羧酸及其衍生物16

合集下载

有机化学-羧酸及其衍生物

有机化学-羧酸及其衍生物

O CH3OC
O
H+
COCH3 + 2HOCH2CH2OH -2CH3OH
酯交换
O
O
O HOCH2CH2 OC
O
CH3OC
COCH3
COCH2CH2OH
HOCH2CH2OH
酯交换
O
O
C
C OCH2CH2O n n=80100
( 涤纶 )
16
4、酰胺的反应
酰胺的反应活性更小,需在酸或碱催化下长时间
加热回流才能水解
O
或 其它试剂
R CH

水解反应 醇解反应 胺解反应
还原反应
11
1、酰氯的取代反应
H—OH O
R—C—Cl + H—OR'
H—NH2
O
R—C—OH O
HCl 水解
R—C—OR' + HCl 醇解
O
R—C—NH2 NH4Cl 氨解
(酰氯活性大是个优良的酰基化试剂)
O CH3CCl + CH3CH2CH2OH
RCH2
O CX
O
O
RCH2 C O C R
O RCH2 C OR'CH C
H
有弱酸性
可加成至 饱和
L
可被亲核 试剂取代
L: 离去基团 (Leaving group)
9
一、羧酸衍生物的取代反应
这类反应是羧酸衍生物与羧酸、以及羧酸衍生物 之间的相互转化。
O RCL
HOH
R C OH
RCOOH
OO
O
RC O C R HOR'
R C OR' RCOOH

羧酸及衍生物

羧酸及衍生物
O COOH O COOH prostaglandin A2 OH juvenile hormone
H HOOC
H
chrysanthemic acid (pyrethrin)
二、物理性质(physical properities)
沸 点:
CH3CH2CH2OH CH 3CO OH
2OH
HCOO H
+ H2O
COOH 230℃ COOH
丁二 酸 酐 二 丁 CO 酸 酐 O
KMnO4 H2SO4
O
COOH COOH
P2O5

O
O + H2OFra bibliotek⑷ 酰卤 (acyl halide)的生成:
O R C O OH + Cl S Cl 亚硫酰氯 氯化亚砜 O
R
C
Cl + HCl + SO2
卤化试剂:PCl3, PCl5, SOCl2, PBr3
COOH
A-CH2-COOH
加热 ,碱
CH
ACH3 + CO2
在结构上,两个吸电子基连在同一个碳上的 化合物,热力学上是不稳定的,受热易脱羧。
HOOCCH2COOH
CH3COOH + CO2
当-碳上连有吸电子基团时,羧酸受热易发生脱 羧反应。
O O CH3 C C O H
-CO2
O CH3 C H
合成题:
COOH CH2Br
解:
COOH 1).LiAlH4 2).H3O+
HBr CH2Br
CH2OH
4. 脱羧反应(decarboxylation)
—羧酸失去羧基的反应,即脱去一分子CO2。

第十章 羧酸及其衍生物

第十章 羧酸及其衍生物
O CH3C OH
+ H OC2H5
18
H
+
O CH3C
18
OC2H5 + H2O
酰氧断裂
12
O CH3C OH
:OH
+H
+
OH CH3C OH 加成
-H2O
HOC2H5
OH CH3 C OH HOC2H5
OH CH3 C OC2H5
: : : : : : : :
质子迁 移
-H+
O CH3 C OC2H5
1
I 羧酸
一,结构 烃基与羧基相连的物质叫羧酸:一元羧酸通式为 RCOOH;羧基( COOH)就是羧酸的官能团 RCOOH;羧基(-COOH)就是羧酸的官能团. 就是羧酸的官能团.
O
ห้องสมุดไป่ตู้
中碳为SP 杂化, OH 中碳为SP2 杂化,氧原子与羰基双键间存 在着P― 共扼.由于共扼, P―л 在着P―л共扼.由于共扼,使羧基中的羰基失去了典 型的羰基的性质(如不与NH OH作用 作用) 型的羰基的性质(如不与NH2OH作用);―OH 氧原 子上的电子云向羰基偏移,这有利于―OH氢的离解 氢的离解. 子上的电子云向羰基偏移,这有利于―OH氢的离解.
14
Br2 / P
(2)芳香环的取代反应 (2)芳香环的取代反应
COOH Br2 FeBr3
COOH
Br
5. 二元羧酸的受热反应
乙 二 酸 HOOCCOOH 丙 二 酸 HOOCCH 2COOH 丁二酸 CH 2 COOH CH 2 COOH 戊 二 酸 CH 2 CH 2COOH CH 2COOH
CH 3 COOH + C 2H 5 OH : 1 1 1 : 10

第十六章 羧酸衍生物涉及碳负离子的反应及在合成中的应用

第十六章 羧酸衍生物涉及碳负离子的反应及在合成中的应用

适当位置的开链双酯在醇钠存在下可进行分子 内酯缩合,该反应叫做狄克曼(Dieckmann)缩合,常用 来合成五、六元环化合物。
二、交叉酯缩合 两个相同酯缩合,产物较单一,若两个不同的
具有α氢的酯缩合,则会得到复杂产物。但无α氢 的酯与一个有α氢的酯缩合,又可得到较为单一的 产物。这种缩合称为交叉酯合 (crossedestercondensation)。
如无α氢的酯,像甲酸酯、苯甲酸酯、碳酸酯和 草酸酯,可与其他有α氢的酯缩合。它们在反应中提 供羰基,在另一酯的α位导入相应酰基。
具有氢的酮也可与酯在碱作用下发生交叉酯缩合, 由于酮的α 氢酸性较酯的强(酮pKa20~21,酯 pKa24.5),反应中酮生成α碳负离子,结果是酯酰基导 入酮的α位。
是一个卤代烃选择问题。
当采用单卤代烃时,该法可合成取代丙酮,如3甲基-2-己酮的合成,根据如下图示可知是由“三乙” 和卤代甲烷和卤代丙烷制备的。
当采用双卤代烃,且“三乙”钠盐与双卤代烃摩 尔比为2∶1时可制备二酮,如2,6-庚二酮是由 1molCH2Cl2 和2mol“三乙”制备的。
当采用1mol1,4-二卤代丁烷,1mol“三乙”和 2mol醇钠时,则得到环戊基甲基酮。
“三乙”不像丙二酸二乙酯那样,它不能生成 双钠盐,反应中是以两次单钠盐的生成并分别进行 亲核取代关环而成。由于“三乙”不能生成双钠盐, 因此不能合成三、四元环。
带有官能团的α卤代化合物与“三乙”反应, 与丙二酸二乙酯一样,可合成双官能团化合物,如 2,5-己二酮可由“三乙”和α卤代丙酮制备。
三、酯缩合产物和其他双重α 氢化合物的烃基化及 在合成中的应用
2.酯和腈α碳负离子生成及反应 与羧酸相同,酯和腈酸性α氢同样与二异丙基氨 基锂作用生成α碳负离子,继而与活泼卤代烃发生亲 核取代反应,在α位直接导入烃基,这也是形成C-C键 的重要反应。

羧酸及其衍生物

羧酸及其衍生物

羧酸及其衍生物Carboxylic Acids & TheirDerivatives羧酸carboxylic acid羧酸:分子中含有羧基(R-COOH)的化合物O酰基羧基R C OH一元酸系统命名普通命名HCOOH 甲酸蚁酸CH 3COOH 乙酸醋酸CH 3CH 2COOH 丙酸初油酸CH 3CH 2CH 2COOH 丁酸酪酸CH 3(CH 2)10COOH十二烷酸月桂酸CH 3(CH 2)16COOH 十八酸硬脂酸一、羧酸命名1、俗名:根据来源命名二元酸系统命名普通命名HOOCCOOH 乙二酸草酸HOOCCH2COOH 丙二酸缩苹果酸HOOC(CH2)2COOH 丁二酸琥珀酸(Z)-HOOCCH=CHCOOH 顺丁烯二酸马来酸(E)-HOOCCH=CHCOOH 反丁烯二酸富马酸2、系统命名选含羧基的最长连续碳链为主链,不饱和羧酸选含羧基和不饱和键在内的最长连续碳链为主链。

----最低系列原则CH 2CCH CHCOOHCH2CH2CH2CH34-丁基-2,4-戊二烯酸环戊烷甲酸COOH分子中有碳环时,酸作母体,环作为取代基COOH2,4-环戊二烯甲酸C CH 3CH 3CH=CHCOOH4-甲基-4-苯基-2-戊烯酸COOHCOOH(1R, 3R)-环己烷-1,3-二羧酸R COOHH O HO HHRC O OH H OC OR沸点:缔合成稳定的二聚体,比相应分子量的醇沸点高水溶性:与水形成氢键,甲酸至丁酸与水互溶.二、羧酸的物理性质⇒C=O (σ、π)⇒p-π共轭R -C -C -OH OH H ‥sp 2三、羧酸的结构特点和反应性p-π共轭C-O 键增强⇒-OH被Nu-取代的活性比醇小羰基碳δ+ ↓⇒亲电性↓⇒亲核加成比醛、酮困难-OH 氧电子云密度↓,极性↑⇒酸性↑α-H的活性比醛、酮小σ-π超共轭C COOHRH酸性-OH 被取代脱羧反应a-H 卤代a羧羰基的还原∴羧酸的主要反应:四、羧酸的化学性质1、★酸性——羧酸的最显著特点RCOOH RCOO-+ H+p K: 3.5∼5aCO3 >苯酚> H2O > ROH 盐酸、硫酸>RCOOH>H2Pka:1~2 3.5~5 6.3(Pka1) 10 15.7 16~19 ——区别羧酸与苯酚;分离提纯;制备羧酸盐e.g.分离COOHOHCH3 CH3CH3NaOHH2O水层油层CH3CH3COONaONaCH3CO2水层油层OHCH3COONaH3O+COOH▲⑵取代基对酸性的影响羧酸的酸性取决于羧基中H+离解的难易。

有机化学羧酸及衍生物

有机化学羧酸及衍生物

有机化学羧酸及衍生物有机羧酸及其衍生物是有机化学中应用最广泛的重要化合物之一,几乎所有的有机物都是结构和功能性的羧酸衍生物。

它们由非常复杂的结构,从一种亲水性的、具有一个或者多个氢原子的,比较简单的醛与醇体积式羧酸,到脂溶性的、具有脂类或碳酸酯等有机基组成的、比较复杂的多羟基羧酸。

它们都具有很好的化学稳定性和匹配性,在生物体内具有独特的生物活性,因此被广泛应用于各种科学领域。

有机羧酸及其衍生物可分为两大类:一类是单羟基羧酸,它们是由醛与醇有机化合物组成;另一类是多羟基羧酸,它们含有一个以上的羟基,而且具有脂溶性的有机基。

单羟基羧酸有很多种,具体分类如下:呋喃酸、玻璃酸、环酸、乙醇酸、丙酸、乳酸、鞣酸等;多羟基羧酸也有很多种,主要有有机醋酸、有机磷酸、有机碳酸和有机磷脂等。

有机羧酸及其衍生物在化学领域有着广泛的应用。

羧酸及其盐是常用的表面活性剂,羧酸与碱可缓解环境中硫氧化物及酸雨的危害;多羟基羧酸的衍生物是生物体的重要组成部分,包括DNA及RNA的碱基,也是酶的活性中心及核糖体的结构化合物。

此外,它们也可进一步衍生出有机键、芳环等,与功能性化合物相连,用于制造药物和高科技中的医疗器械。

有机羧酸及其衍生物应用广泛,必将深刻影响人们的日常生活,是实现未来科学社会化十分重要的一环。

Organic carboxylic acids and their derivatives are one of the most widely used important compounds in organic chemistry, almost all organic compounds are structural and functional carboxylic acid derivatives. They have very complex structures, from a comparatively simple hydrophilic and one or more hydrogen small molecular alcohol aldehyde carboxylic acid, to lipophilic and composed of lipids or esters and other organic base, more complex polyhydroxy carboxylic acid. They all have good chemical stability and matching, unique biological activity in organisms, and are widely used in various scientific fields.Organic carboxylic acids and their derivatives can be divided into two categories: one is monohydroxy carboxylic acid, which is composed of aldehyde and alcohol organic compounds; the other is polyhydroxy carboxylic acid, which contains one or more hydroxyl groups, and has lipophilic organic base. Monohydroxy carboxylic acid has many kinds, the specific classification is following: furan carboxylic acid, glacial acetic acid, cyclo carboxylic acid, ethyl alcohol carboxylic acid, propionic acid, lactic acid, tannic acid and so on; polyhydroxy carboxylic acid also has many kinds, mainly include organic acetic acid, organic phosphoric acid, organic carbonic acid and organic phospholipid.Organic carboxylic acids and their derivatives have a wide range of applications in chemical field. Carboxylic acid and its salts are commonly used surfactants, and carboxylic acid and alkali。

有机化学羧酸及其衍生物

有机化学羧酸及其衍生物
Chapter 9 羧酸及其衍生物
Organic Chemistry
Ⅰ羧酸
一、羧酸、羧基的结构 1)羧酸:
H
C O
OH
R
C O
OH
Ar C O
OH
Organic Chemistry
Chapter 9 羧酸及其衍生物
2)羧基的结构:
C O
R
Organic Chemistry
OH
O
..
R C O H
形式上看,羧基由羰基和羟基组成。羟基氧原子的未共用电子对所 占据的 p轨道和羰基的 π键形成 p-π共轭。羟基氧上电子云密度有所 降低,羰基碳上电子云密度有所升高。因此,羧酸中羰基对亲核试 剂的活性降低,不利于HCN等亲核试剂反应。 Organic Chemistry
对于含不饱和键的不饱和羧酸则取包括羧基和不饱和键的最长碳链为主链称某烯酸并注明不饱和键的位置命名含脂碳环羧酸和芳香羧酸时则把脂碳环和芳环当作取代基choh3乙基己酸3丙基4戊烯酸coohchcoohchcoohcoohcooh乙基丙二酸邻苯二甲酸环戊基甲酸四物理性质羧酸的沸点比相近分子质量的其它有机物要高
3—丙基—4—戊烯酸
COOH
COOH
乙基丙二酸
环戊基甲酸
邻苯二甲酸
Organic Chemistry
Chapter 9 羧酸及其衍生物
四、物理性质
羧酸的沸点比相近分子质量的其它有机物要高: 乙 丙 酸(60):117.9℃ 醛(58): 48.8℃ 8 ℃
Organic Chemistry
正丙醇(60): 97.4℃ 甲乙醚(60):
味道 沸点
酰氯和酸酐都对粘膜有刺激性,酯有香味。 酰氯、酸酐和酯由于不能形成氢键,熔沸点与分子量相近

羧酸及其衍生物

羧酸及其衍生物

羧酸及其衍生物羧酸及其衍生物Ⅰ 目的要求羧酸是含有羧基(―COOH)的含氧有机化合物,我们平常所说的有机酸就是指的这类化合物。

所谓羧酸衍生物,包括的化合物种类很多,诸如羧酸盐类、酰卤类、酯类(包括内酯、交酯、聚酯等)、酸酐类、酰胺类(包括酰亚胺、内酰胺)等都是羧酸衍生物,有人甚至把腈类也包括在羧酸衍生物的范围之内。

其实,比较常见的而又比较重要的是酰卤、酸酐、酯和酰胺这四类化合物。

羧酸盐与一般无机酸盐在键价类型上没大区别,不作专门介绍。

至于腈类,将放在含氮化合物中加以介绍。

这四类化合物都是羧酸分子中,因酰基转移而产生的衍生物,所以又叫羧酸的酰基衍生物。

羧酸及其衍生物RCOL(L:-OH、-X、-OOCR′、-OR′、-NH2)在许多重要天然产物的构成以及在生物代谢过程中均占有重要地位。

本章将以饱和一元脂肪酸为重点,讨论羧酸及其衍生物的结构和性质。

鉴于乙酰乙酸乙酯和丙二酸二乙酯在有机合成上的重要地位,本章作概括介绍。

希望学生在此基础上,探讨设计合成路线的一般方法。

本章学习的具体要求1、掌握羧酸的结构与性质之间的关系。

2、掌握羧酸衍生物的主要化学性质。

3、了解羧酸衍生物的亲核取代反应机理。

4、掌握羧酸与羧酸衍生物之间相互转变条件。

5、了解卤代酸、羟基酸的特性。

6、掌握乙酰乙酸乙酯和丙二酸二乙酯的制法、性质和在有机合成上的应用。

这也是本章的重点之一。

Ⅱ 学习提要(一)羧酸一、概述羧酸往往有俗名,希望学生有所了解,尽可能记忆一些,脂肪酸的系统命名原则和醛相β α同。

γCH3-CH-CH2-COOH2 14 3 OH 芳香酸命名是把芳环视作取代基。

76羧酸的沸点比分子量相近的其它有机物高,这是由于羧酸能以氢键缔合。

同时,即使在气态时,羧酸也是双分子缔合的,所以羧酸的沸点比分子量相近的醇还要高。

二、羧酸结构和化学性质亲核取代O 还原R-C-C-O-H α-H反应H 脱羧酸性1、酸性?E O O O +?R-C H + R-C R-C E EO-H O OO O NaOH/Na2CO3/ NaHCO3H2O + R-C E R-C EH+ O-Na O-H应用:①鉴别:与酚不同,与非酸性物质不同。

第十六周有机化学教案第八章羧酸及其衍生物

第十六周有机化学教案第八章羧酸及其衍生物

教案(章、节备课)学时:4 章、节第八章羧酸及其衍生物教学目的和要求1.掌握羧酸和羧酸衍生物的结构、分类与命名;2.掌握羧酸的化学性质;3.掌握有机化合物酸性排序和影响酸性的因素;4.理解羧基上的各种亲核取代反应的规律。

教学重点难点重点:羧酸命名和化学性质,羧酸的结构对酸性的影响,羧酸衍生物的命名。

难点:羧酸的结构对酸性的影响,羧酸的脱羧反应,羧酸衍生物的化学性质。

教学进程(含章节教学内容、学时分配、教学方法、教学手段、辅助手段)教学内容及学时分配:§10.1 羧酸的结构、分类和命名(1学时)§羧酸的结构羧酸是分子中具有羧基的化合物,可以看作是烃的羧基衍生物。

它的通式为RCOOH。

羧酸中-COOH中是由-OH和C=O直接相连接而成,由于两基团在分子中的相互影响,而具有它自己特有的性质。

§分类:§命名:系统命名:是选取含羧基的碳原子在内的最长的碳链作为主链,根据主链上碳原子数目称为某酸.编号从羧基的碳原子开始用阿拉伯数字编号表明支链的位次,3,4-二甲基戊酸3-甲基- 2-丁烯酸羧酸常用希腊字母来标名位次,即与羧基直接相连的碳原子为α,其余位次 为β、γ…,距羧基最远的为ω位。

二元酸命名:选择包含两个羧基的最长碳链,叫某二酸但要注意三点:1. 系统命名与俗名的联系,如苯甲酸俗名为安息香酸。

2. 用希腊字母表示取代基位次的方法。

3. 含十个碳以上的直链酸命名时要加一个碳字。

§10.2.羧酸的物理性质(自学) 1.物态2.熔点 3.沸点比相应的醇的沸点高。

原因: 通过氢键形成二聚体。

4. 密度§ 10.3 羧酸的化学性质(2学时)COHO 形式上看羧基是由一个 和一个 组成实质上并非两者的简单组合OH C OC O H COHOC OH醛酮中醇中键长键长(甲酸)电子衍射实验证明0.122nm0.143nm0.1245nm 0.1312nm。

羧酸及其衍生物

羧酸及其衍生物

RCOOR’
RCONH2
RCOOH + R’OH
RCOOH + NH3
(催化)
(催化、回流)
醇解:
RCOCl
(RCO)2O + R’OH RCOOR”
RCOOR’ + HCl
RCOOR’ + RCOOH RCOOR’ + R”OH (酯交换反应)
氨解:
RCOCl (RCO)2O + NH3 RCONH2 + HCl RCONH2 + RCOONH4
CH3COOH (C2 H5 )2 CH COOH
CH 3COOH (C2 H 5 ) 2 CH COOH
鉴定羧酸结构一个很有用的概念是中和当量,用酸碱滴定法 可测定中 和当量: 羧酸样品重量(g)× 1000 中和当量 = NNaOH× VNaOH(mL) 利用中和当量可以计算出羧酸的分子量: 羧酸分子量 = 中和当量×羧酸分子中羧基数
Δ
O
+
H2O
O HOOCCH2CH2CH2CH2COOH
Δ
+
O
CO2
+
H2O
HOOCCH2CH2CH2CH2CH2COOH
Δ
+
CO2
+
H2O
乙二酸 乙二酸也称草酸,工业上常采用甲酸钠热解法,即将甲 酸钠快速加热到400℃,制得草酸钠,再用稀硫酸酸化得到草酸。
2HCOONa
400℃ -H2
COONa COONa

羧酸的制备方法较多,常用的有氧化法、水解法和由有机金属化 合物制备等。

1.2.1由烃、醇、醛氧化
常用的氧化剂有K2Cr2O7+H2SO4, KMnO4, HNO3, CrO3 等。 芳烃支链的氧化常用于芳香族羧酸的合成:

羧酸衍生物

羧酸衍生物

理论解释:
活性取决于L离去难易.
酸碱理论
酸性: HCl > RCOOH > ROH > NH3
pKa -2.2 4~5
16~19 34
共轭碱的碱性: Cl < RCOO < RO < NH2
碱性愈弱,愈易离去。
=
=
=
(一)酰基上的亲核取代
1.水解
O (C6H5)2CHCH2CCl
H2O, Na2CO3 0℃
O NH O
0oC + Br2 + NaOH
O N Br + NaBr + H2O
O
= =
N-溴代丁二酰亚胺
碱性水解
RCONH2 + H2O NaOH RCOONa + NH3
酸性水解
RCONH2 + H2O H2SO4
RCOOH + (NH4)2SO4
水解较难,环内酰胺易水解
5. 酯缩合反应-乙酰乙酸乙酯的合成 乙酰乙酸乙酯可用 Claisen 酯缩合反应合成
O
R C O R'
生成酰胺。
OO
RR
CC
++ HHCCll
NNHH22
O
R C NH2
O
+ R' C O H
OO
RR C NNHH22
+ R'CH22OH
4. 酰胺的反应
O
RC
P-π共轭
NH2
= =Hale Waihona Puke = =酰胺的弱酸碱性
显碱性 NH3
O
亚酰胺
NH
O
RNH2
O NH O
pKa 8.3

羧酸及其衍生物

羧酸及其衍生物
酰卤还原成相应的醛,称为Rosenmund还原
在反应中加入适量的喹啉–S或硫脲等作为抑制剂可降
低催化剂的活性;以使反应停留在生成醛的阶段
39
3 用金属钠醇还原 酯与金属钠在醇溶液中加热回流;可被还原成伯醇
各类含羰基化合物的还原产物和还原情况比较如下:
名称 羧酸
结构 RCOOH
NaBH4/乙醇 (-)
12
2 羧基上的羟基OH的取代反应 羧基上的OH可被一系列原子或原子团取代生成羧酸的衍生物
1 酯化反应
1o 酯化反应是可逆反应;一般只有2/3的转化率
提高酯化率的方法:a 增加反应物的浓度一般是加过量的醇。
b 移走低沸点的酯或水。
2o 酯化反应的活性次序:
酸相同时 CH3OH > RCH2OH > R2CHOH > R3COH
b p:羧酸 > M 相同的醇
m.p:随M↑呈锯齿形上升。偶数碳原子羧酸的m.p>相邻两
个同系物的m.p。
8
三 羧酸的化学性质
9
1 酸性 羧酸的酸性比水 醇强;甚至比碳酸的酸性还要强
羧酸离解后生成的RCOO负离子;由于共轭效应的 存在,氧原子上的负电荷则均匀地分散在两个原子上, 因而稳定容易生成
26
B 丁二酸 戊二酸受热脱水不脱羧生成环状酸酐
C 己二酸 庚二酸受热既脱水又脱羧生成环酮
27
第二节 羧酸衍生物
一 羧酸衍生物的结构和命名 1 结构
羧酸羧基上的OH可被一系列原子或原子团取代生成羧 酸的衍生物 酰基与其所连的基团都能形成Pπ共轭体系。
2 命名 1o 酰卤和酰胺的命名根据酰基称为某酰某
⑶ Hofmam降解反应 可制备少一个C原子的伯胺 注意:N取代的酰胺不能发生脱水反应和Hofmann降解反应 47

羧酸及其衍生物的化学性质

羧酸及其衍生物的化学性质

羧酸及其衍生物的化学性质羧酸及其衍生物是一类含有羧基(-COOH)的有机化合物。

它们常常具有酸性,因为羧基可以给出质子(H+)。

羧酸和其衍生物在水中可以形成水合物,而这些水合物在中性或酸性条件下可以存在,但在碱性条件下容易发生水解。

下面将对羧酸及其衍生物的化学性质进行一些介绍。

1. 酸性羧酸的羧基可以给出质子,因此羧酸有一定的酸性。

在水中,羧酸可以形成羧酸离子(-COO^-)和质子(H+)。

由于质子是暂时性的,因此羧酸是一个弱酸。

羧酸的酸性可以通过pKa值来衡量,pKa值越小,酸性越强。

羧酸的pKa通常在3-5之间。

2. 水解在碱性条件下,羧酸及其衍生物容易发生水解反应。

以酯为例,当酯和水在碱性条件下反应时,产生的产物是羧酸和醇。

羧酸的水解可以通过以下反应来表示:RCOOR' + NaOH → RCOO^-Na+ + R'OH3. 脱羧反应在一些情况下,羧酸中的羧基可以被脱除,形成烯丙基化合物。

这种反应叫做脱羧反应。

脱羧反应通常在高温下进行,而且需要使用强碱或强酸催化剂。

例如,苯甲酸在高温、强碱条件下可以脱羧成为苯乙烯:C6H5COOH → C6H5CH=CH2 + CO24. 共轭碱羧酸和其衍生物的共轭碱是指它们失去羧基后的化合物。

在水中,共轭碱可以受到水分子的配位,形成水合离子。

共轭碱的性质类似于胺,因为它们都有可供质子接受的孤对电子对。

共轭碱的酸性比羧酸弱,因为它们缺少羧基的酸性贡献。

5. 还原性羧酸和其衍生物在还原条件下可以发生还原反应,还原成相应的醇。

还原反应通常需要使用还原剂,如锌、氢气或铁(II)离子。

以乙酸为例,下面是它们的还原反应:6. 酰化反应羧酸和酰化试剂在酸性条件下可以发生酯化反应,生成酯。

酰化试剂通常是醇或酚,如甲醇或苯酚。

酯化反应通常需要强酸或酸性催化剂,如硫酸或氯化铝。

下面是酯化反应的示意式:总之,羧酸及其衍生物具有多种化学性质。

它们可以形成羧酸离子和质子,发生水解、脱羧、酰化等反应。

羧酸的四大衍生物

羧酸的四大衍生物

羧酸的四大衍生物
羧酸的四大衍生物
羧酸是一类含有羧基(-COOH)的有机化合物,可作为各种化学反应
的重要中间体。

羧酸有多种衍生物,其中最常见的是如下四种。

一、酰氯(Acyl chloride)
酰氯是羧酸最常见的反应产物,它可以通过将羧酸与氯化物反应制得。

酰氯是一个非常重要的中间体,可用于合成酯、醚、酰胺等多种化合物。

酰氯有弱腐蚀性,可多用于有机合成实验室中。

二、酐(Anhydride)
酐是两个羧酸分子缩合而成的产物,分为内酐和外酐两种。

内酐是指
两个羧基在同一分子内缩合而成的环状产物,外酐则是指两个羧基不
在同一分子内缩合而成的非环状产物。

酐也可作为中间体用于合成酯、酰胺等化合物。

三、酸酐(Acid anhydride)
酸酐是两个不同羧酸分子缩合而成的产物,以其极强的反应性而闻名。

酸酐可用于合成酸酐酯、酸酰胺、酸酐酸等化合物。

但由于其极易水解,因此在使用过程中需要特别注意。

四、酯(Ester)
酯是羧酸的一种重要衍生物,它由羧酸和醇反应而成。

酯具有良好的挥发性和揮發性,并可用于制备香精、香料、油漆等多种化合物。

酯也可作为用于制硝化纤维、炸药等的重要中间体。

在有机合成中,酰氯、酐、酸酐和酯均属于常见的重要中间体。

它们在不同条件下均可相互转化,因此在尝试合成某种化合物时,应根据需要灵活选择相应的羧酸衍生物。

有机化学第十六章 羧酸衍生物涉及碳负离子的反应及在合成中的应用

有机化学第十六章 羧酸衍生物涉及碳负离子的反应及在合成中的应用

-I
-
C(CO2Et) 2 C(CO2Et) 2
CO2Et CO2Et CO2Et CO2Et
二、乙酰乙酸乙酯的烃基化及应用 乙酰乙酸乙酯的α-烷基化、α-酰基化
O
C2H5ONa
O
RCl
O R
RCOCl
O
CH3CCHCOC2H5
CH3CCHCOC2H5
O
O O O CH3CCHCOC2H5
CH3CCH2COC2H5
烯醇式 OH 1.α -H活性 CH3 -C=CH2 2.六员环结构 H
10-4
10-2
的分子内氢键 3.共轭体系
CH3C CH2 C OC2H5
7 76.5
100
O CH3-C
O C-OC2H5
O
O
CH O-H O CH3-C = CH-C-CH3 O H—C = CH-C—H O-H
CH3C CH2 C CH3
OH-
H+
2 CH3COOH + C2H5OH
在合成上的应用
O CH3CCH2COOC2H5 C2H5ONa O CH3CH2CH2Br CH3CCHCOOC2H5
O CH3CCHCOOC2H5 1) C2H5ONa CH2CH2CH3 2) CH3I
OCH3 CH3CCCOOC2H5 CH2CH2CH3
可以形成双钠盐
制备1,4-二官能团化合物
O CH3CCH2Cl + CH2(COOC2H5)2 1) OH 2) H
+ -
C2H5ONa
O CH3CCH2CH(COOC2H5)2
O CH3CCH2CH2COOH
利用丙二酸二乙酯可以制备含有

十六、羧酸及其衍生物

十六、羧酸及其衍生物

羧酸及其衍生物1.完成反应式C H 3CO C H 2C H 2CO C 2H 5OO C 2H 5O N a C 2H 5O H?2.COC HC HC H 3OC 6H 2H 5H 2O (A)+(B)+(C)+(D)3.CCN C HC NC N+ABCP 2O 5, 300 o C140—160CH 2/N i4.用系统命名法命名下列各酸(3)(4)(1) (2)C H 3C O O HC H 3C H 2C O O HCCH O O C HC O O HH H O O C C O O H5.写出所有分子式为C 5H 8O 2,含有五元环内酯类化合物及名称6.用系统命名法命名下列化合物(3)(1)(2H 2C H 2C H 2C O O HHC H 2C O O HC H 2C O O H(4)(5)C O O H(C H 2)2(C H 3)2C HCOC C H (C H 3)2OO(6)(7)C l B rCOCOO C lB rC H 2C C H 2CO OOCC O O HB rO(8)(9)C OC lC C l OHHC(10)(11)C 2H 5O O C C HC H 2C H C O O C 2H 5C H 2C H 2CC lCC lOO OP hC H 3O8.完成下列反应式C l 3CC O H(1)2?H O C O HO(2)(3)O 2NC O O H N O 2N O 2?C O O HC H 2C O O H(4)A C 2O?(5)C O O C 2H 5C O O C 2H 52C 2H 5O N aO H AB(C H 3)2C HC H C HC H 2C O O H(6)?(7)C O O HC H 2C O OO9.完成下列反应式(1)C O O HN O 2C NL iA lH 4?(2)N CCN H 2O L iA lH 4ABA C 2OB(3)COCO OC 2H 5O H P C l 32P d /B aS O 4A COOL iA lH 4?(4)C H 3CCO HC H 3C H 2B rO N aO H 4AN aO H 2(5)C H 2CO HO (6)HC H O(7)+ 1H C H OO H AH C NBH 3O +CC H 3C H 2C H 2C O O H + C l 2PA1. N aH C O 3BH 3O +C(8)(9)C C lC l O+ C2H 5OH (1m o l )ABN H 3(10) H C C l 3 + C 2H 5ON a (足量AC 2H 5M gXB(11)OCC H 2C H 2C H 2C OO C 2H 5O H (1m o l )AC l 2PBC 2H 5O HC(12)C H 2O HC O O HAC H 3M g I H 2OB10.完成下列反应式C H 2C H 2C H 2CO C H 3 +O(1)C H 3C H 3C H C H 2C H 2O Hi —C 5H 11O N a 少量催化?CCO C H 3n C H 3OOO(2)+?COC C HC H 3 + C H 3O HOC H 3(3)C H 3O N a?(4)3OH 3-AC H 3M g I BH 3O +C11.完成下列反应式C H 2CO C 2H 5OC C H 2C HC H 3C H 3O(1)C 2H 5O N a 25H +?25(2)C H 3C H 2C H 2C C H 2C H 2C H 2C HC H 3C OO C 2H 5OC 2H 5O N aAP hC H 2C lBC H 3IC H 2C O C 2H 5O (3)C 2H 5O N a>1m o lC C H 2C H 2C H 3OA BC 2H 5O N aC 2H 5B rCC 2H 5O N a 25H O A CD(4)25N C C H 2C O C 2H 5OB rC H 2C H 2B rAN aO H+BO H 25(5)25B rC H 2C H 2BrAB2C H 2(C O O C 2H 5)2C 2H 5O N a 25C lC H 2C H 2C lCDN aO C 2H 525CC H 3O +(6)C H 2CO C 2H 5O C C H 3OA+B12.以丙酮、2个C 原子的有机物和任选无机试剂为原料合成(1)H O O CC H 2C O O H(2)C H 3C C O HC H 3C H 3O(3)(4)C H 3CO C (C H 3)2OC H 2C H 3C H 3CO C O C H 2C H 3OOOOOC O O HO(5)(6)(7)13.C H2C H C H C O O HC H3在酸作用下得到两种产物,请写出两种产物的结构,哪一种产物是主要的。

第9章 羧酸及其衍生物

第9章 羧酸及其衍生物

分 子 量: 46 沸点(0C): 78
O....H R C O
O C R
H.... O
羧酸的沸点高于分子量相当的醇是因为它能够 形成分子间的双氢键缔合体。
三、羧酸的化学性质
还原反应
O
脱羧反应
RCCOH H
酸性
羧羟基被取代(加成.消除)的反应 (羧酸转化为其衍生物的反应) α-H被取 代的反应 羧酸主要的化学性质
5、α-H卤代反应 羧酸的α-H的活泼性不及醛酮的强,卤代 时需用红磷作催化剂。
烷氧断裂
(3)生成酯(esterification) 酯化机理1:加成~消除反应历程
O R C OH OH H R C OH
(1)
OH R'OH R C OH O R' H
(2) 质子转移
Yang 盐
质子化的醇
OH R C OH2 O R' (3) -H2O OH R C OR' (4) O -H R C OR' (5)
1、羧酸的酸性与成盐 二元羧酸的酸性强弱排序:
草酸 、己二酸、丁二酸、丙二酸、戊二酸
草酸 >丙二酸>丁二酸>戊二酸>己二酸 应用: 用于鉴别羧酸 用于分离提纯非水溶性羧酸 增加药物水溶性 如青霉素、氨苄青霉素转变成其钠盐和钾盐后,水 溶性增大,便于临床使用。 用于生产肥皂 如C12~ C18脂肪酸的钠盐可用作肥皂
HOOC H C =C
propanedioic acid
COOH H HOOC H
butanedioic acid
C =C H COOH
顺丁烯二酸 (马来酸)
反丁烯二酸 (富马酸)
cis-butenedioic acid
trans-butenedioic acid

有机化学羧酸及其衍生物

有机化学羧酸及其衍生物
CH3CH2CH CH2COOH
O
CH2C
CH3CH2CH
O
CH2C
O
Ⅱ 羧酸的衍生物
★ 酰氯、酸酐、酯和酰胺都是羧酸中的羟基被不同 基团取代的产物,统称为羧酸衍生物。
10.6 命名:
① 酰氯和酰胺以其所含的酰基来命名; ② 酸酐根据其来源的酸命名; ③ 酯按其来源的酸和醇,叫某酸某酯。
O
酰氯
H3CC Cl
O
OH
R COH LiAlH4 RCH2
4)烃基上的反应: ① α—卤代作用:脂肪羧酸中的α—H比其它C原子
上的H活泼,可被卤素取代:
C3 C HOO 2o H 日 红 r 光 磷 + C 一 l2 C C C 氯 O H l 日 乙 C O 2 l光 C H 酸 二 2 C l H 氯 C 日 C 乙 2O l光 C 三 酸 O 3 C l H 氯 CO 乙
O CH 3COC2H5
NaO2HC 5
O
-CH 2CO OC2H5CH 3 COC2H5
(Ⅰ)
OO CH 3CCH 2COC2H5+-OC2H5
乙 乙酰酸 乙酸乙乙酰 酯 乙酯
O- O
[CH 3CCH 2 COC2H5] OC2H5 (Ⅱ)
5)酰胺的酸碱性:氨是碱性的,但酰胺是中性 物质。这是由于氮上未共用电子对与碳—氧 双键共轭而氮原子上电子密度降低所致。O .. R C NH 2
O
RC O
HCOOH
CH3CO2H
CH3CH2CH2CO2H
CH3CH2CHCO2H Cl
CH3CHCH2CO2H Cl
ClCH2CH2CH2CO2H
pKa 3.75
4.75

羧酸及其衍生物

羧酸及其衍生物

羧酸及其衍生物第一节羧酸由烃基(或氢原子)与羧基相连所组成的化合物称为羧酸,其通式为RCOOH,羧基(-COOH)是羧酸的官能团.一,分类和命名按羧酸分子中烃基的种类将羧酸分为脂肪族羧酸和芳香族羧酸.按羧酸分子中所含的羧基数目不同将羧酸分为一元酸和多元酸.一些常见的羧酸多用俗名,这是根据它们的来源命名的.如:HCOOH 蚁酸CH3COOH 醋酸HOOC—COOH 草酸脂肪族羧酸的系统命名原则与醛相同,即选择含有羧基的最长的碳链作主链,从羧基中的碳原子开始给主链上的碳原子编号.取代基的位次用阿拉伯数字表明.有时也用希腊字母来表示取代基的位次,从与羧基相邻的碳原子开始,依次为α,β,γ等.例如:CH3CH═CHCOOH2-丁烯酸2,3-二甲基戊酸α-丁烯酸(巴豆酸)芳香族羧酸和脂环族羧酸,可把芳环和脂环作为取代基来命名.例如:对甲基环已基乙酸3-苯丙烯酸(肉桂酸) 4-甲基-3-(2-萘)丙酸命名脂肪族二元羧酸时,则应选择包含两个羧基的最长碳链作主链,叫某二酸.如:邻-苯二甲酸正丙基丙二酸二,羧酸的制法1,氧化法高级脂肪烃(如石蜡)在加热至120℃-150℃和催化剂存在的条件下通入空气,可被氧化生成多种脂肪酸的混合物.RCH2CH2R1 RCOOH + R1COOH伯醇氧化成醛,醛易氧化成羧酸,因此伯醇可作为氧化法制羧酸的原料.含α-氢的烷基苯用高锰酸钾氧化时,产物均为苯甲酸.例如:2,格氏试剂合成法格氏试剂与二氧化碳反应,再将产物用酸水解可制得相应的羧酸.例如:RMgX + CO2 RCOOMgX RCOOH腈水解法在酸或碱的催化下,腈水解可制得羧酸.RCN + H2O + HCl RCOOH + NH4ClRCN + H2O + NaOH RCOONa + NH3三,物理性质1,状态甲酸,乙酸,丙酸是具有刺激性气味的液体,含4-9个碳原子的羧酸是有腐败恶臭气味的油状液体,含10个碳原子以上的羧酸为无味石蜡状固体.脂肪族二元酸和芳香酸都是结晶形固体.2,沸点羧酸的沸点比分子量相近的醇还高.这是由于羧酸分子间可以形成两个氢键而缔合成较稳定的二聚体.3,水溶性羧酸分子可与水形成氢键,所以低级羧酸能与水混溶,随着分子量的增加,非极性的烃基愈来愈大,使羧酸的溶解度逐渐减小,6个碳原子以上的羧酸则难溶于水而易溶于有机溶剂.化学性质1,酸性羧酸具有酸性,因为羧基能离解出氢离子.RCOOH RCOO- + H+因此,羧酸能与氢氧化钠反应生成羧酸盐和水.RCOOH + NaOH RCOONa + H2O羧酸的酸性比苯酚和碳酸的酸性强,因此羧酸能与碳酸钠,碳酸氢钠反应生成羧酸盐.RCOOH + NaHCO3(Na2CO3) RCOONa + H2O + CO2↑但羧酸的酸性比无机酸弱,所以在羧酸盐中加入无机酸时,羧酸又游离出来.利用这一性质,不仅可以鉴别羧酸和苯酚,还可以用来分离提纯有关化合物.例如:欲鉴别苯甲酸,苯甲醇和对-甲苯酚,可按如下步骤进行,在这三者中加入碳酸氢钠溶液,能溶解并有气体产生的是苯甲酸;再在剩下的二个中加入氢氧化钠溶液,溶解的是对-甲苯酚,不溶解的是苯甲醇.当羧酸的烃基上(特别是α-碳原子上)连有电负性大的基团时,由于它们的吸电子诱导效应,使氢氧间电子云偏向氧原子,氢氧键的极性增强,促进解离,使酸性增大.基团的电负性愈大,取代基的数目愈多,距羧基的位置愈近,吸电子诱导效应愈强,则使羧酸的酸性更强.如:三氯乙酸二氯乙酸氯乙酸pKa 0.028 1.29 2.81因此,低级的二元酸的酸性比饱和一元酸强,特别是乙二酸,它是由两个电负性大的羧基直接相连而成的,由于两个羧基的相互影响,使酸性显著增强,乙二酸的pKa1=1.46,其酸性比磷酸的pKa1=1.59还强.取代基对芳香酸酸性的影响也有同样的规律.当羧基的对位连有硝基,卤素原子等吸电子基时,酸性增强;而对位连有甲基,甲氧基等斥电子基时,则酸性减弱.至于邻位取代基的影响,因受位阻影响比较复杂,间位取代基的影响不能在共轭体系内传递,影响较小.对硝基苯甲酸对氯苯甲酸对甲氧基苯甲酸对甲基苯甲酸pKa 3.42 3.97 4.47 4.382,羧基中的羟基被取代羧酸分子中羧基上的羟基可以被卤素原子(-X),酰氧基(-OOCR),烷氧基(-OR),氨基(-NH2)取代,生成一系列的羧酸衍生物.①酰卤的生成羧酸与三氯化磷,五氯化磷,氯化亚砜等作用,生成酰氯.RCOOH + PCl3(PCl5 SOCl2) RCOCl②酸酐的生成在脱水剂的作用下,羧酸加热脱水,生成酸酐.常用的脱水剂有五氧化二磷等.RCOOH + RCOOH RCOOOCR③酯化反应羧酸与醇在酸的催化作用下生成酯的反应,称为酯化反应.酯化反应是可逆反应,为了提高酯的产率,可增加某种反应物的浓度,或及时蒸出反应生成的酯或水,使平衡向生成物方向移动.RCOOH + R1OH RCOOR1 + H2O酯化反应可按两种方式进行:RCOOH + HOR1 RCOOR1 + H2O (1)RCOOH + HOR1 RCOOR1 + H2O (2)实验证明,大多数情况下,酯化反应是按(1)的方式进行的.如用含有示踪原子18O的甲醇与苯甲酸反应,结果发现18O在生成的酯中.④酰胺的生成在羧酸中通入氨气或加入碳酸铵,首先生成羧酸的铵盐,铵盐胺热脱水生成酰胺.RCOOH + NH3 RCOONH4 RCONH23,α-氢被取代羧基和羰基一样,能使α-H活化.但羧基的致活作用比羰基小,所以羧酸的α-H卤代反应需用在红磷等催化剂存在下才能顺利进行.CH3COOH + Cl2 CH2ClCOOH CHCl2COOH CCl3COOH还原反应羧酸在一般情况下,和大多数还原剂不反应,但能被强还原剂—氢化锂铝还原成醇.用氢化铝锂还原羧酸时,不但产率高,而且分子中的碳碳不饱和键不受影响,只还原羧基而生成不饱和醇.例如: RCH2CH═CHCOOH RCH2CH═CHCH2OH5,脱羧反应羧酸分子脱去羧基放出二氧化碳的反应叫脱羧反应.例如,低级羧酸的钠盐及芳香族羧酸的钠盐在碱石灰(NaOH-CaO)存在下加热,可脱羧生成烃.CH3COONa CH4 + Na2CO3这是实验室用来制取纯甲烷的方法.一元羧酸的脱羧反应比较困难,把羧酸盐蒸气通过加热至400-500℃的钍,锰或镁的氧化物,则脱羧生成酮.2CH3COOH CH3COCH3 + CO2 + H2O当一元羧酸的α-碳上连有吸电子基时,脱羧较容易进行,如:CCl3COOH CHCl3 + CO2↑五,重要的羧酸1,甲酸俗称蚁酸,是具有刺激性气味的无色液体,有腐蚀性,可溶于水,乙醇和甘油.甲酸的结构比较特殊,分子中羧基和氢原子直接相连,它既有羧基结构,又具有醛基结构,因此,它既有羧酸的性质,又具有醛类的性质.如能与托伦试剂,斐林试剂发生银境反应和生成砖红色的沉淀,也能被高锰酸钾氧化.2,乙酸俗称醋酸,是食醋的主要成分,一般食醋中含乙酸6℅-8℅.乙酸为无色具有刺激性气味的液体.当室温低于16.6℃时,无水乙酸很容易凝结成冰状固体,故常把无水乙酸称为冰醋酸.乙酸能与水按任何比例混溶,也可溶于乙醇,乙醚和其它有机溶剂.3,苯甲酸俗名安息香酸,是无色晶体,微溶于水.苯甲酸钠常用作食品的防腐剂.4,乙二酸俗称草酸,是无色晶体,通常含有两分子的结晶水,可溶于水和乙醇,不溶于乙醚.草酸具有还原性,容易被高锰酸钾溶液氧化.利用草酸的还原性,还可将其用作漂白剂和除锈剂.5,已二酸为白色电晶体,溶于乙醇,微溶于水和乙醚.已二酸和已二胺发生聚合反应,生成聚酰胺(尼龙-66).羧酸衍生物一,分类和命名重要的羧酸衍生物有酰卤,酸酐,酯和酰胺.1,酰卤和酰胺酰卤和酰胺的命名由酰基名称加卤素原子或胺.酰基:羧酸分子从形式上去掉一个氢原子以后所乘余的部分.某酸所形成的酰基叫某酰基.例如:某酰基乙酰氯乙酰胺N-甲基乙酰胺2,酸酐某酸所形成的酸酐叫\"某酸酐\".如:乙酐(醋酐) 乙丙酐丁二酸酐邻-苯二甲酸酐酯酯的命名为\"某酸某酯\".如:CH3CH2COOCH3 丙酸甲酯(CH3)2C═CHCH2COOCH2CH3 4-甲基-3-戊烯酸乙酯苯甲酸甲酯苯甲酸苄酯HOOC—COOCH2CH3 乙二酸氢乙酯CH3CH2OOC—CH2—COOCH2CH3 丙二酸二乙酯二,物理性质酰氯大多数是具有强烈刺激性气味的无色液体或低熔点固体.低级酸酐是具有刺激性气味的无色液体,高级酸酐为无色无味的固体.酸酐难溶于水而溶于有机溶剂.低级酯是具有水果香味的无色液体.酯的相对密度比水小,难溶于水而易溶于乙醇和乙醚等有机溶剂.三,化学性质1,水解四种羧酸衍生物化学性质相似,主要表现在它们都能水解,生成相应的羧酸.RCOCl HClRCOOOCR1 R1COOHRCOOR1 + H2O RCOOH + R1OHRCONH2 NH3水解反应进行的难易次序为:酰氯> 酸酐> 酯> 酰胺例如,乙酰氯与水发生猛烈的放热反应;乙酐易与热水反应;酯的水解在没有催化剂存在时进行得很慢;而酰胺的水解常常要在酸或碱的催化下,经长时间的回流才以完成.2,醇解和氨解酰氯,酸酐和酯都能与醇作用生成酯.RCOCl HClRCOOOR1 + HOR2 RCOOR2 + R1COOHRCOOR1 R1OH酰氯,酸酐和酯都能与氨作用,生成酰胺.RCOCl HClRCOOOR1 + NH3 RCONH2 + R1COOHRCOOR1 R1OH四,重要的羧酸衍生物1,乙酰氯:是一种在空气中发烟的无色液体,有窒息性的刺鼻气味.能与乙醚,氯仿,冰醋酸,苯和汽油混溶.2,乙酐:又名醋(酸)酐,为无色有极强醋酸气味的液体,溶于乙醚,苯和氯仿.3,顺丁烯二酸酐:又称马来酸酐和失水苹果酸酐.为无色结晶性粉末,有强烈的刺激性气味,易升华,溶于乙醇,乙醚和丙酮,难溶于石油醚和四氯化碳.4,乙酸乙酯:为无色可燃性的液体,有水果香味,微溶于水,溶于乙醇,乙醚和氯仿等有机溶剂.5,甲基丙烯酸甲酯:为无色液体,其在引发剂存在下,聚合成无色透明的化合物,俗称有机玻璃.6,丙二酸二乙酯及其在有机合成中的应用:丙二酸二乙酯,简称丙二酸酯,为无色有香味的液体,微溶于水,易溶于乙醇,乙醚等有机溶剂.常用下面的方法来制取丙二酸酯:CH2ClCOONa CH2CNCOONa + C2H5OH C2H5OOCCH2COOC2H5由于丙二酸酯分子中亚甲基上的氢原子受相邻两个酯基的影响,比较活泼,其能在乙醇化钠的催化下与卤代烃或酰氯反应,生成一元取代丙二酸酯和二元取代丙二酸酯.烃基或酰基取代两二酸酯经碱性水解,酸化和脱羧后,可制得相应的羧酸.这是合成各种类型羧酸的重要方法,称为丙二酯酯合成法.取代羧酸羧酸分子中烃基上的氢原子被其它原子或原子团取代后生成的化合物称为取代羧酸.常见的取代羧酸有卤代酸,羟基酸,羰基酸(氧代酸)和氨基酸等.第一节羟基酸一,分类和命名羟基酸可以分为醇酸和酚酸两类.羟基酸的命名是以相应的羧酸作为母体,把羟基作为取代基来命名的.自然界存在的羟基酸常按其来源而采用俗名.如:CH3CHOHCOOH 2-羟基丙酸(乳酸)HOOCCH2CHOHCOOH 羟基丁二酸(苹果酸)HOOCCHOHCHOHCOOH 2,3-二羟基丁二酸(洒石酸)2-羟基苯甲酸(水杨酸)3,4,5-三羟基苯甲酸(没食子酸)二,醇酸的性质1,物理性质醇酸一般为结晶的固体或粘稠的液体.由于羟基和羧基都以且慢水形成氢键,所以醇酸在水中的溶解度比相应的醇或羧酸都大,低级的醇酸可与水混溶.2,化学性质醇酸既具有醇和羧酸的一般性质,如醇羟基可以氧化,酰化,酯化;羧基可以成盐,成酯等,又由于羟基和羧基的相互影响,而具有一些特殊的性质.(1)酸性在醇酸分子中,由于羟基的吸电子诱导效应沿着碳链传递到羧基上,而降低了羧基碳的电子云密度,使羧基中氧氢键的电子云偏向于氧原子,促进了氢原子解离成质子.由于诱导效应随传递距离的增长而减弱,因此醇酸的酸性随着羟基与羧基距离的增加而减弱.如:CH3CHOHCOOH OHCH2CH2COOH CH3CH2COOHpKa 3.87 4.51 4.882,α-醇酸的分解反应由于羟基和羧基都有吸电子诱导效应,使羧基与α-碳原子之间的电子云密度降低,有利于二者之间键的断裂,所以当α-醇酸与稀硫酸共热时,分解成比原来少一个碳原子的醛或酮和甲酸.RCHOHCOH RCHO + HCOOH此反应常用于由高级羧酸经α-溴代酸制备少一个碳原子的高级醛.RCH2COOH RCHBrCOOH RCHOHCOOH RCHO + HCOOH3,脱水反应脱水产物因羟基与羧基的相对位置不同而有所区别.①α-醇酸生成交酯:α-醇酸受热时,一分子α-醇酸的羟基与另一分子α-醇酸的羟基相互脱水,生成六元环的交酯.RCHOHCOOH + RCHOHCOOH 交酯②β-醇酸生成α,β-不饱和羧酸:β-醇酸中的α-氢原子同时受到羟基和羧基的影响,比较活泼,受热时容易与β-碳原子上的羟基结合,发生分子内脱水生成α,β-不饱和羧酸.RCHOHCH2COOH RCH═CHCOOH + H2O③γ-和δ-醇酸生成物内酯:γ-和δ-醇酸在室温时分子内的羟基和羧基就自动脱去一分子水,生成稳定的γ-和δ-内酯.④羟基与羧基相隔5个或5个以上碳原子的醇酸受热,发生多分子间的脱水,生成链状的聚酯.三,酚酸的性质(1)物理性质酚酸大多数为晶体,有的微溶于水(如水杨酸),有的易溶于水(如没食子酸).(2)化学性质羟基处于邻或对位的酚酸,对热不稳定,当加热至熔点以上时,则脱去羧基生成相应的酚.+ CO2↑+ CO2↑四,重要的羟基酸1,乳酸:为无色粘稠液体,有很强的吸湿性和酸味,溶于水,乙醇,甘油和乙醚,不溶于氯仿和油脂.2,β-羟基丁酸:是吸湿性很强的无色晶体,一般为糖浆状粘稠液体,易溶于水,乙醇及乙醚,不溶于苯.3,苹果酸:为针状结晶,易溶于水和乙醇,微溶于乙醚.苹果酸在酶的催化下生成草酰乙酸.苹果酸在食品工业中用作酸味剂.4,洒石酸:是透明棱形晶体,有很强的酸味,易溶于水.洒石酸常用于配制饮料,洒石酸钾钠用于配制斐林试剂.5,柠檬酸:为无色结晶,含一分子结晶水,易溶于水,乙醇和乙醚,有强酸味.柠檬酸常用于配制清凉饮料和作糖果的调味剂,也是制药工业的重要原料.6,水杨酸:为无色针状结晶,微溶于冷水,易溶于乙醇,乙醚和热水.它具有酚和羧酸的一般性质,如易被氧化,遇三氯化铁显紫红色,酸性比苯甲酸强等.7,乙酰水杨酸:俗称\"阿司匹林\",为白色针状晶体.它可用水杨酸和乙酐在少量浓硫酸存在下制得.乙酰水杨酸具有解热镇痛作用,是常用的解热镇痛药.乙酰水杨酸分子中中无游离的酚羟基,故其纯品与三氯化铁不显色,但在潮湿的空气中,其易水解为水杨酸和乙酸,因此应密闭于干燥处贮存.8,没食子酸:又称五倍子酸.纯粹的没食子酸为白色结晶性粉末,能溶于水,乙醇和乙醚.没食子酸有较强还原性,极易被氧化,露置在空气中能迅速氧化呈暗褐色,可用作抗氧剂的影像显影剂.没食子酸与三氯化铁产生蓝黑色沉淀,可用来制造墨水.第二节羰基酸一,分类和命名分子中既含有羰基又含有羧基的化合物称为羰基酸.根据所含的是醛基还是酮基,将其分为醛酸和酮酸.羰基酸的命名与醇酸相似,也是以羧酸为母体,羰基的位次用阿拉伯数字或用希腊字母表示.如:OHC—COOH CH3COCOOH CH3COCH2COOH乙醛酸丙酮酸3-丁酮酸(β-丁酮酸)二,化学性质酮酸具有酮和羧酸的一般性质,如与氢或亚硫酸氢钠加成,与羟胺生成肟,成盐和酰化等.由于两种官能团的相互影响,α-酮酸和β-酮酸又有一些特殊的性质.(一)α-酮酸的性质1,脱羧和脱羰反应在α-酮酸分子中,羰基与羧基直接相连,由于羰基和羧基的氧原子都具有较强的吸电子能力,使羰基碳与羧基碳原子之间的电子云密度降低,所以碳碳键容易断裂,在一定条件下可发生脱羧和脱羰反应.α-酮酸与稀硫酸或浓硫酸共热,分别发生脱羧和脱羰反应生成醛或羧酸.RCOCOOH + 稀H2SO4 RCHO + CO2↑RCOCOOH + 浓H2SO4 RCOOH + CO↑2,氧化反应α-酮酸很容易被氧化,托伦试剂就能其氧化成羧酸和二氧化碳.RCOCOOH + *Ag(NH3)2++ RCOONH4 + Ag↓(二)β-酮酸的性质在β-酮酸分子中,由于羰基和羧基的吸电子诱导效应的影响,使α-位的亚甲基碳原子电子云密度降低.因此亚甲基与相邻两个碳原子间的键容易断裂,在不同的反应条件下,能发生酮式和酸式分解反应.1,酮式分解β-酮酸在高于室温的情况下,即脱去羧基生成酮.称为酮式分解.RCOCH2COOH RCOCH3 + CO2↑2,酸式分解β-酮酸与浓碱共热时,α-和β-碳原子间的键发生断裂,生成两分子羧酸盐.称为酸式分解.RCOCH2COOH + 40℅NaOH RCOONa + CH3COONa三,乙酰乙酸乙酯及酮式-烯醇式互变异构现象1,乙酰乙酸乙酯的制备在醇钠的催化作用下,两分子乙酸乙酯脱去一分子乙醇生成乙酰乙酸乙酯,此反应称为克莱森酯缩合反应.2CH3COOC2H5 CH3COCH2COOC2H5 + C2H5OH2,酮式-烯醇式互变异构现象乙酰乙酸乙酯能与羰基试剂如羟按,苯肼反应生成肟,苯腙等,能与氢氰酸,亚硫酸氢钠等发生加成反应.由此,证明它具有酮的结构.另外,乙酰乙酸乙酯还能与金属钠作用放出氢气,能使溴的四氯化碳溶液褪色,与三氯化铁作用产生紫红色.由此,又证明它也具有烯醇式的结构.这种现象的产生是因为乙酰乙酸乙酯室温下通常是由酮式和烯醇式两种异构体共同组成的混合物,它们之间在不断地相互转变,并以一定比例呈动态平衡.像这样两种异构体之间所发生的一种可逆异构化现象,叫做互变异构现象.乙酰乙酸乙酯分子中烯醇式异构体存在的比例较一般羰基化合物要高的原因,是由于其分子中的亚甲基氢受羰基和酯基的吸电子诱导效应的影响酸性较强,容易以质子形式解离.形成的碳负离子与羰基和酯基共轭,发生电子离域而比较稳定.当H+与羰基氧结合时,就形成烯醇式异构体.此外,还由于烯醇式异构体能形成六元环的分子内氢键,以及其分子中共轭体系的存在,更加强了它稳定性. 3,分解反应(1)酮式分解乙酰乙酸乙酯在稀碱溶液中加热,可发生水解反应,经酸化后,生成β-丁酮酸.β-丁酮酸不稳定,失去二氧化碳生成丙酮.(2)酸式分解乙酰乙酸乙酯与浓碱共热时,生成两分子乙酸盐,经酸化后得到两分子乙酸.4,在合成上的应用乙酰乙酸乙酯亚甲基上的氢原子很活泼,与醇钠等强碱作用时,生成乙酰乙酸乙酯的钠盐,再与活泼的卤烃或酰卤作用,生成乙酰乙酸乙酯的一烃基,二烃基或酰基衍生物.+ RCOX乙酰乙酸乙酯的钠盐还可与卤代酸酯,卤代丙酮等反应,引入相应的酯基和羰基.乙酰乙酸乙酯的一烃基,二烃基或酰基衍生物,再进行酮式分解或酸式分解反应,可以制取甲基酮,二酮,一元羧酸,二元羧酸,酮酸等化合物.四,重要的羰基酸1,乙醛酸:为无色糖浆状液体,易溶于水.2,丙酮酸:为无色有刺激性气味的液体,可与水混溶,酸性比丙酮和乳酸都强.3,β-丁酮酸:又称乙酰乙酸,是无色粘稠液体,酸性比丁酸和β-羟基丁酸强,可与水或乙醇混溶.临床上把β-丁酮酸,β-羟基丁酸和丙酮三者总称为酮体.酮体是脂肪酸在人体内不能完全氧化成二氧化碳和水的中间产物,大量存在于糖化酶尿病患者的血液和尿中,使血液的酸度增加,发生酸中毒,严重时引起患者昏迷或死亡.4,α-酮丁二酸:又称草酰乙酸,为晶体,能溶于水,在水溶液中产生互变异构,生成α-羟基丁烯二酸,其水溶液与三氯化铁反应显红色.α-酮丁二酸具有二元羧酸和酮的一般反应.如能成盐,成酯,成酰胺,与2,4-二硝基苯肼作用生成2,4-二硝基苯腙等.立体化学基础按结构不同,同分异构现象分为两大类.一类是由于分子中原子或原子团的连接次序不同而产生的异构,称为构造异构.构造异构包括碳链异构,官能团异构,位置异构及互变异构等.另一类是由于分子中原子或原子团在空间的排列位置不同而引起的异构,称为立体异构.立体异构包括顺反异构,对映异构和构象异构.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十六章 羧酸及其衍生物第一节 羧酸及其衍生物的命名与结构一、羧酸及其衍生物的命名与结构 1.羧酸的命名选择包含-COOH (羧基)的最长碳链为主链,侧链(如果有的话)作为取代基,根据主链的碳数确定母体的名称为某酸,当主链含有碳碳双键或叁键(优先级低的官能团)时,母体名称为某烯酸或某炔酸,编号从羧基碳开始,命名优先级低的官能团的编号置于母体名称的前面并用短线隔开,按从左至右先取代基后母体的顺序书写羧酸构造式的完整名称,取代基按优先级增大的顺序从左至右排列。

例如,PhCH=CHCH 2CO 2H 的名称为4-苯基-3-丁烯酸。

2.酸酐的命名酸酐的命名依照相应的羧酸,简单酸酐称为某酸酐,混酐则按相应的羧酸的复杂程度依次排列称为某酸某酸酐。

例如,CH 3COOPh 的名称为乙酸苯甲酸酐。

3.酰卤的命名酰卤的命名依照相应的羧酸,将羧酸名称中的“酸”字去掉换成“酰”字。

例如,CH 3COCl 和PhCOCl 的名称依次为乙酰氯和苯甲酰氯。

4.酯的命名酯的命名依照相应的羧酸和醇称为某酸某酯。

例如,CH 3COOCH 3和PhCOOPh 的名称依次为乙酸甲酯和苯甲酸苯酯。

5.腈的命名腈的命名依照相应的羧酸的命名称为某腈。

注意:当化合物中有优先级更高的官能团时,由优先级高的官能团决定化合物的种类名称而-CN 只能作为取代基并且氰基的碳原子不计入主链的碳数。

例如,PhCH 2CN 和NCCH 2CO 2H 的名称依次为苯乙腈和氰基乙酸。

二、酸及其衍生物的结构在RCOL 中三个原子形成的三中心π轨道具有如下形式:LOCR132EHOM O LUMO 成键非键反键三中心四电子π键酸及其衍生物(酰基化合物)的分子具有大的偶极矩,对羧酸而言由于羟基的存在羧酸分子间能形成氢键也能与水形成氢键因此羧酸具有较高的沸点和较好的水溶性由于羟基,由于受羰基的影响羟基具有显著的酸性。

它们结构的共同点是都存在极性的平面型羰基,在羰基中碳原子采用SP 2杂化轨道成键,其中一个SP 2杂化轨道与氧的一个SP 2杂化轨道重叠形成C-O σ,另外两个SP 2杂化轨道分别与其它原子的杂化轨道或氢原子的S 轨道重叠形成碳-杂原子σ键或C-H σ键(对甲酸及其衍生物而言),氧的另外两个SP 2杂化轨道则分别被两对孤对电子所占据。

此外碳和氧的未参与杂化的P 轨道平行重叠形成C-O π键,需要指出的是在RCOL 中随L电子π键。

氰基-CN 是腈的官能团,在氰基中的碳原子采用SP 杂化轨道成键,其中一个SP 杂化轨道与氮的一个SP 杂化轨道重叠形成C-N σ,另外一个SP 杂化轨道与其它碳原子的杂化轨道重叠形成C-C σ键,氮的另外一个SP 杂化轨道则被一对孤对电子所占据,此外碳和氮的未参与杂化的P 轨道平行重叠形成两个相互垂直C-N π键。

第二节 羧酸的化学性质一、结构与反应亲电中心亲核中心二、羧酸的酸性RCOOHRCO 2- + H +酸性顺序:RCO 2H>ArOH>H 2O>ROH>C 2H 2>NH 3>RH 。

羧酸具有显著的酸性,与碱反应生成相应的盐。

影响羧酸酸性的主要因素有诱导效应和共轭效应。

吸电子基增强酸性,给电子基减弱酸性。

RC O 2Na + HC lRC O 2Na + H 2O + CO RC OOH + NaH CO3RC OONa + NaC l上述两个反应是利用羧酸的酸性进行羧酸的分离和提纯的原理。

三、羰基碳上的亲核取代反应羧酸在一定条件下可直接转变成羧酸衍生物如酰卤、酸酐、酯和酰胺等。

(RCO)2O 2RCH 2OHRCONHR'RCOOR'RCOClRCO 2 Δ*Mitsunobu 酯化反应22RCOOR'RCO 2H + R'OH223上述酯化反应是醇羟基碳(醇碳)上的S N 2反应,如果醇碳是手性的,则其构型反转。

四、脱羧反应 1.自由基脱羧反应经过酰氧自由基脱羧的Hunsdiecker 反应和Kochi 反应以及Barton 改进反应Hunsdiecker reactionRBr + RCOOHAgBr + CO Ag 2O2RCOOAgBarton reaction Kochi reaction Barton reaction RIRCl RBr RCOOHCO2AgBr2.协同脱羧反应羧基的α位或羧基上直接连有吸电子基时在加热条件下易发生脱羧反应。

Z=RCO,HO 2C,CN,NO 2,Ar etc.ZCO 2ZCH 2CO 2ZCH 3 + CO以β-酮酸加热脱羧为例说明此反应机理:O CO 2H HHO C HO HOH+ CO2OHHRRO H HHR六员环过渡态五、α-氢的卤代反应具有α-氢的羧酸在少量红磷(或三卤化磷)存在下与溴反应生成.α-溴代羧酸—Hell-Volhard-Zelinsky 反应+ HXX 2=Cl 2,Br 22PH C-COOHC-COOHX六、还原羧酸只有被还原能力特别强的LiAlH 4还原为相应的伯醇(参见三)。

七、二元酸、羟基酸和羰基酸的反应 1.二元酸乙二酸可被KMnO 4氧化生成二氧化碳,可热分解成二氧化碳和一氧化碳;丙二酸加热脱羧生成乙酸;丁二酸和戊二酸受热脱水生成环状酸酐—丁二酸酐和戊二酸酐;己二酸和庚二酸受热发生脱水脱羧生成环戊酮和环己酮。

2.羟基酸α-羟基酸受热生成交酯O R ORRCHCO 2H OHβ-羟基酸受热发生消除生成α,β-不饱和酸RCHCH 2CO 2H OHRCH=CHCO2Hγ-羟基酸和δ-羟基酸受热生成γ-内酯和δ-内酯O ORRCHCH 2CH 2CO 2H OHOO RCHCH 2CH2CH 2CO 2H OH3.羰基酸的反应α和β-羰基酸受热脱羧:RCCO 2H RCHO + C ORCC H 2CO 2H RCOCH 3 + CO O第四节 羧酸衍生物的化学性质一、结构与反应L=Cl,OR',OCOR',NH2,NHR',NR'2C O -亲电中心亲核中心二、酰基上的亲核取代反应1.酰基碳上亲核取代反应的相对活性ⅡⅠLO L+O -第二个共振式Ⅱ越重要,L 上“孤对电子”离域程度越大,L 越不易离去,羧酸衍生物越不活泼,因此羧酸衍生物的反应活性次序为:酰卤>酸酐>酯>酰胺。

2.酰基碳上亲核取代反应的机理羧酸衍生物分子中的羰基可以受亲核试剂的进攻,经四面体中间体发生加成-消除反应而生成相应的取代产物。

a.中性亲核试剂HL +HNu +RC+ L-HNu+RC ORC ONuR C -活泼的酰卤、酸酐的反应和酯的胺解。

b.负离子亲核试剂R 离去基:碱性越弱,越易离去L=X,OR',etc.+ L -酯和酰胺的碱性水解和酯的胺解。

c.酸性条件L=OR',OH,NH 2,NHR',NR'2HNu=HOR',H 2O H +LR C NuH C ORHNu +HL +RC Nu +H_LC O R+羧酸的酯化和酯以及酰胺的酸性水解和酯交换反应。

三、酰氯的反应酰卤是最活泼的羧酸衍生物,可以水解成羧酸,可以转化成酸酐、酯和酰胺,也可以被还原成伯醇或醛。

2H2OHRCOClRCHO四、酸酐的反应酸酐是比较活泼的羧酸衍生物,容易水解成相应的羧酸,可以发生亲核取代反应生成酯和酰胺。

(RCO)2RCO 2HRCONHR' + RCOOH RCOOR' + RCOOH五、酯的反应酯在酸或碱存在下水解成相应的羧酸和醇,可以还原成醇,可以发生亲核取代反应进行胺解和醇解,还可以进行Claisen 酯缩合反应。

+RCO 2H + R'OHRCO 2-+ R'OH2.H / H 2O1.酰基碳上亲核取代反应 a.酯的水解和胺解酯的酸性水解生成相应的羧酸和醇,酯的碱性水解生成相应的羧酸盐(碱金属的盐溶于水)和醇。

酯的醇解(酯交换)生成新酯和新醇。

酯的胺解生成相应的酰胺和醇。

b.Claisen 酯缩合RCH 2CO 2E tRCH 2COCRHCO 2E 1. NaOE t +2 酮酸酯β_t二元酸酯发生分子内的酯缩合反应,生成相应环状β–酮酸酯,称为Dieckmann 缩合。

OOCHCO 2E C C CO 2E t+ CH 3CO 2E tNaOE tCO 2E t t有意义的交叉Claisen 酯缩合应这样选择:一种酯无α-氢作为酰基化试剂而另一种酯有α-氢在碱存在下能产生α-碳负离子。

Claisen 酯缩合反应是重要的形成碳碳键的反应,它在有机合成中有广泛的应用:RCH 2CO 2E tNaOE tRCH 2COCRHCO 2E tRCH 2COC -RCO 2E tH +/H 2ORCH 2COCRR'CO 2E t2. H +/H 2ORCH 2COCHRR'1. NaOH/H 2ORCH 2COCH 2R酮酸酯β_1. NaOH/H 2O +2酮酸酯β_β-酮酸酯水解后得β–羰基酸,后者受热容易失羧,得到相应的酮。

2.还原反应a.偶姻反应(酮醇缩合)1.Na +2RCHCOR RCOOR'R'OH_在惰性溶剂如芳烃和醚中,金属钠还原酯生成烯二醇二钠盐后者经酸化得到α-羟基酮。

二元酸酯可以发生分子内的酮醇缩合,这是合成环状化合物(小环除外)的一个通用方法。

b.氢化H +/H 2O2R)4 + LiAl(OR')4 RCH 2OH + R'OHRCOOR'六、酰胺的反应1.酰胺羰基的反应+RCONR'22NR'2RCO 2H + H 2N +R'2RCO 2-+ HNR'2酰胺酸性水解生成相应的羧酸和氨、胺的盐(铵盐,溶于水),酰胺碱性水解生成相应的羧2.酰胺氮与亚硝酸的反应HNO22H + H2O + NRCONNO七、腈的反应RCO2- + NHRCO2H + NH4+2NH22+八、羧酸衍生物形成的碳负离子(烯醇负离子)的反应1.乙酰乙酸乙酯及丙二酸酯合成法a.β-羰基醛、酮和酯等化合物的酮式和烯醇式互变平衡β-羰基醛、酮和酯等化合物存在着如下所示的酮式和烯醇式互变平衡:RHOCLOHCOLOR'R'Rb.α-氢的酸性β-羰基酯以及丙二酸酯的α-氢具有酸性,在醇钠存在下可生成碳负离子,碳负离子与卤代烷或酰卤反应在α-碳连上烃基或酰基,后者经水解脱羧,得到不同类型的一取代甲基酮和二取代甲基酮及一取代乙酸和二取代乙酸等化合物。

其它能提供活性亚甲基且在碱性条件下能生成碳负离子的β–双官能团化合物也可以发生类似的反应,用于相应化合物的合成。

相关文档
最新文档