壳,其余全部空间为空气.如图所示.求:(1)离球心距离为r 1(r 1<R 1), r 2(R 1<r 1<R 2), r 3(r 1>R 2)处的D 和E ;(2)离球心r 1, r 2, r 3,处的U ;(3)介质球壳内外外表的极化电荷. 解:1. (1)因此电荷与介质均为球对称,电场也球对称,过场点作与金属球同心的球形高斯面,有iSq0d ∑=⋅⎰S D4πr 2D=∑q 0i当r=5cm <R 1, ∑q 0i =0得 D 1=0, E 1=0 当r=15cm(R 1<r <R 1+d ) ∑q 0i =Q=1.0×10-8C 得 D 2=Q /(4πr 2)×10-8C/m 2E 2=Q /(4πε0εr r 2)=7.99×103N/C 当r=25cm(r >R 1+d ) ∑q 0i =Q=1.0×10-8C 得 D 3=Q /(4πr 2)=1.27×10-8C/m 2 E 3=Q /(4πε0r 2)=1.44×104N/C D 和E 的方向沿径向. (2) 当r=5cm <R 1时 U 1=⎰∞⋅rl E d⎰=R rr E d 1⎰++dR Rr E d 2⎰∞++dR r E d 3=Q/(4πε0εr R )-Q/[4πε0εr (R+d )]+Q/[4πε0(R+d )]=540V当r=15cm <R 1时U 2=⎰∞⋅rl E d ⎰+=dR rr E d 2⎰∞++dR r E d 3=Q/(4πε0εr r )-Q/[4πε0εr (R+d )]+Q/[4πε0(R+d )]=480V当r=25cm <R 1时U 3=⎰∞⋅rl E d ⎰∞=rr E d 3=Q/(4πε0r )=360V(3)在介质的内外外表存在极化电荷,P e =ε0χE=ε0(εr -1)E σ'= P e ·nr=R 处, 介质外表法线指向球心σ'=P e ·n =P e cos π=-ε0(εr -1)Eq '=σ'S =-ε0(εr -1) [Q /(4πε0εr R 2)]4πR 2=-(εr -1)Q /εr =-0.8×10-8Cr=R+d 处, 介质外表法线向外σ'=P e ·n =P e cos0=ε0(εr -1)Eq '=σ'S =ε0(εr -1)[Q /(4πε0εr (R+d )2]4π(R +d )2=(εr -1)Q /εr =0.8×10-8C2.两个相距很远可看作孤立的导体球,半径均为10cm ,分别充电至200V 和400V ,然后用一根细导线连接两球,使之到达等电势. 计算变为等势体的过程中,静电力所作的功. 解;2.球形电容器 C =4πε0RQ 1=C 1V 1= 4πε0RV 1 Q 2=C 2V 2= 4πε0RV 2W 0=C 1V 12/2+C 2V 22/2=2πε0R (V 12+V 22)两导体相连后 C =C 1+C 2=8πε0RQ=Q 1+Q 2= C 1V 1+C 2V 2=4πε0R (V 1+V 2)W=Q 2/(2C )= [4πε0R (V 1+V 2)]2/(16πε0R )=πε0R (V 1+V 2)2静电力作功 A=W 0-W=2πε0R (V 12+V 22)-πε0R (V 1+V 2)2=πε0R (V 1-V 2)2=1.11×10-7J练习六 磁感应强度 毕奥—萨伐尔定律三、计算题1. 如图所示, 一宽为2a 的无限长导体薄片, 沿长度方向的电流I 在导体薄片上均匀分布. 求中心轴线OO '上方距导体薄片为a 的磁感强度.解:1.取宽为d x 的无限长电流元d I=I d x/(2a ) d B=μ0d I/(2πr )=μ0I d x/(4πar )d B x =d B cos α=[μ0I d x/(4πar )](a/r ) =μ0I d x/(4πr 2)= μ0I d x/[4π(x 2+a 2)] d B y =d B sin α= μ0Ix d x/[4πa (x 2+a 2)]()⎰⎰-+==aax x a x xI B B 2204d d πμ=[μ0I/(4π)](1/a )arctan(x/a )a a-=μ0I/(8a )()⎰⎰-+==aay y ax a xIx B B 2204d d πμ=[μ0I/(8πa )]ln(x 2+a 2)aa-=02. 如图所示,半径为R 的木球上绕有密集的细导线,线圈平面彼此平行,且以单层线圈覆盖住半个球面. 设线圈的总匝数为N ,通过线圈的电流为I . 求球心O 的磁感强度.解:2. 取宽为d L 细圆环电流, d I=I d N=I [N/(πR/2)]R d θ =(2IN/π)d θd B=μ0d Ir 2/[2(r 2+x 2)3/2]r=R sin θ x=R cos θd B=μ0NI sin 2θ d θ /(πR )⎰⎰==πππθθμ220d sin d RNI B B=μ0NI/(4R )xr练习七 毕奥—萨伐尔定律(续) 磁场的高斯定理三、计算题S 1和S 2的两个矩形回路, 回路旋转方向如图所示, 两个回路与长直载流导线在同一平面内, 且矩形回路的一边与长直载流导线平行. 求通过两矩形回路的磁通量及通过S 1回路的磁通量与通过S 2回路的磁通量之比.解: 1.取窄条面元d S =b d r , 面元上磁场的大小为 B =μ0I /(2πr ),Φ1=⎰-=aabIbdr r I 2002ln 2cos 2πμππμ Φ2=⎰-=aabI bdr r I 42002ln 2cos 2πμππμ Φ1/Φ2=12. 半径为R 的薄圆盘均匀带电,总电量为Q . 令此盘绕通过盘心且垂直盘面的轴线作匀速转动,角速度为ω,求轴线上距盘心x 处的磁感强度的大小和旋转圆盘的磁矩.解;2. 在圆盘上取细圆环电荷元d Q =σ2πr d r , [σ=Q /(πR 2) ],等效电流元为d I =d Q /T =σ2πr d r/(2π/ω)=σωr d r(1)求磁场, 电流元在中心轴线上激发磁场的方向沿轴线,且与ω同向,大小为 d B=μ0d Ir 2/[2(x 2+r 2)3/2]=μ0σωr 3d r /[2(x 2+r 2)3/2]()()()⎰⎰++=+=RRx rx r r x r rr B 02322222002/32230d 42d σωμσωμ=()()()⎰+++Rx rx r x r23222222d 4σωμ-()()⎰++Rx rx r x 023222220d 4σωμ=⎪⎪⎭⎫⎝⎛+++RRx r x x r 022202202σωμ =⎪⎪⎭⎫ ⎝⎛-++x x R x R R Q 222222220πωμ (2)求磁距. 电流元的磁矩d P m =d IS=σωr d r πr 2=πσωr 2d r⎰=Rm dr r P 03πσω=πσωR 4/4=ωQR 2/4练习八 安培环路定律三、计算题1. 如图所示,一根半径为R 的无限长载流直导体,其中电流I 沿轴向流过,并均匀分布在横截面上. 现在导体上有一半径为R '的圆柱形空腔,其轴与直导体的轴平行,两轴相距为 d . 试求空腔中任意一点的磁感强度.解:1. 此电流可认为是由半径为R 的无限长圆柱电流I 1和一个同电流密度的反方向的半径为R '的无限长圆柱电流I 2组成. I 1=J πR 2 I 2=-J πR '2 J =I/[π (R 2-R '2)] 它们在空腔内产生的磁感强度分别为 B 1=μ0r 1J/2 B 2=μ0r 2J/2B x =B 2sin θ2-B 1sin θ1=(μ0J/2)(r 2sin θ2-r 1sin θ1)=0 B y =B 2cos θ2+B 1cos θ1=(μ0J/2)(r 2cos θ2+r 1cos θ1)=(μ0J/2)d 所以 B = B y = μ0dI/[2π(R 2-R '2)] 方向沿y 轴正向2. 设有两无限大平行载流平面,它们的电流密度均为j ,电流流向相反. 求: (1) 载流平面之间的磁感强度; (2) 两面之外空间的磁感强度.解;2. 两无限大平行载流平面的截面如图.平面电流在空间产生的磁场为 B 1=μ0J /2在平面①的上方向右,在平面①的下方向左;电流②在空间产生的磁场为 B 2=μ0J /2 在平面②的上方向左,在平面②的下方向右.(1) 两无限大电流流在平面之间产生的磁感强度方向都向左,故有 B=B 1+B 2=μ0J (2) 两无限大电流流在平面之外产生的磁感强度方向相反,故有 B=B 1-B 2=0练习九 安培力图I 1 I 2①②1. 一边长a =10cm 的正方形铜导线线圈(铜导线横截面积S mm 2, 铜的密度ρg/cm 3), 放在均匀外磁场中. B 竖直向上, 且B = ⨯10-3T, 线圈中电流为I =10A . 线圈在重力场中 求:(1) 今使线圈平面保持竖直, 则线圈所受的磁力矩为多少. (2) 假假设线圈能以某一条水平边为轴自由摆动,当线圈平衡时,线圈平面与竖直面夹角为多少.解:1. (1) P m =IS=Ia 2 方向垂直线圈平面.线圈平面保持竖直,即P m 与B M m =P m ×BM m =P m B sin(π/2)=Ia 2B=×10-4m ⋅N(2) 平衡即磁力矩与重力矩等值反向 M m =P m B sin(π/2-θ)=Ia 2B cos θ M G = M G 1 + M G 2 + M G 3= mg (a/2)sin θ+ mga sin θ+ mg (a/2)sin θ =2(ρSa )ga sin θ=2ρSa 2g sin θ Ia 2B cos θ=2ρSa 2g sin θ tan θ=IB/(2ρSg )= θ=15︒2. 如图13.5所示,半径为R 的半圆线圈ACD 通有电流I 2, 置于电流为I 1的无限长直线电流的磁场中, 直线电流I 1 恰过半圆的直径, 两导线相互绝缘. 求半圆线圈受到长直线电流I 1的磁力. 解:2.在圆环上取微元 I 2d l = I 2R d θ 该处磁场为B =μ0I 1/(2πR cos θ)I 2d l 与B 垂直,有d F= I 2d lB sin(π/2) d F=μ0I 1I 2d θ/(2πcos θ) d F x =d F cos θ=μ0I 1I 2d θ /(2π) d F y =d F sin θ=μ0I 1I 2sin θd θ /(2πcos θ)⎰-=22102πππθμd I I F x =μ0I 1I 2/2因对称F y =0.故 F =μ0I 1I 2/2 方向向右.练习十 洛仑兹力I图13.5I1. 如图所示,有一无限大平面导体薄板,自下而上均匀通有电流,已知其面电流密度为i(即单位宽度上通有的电流强度)(1) 试求板外空间任一点磁感强度的大小和方向.(2) 有一质量为m,带正电量为q的粒子,以速度v沿平板法线方向向外运动. 假设不计粒子重力.求:(A) 带电粒子最初至少在距板什么位置处才不与大平板碰撞.(B) 需经多长时间,才能回到初始位置..解:1. (1)求磁场.用安培环路定律得B=μ0i/2在面电流右边B的方向指向纸面向里,在面电流左边B的方向沿纸面向外.(2) F=q v×B=m a qvB=ma n=mv2/R带电粒子不与平板相撞的条件是粒子运行的圆形轨迹不与平板相交,即带电粒子最初位置与平板的距离应大于轨道半径.R=mv/qB= 2mv/(μ0iq)t=T=2πR/v= 4πm/(μ0iq)2. 一带电为Q质量为m的粒子在均匀磁场中由静止开始下落,磁场的方向(z轴方向)与重力方向(y轴方向)垂直,求粒子下落距离为y时的速率.并讲清求解方法的理论依据.解:2. 洛伦兹力Q v×B垂直于v,不作功,不改变v的大小;重力作功.依能量守恒有mv2/2=mgy,得v=(2gy)1/2.练习十一磁场中的介质三、计算题1. 一厚度为b的无限大平板中通有一个方向的电流,平板内各点的电导率为γ,电场强度为E,方向如图15.6所示,平板的相对磁导率为μr1,平板两侧充满相对磁导率为μr2的各向同性的均匀磁介质,试求板内外任意点的磁感应强度.解:1. 设场点距中心面为x,因磁场面对称以中心面为对称面过场点取矩形安培环路,有⎰⋅l lH d=ΣI02∆LH=ΣI0(1)介质内,0<x<b/2. ΣI0=2x∆lJ=2x∆lγE,有H=xγE B=μ0μr1H=μ0μr1xγE(2)介质外,|x|>b/2. ΣI0=b∆lJ=b∆lγE,有H=bγE/2B=μ0μr2H=μ0μr2bγE/2i v•图2. 一根同轴电缆线由半径为R 1的长导线和套在它外面的半径为R 2的同轴薄导体圆筒组成,中间充满磁化率为χm 的各向同性均匀非铁磁绝缘介质,如图所示. 传导电流沿导线向上流去, 由圆筒向下流回,电流在截面上均匀分布. 求介质内外外表的磁化电流的大小及方向.解:2. 因磁场柱对称 取同轴的圆形安培环路,有 ⎰⋅ll H d =ΣI 0在介质中(R 1<r <R 2),ΣI 0=I ,有 2πrH = I H = I /(2πr ) 介质内的磁化强度 M =χm H =χm I /(2πr )介质内外表的磁化电流 J SR 1=| M R 1×n R 1|=| M R 1|=χm I /(2πR 1) I SR 1=J SR 1⋅2πR 1=χm I (与I 同向) 介质外外表的磁化电流J SR 2=| M R 2×n R 2|=| M R 2|=χm I /(2πR 2) I SR 2=J SR 2⋅2πR 2=χm I (与I 反向)练习十二 电磁感应定律 动生电动势三、计算题1. 如图所示,长直导线AC 中的电流I 沿导线向上,并以d I /d t = 2 A/s 的变化率均匀增长. 导线附近放一个与之同面的直角三角形线框,其一边与导线平行,位置及线框尺寸如下图. 求此线框中产生的感应电动势的大小和方向.解: 1.d S =y d x =[(a+b -x )l/b ]d xΦm =⎰⋅S d S B=()⎰+-+⋅ba abldxx b a x I πμ20 =()⎥⎦⎤⎢⎣⎡-++b a b a b a b Il ln 20πμ图图图εi =-d Φm /d t=()dtdIa b a ba b b l ⎥⎦⎤⎢⎣⎡++-ln 20πμ =-×10-8V负号表示逆时针2. 一很长的长方形的U 形导轨,与水平面成θ 角,裸导线可在导轨上无摩擦地下滑,导轨位于磁感强度B 垂直向上的均匀磁场中,如图所示. 设导线ab 的质量为m ,电阻为R ,长度为l ,导轨的电阻略去不计, abcd 形成电路. t=0时,v=0. 求:(1) 导线ab 下滑的速度v 与时间t 的函数关系; (2) 导线ab 的最大速度v m .解:2. (1) 导线ab 的动生电动势为εi = ⎰l v×B ·d l=vBl sin(π/2+θ)=vBl cos θI i =εi /R = vBl cos θ/R方向由b 到a . 受安培力方向向右,大小为F =| ⎰l (I i d l×B )|= vB 2l 2cos θ/RF 在导轨上投影沿导轨向上,大小为F '= F cos θ =vB 2l 2cos 2θ/R重力在导轨上投影沿导轨向下,大小为mg sin θmg sin θ -vB 2l 2cos 2θ/R=ma=m d v /d t dt=d v /[g sin θ -vB 2l 2cos 2θ/(mR )]()[]{}⎰-=vmR l vB g dv t 0222cos sin θθ()()()mR t l B e l B mgR v θθθ222cos 2221cos sin --=(2) 导线ab 的最大速度v m =θθ222cos sin l B mgR .练习十三 感生电动势 自感三、计算题1. 在半径为R 的圆柱形空间中存在着均匀磁场B ,B R 的金属棒MN 放在磁场外且与圆柱形均匀磁场相切,切点为金属棒的中点,金属棒与磁场BB 随时间的变化率d B /d t 为大于零的常量.求:棒上感应电动势的大小,并指出哪一个端点的电势高. (分别用对感生电场的积分εi =⎰l E i ·d l 和法拉第电磁感应定律εi =-d Φ/d t 两种方法解). .解:(1) 用对感生电场的积分εi =⎰l E i ·d l 解:在棒MN 上取微元d x (-R<x<R ), 该处感生电场大小为E i =[R 2/(2r )](d B/d t )与棒夹角θ满足tan θ=x/R εi =⎰⋅NMl E i d =⎰NMi x E θcos d=()⎰-⋅RRr R r x t B R 22d d d =⎰-+⋅RR R x x t B R 2232d d d =[R 3(d B/d t )/2](1/R )arctan(x/R )R R-=πR 2(d B/d t )/4因εi =>0,故N 点的电势高. (2) 用法拉第电磁感应定律εi =-d Φ/d t 解: 沿半径作辅助线OM ,ON 组成三角形回路MONM=⎰⋅NMl E i d =⎰⋅-MNl E i dεi=-⎢⎣⎡⋅⎰MNl E i d +⎰⋅OM l E i d +⎥⎦⎤⋅⎰NO l E i d =-(-d ΦmMONM /d t ) =d ΦmMONM /d t而 ΦmMONM =⎰⋅Sd S B =πR 2B/4故 εi =πR 2(d B/d t )/4 N 点的电势高.2. 电量Q 均匀分布在半径为a ,长为L (L >>a )的绝缘薄壁长圆筒外表上,圆筒以角速度ωa ,电阻为R 总匝数为N ω=ω0(1-t/t 0)的规律(ω0,t 0为已知常数)随时间线性地减小,求圆线圈中感应电流的大小和流向.解:2. .等效于螺线管B 内=μ0 nI=μ0 [Q ω /(2π)]/L=μ0 Q ω /(2πL )B 外=0Φ=⎰S B ⋅d S=B πa 2=μ0Q ω a 2 /(2 L ) εi =-d Φ/d t=-[μ0Q a 2 /(2 L )]d ω /d t=μ0ω 0Q a 2 /(2 L t 0)I i =εi /R=μ0ω 0Q a 2 /(2 LR t 0)方向与旋转方向一致.练习十四 自感〔续〕互感 磁场的能量三、计算题1. 两半径为a 的长直导线平行放置,相距为d ,组成同一回路,求其单位长度导线的自感系数L 0.解:1. 取如下图的坐标,设回路有电流为I ,则两导线间磁场方向向里,大小为 0≤r ≤a B 1=μ0Ir/(2πa 2)+ μ0I/[2π(d -r )] a ≤r ≤d -a B 2=μ0I/(2πr )+μ0I/[2π(d -r )] d -a ≤r ≤d B 3=μ0I/(2πr )+ μ0I (d -r )/(2πa 2) 取窄条微元d S=l d r ,由Φm =⎰⋅SS B d 得Φml =⎰aa r Irl 0202d πμ+()⎰-a r d r Il 002d πμ +⎰-ad ar r Il πμ2d 0+()⎰--a d ar d r Il πμ2d 0+⎰-ad ar r Il πμ2d 0+()⎰-a d aa rl r -d I 202d πμ =μ0Il/(4π)+[μ0Il/(2π)]ln[d/(d -a )]+[μ0Il/(2π)]ln[(d -a )/a ] +[μ0Il/(2π)]ln[(d -a )/a ]+[μ0Il/(2π)]ln[d/(d -a )]+μ0Il/(4π)=μ0Il/(2π)+(μ0Il/π)ln(d/a )由L l =Φl /I ,L 0= L l /l=Φl /(Il ).得单位长度导线自感 L 0==μ0l/(2π)+(μ0l/π)ln(d/a )2 内外半径为R 、r 的环形螺旋管截面为长方形,共有N 匝线圈.另有一矩形导线线圈与其套合,如图19.4(1)所示. 其尺寸标在图19.4(2) 所示的截面图中,求其互感系数.解:2. 设环形螺旋管电流为I , 则管内磁场大小为B =μ0NI/(2πρ) r ≤ρ≤RS=h d ρ,由Φm =⎰⋅SS B d 得Φm =⎰RrNIh πρρμ2d 0=μ0NIh ln(R/r )/(2π) M =Φm /I ==μ0Nh ln(R/r )/(2π)(1)。

大学物理A2期末总复习知识点合集汇编

大学物理A2期末总复习知识点合集汇编

I = Nhν
二.关于光电效应和康普顿效应的计算

=
1 2
mv
2 m
+
A
eU a
=
1 2
mv
2 m
A = hν o
Δλ
=
2λc sin 2
o
ϕ
2
λc = 0.024 A
E、pv 守恒
总复习
三. 氢原子光谱及有关计算
•里德伯公式:
ν~
=
1
λ
=
1 R( k 2

1 n2 )
R =1.097×107 m−1 k =1,2,3, LL n=k+1,k+2,LL
2
媒质元
非孤立系统,E不守恒
Ep , Ek 同步调变化
4. 波的干涉 相干条件
振动方向相同 频率相同 相位差恒定
总复习
强度分布
总复习
I = I1 + I2 + 2 I1 I2 cosΔϕ
Δϕ
=
ϕ2
− ϕ1


(
r2

λ
r1
)
干涉项
强弱条件 Δϕ =
± 2πk
相长
k = 0, 1 ,2L
± ( 2k + 1 )π 相消
•玻尔能级及跃迁公式:
E
=
E1 n2
E1 = −13.6 eV
ΔE
=
En

Ek
=

=
hc
λ
n = 1, 2, LL
总复习
四. 激光
自发辐射
爱因斯坦辐射理论
受激吸收 受激辐射

大学物理期末重点

大学物理期末重点

大学物理期末重点大学物理期末考试是每个物理学生面临的挑战,它对我们对知识的掌握和理解能力进行了全面的考核。

为了帮助同学们更好地复习和备考,本文将重点介绍大学物理期末考试的几个重要知识点。

1.力学力学是物理学的基础,也是大学物理考试中的重点内容。

其中包括牛顿运动定律、动量守恒、动量和动能以及万有引力等概念和定律。

需要重点掌握物体在外力作用下的运动规律、相互作用力的性质以及质点系的动量守恒等基本原理。

2.热学热学是研究物体热现象的学科,也是大学物理考试中的重要内容。

主要包括热力学第一、第二定律、热传导、理想气体状态方程和热功转化等内容。

需要理解热力学基本概念、热平衡、热传导和理想气体的性质等知识点。

3.电磁学电磁学是研究电荷的电场和电流的磁场相互作用的学科,也是大学物理考试的重点之一。

主要包括库仑定律、电场强度、电势、电流、电磁感应和电磁波等内容。

需要熟悉电荷和电场的相互作用、电流的基本概念以及电磁感应和电磁波的特性等知识点。

4.光学光学是研究光的传播和光与物质相互作用的学科,也是大学物理考试的重要内容之一。

主要包括光的反射和折射、光的干涉和衍射、几何光学和光的波粒二象性等内容。

需要理解光的传播规律、光的干涉和衍射现象以及光的波粒二象性等知识。

5.量子力学量子力学是研究微观粒子行为规律的学科,也是大学物理考试的一项重难点内容。

主要包括波粒二象性、不确定性原理、定态和定态方程以及量子力学中的运算等内容。

需要掌握波粒二象性的基本概念、定态方程的求解方法以及量子力学中的数学运算等知识点。

本文对大学物理期末考试的重点知识点进行了简要介绍,希望能帮助同学们更好地复习和备考。

在复习过程中,要注意理解基本概念和原理,并进行大量的习题训练。

同时,也要注重对物理实验的理解和实践,以提高实践能力和实验分析能力。

祝同学们取得好成绩!。

大学物理2复习

大学物理2复习

y Acos(t x) tt x
u
u
代入A=0.040m ,ω=2.5πrad·s-1,u=100m·s-1
可得波动方程为
y 0.040cos 2.5π(t x ) m 100
2)在x=20m处质点的振动方程为 y 0.040cos 2.5π(t 20 ) 0.040cos(2.5πt 0.50π) m
9
632.8nm
光源S的移动引起条纹移动,条纹间距不变
s1 s • s2
r1 0
r1 r2
0
r2
二 薄膜干涉 1.会分析光程差,注意半波损失; 2.只讨论垂直入射;
14-12.白光垂直照射到空气中一厚度为380nm的
肥皂膜上。设肥皂膜折射率为1.32,问:该膜的
正面呈现何颜色。
解:为薄膜干涉问题。求膜正面的颜色即求反射
旋转矢量图,写出运动方程。设 已知。
解:画出旋转矢量图
由矢量图,可知初相位为

A
3
3
o A2 A x
则运动方程为
x Acos(t )
3
第六章
机械波
一 平面简谐波的波函数
y Acos[(t x) ]
1.波长
u
波传播方向上两相邻的振动状态完全相同
(或相位差为2 )的质点间的距离(即一完
化而产生的感应电动势;
动生电动势的计算公式
i (v B) dl
掌握: 1.产生动生电动势的非静电力为洛伦兹力; 2.会计算动生电动势; 3.涡电流:当大块导体处于变化的磁场中时,导 体内部会产生感应电流,这种电流在导体内自成 闭合回路,称为涡电流。
四 电磁波 电磁波的能流密度(坡印廷)矢量
S EH

大学物理第二学年总复习

大学物理第二学年总复习

dB oIdler 4 r2
Idl
er r0
方 向 的 Idl 确 e r 定 :
由磁场叠加原理可得稳恒载流导体的磁场
B ldB l4 oIl d r 2e r
r
6
几种典型的电流磁场大小
长直载流导线外的磁场
B4 0rI(co1sco2 s)
半无限长载流直导线外的磁场
B 0I 4 r
无限长载流直导线外的磁场 圆形载流导线轴线上的磁场
B 0I 2 r
B 0R2I
2(R2 x2)3 2
圆形载流导线圆心处的磁场
B 0I
2R
载流长直螺旋管轴线上的磁场
B0nI
7
三、磁力
1 载流导线在磁场中所受的磁力
大小:d F Id ls Bin
安培力 d F I d l B 方向:由右手螺旋法则确定
任意形状载流导线在外磁场中受到的安培力
I dq dt
规定:电流的方向为正电荷运动的方向。
2 电流密度 j
j
dI dS
en大小:该点处通过垂直于来自流子运动方 向的单位面积的电流。
方向:正电荷在该点的运动方向。
4
3 电动势ε
A ne q
Enedr
电源的电动势:等于把单位正电荷从负极经电源内 部移至正极时非静电力所做的功。
规定:电源内部电势升高的方向为电动势的方向。
(3) 带电粒子在均匀磁场中沿任意方向运动
v // 匀速直线运动 v v
v 匀速圆周运动
+
v
//
B
h
结论:等螺距螺旋运动
半径:R mv mvsin
qB qB
周期 : T 2 m
qB

大学物理2期末考试重点及复习

大学物理2期末考试重点及复习

s1 s2
r1 r2
*
2 1 2π
r2 r1
P
对空间不同的位置,都有恒定的,因而合强 度在空间形成稳定的分布,即有干涉现象。

定值
讨 论
A
A1 A2 2 A1 A2 cos
2 2
可看出A是与时间无关的稳定值 ,其大小取决于该 点处两分振动的相位差
上式代表x1 处质点在其平衡位置附近以角频率w 作简谐运动。
x 2 1 2 2 t 一定。令t=t1,则质点位移y 仅是x 的函数。
x2 x1
2 x y A cos t1 即
同一波线上任意两点的振动位相差:
x A cos t u
由于 P 为波传播方向上任一点,因此上 述方程能描述波传播方向上任一点的振动, 具有一般意义,即为沿 x 轴正方向传播的平 面简谐波的波函数,又称波动方程.
2π 2πν 和 uT 利用 T 可得波动方程的几种不同形式:
干涉的位相差条件 当 2kπ时k 0,1,2,3... 合振幅最大 当
2k 1π
Amax A1 A2
合振幅最小
Amin A1 A2
干涉的波程差条件 当 r1 r2 k 时(半波长偶数倍)
合振幅最大
Amax A1 A2
然后确定三个特征量:、A、 旋转矢量法确定: 先在X轴上找到相应x0,有 两个旋转矢量,由的正 负来确定其中的一个

A
O
x0 A
X
v 0 0, 上半圆, 0 v 0 0, 下半圆, 2或 0 v 0 0, x0 A, 0, x0 A,

大物期末知识总结

大物期末知识总结

大物期末知识总结一、牛顿运动定律牛顿运动定律是描述物体运动状态的基本规律。

牛顿运动定律包括以下三条:1. 牛顿第一定律:一个物体如果受到外力作用,将会发生运动或改变运动状态;一个物体如果不受外力作用,将会保持静止或匀速直线运动。

2. 牛顿第二定律:物体的加速度正比于作用在它上面的力,反比于物体的质量。

即F=ma,其中F是物体所受的力,m是物体的质量,a是物体的加速度。

3. 牛顿第三定律:如果物体A对物体B施加一个力,那么物体B对物体A将会施加一个大小相等、方向相反的力。

二、动量和动量定理动量是描述物体运动的物理量。

动量的定义是物体的质量乘以其速度,即p=mv。

动量定理是描述物体受力时动量变化的关系。

动量定理可以表示为F=Δp/Δt,即力等于动量变化率。

基于动量定理,我们可以得到以下结论:1. 如果物体的质量不变,那么施加在物体上的力越大,物体的加速度越大。

同时,如果施加在物体上的力方向与物体运动的方向一致,物体的速度将会增加;如果力方向与运动方向相反,物体的速度将会减小。

2.对于两个相互作用的物体,它们的合外力之和等于它们的总动量随时间的变化率。

根据牛顿第三定律,这两个物体所受的力大小相等、方向相反,因此它们的总动量之和是不变的。

三、功和功率功是描述力对物体做功的物理量。

当物体沿着力的方向移动时,力对物体做功;当物体与力的方向垂直时,力不对物体做功。

功的计算公式是W=F·d·cosθ,其中W是功,F是力的大小,d是物体移动的距离,θ是力和物体移动方向之间的夹角。

功率是描述做功的速度,也就是单位时间内所做的功。

功率的计算公式是P=W/t,其中P是功率,W是做的功,t是所用的时间。

四、质心和惯性定律质心是描述物体总体运动的重要概念。

质心是系统中所有质点的质量加权平均位置。

惯性定律包括以下两条:1.第一惯性定律:一个物体如果没有外力作用,将会保持匀速直线运动或静止。

2.第二惯性定律:一个物体所受的合外力等于物体的质量乘以其加速度。

大物期末复习题

大物期末复习题

1. 一均匀带电球面,电荷面密度为σ,球面内电场强度处处为零,球面上面元d S 带有σ d S 的电荷,该电荷在球面内各点产生的电场强度(A) 处处为零 (B) 不一定都为零.(C) 处处不为零.(D)无法判定 .2. 下列几个说法中哪一个是正确的?(A) 电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向.(B) 在以点电荷为中心的球面上, 由该点电荷所产生的场强处处同. (C) 场强可由q F E / =定出,其中q 为试验电荷,q 可正、可负,F 为试验电荷所受的电场力.(D) 以上说法都不正确. 3.如图所示,在坐标(a ,0)处放置一点电荷+q ,在坐标(-a ,0)处放置另一点电荷-q .P 点是y 轴上的一点,坐标为(0,y ).当y >>a 时,该点场强的大小为:(A) 204y qεπ. (B) 202y q επ. (C) 302y qa επ. (D) 304y qa επ. [ ]4.设有一“无限大”均匀带正电荷的平面.取x 轴垂直带电平面,坐标原点在带电平面上,则其周围空间各点的电场强度E 随距离平面的位置坐标x 变化的关系曲线为(规定场强方向沿x 轴正向为正、反之为负):[ ]x5.有一边长为a 的正方形平面,在其中垂线上距中心O 点a /2处,有一电荷为q 的正点电荷,如图所示,则通过该平面的电场强度通量为 (A) 03εq . (B) 04επq(C) 03επq . (D) 06εq6. 已知一高斯面所包围的体积内电荷代数和∑q =0,则可肯定:(A) 高斯面上各点场强均为零.(B) 穿过高斯面上每一面元的电场强度通量均为零.(C) 穿过整个高斯面的电场强度通量为零.(D) 以上说法都不对.7.半径为R 的“无限长”均匀带电圆柱面的静电场中各点的电场强度的大小E 与距轴线的距离r 的关系曲线为:[ ]8. 半径为R 的均匀带电球面,若其电荷面密度为σ,则在距离球面R 处的电场强度大小为:(A)εσ. (B) 02εσ. (C) 04εσ. (D) 08εσ. 9. 如图所示,两个同心的均匀带电球面,内球面半径为R 1、带有电荷1Q , 外球面半径为R 2、带有电荷Q 2,则在内球面里面、距离球心为r 处的P 点的场强大小E 为: q EOr (A)E ∝1/r(A) 20214r Q Q επ+. (B) 2202210144R Q R Q εεπ+π (C) 2014r Q επ. (D) 0.10. 如图所示,两个“无限长”的共轴圆柱面,半径分别为R 1和R 2,其上均匀带电,沿轴线方向单位长度上所带电荷分别为λ1和λ2,则在两圆柱面之间、距离轴线为r 的P 点处的场强大小E 为:(A) r012ελπ. (B) r 0212ελλπ+. (C) ()rR -π2022ελ. (D) ()1012R r -πελ.[ ]11.半径为R 的均匀带电球面,总电荷为Q .设无穷远处电势为零,则该带电体所产生的电场的电势U ,随离球心的距离r 变化的分布曲线为 [ ]12.在点电荷+q 的电场中,若取图中P 点处为电势零点 , 则M点的电势为(A) a q 04επ. (B) aq 08επ. (C) a q 04επ-. (D) a q 08επ- 13. 如图,在点电荷q 的电场中,选取以q 为中心、R 为半径的球面上一点P 则与点电荷q 距离为r 的P'点的电势为(A)rq 04επ (B) ⎪⎭⎫ ⎝⎛-πR r q 1140ε (C) ()R r q -π04ε (D) ⎪⎭⎫ ⎝⎛-πr R q 1140ε (A) (B) (C)2 (D) 2(E)14. 如图所示,边长为l 的正方形,在其四个顶点上各放有等量的点电荷.若正方形中心O 处的场强值和电势值都等于零,则:(A) 顶点a 、b 、c、d 处都是正电荷.(B) 顶点a 、b 处是正电荷,c 、d 处是负电荷.(C) 顶点a 、c 处是正电荷,b 、d 处是负电荷.(D) 顶点a 、b 、c 、d 处都是负电荷. [ ]15.如图所示,边长为 0.3 m 的正三角形abc ,在顶点a 处有一电荷为10-8 C 的正点电荷,顶点b 处有一电荷为-10-8 C 的负点电荷,则顶点c 处的电场强度的大小E 和电势U 为: (041επ=9×10-9 N m /C 2) (A) E =0,U =0.(B) E =1000 V/m ,U =0.(C) E =1000 V/m ,U =600 V .(D) E =2000 V/m ,U =600 V .16. 如图所示,半径为R 的均匀带电球面,总电荷为Q ,设无穷远处的电势为零,则球内距离球心为r 的P 点处的电场强度的大小和电势为:(A) E =0,r Q U 04επ=. (B) E =0,RQ U 04επ=. (C) 204r Q E επ=,rQ U 04επ= . (D)204r Q E επ=,R Q U 04επ=. 17. 有N 个电荷均为q 的点电荷,以两种方式分布在相同半径的圆周上:一种是无规则地分布,另一种是均匀分布.比较这两种情况下在过圆心O 并垂直于圆平面的z 轴上任一点P (如图所示)的场强与电势,则有(A) 场强相等,电势相等.(B) 场强不等,电势不等.b a(C) 场强分量E z 相等,电势相等.(D) 场强分量E z 相等,电势不等.18. 如图所示,两个同心球壳.内球壳半径为R 1,均匀带有电荷Q ;外球壳半径为R 2,壳的厚度忽略,原先不带电,但与地相连接.设地为电势零点,则在内球壳里面,距离球心为r 处的P 点的场强大小及电势分别为:(A) E =0,U =104R Q επ. (B) E =0,U =⎪⎪⎭⎫ ⎝⎛-π210114R R Q ε. (C) E =204r Q επ,U =rQ 04επ. (D) E =204r Q επ, U =104R Q επ. 19. 如图所示,两个同心的均匀带电球面,内球面半径为R 1、带电荷Q 1,外球面半径为R 2、带有电荷Q 2.设无穷远处为电势零点,则在内球面之内、距离球心为r 处的P 点的电势U 为:(A) r Q Q 0214επ+. (B) 20210144R Q R Q εεπ+π. (C) 0. (D) 1014R Q επ. 20.点电荷-q 位于圆心O 处,A 、B 、C 、D 为同一圆周上的四点,如图所示.现将一试验电荷从A 点分别移动到B 、C 、D 各点,则 (A) 从A 到B ,电场力作功最大.(B) 从A 到C ,电场力作功最大.(C) 从A 到D ,电场力作功最大.(D) 从A 到各点,电场力作功相等.21. 在已知静电场分布的条件下,任意两点P 1和P 2之间的电势差决定于(A) P 1和P 2两点的位置.(B) P 1和P 2两点处的电场强度的大小和方向.(C) 试验电荷所带电荷的正负.(D) 试验电荷的电荷大小.22.半径为r 的均匀带电球面1,带有电荷q ,其外有一同心的半径为R 的均匀带电球面2,带有电荷Q ,则此两球面之间的电势差U 1-U 2A为:(A) ⎪⎭⎫ ⎝⎛-πR r q 1140ε . (B) ⎪⎭⎫ ⎝⎛-πr R Q 1140ε . (C) ⎪⎭⎫ ⎝⎛-πR Q r q 041ε . (D) r q 04επ . 23. 面积为S 的空气平行板电容器,极板上分别带电量±q ,若不考虑边缘效应,则两极板间的相互作用力为(A)S q 02ε. (B) Sq 022ε. (C) 2022S q ε. (D) 202S q ε. 24.充了电的平行板电容器两极板(看作很大的平板)间的静电作用力F与两极板间的电压U 的关系是:(A) F ∝U . (B) F ∝1/U .(C) F ∝1/U 2. (D) F ∝U 2.25. 如图所示,在真空中半径分别为R 和2R 的两个同心球面,其上分别均匀地带有电荷+q 和-3q .今将一电荷为+Q的带电粒子从内球面处由静止释放,则该粒子到达外球面时的动能为:(A) R Qq 04επ. (B) RQq 02επ. (C) R Qq 08επ. (D) RQq 083επ. 26. 密立根油滴实验,是利用作用在油滴上的电场力和重力平衡而测量电荷的,其电场由两块带电平行板产生.实验中,半径为r 、带有两个电子电荷的油滴保持静止时,其所在电场的两块极板的电势差为U 12.当电势差增加到4U 12时,半径为2r 的油滴保持静止,则该油滴所带的电荷为:(A) 2e (B) 4e(C) 8e (D) 16e27.一个静止的氢离子(H +)在电场中被加速而获得的速率为一静止的氧离子(O +2)在同一电场中且通过相同的路径被加速所获速率的:(A) 2倍. (B) 22倍.(C) 4倍. (D) 42倍. 28. 真空中有两个点电荷M 、N ,相互间作用力为F ,当另一点电荷Q 移近这两个点电荷时,M 、N 两点电荷之间的作用力(A) 大小不变,方向改变. (B) 大小改变,方向不变.(C) 大小和方向都不变. (D) 大小和方向都改.29. 有一带正电荷的大导体,欲测其附近P 点处的场强,将一电荷量为q 0 (q 0 >0 )的点电荷放在P 点,如图所示,测得它所受的电场力为F .若电荷量q 0不是足够小,则 (A) F / q 0比P 点处场强的数值大.(B) F / q 0比P 点处场强的数值小.(C) F / q 0与P 点处场强的数值相等.(D) F / q 0与P 点处场强的数值哪个大无法确定.30.有一接地的金属球,用一弹簧吊起,金属球原来不带电.若在它的下方放置一电荷为q 的点电荷,如图所示,则(A) 只有当q > 0时,金属球才下移.(B) 只有当q < 0时,金属球才下移.(C) 无论q 是正是负金属球都下移.(D) 无论q 是正是负金属球都不动.31. 半径分别为R 和r 的两个金属球,相距很远.用一根细长导线将两球连接在一起并使它们带电.在忽略导线的影响下,两球表面的电荷面密度之比σR / σr 为(A) R / r . (B) R 2 / r 2.(C) r 2 / R 2. (D) r / R . q 0P32. 如图所示,一厚度为d 的“无限大”均匀带电导体板,电荷面密度为σ ,则板的两侧离板面距离均为h 的两点a 、b 之间的电势差为:(A) 0. (B) 02εσ.(C) 0εσh .(D) 02εσh . 33. 一空心导体球壳,其内、外半径分别为R 1和R 2,带电荷q ,如图所示.当球壳中心处再放一电荷为q 则导体球壳的电势(设无穷远处为电势零点)为 (A) 104R qεπ . (B) 204R q επ . (C) 102R q επ . (D) 20R q ε2π . 34. 如图所示,一带负电荷的金属球,外面同心地罩一不带电的金属球壳,则在球壳中一点P 处的场强大小与电势(设无穷远处为电势零点)分别为: (A) E = 0,U > 0. (B) E = 0,U < 0. (C) E = 0,U = 0. (D) E > 0,U < 0.35. 同心导体球与导体球壳周围电场的电场线分布如图所示,由电场线分布情况可知球壳上所带总电荷(A) q > 0. (B) q = 0.(C) q < 0. (D) 无法确定.36.一长直导线横截面半径为a ,导线外同轴地套一半径为b 的薄圆筒,两者互相绝缘,并且外筒接地,如图所示.设导线单位长度的电荷为+λ,并设地的电势为零,则两导体之间的P 点( OP = r )的场强大小和电势分别为:q(A) 204r E ελπ=,a b U ln 20ελπ=. (B) 204rE ελπ=,r b U ln 20ελπ=. (C) r E 02ελπ=,ra U ln 20ελπ=. (D) r E 02ελπ=,rb U ln 20ελπ=. [ ] 37. 关于高斯定理,下列说法中哪一个是正确的?(A) 高斯面内不包围自由电荷,则面上各点电位移矢量D 为零.(B) 高斯面上处处D 为零,则面内必不存在自由电荷.(C) 高斯面的D通量仅与面内自由电荷有关.(D) 以上说法都不正确.38. 一导体球外充满相对介电常量为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度σ为(A) ε 0 E . (B) ε 0 ε r E .(C) ε r E . (D) (ε 0 ε r - ε 0)E .39. 在一点电荷q 产生的静电场中,一块电介质如图放置,以点电荷所在处为球心作一球形闭合面S ,则对此球形闭合面: (A) 高斯定理成立,且可用它求出闭合面上各点的场强.(B) 高斯定理成立,但不能用它求出闭合面上各点的场强.(C) 由于电介质不对称分布,高斯定理不成立.(D) 即使电介质对称分布,高斯定理也不成立.40. 设有一个带正电的导体球壳.当球壳内充满电介质、球壳外是真空时,球壳外一点的场强大小和电势用E 1,U 1表示;而球壳内、外均为真空时,壳外一点的场强大小和电势用E2,U2表示,则两种情况下壳外同一点处的场强大小和电势大小的关系为(A) E1 = E2,U1 = U2.(B) E1 = E2,U1 > U2.(C) E1 > E2,U1 > U2.(D) E1 < E2,U1 < U2.41.一个平行板电容器,充电后与电源断开,当用绝缘手柄将电容器两极板间距离拉大,则两极板间的电势差U12、电场强度的大小E、电场能量W将发生如下变化:(A)U12减小,E减小,W减小.(B) U12增大,E增大,W增大.(C) U12增大,E不变,W增大.(D) U12减小,E不变,W不变.42. C1和C2两空气电容器并联以后接电源充电.在电源保持联接的情况下,在C1中插入一电介质板,如图所示, 则(A) C1极板上电荷增加,C2极板上电荷减少.(B) C1极板上电荷减少,C2极板上电荷增加.(C) C1极板上电荷增加,C2极板上电荷不变.(D) C1极板上电荷减少,C2极板上电荷不变.43.如果某带电体其电荷分布的体密度 增大为原来的2倍,则其电场的能量变为原来的(A) 2倍.(B) 1/2倍.(C) 4倍.(D) 1/4倍.44.通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为: (A) B P > B Q > B O . (B) B Q >B P >B O (C )B Q > B O > B P . (D) B O > B Q > Bp45. 一个电流元l Id 位于直角坐标系原点 ,电流沿z 轴方向 ,点P (x ,y ,z )的磁感强度沿x 轴的分量是:(A) 0. (B) 2/32220)/(d )4/(z y x l Iy ++π-μ. (C) 2/32220)/(d )4/(z y x l Ix ++π-μ.(D) )/(d )4/(2220z y x l Iy ++π-μ. 46. 电流I 由长直导线1沿垂直bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点沿垂直ac 边方向流出,经长直导线2返回电源(如图).若载流直导线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用1B 、2B 和3B 表示,则O 点的磁感强度大小(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B,B 3 = 0.(C) B ≠ 0,因为虽然B 3= 0,但021≠+B B.(D) B ≠ 0,因为虽然021=+B B,但B 3≠ 0. 47. 图中,六根无限长导线互相绝缘,通过电流均为I ,区域Ⅰ、Ⅱ、Ⅲ、Ⅳ均为相等的正方形,哪一个区域指向纸内的磁通量最大?(A) Ⅰ区域. (B) Ⅱ区域. (C) Ⅲ区域. (D) Ⅳ区域.(E) 最大不止一个. 48. 无限长直圆柱体,半径为R ,沿轴向均匀流有电流.设圆柱体内( rⅠⅡⅢⅣ< R )的磁感强度为B i ,圆柱体外( r > R )的磁感强度为B e ,则有 (A) B i 、B e 均与r 成正比. (B) B i 、B e 均与r 成反比. (C) B i 与r 成反比,B e 与r 成正比. (D) B i 与r 成正比,B e 与r 成反比.49.磁场由沿空心长圆筒形导体的均匀分布的电流产生,圆筒半径为R ,x 坐标轴垂直圆筒轴线,原点在中心轴线上.图(A)~(E)哪一条曲线表示B -x 的关系?50. 如图,一个电荷为+q 、质量为m 的质点,以速度v沿x 轴射入磁感强度为B 的均匀磁场中,磁场方向垂直纸面向里,其范围从x = 0延伸到无限远,如果质点在x = 0和y = 0处进入磁场,则它将以速度v-从磁场中某一点出来,这点坐标是x = 0 和(A) qB m y v +=. (B) qBm y v 2+=. (C) qB m y v 2-= (D) qBm y v -=. 51. 一电子以速度v垂直地进入磁感强度为B的均匀磁场中,此电子在磁场中运动轨道所围的面积内的磁通量将 (A) 正比于B ,反比于v 2. (B) 反比于B ,正比于v 2.(C) 正比于B ,反比于v . (D) 反比于B ,反比于v . 52. α 粒子与质子以同一速率垂直于磁场方向入射到均匀磁场中,它们各自作圆周运动的半径比R α / R p 和周期比T α / T p 分别为:Bx OR(D) Bx O R(C) BxOR (E)(A) 1和2 ; (B) 1和1 ; (C) 2和2 ; (D) 2和1 .53.如图,长载流导线ab 和cd 相互垂直,它们相距l ,ab 固定不动,cd 能绕中点O 转动,并能靠近或离开ab .当电流方向如图所示时,导线cd 将(A) 顺时针转动同时离开ab . (B) 顺时针转动同时靠近ab . (C) 逆时针转动同时离开ab . (D) 逆时针转动同时靠近ab . 54. 两个同心圆线圈,大圆半径为R ,通有电流I 1;小圆半径为r ,通有电流I 2,方向如图.若r << R (大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为 (A)R r I I 22210πμ. (B)R r I I 22210μ.(C) rR I I 22210πμ. (D) 0.55. 三条无限长直导线等距地并排安放,导线Ⅰ、Ⅱ、Ⅲ分别载有1 A ,2 A ,3 A 同方向的电流.由于磁相互作用的结果,导线Ⅰ,Ⅱ,Ⅲ单位长度上分别受力F 1、F 2和F 3,如图所示.则F 1与F 2的比值是:(A) 7/16. (B) 5/8.(C) 7/8. (D) 5/4. [ ] 56. 把通电的直导线放在蹄形磁铁磁极的上方,如图所示.导线可以自由活动,且不计重力.当导线内通以如图所示的电流时,导线将 (A) 不动.O r R I 1 I 2F 1F 2F 31 A2 A3 AⅠⅡⅢI(B) 顺时针方向转动(从上往下看). (C) 逆时针方向转动(从上往下看),然后下降. (D) 顺时针方向转动(从上往下看),然后下降. (E) 逆时针方向转动(从上往下看),然后上升. 57. 四条皆垂直于纸面的载流细长直导线,每条中的电流皆为I .这四条导线被纸面截得的断面,如图所示,它们组成了边长为2a 的正方形的四个角顶,每条导线中的电流流向亦如图所示.则在图中正方形中心点O 的磁感强度的大小为 (A) I a B π=02μ. (B) I aB 2π=2μ. (C) B = 0. (D) I aB π=μ.58. 如图两个半径为R 的相同的金属环在a 、b 两点接触(ab 连线为环直径),并相互垂直放置.电流I 沿ab 连线方向由a 端流入,b端流出,则环中心O 点的磁感强度的大小为(A) 0.(B)R I40μ. (C) R I 420μ. (D) R I0μ.(E)RI820μ. 59.一无限长直导体薄板宽为l ,板面与z 轴垂直,板的长度方向沿y 轴,板的两侧与一个伏特计相接,如图.整个系统放在磁感强度为B 的均匀磁场中,B的方向沿z 轴正方向.如果伏特计与导体平板均以速度v向y 则伏特计指示的电压值为(A) 0. (B)21v Bl . (C) v Bl . (D) 2v Bl . 60. 将形状完全相同的铜环和木环静止放置,并使通过两环面的磁通量随时间的变化率相等,则不计自感时(A) 铜环中有感应电动势,木环中无感应电动势.IaI Ib a(B) 铜环中感应电动势大,木环中感应电动势小.(C) 铜环中感应电动势小,木环中感应电动势大.(D)两环中感应电动势相等.61. 一个圆形线环,它的一半放在一分布在方形区域的匀强磁场B中,另一半位于磁场之外,如图所示.磁场B的方向垂直指向纸内.欲使圆线环中产生逆时针方向的感应电流,应使 (A) 线环向右平移. (B) 线环向上平移. (C) 线环向左平移. (D) 磁场强度减弱. 62. 在如图所示的装置中,把静止的条形磁铁从螺线管中按图示情况抽出时 (A) 螺线管线圈中感生电流方向如A 点处箭头所示. (B) 螺线管右端感应呈S 极.(C) 线框EFGH 从图下方粗箭头方向看去将逆时针旋转.(D) 线框EFGH 从图下方粗箭头方向看去将顺时针旋转. [ ]63.如图所示,一矩形线圈,以匀速自无场区平移进入均匀磁场区,又平移穿出.在(A)、(B)、(C)、(D)各I --t 曲线中哪一种符合线圈中的电流随时间的变化关系(取逆时针指向为电流正方向,且不计线圈的自感)? [ ] 64. 如图所示,M 、N 为水平面内两根平行金属导轨,ab 与cd 为垂直于导轨并可在其上自由滑动的两根直裸导线.外磁场垂直水平面向上.当外力使ab 向右平移时,cd (A) 不动. (B) 转动. (C) 向左移动. (D) 向右移动.[ ]磁极磁极 0 t I0 t I0 t I 0t I(A) (B)(C) (D)c ab d N M B65. 一根长度为L 的铜棒,在均匀磁场 B中以匀角速度ω绕通过其一端O 的定轴旋转着,B的方向垂直铜棒转动的平面,如图所示.设t =0时,铜棒与Ob 成θ 角(b 为铜棒转动的平面上的一个固定点),则在任一时刻t 这根铜棒两端之间的感应电动势是:(A) )cos(2θωω+t B L . (B) t B L ωωcos 212.(C) )cos(22θωω+t B L . (D) B L 2ω.(E) B L 221ω.66. 自感为 0.25 H 的线圈中,当电流在(1/16) s 内由2 A 均匀减小到零时,线圈中自感电动势的大小为: (A) 7.8 ×10-3 V . (B) 3.1 ×10-2 V .(C) 8.0 V . (D) 12.0 V . 67. 两个通有电流的平面圆线圈相距不远,如果要使其互感系数近似为零,则应调整线圈的取向使 (A) 两线圈平面都平行于两圆心连线. (B) 两线圈平面都垂直于两圆心连线. (C) 一个线圈平面平行于两圆心连线,另一个线圈平面垂直于两圆心连线.(D) 两线圈中电流方向相反. 68. 在一个塑料圆筒上紧密地绕有两个完全相同的线圈aa ′和bb ′,当线圈aa ′和 bb ′如图(1)绕制时其互感系数为M 1,如图(2)绕制时其互感系数为M 2,M 1与M 2的关系是(A) M 1 = M 2 ≠0. (B) M 1 = M 2 = 0. (C) M 1 ≠M 2,M 2 = 0.(D) M 1 ≠M 2,M 2 ≠0.B(2)69. 如图所示,两个线圈P 和Q 并联地接到一电动势恒定的电源上.线圈P 的自感和电阻分别是线圈Q 的两倍,线圈P 和Q 之间的互感可忽略不计.当达到稳定状态后,线圈P 的磁场能量与Q 的磁场能量的比值是 (A) 4. (B) 2. (C) 1. (D)21. 选择题答案:填空题答案:70.静电场中某点的电场强度,其大小和方向与(单位正试验电荷在该点所受的静电力相同).71.由一根绝缘细线围成的边长为l 的正方形线框,使它均匀带电,其电荷线密度为λ,则在正方形中心处的电场强度的大小E =_______0______. 72.两根相互平行的“无限长”均匀带正电直线1、2,相距为d ,其电荷线密度分别为λ1和λ2如图所示,则场强等于零的点与直线1的距离a 为+σ +2σ.73.“无限大”均匀带电平面,σ和+2 σ,如图所示,则A 、B 、C 三个区域的电场强度分别为:E A =,E B =,E C= 设方向向右为正).74.R 的均匀带电球面带有电荷Q (Q >0).今在球面上挖去非常小块的面积△S (连同电荷),如图所示,假设不影响其他处原来的挖去△S 后球心处电场强度的大小E =,其方向为_(由球心指向△S )__. 电荷线密度为λ,其单位长度上总共发出的电场线条数(即电场强度通量).76.静电场中某点的电势,其数值等于_单位正试验电荷在该点的电势能___或 _把单位正电荷由该点沿任意路_径移到零势点时电场力所作的功__.77.图中曲线表示一种轴对称性静电场的场强大小E 的分布,r 表示离对称轴的距离,这是由_半径为R 的无限长均匀带电圆柱面___产生的电场.78.真空中,有一均匀带电细圆环,电荷线密度为λ,其圆心处的电场强度E 0= 0 ,电势U 0=.(选无穷远处电势为零)79.+Q r 1吹胀到r 2,则半径为R (r 1<R <r 2=的球面上任一点的场强大小E变为_0_;电势U 由80.,两同心带电球面,内球面半径为r 1=5 cm ,带电荷q 1=3×10-8C ;外球面半径为r 2=20 cm , 带电荷q 2=-6×10­8C间另一电势为零的球面半径r = 10 cm ___.81.半径为0.1 m 的孤立导体球其电势为300 V ,则离导体球中心30 cm 处的电势U = 100V (以无穷远为电势零点).82.在点电荷q 的电场中,把一个-1.0×10-9 C 的电荷,从无限远处(设无限远处电势为零)移到离该点电荷距离 0.1 m 处,克服电场力作功1.8×10-5 J ,则该点电荷q =7102-⨯-.(真空介电常量ε0=8.85×10-12 C 2·N -1·m -2 ) 83.如图所示.试验电荷q , 在点电荷+Q 产生的电场中,沿半径为R 的整个圆弧的3/4圆弧轨道由a 点移到d 点的过程中电场力作功为S____0____________;从d 点移到无穷远处的过程中,电场力作功为.84.图示BCD 是以O 点为圆心,以R 为半径的半圆弧,在A 点有一电荷为+q 的点电荷,O 点有一电荷为-q 的点电荷.线段R BA =B 点沿半圆弧轨道BCD 移到D 点,则电功为.85.(带电荷e =1.6×10-19 C)沿四分之一的圆弧轨道从A 点移到B 点(如图),电场力作功8.0×10-15 J .则当质子沿四分之三的圆弧轨道从B 点回到A 点时,电场力作功A =-8.0×10-15 J .设A 点电势为零,则B 点电势U =-5×104V . 86.一电子和一质子相距2×10-10 m (两者静止),将此两粒子分开到无穷远距离(两者仍静止)所需要的最小能量是_7.2_eV . (041επ=9×109 N ·m 2/C 2 , 质子电荷e =1.60×10-19C, 1 eV=1.60×10-19J )87.在点电荷q 的静电场中,若选取与点电荷距离为r0的一点为电势零点,则点电荷距离为r 处的电势U 88.如图所示, 在场强为E的均匀电场中,A 、B 两点间距离为d .AB连线方向与E方向一致.从A 点经任意路径到B 点的场强线积分⎰⋅ABl Ed =Ed . 89.静电场中有一质子(带电荷e =1.6×10-19 ) 沿图示路径从a 点经c 点移动到b 点时,电场力作功8×10-15 J .则当质子从b 点沿另一路径回到a 点过程中,电场力作功A =-8×10-15 J ;若设a 点电势为零,则b 点电势U b =5×104V90.真空中,一边长为a 的正方形平板上均匀分布着电荷q ;在其中垂线上距离平板d 处放一点电荷q 0如图所示.在d 与a 满足____d >>a___条件下,q 0所受的电场力可写成q 0q / (4πε0d 2).91.一电矩为p 的电偶极子在场强为E 的均匀电场中,p与E 间的夹角为α,则它所受的电场力F=0,力矩的大小M =__pEsin α__.92.一空气平行板电容器,两极板间距为d ,充电后板间电压为U .然后将电源断开,在两板间平行地插入一厚度为d /3的金属板,则板间电压变成U ' .93.在一个不带电的导体球壳内,先放进一电荷为+q 的点电荷,点电荷不与球壳内壁接触.然后使该球壳与地接触一下,再将点电荷+q 取走.此时,球壳的电荷为_-q __,电场分布的范围是_球壳外的整个空间.Aa 094.带有电荷q 、半径为r A 的金属球A ,与一原先不带电、内外半径分别为r B 和r C 的金属球壳B 同心放置如图.则图中P 点的电场强度=EA 、B 连接起来,则A 球的电势U(设无穷远处电势为零)95.半径为R 1和R 2的两个同轴金属圆筒,其间充满着相对介电常量为εr 的均匀介质.设两筒上单位长度带有的电荷分别为+λ和-λ,则介质中离轴线的距离为r 处的电位移矢量的大小D,电场强度的大小 E96. 1、2是两个完全相同的空气电容器.将其充电后与电源断开,再将一块各向同性均匀电介质板插入电容器1的两极板间,如图所示, 则电容器2的电压U 2,电场能量W 2如何变化?(填增大,减小或不变) U 2减小,W 2减小97. 一质点带有电荷q =8.0×10-10 C ,以速度v =3.0×105 m ·s -1在半径为R =6.00×10-3 m 的圆周上,作匀速圆周运动.该带电质点在轨道中心所产生的磁感强度B =_6.67×10-7T __,该带电轨道运动的磁矩p m.(μ0 =4π×10-7 H ·m -1)98.一长直载流导线,沿空间直角坐标Oy 轴放置,电流沿y 正向.在原点O 处取一电流元l I d ,则该电流元在(a ,0,0)__沿Z轴负向____.99.如图,两根导线沿半径方向引到铁环的上A 、A ′两点,并在很远处与电源相连,则环中心的磁感强度为_0__.100.如图所示,有两个半径相同的均匀带电绝缘体球面,O 1为左侧球面的球心,带的是正电;O 2为右侧球面的球心,它带的是负电,两者的面电荷密度相等.当它们绕21O O 轴旋转时,两球面相切处A 点的磁感强度B A =__0___.101.一长直螺线管是由直径d = 0.2 mm 的漆包线密绕而成.当它通以I = 0.5 A的电流时,其内部的磁感强度B =_T310-⨯π_.(忽略绝缘层厚度)(μ0 =4π×10-7 N/A2)102. 两根长直导线通有电流I,图示有三种环路;在每种情况下,⎰⋅lBd等于:-μ0I(对环路a).__0__(对环路b).2μ0I(对环路c).103.如图所示,一半径为R,通有电流为I的圆形回路,位于Oxy平面内,圆心为O.一带正电荷为q的粒子,以速度v 沿z轴向上运动,当带正电荷的粒子恰好通过O点时,作用于圆形回路上的力为__0______,作用在带电粒子上的力为__0______.104.两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是1:2,运动轨迹半径之比是1:2.105. 如图所示的空间区域内,分布着方向垂直于纸面的匀强磁场,在纸面内有一正方形边框abcd(磁场以边框为界).而a、b、c三个角顶处开有很小的缺口.今有一束具有不同速度的电子由a缺口沿ad方向射入磁场区域,若b、c两缺口处分别有电子射出,则此两处出射电子的速率之比v b/v c =1:2.106.如图,半圆形线圈(半径为R)通有电流I.线圈处在与线圈平面平行向右的均匀磁场B中.线圈所受磁力矩的大小为,方向为_在图面中向上,O107.有两个竖直放置彼此绝缘的圆形刚性线圈(它们的直径几乎相等),可以分别绕它们的共同直径自由转动.把它们放在互相垂直的位置上.若给它们通以电流(如图),则它们转动的最后状态是_两线圈平面平行(磁矩方向一致)__.108.如图所示,在真空中有一半径为a的3/4圆弧形的导线,其c以稳恒电流I,B中,且B与导线所在平面垂直.则该载流导线bc 所受的磁力大小为.109.一弯曲的载流导线在同一平面内,形状如图(O点是半径为R1和R2的两个半圆弧的共同圆心,电流自无穷远来到无穷远去),则O点磁感强度的大小是.110.在xy平面内,有两根互相绝缘,分别通有电流I3和I的长直导线.设两根导线互相垂直(如图),则在xy平面内,磁感强度为零的点的轨迹方程为111.试写出下列两种情况的平面内的载流均匀导线在给定点P处所产生的磁感强度的大小.(1) B0_______.112.一根无限长直导线通有电流I,在P点处被弯成了一个半径为R 的圆,且P点处无交叉和接触,则圆心O处的磁感强度大小为,方向为垂直于纸面向里.113.用导线制成一半径为r=10 cm的闭合圆形线圈,其电阻R=10 Ω,均匀磁场垂直于线圈平面.欲使电路中有一稳定的感应电流i = 0.01 A,B的变化率应为d B /d t =__3.185 T/S_.114.一段导线被弯成圆心在O点、半径为R的三段圆弧ab、bc、ca,它们构成了一个闭合回路,ab位于xOy平面内,bc和ca分别位于另两个坐标面中(如图).均匀磁场B沿x轴正方向穿过圆弧bcK(K>0),则闭合回路abca弧bc中感应电流的方向是由C 流向b115.半径为a的无限长密绕螺线管,单位长度上的匝数为n,通以交变电流i =I m sinωt,则围在管外的同轴圆形回路(半径为r)上的感生电动势为)cos(2tnIamωωμπ-.116.已知在一个面积为S的平面闭合线圈的范围内,有一随时间变化的均匀磁场)(tB,则此闭合线圈内的感应电动势.yx×××××xy。

大学物理期末重点回顾与总结

大学物理期末重点回顾与总结

大学物理期末重点回顾与总结近来,大学物理期末考试即将到来,本文将对整个学期的课程内容进行回顾与总结。

旨在帮助同学们回顾所学知识,巩固基本概念,并对重点难点进行强化学习,以期在考试中取得良好成绩。

下面将分为四个部分进行回顾与总结:力学、热学、光学和电磁学。

一、力学1.运动学与动力学运动学研究物体的运动规律,动力学则研究物体运动的原因。

本学期我们学习了位移、速度、加速度等运动学概念,并学习了牛顿定律和力的合成等动力学知识。

2.牛顿定律与力的合成牛顿第一定律指出物体在不受力的作用下,将保持静止状态或匀速直线运动。

牛顿第二定律是一个重要的动力学公式,表示物体的加速度与作用于其上的合外力成正比,与物体的质量成反比。

力的合成则指多个力合成一个力的过程,可以通过矢量的几何方法或合力分解的方法来求解。

3.重要概念与公式回顾在力学部分,同学们需要重点回顾质点的受力分析、动能和势能的转化、质点的圆周运动和万有引力等重要概念与公式。

二、热学1.温度与热量热学是研究物体的热现象和热力学定律的科学。

本学期我们学习了温度、热量和内能的概念,并了解了热传导、热辐射和热对流等热传递方式。

2.理想气体与状态方程理想气体是指具有非常小的分子体积和相互间无相互作用力的气体。

我们学习了理想气体的状态方程,即气体的温度、压力和体积之间的关系。

同时,还需要掌握理想气体的其他重要性质,如压强、摩尔质量和宏观系统中理想气体的内能等。

3.热力学第一和第二定律热力学第一定律是能量守恒定律的热学表达形式,指出能量可以互相转化,但总能量守恒。

热力学第二定律则是描述热现象方向性的定律,指出自然界中热量只能从热量高的物体传递到热量低的物体。

三、光学1.光的性质和光学仪器本学期我们学习了光的直线传播、折射、反射和干涉等基本性质,并了解了光的波粒二象性。

同时,还学习了光学仪器的工作原理,如凸透镜和凹透镜。

2.光的衍射和偏振衍射是指光通过透过孔径或障碍物时的传播现象,偏振则指光只在某个特定平面上振动。

大学物理二总复习

大学物理二总复习
光波的电矢量或磁矢量在某一特定方向上振动的现象。
偏振现象
能够使自然光变为偏振光的装置,其作用是选择性地让某一方向的光通过。
偏振片
根据电矢量的排列方式,可以分为线偏振光、椭圆偏振光和圆偏振光等。
偏振光的分类
光的偏振
05
量子物理基础
量子态和量子测量
01
量子态是量子力学的基本概念,它描述了微观粒子所处的状态。量子测量则是测量微观粒子状态的过程,其结果往往是不确定的。
干涉条件
干涉现象产生的明暗交替的图样,包括等间距的条纹和不等间距的条纹。
干涉图样
光的干涉
衍射分类
根据产生衍射现象的原因,可以分为菲涅尔衍射和夫琅禾费衍射。
衍射图样
描述光波衍射后形成的图样,包括单缝衍射、多缝衍射和圆孔衍射等。
衍射现象
光波在遇到障碍物或通过小孔时,会偏离直线方向传播的现象。
光的衍射
熵的概念
熵是描述系统混乱度的物理量,它表示系统内部微观粒子排列的无序程度。在自发过程中,熵总是增加的,即系统的无序程度会增加。
热力学过程
热力学过程是指系统状态随时间的变化过程,包括等温过程、等压过程、绝热过程等。这些过程的研究对于理解热力学定律的应用和热机的效率等实际问题非常重要。
热力学第二定律
热力学第二定律指出,自发过程中,热量总是自发地从高温物体传向低温物体,而不引起其他变化。也就是说,第二类永动机是不可能制成的。
磁感应强度与磁场强度
磁感应强度描述磁场对电流的作用力,而磁场强度则描述电流在磁场中受到的力矩,两者之间存在关系。
磁介质与磁路
磁介质在磁场中的磁化现象以及磁路中的磁阻、磁通量、磁场强度之间的关系。
03
交流电与交流电机

大学物理期末考试重点及复习

大学物理期末考试重点及复习

量子测量问题是一个核心问题 ,它涉及到如何准确地测量物 理量以及如何解释测量结果。 在量子力学中,测量会导致波 函数坍缩,从而改变被测量的 物理量的状态。
THANK YOU.
06
量子力学基础
波粒二象性
光的波粒二象性
光既可以被视为波,也可以被 视为粒子。这种双重性质被称
为波粒二象性。
物质波
所有粒子都具有波粒二象性,其 波长与粒子动量成反比,被称为 物质波。
德布罗意公式
描述了波长、频率和动量之间的关 系,是理解波粒二象性的基础。
不确定性原理
不确定性原理
无法同时精确测量某些物理量,例如位置和动量,因为测量其中 一个物理量会干扰另一个物理量的测量。
恒定电流
电流强度、电流密度、电动势等概念及其计算。
磁场与电磁感应
磁场基本物理量
磁感应强度、磁通量、磁 场线等概念及其计算。
电磁感应
法拉第电磁感应定律、楞 次定律等概念及其应用。
磁场对电流的作用
安培力、磁矩等概念及其 计算。
电磁波与光学
01
电磁波的基本性质:波动性、粒子性等。
02
电磁波的传播:波长、频率、波速等概念及其计算。
化学键
化学键的类型和强度是重点,需要掌握离子键和金属键等知识。
固体的结构与性质
固体的结构
固体由晶格和缺陷组成,需要掌握晶体结构和晶胞等知识。
固体的性质
固体的物理性质(如熔点、导热性、导电性等)和力学性质(如弹性、塑性、韧性等)是重点,需要掌握固体 的热学和光学等性质。
04
热力学
温度与气体定律
要点一
测不准原理
由于量子力学中的不确定性原理,无法准确地同时测量某些物理 量,例如位置和动量。

大学物理2考试复习重点(问答题)

大学物理2考试复习重点(问答题)

1 位移电流的实质是什么?谈谈你对位移电流的理解。

答:位移电流的本质是变化的电场。

d ==t t D d dD I S d d ψ 位移电流密度d d 1j ==dt t D dD S d ψ 位移电流是电位移通量对时间的变化率。

位移电流只对应于变化的电场,无自由电荷的定向移动,无焦耳热。

在导体、电介质、真空中均存在,只要有变化的电场就有位移电流。

2 行波在传播过程中,质元的动能和势能的时间关系式是相同的。

就此谈谈你的理解? 答:在介质中任取体积为△V ,质量为△m 的质元。

当波传播到这个质元时,将具有动能△Ek 和△Ep 。

可以证明 222p 01==()sin 2K x E E A V t u ρωωϕ⎡⎤⎛⎫∆-+ ⎪⎢⎥⎝⎭⎣⎦△△在波传播的媒质中,任一体积元的动能和势能还有总机械能均随x ,t 作周期性变化,且变化是同相位的。

体积元在平衡位置时,动能势能和机械能均最大。

体积远的位移最大时,三者均为零。

3 什么是波的衍射?举出生活中关于波的衍射的例子。

什么是波的干涉?相干光的获得方法有哪些?答:衍射:当波在传播过程中遇到障碍物时,其传播方向绕过障碍物发生偏折的现象,称为波的衍射。

例如站在高墙后面的人能听到别人说话的声音,隔了山岭或者建筑物能收听无线电广播。

干涉:频率相同的两列波叠加,使某些区域的振动加强,某些区域的振动减弱,而且振动加强的区域和振动减弱的区域相互隔开。

这种现象叫做波的干涉。

产生干涉的一个必要条件是,两列波的频率必须相同并且有固定的相位差。

获得相干光的方法的基本原理是把由光源上同一点发出的光设法一分为二,然后再使这两部分叠加起来。

1分波阵面法(例如杨氏双缝干涉) 2分振幅法(例如薄膜干涉)。

4 杨氏双缝实验中,屏上的干涉条纹有怎样的特点,明暗条纹的级次和间距由哪些因素决定?答:屏上将出现一系列稳定的明暗相间的条纹。

这些条纹都与狭缝平行,条纹间的距离彼此相等。

如果,P 点处为明纹,即各级明纹中心离O 点的距离为x=k d D λ± k=0,1,2,3,……相应于k=0的称为零级明纹或中央明纹。

大物(2)期末复习

大物(2)期末复习

11练习一 静电场中的导体三、计算题1. 已知某静电场在xy 平面内的电势函数为U =Cx/(x 2+y 2)3/2,其中C 为常数.求(1)x 轴上任意一点,(2)y 轴上任意一点电场强度的大小和方向.解:. E x =U/x=C [1/(x 2+y 2)3/2+x (3/2)2x /(x 2+y 2)5/2]= (2x2y 2)C /(x 2+y 2)5/2E y =U/y=Cx (3/2)2y /(x 2+y 2)5/2=3Cxy /(x 2+y 2)5/2x 轴上点(y =0) E x =2Cx 2/x 5=2C /x 3 E y =0E =2C i /x 3y 轴上点(x =0) E x =Cy 2/y 5=C /y 3 E y =0E =C i /y 32.如图,一导体球壳A (内外半径分别为R 2,R 3),同心地罩在一接地导体球B (半径为R 1)上,今给A 球带负电Q , 求B 球所带电荷Q B 及的A 球的电势U A .静电场中的导体答案解: 2. B 球接地,有 U B =U =0, U A =U BAU A =(Q+Q B )/(40R 3)U BA =[Q B /(4)](1/R 21/R 1)得 Q B =QR 1R 2/( R 1R 2+ R 2R 3 R 1R3)U A =[Q/(40R 3)][1+R 1R 2/(R 1R 2+R 2R 3R 1R 3)]图22 =Q (R 2R 1)/[4(R 1R 2+R 2R 3R 1R 3)]练习二 静电场中的电介质三、计算题1. 如图所示,面积均为S =的两金属平板A ,B 平行对称放置,间距为d =1mm,今给A , B 两板分别带电 Q 1=×10-9C, Q 2=×10-9C.忽略边缘效应,求:(1) 两板共四个表面的面电荷密度1,2,3,4;(2) 两板间的电势差V =U A -U B .解:1. 在A 板体内取一点A , B 板体内取一点B ,它们的电场强度是四个表面的电荷产生的,应为零,有E A =1/(2)2/(20)3/(2)4/(2)=0E A =1/(2)+2/(20)+3/(2)4/(2)=0而 S (1+2)=Q 1 S (3+4)=Q 2有 1234=01+2+34=01+2=Q 1/S 3+4=Q 2/S解得1=4=(Q 1+Q 2)/(2S )=108C/m 22=3=(Q 1Q 2)/(2S )=108C/m 2两板间的场强 E=2/=(Q 1Q 2)/(2S )V=U A -U B ⎰⋅=BAl E d=Ed=(Q 1Q 2)d /(2S )=1000V四、证明题导体 图A Q 1图Q 21234331. 如图所示,置于静电场中的一个导体,在静电平衡后,导体表面出现正、负感应电荷.试用静电场的环路定理证明,图中从导体上的正感应电荷出发,终止于同一导体上的负感应电荷的电场线不能存在.解:1. 设在同一导体上有从正感应电荷出发,终止于负感应电荷的电场线.沿电场线ACB 作环路ACBA ,导体内直线BA 的场强为零,ACB 的电场与环路同向于是有=⋅⎰l E d l+⋅⎰ACBl E d ⎰⋅ABl E d 2=⎰⋅ACBlE d 0与静电场的环路定理=⋅⎰l E d l 0相违背,故在同一导体上不存在从正感应电荷出发,终止于负感应电荷的电场线.练习三 电容 静电场的能量三、计算题1. 半径为R 1的导体球带电Q ,球外一层半径为R 2相对电容率为r的同心均匀介质球壳,其余全部空间为空气.如图所示.求:(1)离球心距离为r 1(r 1<R 1), r 2(R 1<r1<R2), r 3(r 1>R 2)处的D 和E ;(2)离球心r 1, r 2, r 3,处的U ;(3)介质球壳内外表面的极化电荷. 解:1. (1)因此电荷与介质均为球对称,电场也球对称,过场点作与金属球同心的球形高斯面,有iSq0d ∑=⋅⎰S D4r 2D=q 0i当r=5cm <R 1, q 0i =0得 D 1=0, E 1=0 当r=15cm(R 1<r <R 1+d ) q 0i =Q=×108C 得D 2=Q /(4r 2)=×108C/m 2E 2=Q /(40rr 2)=×103N/C图R 2BA C当r=25cm(r>R1+d )q 0i=Q=×108C 得D3=Q/(4r2)=×108C/m2E3=Q/(40r2)=×104N/CD和E的方向沿径向.(2) 当r=5cm<R1时U1=⎰∞⋅r lE d⎰=R r r E d1⎰++d RRrE d2⎰∞++dRrE d3=Q/(40r R)Q/[40r(R+d)]+Q/[40(R+d)]=540V当r=15cm<R1时U2=⎰∞⋅r lE d⎰+=d RrrE d2⎰∞++dRrE d3=Q/(40r r)Q/[40r(R+d)]+Q/[40(R+d)]=480V当r=25cm<R1时U3=⎰∞⋅r lE d⎰∞=rrE d3=Q/(40r)=360V(3)在介质的内外表面存在极化电荷,P e=0E=0(r1)E =P e·n r=R处, 介质表面法线指向球心=P e·n =P e cos =0(r 1)Eq =S=0(r1) [Q /(40r R2)]4R2=(r1)Q/r=×108Cr=R+d处, 介质表面法线向外=P e·n =P e cos0=0(r1)Eq=S=0(r1)[Q /(40r(R+d)2]4(R+d)2=(r1)Q/r=×108C44552.两个相距很远可看作孤立的导体球,半径均为10cm ,分别充电至200V 和400V ,然后用一根细导线连接两球,使之达到等电势. 计算变为等势体的过程中,静电力所作的功. 解;2.球形电容器 C =4RQ 1=C 1V 1= 40RV 1 Q 2=C 2V 2= 4RV 2W 0=C 1V 12/2+C 2V 22/2=2R (V 12+V 22)两导体相连后 C =C 1+C 2=8RQ=Q 1+Q 2= C 1V 1+C 2V 2=40R (V 1+V 2)W=Q 2/(2C )= [4R (V 1+V 2)]2/(16R )=R (V 1+V 2)2静电力作功 A=W 0W=2R (V 12+V 22)R (V 1+V 2)2=R (V 1V 2)2=×107J练习六 磁感应强度 毕奥—萨伐尔定律三、计算题1. 如图所示, 一宽为2a 的无限长导体薄片, 沿长度方向的电流I 在导体薄片上均匀分布. 求中心轴线OO上方距导体薄片为a 的磁感强度.解:1.取宽为d x 的无限长电流元d I=I d x/(2a ) d B=0d I/(2r )=I d x/(4ar )d B x =d B cos =[0I d x/(4ar )](a/r )=I dx/(4r 2)= 0I d x/[4(x 2+a2)]xy d Bd IPr OO Ixy zP2a图66 d B y =d B sin =Ix d x/[4a (x 2+a 2)]()⎰⎰-+==aax x a x xI B B 2204d d πμ=[I/(4)](1/a )arctan(x/a )a a-=I/(8a )()⎰⎰-+==aay y ax a xIx B B 2204d d πμ=[I/(8a )]ln(x 2+a 2)a a-=02. 如图所示,半径为R 的木球上绕有密集的细导线,线圈平面彼此平行,且以单层线圈覆盖住半个球面. 设线圈的总匝数为N ,通过线圈的电流为I . 求球心O 的磁感强度.解:2. 取宽为d L 细圆环电流, d I=I d N=I [N/(R/2)]R d =(2IN/)d d B=d Ir 2/[2(r 2+x 2)3/2]r=R sin x=R cosd B=NI sin 2 d /(R )⎰⎰==πππθθμ220d sin d RNI B B=0NI/(4R )练习七 毕奥—萨伐尔定律(续) 磁场的高斯定理三、计算题1.在无限长直载流导线的右侧有面积为S 1和S 2的两个矩形回路, 回路旋转方向如图所示, 两个回路与长直载流导线在同一平面内, 且矩形回路的一边与长直载流导线平行. 求通过两矩形回路的磁通量及通过S 1回路的磁通量与通过S 2回路的磁通量之比. 解: 1.取窄条面元d S =b d r ,O R 图图2aaaS 2S 1 bx d Bd I77面元上磁场的大小为B =0I /(2r ), 面元法线与磁场方向相反.有1=⎰-=aabIbdr r I 2002ln 2cos 2πμππμ 2=⎰-=aabI bdr r I 42002ln 2cos 2πμππμ 1/2=12. 半径为R 的薄圆盘均匀带电,总电量为Q . 令此盘绕通过盘心且垂直盘面的轴线作匀速转动,角速度为,求轴线上距盘心x 处的磁感强度的大小和旋转圆盘的磁矩. 解;2. 在圆盘上取细圆环电荷元d Q =2r d r , [=Q /(R 2) ],等效电流元为d I =d Q /T =2r d r/(2/)=r d r(1)求磁场, 电流元在中心轴线上激发磁场的方向沿轴线,且与同向,大小为 d B=d Ir 2/[2(x 2+r 2)3/2]=r 3d r /[2(x 2+r 2)3/2]()()()⎰⎰++=+=R Rxrx r r xr rr B 02322222002/32230d 42d σωμσωμ=()()()⎰+++R xrx r x r 0232222220d 4σωμ()()⎰++R xrx r x 023222220d 4σωμ=⎪⎪⎭⎫⎝⎛+++RR x r x xr 022202202σωμ =⎪⎪⎭⎫ ⎝⎛-++x x R x R R Q 222222220πωμ (2)求磁距. 电流元的磁矩 d P m =d IS=r d r r 2=r 2d r ⎰=R m dr r P 03πσω=R 4/4=QR 2/488 练习八 安培环路定律三、计算题1. 如图所示,一根半径为R 的无限长载流直导体,其中电流I 沿轴向流过,并均匀分布在横截面上. 现在导体上有一半径为R 的圆柱形空腔,其轴与直导体的轴平行,两轴相距为 d . 试求空腔中任意一点的磁感强度.解:1. 此电流可认为是由半径为R 的无限长圆柱电流I 1和一个同电流密度的反方向的半径为R 的无限长圆柱电流I 2组成.I 1=J R 2 I 2=J R2J =I/[ (R 2R2)]它们在空腔内产生的磁感强度分别为B 1=0r 1J/2 B 2=0r 2J/2方向如图.有 B x =B 2sin2B 1sin1=(J/2)(r 2sin2r 1sin1)=B y =B 2cos2+B 1cos1=(J/2)(r 2cos 2+r 1cos1)=(J/2)d所以 B = B y = 0dI/[2(R 2-R2)]方向沿y 轴正向2. 设有两无限大平行载流平面,它们的电流密度均为j ,电流流向相反. 求: (1) 载流平面之间的磁感强度; (2) 两面之外空间的磁感强度.解;2. 两无限大平行载流平面的截面如图.平面电流在空间产生的磁场为 B 1=J /2在平面①的上方向右,在平面①的下方向左; 电流②在空间产生的磁场为 B 2=J /2图O 2RdORI 1 I 2① ②OO Irr B B y xRRd在平面②的上方向左,在平面②的下方向右.(1) 两无限大电流流在平面之间产生的磁感强度方向都向左,故有B=B1+B2=0J(2) 两无限大电流流在平面之外产生的磁感强度方向相反,故有B=B1B2=0练习九安培力三、计算题1. 一边长a =10cm的正方形铜导线线圈(铜导线横截面积S=, 铜的密度=cm3), 放在均匀外磁场中. B竖直向上, 且B = 103T, 线圈中电流为I =10A . 线圈在重力场中求:(1) 今使线圈平面保持竖直, 则线圈所受的磁力矩为多少.(2) 假若线圈能以某一条水平边为轴自由摆动,当线圈平衡时,线圈平面与竖直面夹角为多少.解:1. (1) P m=IS=Ia2方向垂直线圈平面.线圈平面保持竖直,即P m与B垂直.有M m=P m×BM m=P m B sin(/2)=Ia2B=×10-4m N(2) 平衡即磁力矩与重力矩等值反向M m=P m B sin(/2-)=Ia 2B cosM G= M G 1 + M G2 + M G 3= mg(a/2)sin+ mga sin+ mg(a/2)sin =2(Sa)ga sin=2Sa2g sinBn/2mgmgmg991010Ia 2B cos =2Sa 2g sintan=IB/(2Sg )==152. 如图所示,半径为R 的半圆线圈ACD 通有电流I 2, 置于电流为I 1的无限长直线电流的磁场中, 直线电流I 1 恰过半圆的直径, 两导线相互绝缘. 求半圆线圈受到长直线电流I 1的磁力.解:2.在圆环上取微元I 2d l = I 2R d该处磁场为B =0I 1/(2R cos )I 2d l 与B 垂直,有d F= I 2d lB sin(/2)d F=0I 1I 2d/(2cos )d F x =d F cos =0I 1I 2d/(2)d F y =d F sin =0I 1I 2sin d/(2cos )⎰-=222102πππθμd I I F x =0I 1I 2/2因对称F y =0.故 F =0I 1I 2/2 方向向右.练习十 洛仑兹力三、计算题1. 如图所示,有一无限大平面导体薄板,自下而上均匀通有电流,已知其面电流密度为i (即单位宽度上通有的电流强度)(1) 试求板外空间任一点磁感强度的大小和方向.(2) 有一质量为m ,带正电量为q 的粒子,以速度v 沿平板法线方向向外运动. 若不计粒子重力.求:(A) 带电粒子最初至少在距板什么位置处才不与大平板碰撞. (B) 需经多长时间,才能回到初始位置.. 解:1. (1)求磁场.用安培环路定律得 B =i/2iv图I 1 I 2图I 1I 2Rx y d F在面电流右边B的方向指向纸面向里,在面电流左边B的方向沿纸面向外.(2) F =q v×B=m a qvB=ma n=mv2/R带电粒子不与平板相撞的条件是粒子运行的圆形轨迹不与平板相交,即带电粒子最初位置与平板的距离应大于轨道半径.R=mv/qB= 2mv/(0iq)(3) 经一个周期时间,粒子回到初始位置.即t=T=2R/v= 4m/(0iq)2. 一带电为Q质量为m的粒子在均匀磁场中由静止开始下落,磁场的方向(z轴方向)与重力方向(y 轴方向)垂直,求粒子下落距离为y 时的速率.并讲清求解方法的理论依据.解:2. 洛伦兹力Q v×B垂直于v,不作功,不改变v的大小;重力作功.依能量守恒有mv2/2=mgy,得v=(2gy)1/2.练习十一磁场中的介质三、计算题1. 一厚度为b的无限大平板中通有一个方向的电流,平板内各点的电导率为,电场强度为E,方向如图所示,平板的相对磁导率为r1,平板两侧充满相对磁导率为r2的各向同性的均匀磁介质,试求板内外任意点的磁感应强度.解:1. 设场点距中心面为x,因磁场面对称以中心面为对称面过场点取矩形安培环路,有⎰⋅l lH d=ΣI0 2LH=ΣI0(1)介质内,0<x<b/2. ΣI0=2x lJ=2x l E,有H=x E B=0r1H=0r1x E(2)介质外,x>b/2. ΣI0=b lJ=b l E,有H=b E/2 B=0r2H=0r2b E/2×EHHl111112122. 一根同轴电缆线由半径为R 1的长导线和套在它外面的半径为R 2的同轴薄导体圆筒组成,中间充满磁化率为m的各向同性均匀非铁磁绝缘介质,如图所示. 传导电流沿导线向上流去, 由圆筒向下流回,电流在截面上均匀分布. 求介质内外表面的磁化电流的大小及方向.解: 2. 因磁场柱对称 取同轴的圆形安培环路,有 ⎰⋅l l H d =ΣI 0在介质中(R 1r R 2),ΣI 0=I ,有2rH = I H = I /(2r )介质内的磁化强度M =mH =mI /(2r )介质内表面的磁化电流J SR 1= M R 1×n R 1= M R 1=mI /(2R 1)I SR 1=J SR 12R 1=mI (与I 同向)介质外表面的磁化电流J SR 2= M R 2×n R 2= M R 2=mI /(2R 2)I SR 2=J SR 22R 2=mI (与I 反向)练习十二 电磁感应定律 动生电动势三、计算题1. 如图所示,长直导线AC 中的电流I 沿导线向上,并以d I /d t = 2 A/s 的变化率均匀增长. 导线附近放一个与之同面的直角三角形线框,其一边与导线平行,位置及线框尺寸如图所示. 求此线框中产生的感应电动势的大小和方向.解: 1. 取顺时针为三角形回路电动势正向,得三角形面法线垂直纸面向里.取窄条面积微元20cm10cm5cm 图bBla图rrrbE图OI图R 1R 21313d S =y d x =[(a+b x )l/b ]d xm=⎰⋅S d S B=()⎰+-+⋅ba abldxx b a x I πμ20 =()⎥⎦⎤⎢⎣⎡-++b a b a b a bIl ln 20πμ εi =dm/d t=()dt dIa b a b a b b l ⎥⎦⎤⎢⎣⎡++-ln 20πμ =×10-8V负号表示逆时针2. 一很长的长方形的U 形导轨,与水平面成 角,裸导线可在导轨上无摩擦地下滑,导轨位于磁感强度B 垂直向上的均匀磁场中,如图所示. 设导线ab 的质量为m ,电阻为R ,长度为l ,导轨的电阻略去不计, abcd 形成电路. t=0时,v=0. 求:(1) 导线ab 下滑的速度v 与时间t 的函数关系; (2) 导线ab 的最大速度v m .解: 2. (1) 导线ab 的动生电动势为εi =lv×B ·d l=vBl sin(/2+)=vBl cos I i =εi /R = vBl cos /R方向由b 到a . 受安培力方向向右,大小为F =l(I i d l×B )= vB 2l 2cos /RF 在导轨上投影沿导轨向上,大小为F = F cos =vB 2l 2cos 2/R重力在导轨上投影沿导轨向下,大小为mg sinmg sin vB 2l 2cos 2/R=ma=m d v /d t dt=d v /[g sin vB 2l 2cos 2/(mR )]1414()[]{}⎰-=vmR l vB g dv t 0222cos sin θθ()()()mR t l B el B mgR v θθθ222cos 2221cos sin --=(2) 导线ab 的最大速度v m =θθ222cos sin l B mgR .练习十三 感生电动势 自感三、计算题1. 在半径为R 的圆柱形空间中存在着均匀磁场B ,B 的方向与柱的轴线平行.有一长为2R 的金属棒MN 放在磁场外且与圆柱形均匀磁场相切,切点为金属棒的中点,金属棒与磁场B 的轴线垂直.如图所示.设B 随时间的变化率d B /d t 为大于零的常量.求:棒上感应电动势的大小,并指出哪一个端点的电势高. (分别用对感生电场的积分εi =l E i·d l 和法拉第电磁感应定律εi =-d /d t 两种方法解)..解:(1) 用对感生电场的积分εi =l E i·d l 解:在棒MN 上取微元d x (R<x<R ),该处感生电场大小为E i =[R 2/(2r )](d B/d t )与棒夹角满足tan =x/Rεi =⎰⋅NMl E i d =⎰NMi x E θcos d=()⎰-⋅RRr R r x t B R 22d d d =⎰-+⋅RR R x xt B R 2232d d d =[R 3(d B/d t )/2](1/R )arctan(x/R )RR-=R 2(d B/d t )/4因εi =>0,故N 点的电势高. (2) 用法拉第电磁感应定律εi =-d /d t 解:图×× × ×OR 2RBa2az图L× ×× ×OBMNd E × ×× ×OB1515沿半径作辅助线OM ,ON 组成三角形回路MONMεi =⎰⋅N Ml E i d =⎰⋅-MNl E i d=⎢⎣⎡⋅⎰M N l E i d +⎰⋅O M l E i d +⎥⎦⎤⋅⎰N O l E i d=-(-dmMONM/d t ) =dmMONM/d t而mMONM=⎰⋅S d S B =R 2B/4故 εi =R 2(d B/d t )/4N 点的电势高.2. 电量Q 均匀分布在半径为a ,长为L (L >>a )的绝缘薄壁长圆筒表面上,圆筒以角速度绕中心轴旋转.一半径为2a ,电阻为R 总匝数为N 的圆线圈套在圆筒上,如图所示.若圆筒转速按=(1t/t 0)的规律(,t 0为已知常数)随时间线性地减小,求圆线圈中感应电流的大小和流向.解:2. .等效于螺线管B 内=nI=[Q /(2)]/L=Q /(2L )B 外=0=SB d S=B a 2=Q a 2 /(2 L )εi =-d /d t=-[Q a 2 /(2 L )]d /d t=Q a 2 /(2 L t 0)I i =εi /R=Q a 2 /(2 LR t 0)方向与旋转方向一致.练习十四 自感(续)互感 磁场的能量三、计算题1. 两半径为a 的长直导线平行放置,相距为d ,组成同一回路,求其单位长度导线的自感系数L 0.1616解:1. 取如图所示的坐标,设回路有电流为I ,则两导线间磁场方向向里,大小为 0≤r ≤a B 1=Ir/(2a 2)+I/[2(d r )]a ≤r ≤d a B 2=0I/(2r )+0I/[2(d r )]d a ≤r ≤d B 3=I/(2r )+I (d r )/(2a 2)取窄条微元d S=l d r ,由m=⎰⋅S S B d 得ml =⎰aa r Irl 0202d πμ+()⎰-a r d rIl 002d πμ +⎰-ad ar r Il πμ2d 0+()⎰--a d ar d r Il πμ2d 0+⎰-ad ar r Il πμ2d 0+()⎰-a d aa rl r -d I 202d πμ =Il/(4)+[0Il/(2)]ln[d/(d a )]+[Il/(2)]ln[(d a )/a ] +[Il/(2)]ln[(d a )/a ]+[Il/(2)]ln[d/(d a )]+Il/(4)=Il/(2)+(Il/)ln(d/a )由L l =l/I ,L 0= L l /l=l/(Il ).得单位长度导线自感 L 0==0l/(2)+(l/)ln(d/a )2 内外半径为R 、r 的环形螺旋管截面为长方形,共有N 匝线圈.另有一矩形导线线圈与其套合,如图(1)所示. 其尺寸标在图(2) 所示的截面图中,求其互感系数.解:2. 设环形螺旋管电流为I , 则管内磁场大小为B =NI/(2) r ≤≤R图(1Rrh a b(21717方向垂直于截面; 管外磁场为零.取窄条微元d S=h d ,由m=⎰⋅S S B d 得m=⎰RrNIh πρρμ2d 0=0NIh ln(R/r )/(2)M =m/I ==Nh ln(R/r )/(2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1练习一 静电场中的导体三、计算题1. 已知某静电场在xy 平面内的电势函数为U =Cx/(x 2+y 2)3/2,其中C 为常数.求(1)x 轴上任意一点,(2)y 轴上任意一点电场强度的大小和方向.解:. E x =-∂U/∂x=-C [1/(x 2+y 2)3/2+x (-3/2)2x /(x 2+y 2)5/2]= (2x 2-y 2)C /(x 2+y 2)5/2E y =-∂U/∂y=-Cx (-3/2)2y /(x 2+y 2)5/2=3Cxy /(x 2+y 2)5/2x 轴上点(y =0) E x =2Cx 2/x 5=2C /x 3 E y =0E =2C i /x 3 y 轴上点(x =0) E x =-Cy 2/y 5=-C /y 3 E y =0E =-C i /y 32.如图5.6,一导体球壳A (内外半径分别为R 2,R 3),同心地罩在一接地导体球B (半径为R 1)上,今给A 球带负电-Q , 求B 球所带电荷Q B 及的A 球的电势U A .静电场中的导体答案解: 2. B 球接地,有 U B =U ∞=0, U A =U BAU A =(-Q+Q B )/(4πε0R 3) U BA =[Q B /(4πε0)](1/R 2-1/R 1)得 Q B =QR 1R 2/( R 1R 2+ R 2R 3- R 1R 3)U A =[Q/(4πε0R 3)][-1+R 1R 2/(R 1R 2+R 2R 3-R 1R 3)]=-Q (R 2-R 1)/[4πε0(R 1R 2+R 2R 3-R 1R 3)]练习二 静电场中的电介质三、计算题1. 如图6.6所示,面积均为S =0.1m 2的两金属平板A ,B 平行对称放置,间距为d =1mm,今给A , B 两板分别带电 Q 1=3.54×10-9C, Q 2=1.77×10-9C.忽略边缘效应,求:(1) 两板共四个表面的面电荷密度 σ1, σ2, σ3, σ4;(2) 两板间的电势差V =U A -U B .解:1. 在A 板体内取一点A , B 板体内取一点B ,它们的电场强度是四-Q图5.6Q 图6.62σ 2 σ 42个表面的电荷产生的,应为零,有E A =σ1/(2ε0)-σ2/(2ε0)-σ3/(2ε0)-σ4/(2ε0)=0E A =σ1/(2ε0)+σ2/(2ε0)+σ3/(2ε0)-σ4/(2ε0)=0而 S (σ1+σ2)=Q 1 S (σ3+σ4)=Q 2 有 σ1-σ2-σ3-σ4=0σ1+σ2+σ3-σ4=0 σ1+σ2=Q 1/S σ3+σ4=Q 2/S解得 σ1=σ4=(Q 1+Q 2)/(2S )=2.66⨯10-8C/m 2σ2=-σ3=(Q 1-Q 2)/(2S )=0.89⨯10-8C/m 2 两板间的场强 E=σ2/ε0=(Q 1-Q 2)/(2ε0S )V=U A -U B ⎰⋅=BAl E d=Ed=(Q 1-Q 2)d /(2ε0S )=1000V四、证明题1. 如图6.7所示,置于静电场中的一个导体,在静电平衡后,导体表面出现正、负感应电荷.试用静电场的环路定理证明,图中从导体上的正感应电荷出发,终止于同一导体上的负感应电荷的电场线不能存在.解:1. 设在同一导体上有从正感应电荷出发,终止于负感应电荷的电场线.沿电场线ACB 作环路ACBA ,导体内直线BA 的场强为零,ACB 的电场与环路同向于是有=⋅⎰l E d l+⋅⎰ACBl E d ⎰⋅ABl E d 2=⎰⋅ACBl E d ≠0与静电场的环路定理=⋅⎰l E d l0相违背,故在同一导体上不存在从正感应电荷出发,终止于负感应电荷的电场线.练习三 电容 静电场的能量三、计算题1. 半径为R 1的导体球带电Q ,球外一层半径为R 2相对电容率为εr 的同心均匀介质球壳,其余全部空间为空气.如图7.1所示.求:(1)离球心距离为r 1(r 1<R 1), r 2(R 1<r 1<R 2), r 3(r 1>R 2)处的D 和E ;(2)离球心r 1, r 2, r 3,处的U ;(3)介质球壳内外表面的极化电荷. 解:1. (1)因此电荷与介质均为球对称,电场也球对称,过场点作与图 7.13金属球同心的球形高斯面,有iSq0d ∑=⋅⎰S D4πr 2D=∑q 0i当r=5cm <R 1, ∑q 0i =0得 D 1=0, E 1=0 当r=15cm(R 1<r <R 1+d ) ∑q 0i =Q=1.0×10-8C 得 D 2=Q /(4πr 2)=3.54×10-8C/m 2 E 2=Q /(4πε0εr r 2)=7.99×103N/C 当r=25cm(r >R 1+d ) ∑q 0i =Q=1.0×10-8C 得 D 3=Q /(4πr 2)=1.27×10-8C/m 2 E 3=Q /(4πε0r 2)=1.44×104N/C D 和E 的方向沿径向. (2) 当r=5cm <R 1时 U 1=⎰∞⋅rl E d ⎰=Rr r E d 1⎰++d R Rr E d 2⎰∞++dR r E d 3=Q/(4πε0εr R )-Q/[4πε0εr (R+d )]+Q/[4πε0(R+d )]=540V当r=15cm <R 1时U 2=⎰∞⋅rl E d ⎰+=dR rr E d 2⎰∞++dR r E d 3=Q/(4πε0εr r )-Q/[4πε0εr (R+d )]+Q/[4πε0(R+d )]=480V当r=25cm <R 1时U 3=⎰∞⋅rl E d ⎰∞=rr E d 3=Q/(4πε0r )=360V(3)在介质的内外表面存在极化电荷,P e =ε0χE=ε0(εr -1)E σ'= P e ·nr=R 处, 介质表面法线指向球心σ'=P e ·n =P e cos π=-ε0(εr -1)Eq '=σ'S =-ε0(εr -1) [Q /(4πε0εr R 2)]4πR 2=-(εr -1)Q /εr =-0.8×10-8Cr=R+d 处, 介质表面法线向外σ'=P e ·n =P e cos0=ε0(εr -1)Eq '=σ'S =ε0(εr -1)[Q /(4πε0εr (R+d )2]4π(R +d )2=(εr -1)Q /εr =0.8×10-8C2.两个相距很远可看作孤立的导体球,半径均为10cm ,分别充电至200V 和400V ,然后用一根细导线连接两球,使之达到等电势. 计算变为等势体的过程中,静电力所作的功.解;2.球形电容器 C =4πε0RQ 1=C 1V 1= 4πε0RV 1 Q 2=C 2V 2= 4πε0RV 2W 0=C 1V 12/2+C 2V 22/2=2πε0R (V 12+V 22)两导体相连后 C =C 1+C 2=8πε0R4 Q=Q 1+Q 2= C 1V 1+C 2V 2=4πε0R (V 1+V 2)W=Q 2/(2C )= [4πε0R (V 1+V 2)]2/(16πε0R )=πε0R (V 1+V 2)2静电力作功 A=W 0-W=2πε0R (V 12+V 22)-πε0R (V 1+V 2)2=πε0R (V 1-V 2)2=1.11×10-7J练习六 磁感应强度 毕奥—萨伐尔定律三、计算题1. 如图10.7所示, 一宽为2a 的无限长导体薄片, 沿长度方向的电流I 在导体薄片上均匀分布. 求中心轴线OO'上方距导体薄片为a 的磁感强度.解:1.取宽为d x 的无限长电流元d I=I d x/(2a ) d B=μ0d I/(2πr ) =μ0I d x/(4πar )d B x =d B cos α=[μ0I d x/(4πar )](a/r )=μ0I d x/(4πr 2)= μ0I d x/[4π(x 2+a 2)] d B y =d B sin α= μ0Ix d x/[4πa (x 2+a 2)]()⎰⎰-+==aax x a x xI B B 2204d d πμ=[μ0I/(4π)](1/a )arctan(x/a )a a-=μ0I/(8a )()⎰⎰-+==aay y ax a xIx B B 2204d d πμ=[μ0I/(8πa )]ln(x 2+a 2)a a-=02. 如图10.8所示,半径为R 的木球上绕有密集的细导线,线圈平面彼此平行,且以单层线圈覆盖住半个球面. 设线圈的总匝数为N ,通过线圈的电流为I . 求球心O 的磁感强度.解:2. 取宽为d L 细圆环电流, d I=I d N=I [N/(πR/2)]R d θ =(2IN/π)d θd B=μ0d Ir 2/[2(r 2+x 2)3/2]r=R sin θ x=R cos θd B=μ0NI sin 2θ d θ /(πR )⎰⎰==πππθθμ220d sin d RNI B B图10.8xr5=μ0NI/(4R )练习七 毕奥—萨伐尔定律(续) 磁场的高斯定理三、计算题1.在无限长直载流导线的右侧有面积为S 1和S 2的两个矩形回路, 回路旋转方向如图11.6所示, 两个回路与长直载流导线在同一平面内, 且矩形回路的一边与长直载流导线平行. 求通过两矩形回路的磁通量及通过S 1回路的磁通量与通过S 2回路的磁通量之比. 解: 1.取窄条面元d S =b d r , 面元上磁场的大小为B =μ0I /(2πr ), 面元法线与磁场方向相反.有Φ1=⎰-=aabIbdr r I 2002ln 2cos 2πμππμ Φ2=⎰-=aabI bdr r I 42002ln 2cos 2πμππμ Φ1/Φ2=12. 半径为R 的薄圆盘均匀带电,总电量为Q . 令此盘绕通过盘心且垂直盘面的轴线作匀速转动,角速度为ω,求轴线上距盘心x 处的磁感强度的大小和旋转圆盘的磁矩.解;2. 在圆盘上取细圆环电荷元d Q =σ2πr d r , [σ=Q /(πR 2) ],等效电流元为d I =d Q /T =σ2πr d r/(2π/ω)=σωr d r(1)求磁场, 电流元在中心轴线上激发磁场的方向沿轴线,且与ω同向,大小为 d B=μ0d Ir 2/[2(x 2+r 2)3/2]=μ0σωr 3d r /[2(x 2+r 2)3/2]()()()⎰⎰++=+=RRx rx r r x r rr B 02322222002/32230d 42d σωμσωμ=()()()⎰+++Rx rx r x r23222222d 4σωμ-()()⎰++Rx rx r x 023222220d 4σωμ=⎪⎪⎭⎫⎝⎛+++RRx r x x r 022202202σωμ =⎪⎪⎭⎫ ⎝⎛-++x x R x R R Q 222222220πωμ (2)求磁距. 电流元的磁矩d P m =d IS=σωr d r πr 2=πσωr 2d r图11.66⎰=Rm dr r P 03πσω=πσωR 4/4=ωQR 2/4练习八 安培环路定律三、计算题1. 如图12.5所示,一根半径为R 的无限长载流直导体,其中电流I 沿轴向流过,并均匀分布在横截面上. 现在导体上有一半径为R '的圆柱形空腔,其轴与直导体的轴平行,两轴相距为 d . 试求空腔中任意一点的磁感强度.解:1. 此电流可认为是由半径为R 的无限长圆柱电流I 1和一个同电流密度的反方向的半径为R '的无限长圆柱电流I 2组成. I 1=J πR 2 I 2=-J πR '2 J =I/[π (R 2-R '2)] 它们在空腔内产生的磁感强度分别为 B 1=μ0r 1J/2 B 2=μ0r 2J/2 方向如图.有B x =B 2sin θ2-B 1sin θ1=(μ0J/2)(r 2sin θ2-r 1sin θ1)=0 B y =B 2cos θ2+B 1cos θ1=(μ0J/2)(r 2cos θ2+r 1cos θ1)=(μ0J/2)d 所以 B = B y = μ0dI/[2π(R 2-R '2)] 方向沿y 轴正向2. 设有两无限大平行载流平面,它们的电流密度均为j ,电流流向相反. 求: (1) 载流平面之间的磁感强度; (2) 两面之外空间的磁感强度.解;2. 两无限大平行载流平面的截面如图.平面电流在空间产生的磁场为 B 1=μ0J /2在平面①的上方向右,在平面①的下方向左;电流②在空间产生的磁场为 B 2=μ0J /2 在平面②的上方向左,在平面②的下方向右.(1) 两无限大电流流在平面之间产生的磁感强度方向都向左,故有 B=B 1+B 2=μ0J (2) 两无限大电流流在平面之外产生的磁感强度方向相反,故有 B=B 1-B 2=0练习九 安培力图12.5I 1 I 2①②7三、计算题1. 一边长a =10cm 的正方形铜导线线圈(铜导线横截面积S =2.00mm 2, 铜的密度ρ=8.90g/cm 3), 放在均匀外磁场中. B 竖直向上, 且B = 9.40⨯10-3T, 线圈中电流为I =10A . 线圈在重力场中 求:(1) 今使线圈平面保持竖直, 则线圈所受的磁力矩为多少.(2) 假若线圈能以某一条水平边为轴自由摆动,当线圈平衡时,线圈平面与竖直面夹角为多少.解:1. (1) P m =IS=Ia 2方向垂直线圈平面.线圈平面保持竖直,即P m 与B 垂直.有 M m =P m ×BM m =P m B sin(π/2)=Ia 2B=9.4×10-4m ⋅N(2) 平衡即磁力矩与重力矩等值反向 M m =P m B sin(π/2-θ)=Ia 2B cos θ M G = M G 1 + M G 2 + M G 3= mg (a/2)sin θ+ mga sin θ+ mg (a/2)sin θ =2(ρSa )ga sin θ=2ρSa 2g sin θ Ia 2B cos θ=2ρSa 2g sin θ tan θ=IB/(2ρSg )=0.2694θ=15︒2. 如图13.5所示,半径为R 的半圆线圈ACD 通有电流I 2, 置于电流为I 1的无限长直线电流的磁场中, 直线电流I 1 恰过半圆的直径, 两导线相互绝缘. 求半圆线圈受到长直线电流I 1的磁力. 解:2.在圆环上取微元 I 2d l = I 2R d θ 该处磁场为B =μ0I 1/(2πR cos θ)I 2d l 与B 垂直,有d F= I 2d lB sin(π/2) d F=μ0I 1I 2d θ/(2πcos θ)d F x =d F cos θ=μ0I 1I 2d θ /(2π)d F y =d F sin θ=μ0I 1I 2sin θd θ /(2πcos θ)⎰-=22102πππθμd I I F x =μ0I 1I 2/2因对称F y =0.故 F =μ0I 1I 2/2 方向向右.I图13.5I练习十洛仑兹力三、计算题1. 如图14.6所示,有一无限大平面导体薄板,自下而上均匀通有电流,已知其面电流密度为i(即单位宽度上通有的电流强度)(1) 试求板外空间任一点磁感强度的大小和方向.(2) 有一质量为m,带正电量为q的粒子,以速度v沿平板法线方向向外运动. 若不计粒子重力.求:(A) 带电粒子最初至少在距板什么位置处才不与大平板碰撞.(B) 需经多长时间,才能回到初始位置..解:1. (1)求磁场.用安培环路定律得B=μ0i/2在面电流右边B的方向指向纸面向里,在面电流左边B的方向沿纸面向外.(2) F=q v×B=m a qvB=ma n=mv2/R带电粒子不与平板相撞的条件是粒子运行的圆形轨迹不与平板相交,即带电粒子最初位置与平板的距离应大于轨道半径.R=mv/qB= 2mv/(μ0iq)(3) 经一个周期时间,粒子回到初始位置.即t=T=2πR/v= 4πm/(μ0iq)2. 一带电为Q质量为m的粒子在均匀磁场中由静止开始下落,磁场的方向(z轴方向)与重力方向(y轴方向)垂直,求粒子下落距离为y时的速率.并讲清求解方法的理论依据.解:2. 洛伦兹力Q v×B垂直于v,不作功,不改变v的大小;重力作功.依能量守恒有mv2/2=mgy,得v=(2gy)1/2.练习十一磁场中的介质三、计算题1. 一厚度为b的无限大平板中通有一个方向的电流,平板内各点的电导率为γ,电场强度为E,方向如图15.6所示,平板的相对磁导率为μr1,平板两侧充满相对磁导率为μr2的各向同性的均匀磁介质,试求板内外任意点的磁感应强度.解:1. 设场点距中心面为x,因磁场面对称以中心面为对称面过场点取矩形安培环路,有⎰⋅l lH d=ΣI02∆LH=ΣI0(1)介质内,0<x<b/2. ΣI0=2x∆lJ=2x∆lγE,有H=xγE B=μ0μr1H=μ0μr1xγE(2)介质外,|x|>b/2. ΣI0=b∆lJ=b∆lγE,有H=bγE/2B=μ0μr2H=μ0μr2bγE/2 i v∙图14.6892. 一根同轴电缆线由半径为R 1的长导线和套在它外面的半径为R 2的同轴薄导体圆筒组成,中间充满磁化率为χm 的各向同性均匀非铁磁绝缘介质,如图15.7所示. 传导电流沿导线向上流去, 由圆筒向下流回,电流在截面上均匀分布. 求介质内外表面的磁化电流的大小及方向.解:2. 因磁场柱对称 取同轴的圆形安培环路,有 ⎰⋅ll H d =ΣI 0在介质中(R 1<r <R 2),ΣI 0=I ,有 2πrH = I H = I /(2πr ) 介质内的磁化强度 M =χm H =χm I /(2πr )介质内表面的磁化电流 J SR 1=| M R 1×n R 1|=| M R 1|=χm I /(2πR 1) I SR 1=J SR 1⋅2πR 1=χm I (与I 同向) 介质外表面的磁化电流J SR 2=| M R 2×n R 2|=| M R 2|=χm I /(2πR 2) I SR 2=J SR 2⋅2πR 2=χm I (与I 反向)练习十二 电磁感应定律 动生电动势三、计算题1. 如图17.8所示,长直导线AC 中的电流I 沿导线向上,并以d I /d t = 2 A/s 的变化率均匀增长. 导线附近放一个与之同面的直角三角形线框,其一边与导线平行,位置及线框尺寸如图所示. 求此线框中产生的感应电动势的大小和方向.解: 1. 取顺时针为三角形回路电动势正向,得三角形面法线垂直纸面向里.取窄条面积微元d S =y d x =[(a+b -x )l/b ]d xΦm =⎰⋅S d S B=()⎰+-+⋅ba abldxx b a x I πμ20 =()⎥⎦⎤⎢⎣⎡-++b a b a b a b Il ln 20πμ图17.8图17.9图15.6图15.710 εi =-d Φm /d t=()dtdIa b a b a b b l ⎥⎦⎤⎢⎣⎡++-ln 20πμ =-5.18×10-8V负号表示逆时针2. 一很长的长方形的U 形导轨,与水平面成θ 角,裸导线可在导轨上无摩擦地下滑,导轨位于磁感强度B 垂直向上的均匀磁场中,如图17.9所示. 设导线ab 的质量为m ,电阻为R ,长度为l ,导轨的电阻略去不计, abcd 形成电路. t=0时,v=0. 求:(1) 导线ab 下滑的速度v 与时间t 的函数关系; (2) 导线ab 的最大速度v m .解:2. (1) 导线ab 的动生电动势为εi = ⎰l v×B ·d l=vBl sin(π/2+θ)=vBl cos θI i =εi /R = vBl cos θ/R方向由b 到a . 受安培力方向向右,大小为F =| ⎰l (I i d l×B )|= vB 2l 2cos θ/RF 在导轨上投影沿导轨向上,大小为F '= F cos θ =vB 2l 2cos 2θ/R重力在导轨上投影沿导轨向下,大小为mg sin θmg sin θ -vB 2l 2cos 2θ/R=ma=m d v /d t dt=d v /[g sin θ -vB 2l 2cos 2θ/(mR )]()[]{}⎰-=vmR l vB g dv t 0222cos sin θθ()()()mR t l B e l B mgR v θθθ222cos 2221cos sin --=(2) 导线ab 的最大速度v m =θθ222cos sin l B mgR .练习十三 感生电动势 自感三、计算题1. 在半径为R 的圆柱形空间中存在着均匀磁场B ,B 的方向与柱的轴线平行.有一长为2R 的金属棒MN 放在磁场外且与圆柱形均匀磁场相切,切点为金属棒的中点,金属棒与磁场B 的轴线垂直.如图18.6所示.设B 随时间的变化率d B /d t 为大于零的常量.求:棒上感应电动势的大图18.6图18.711小,并指出哪一个端点的电势高.(分别用对感生电场的积分εi =⎰l E i ·d l 和法拉第电磁感应定律εi =-d Φ/d t 两种方法解). .解:(1) 用对感生电场的积分εi =⎰l E i ·d l 解:在棒MN 上取微元d x (-R<x<R ), 该处感生电场大小为E i =[R 2/(2r )](d B/d t )与棒夹角θ满足tan θ=x/R εi =⎰⋅NMl E i d =⎰NMi x E θcos d=()⎰-⋅RR r R r x t B R 22d d d =⎰-+⋅RRR x x t B R 2232d d d =[R 3(d B/d t )/2](1/R )arctan(x/R )R R-=πR 2(d B/d t )/4因εi =>0,故N 点的电势高. (2) 用法拉第电磁感应定律εi =-d Φ/d t 解: 沿半径作辅助线OM ,ON 组成三角形回路MONM=⎰⋅NMl E i d =⎰⋅-MNl E i dεi=-⎢⎣⎡⋅⎰MNl E i d +⎰⋅OM l E i d +⎥⎦⎤⋅⎰NO l E i d=-(-d ΦmMONM /d t ) =d ΦmMONM /d t而 ΦmMONM =⎰⋅Sd S B =πR 2B/4故 εi =πR 2(d B/d t )/4 N 点的电势高.2. 电量Q 均匀分布在半径为a ,长为L (L >>a )的绝缘薄壁长圆筒表面上,圆筒以角速度ω绕中心轴旋转.一半径为2a ,电阻为R 总匝数为N 的圆线圈套在圆筒上,如图18.7所示.若圆筒转速按ω=ω0(1-t/t 0)的规律(ω0,t 0为已知常数)随时间线性地减小,求圆线圈中感应电流的大小和流向.解:2. .等效于螺线管B 内=μ0 nI=μ0 [Q ω /(2π)]/L=μ0 Q ω /(2πL )B 外=0Φ=⎰S B ⋅d S=B πa 2=μ0Q ω a 2 /(2 L ) εi =-d Φ/d t=-[μ0Q a 2 /(2 L )]d ω /d t=μ0ω 0Q a 2 /(2 L t 0)I i =εi /R=μ0ω 0Q a 2 /(2 LR t 0)方向与旋转方向一致.练习十四 自感(续)互感 磁场的能量12 三、计算题1. 两半径为a 的长直导线平行放置,相距为d ,组成同一回路,求其单位长度导线的自感系数L 0.解:1. 取如图所示的坐标,设回路有电流为I ,则两导线间磁场方向向里,大小为 0≤r ≤a B 1=μ0Ir/(2πa 2)+ μ0I/[2π(d -r )] a ≤r ≤d -a B 2=μ0I/(2πr )+μ0I/[2π(d -r )] d -a ≤r ≤d B 3=μ0I/(2πr )+ μ0I (d -r )/(2πa 2) 取窄条微元d S=l d r ,由Φm =⎰⋅SS B d 得Φml =⎰aa r Irl 0202d πμ+()⎰-a r d r Il 002d πμ +⎰-ad ar r Il πμ2d 0+()⎰--a d ar d r Il πμ2d 0 +⎰-ad ar r Il πμ2d 0+()⎰-a d aa rl r -d I 202d πμ =μ0Il/(4π)+[μ0Il/(2π)]ln[d/(d -a )]+[μ0Il/(2π)]ln[(d -a )/a ] +[μ0Il/(2π)]ln[(d -a )/a ]+[μ0Il/(2π)]ln[d/(d -a )]+μ0Il/(4π)=μ0Il/(2π)+(μ0Il/π)ln(d/a )由L l =Φl /I ,L 0= L l /l=Φl /(Il ).得单位长度导线自感 L 0==μ0l/(2π)+(μ0l/π)ln(d/a )2 内外半径为R 、r 的环形螺旋管截面为长方形,共有N 匝线圈.另有一矩形导线线圈与其套合,如图19.4(1)所示. 其尺寸标在图19.4(2) 所示的截面图中,求其互感系数.解:2. 设环形螺旋管电流为I , 则管内磁场大小为 B =μ0NI/(2πρ) r ≤ρ≤R方向垂直于截面; 管外磁场为零.取窄条微元d S=h d ρ,由Φm =⎰⋅SS B d 得Φm =⎰RrNIh πρρμ2d 0=μ0NIh ln(R/r )/(2π) M =Φm /I ==μ0Nh ln(R/r )/(2π)图19.4(1)。

相关文档
最新文档