各种喷气式发动机简介

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

涡轮喷气发动机的诞生

二战以前,活塞发动机与螺旋桨的组合已经取得了极大的成就,使得人类获得了挑战天空的能力。但到了三十年代末,航空技术的发展使得这一组合达到了极限。螺旋桨在飞行速度达到800千米/小时的时候,桨尖部分实际上已接近了音速,跨音速流场使得螺旋桨的效率急剧下降,推力不增反减。螺旋桨的迎风面积大,阻力也大,极大阻碍了飞行速度的提高。同时随着飞行高度提高,大气稀薄,活塞式发动机的功率也会减小。

这促生了全新的喷气发动机推进体系。喷气发动机吸入大量的空气,燃烧后高速喷出,对发动机产生反作用力,推动飞机向前飞行。

早在1913年,法国工程师雷恩·洛兰就提出了冲压喷气发动机的设计,并获得专利。但当时没有相应的助推手段和相应材料,喷气推进只是一个空想。1930年,英国人弗兰克·惠特尔获得了燃气涡轮发动机专利,这是第一个具有实用性的喷气发动机设计。11年后他设计的发动机首次飞行,从而成为了涡轮喷气发动机的鼻祖。

涡轮喷气发动机的原理

涡轮喷气发动机简称涡喷发动机,通常由进气道、压气机、燃烧室、涡轮和尾喷管组成。部分军用发动机的涡轮和尾喷管间还有加力

燃烧室。

涡喷发动机属于热机,做功原则同样为:高压下输入能量,低压下释放能量。

工作时,发动机首先从进气道吸入空气。这一过程并不是简单的开个进气道即可,由于飞行速度是变化的,而压气机对进气速度有严格要求,因而进气道必需可以将进气速度控制在合适的范围。

压气机顾名思义,用于提高吸入的空气的的压力。压气机主要为扇叶形式,叶片转动对气流做功,使气流的压力、温度升高。

随后高压气流进入燃烧室。燃烧室的燃油喷嘴射出油料,与空气混合后点火,产生高温高压燃气,向后排出。

高温高压燃气向后流过高温涡轮,部分内能在涡轮中膨胀转化为机械能,驱动涡轮旋转。由于高温涡轮同压气机装在同一条轴上,因此也驱动压气机旋转,从而反复的压缩吸入的空气。

从高温涡轮中流出的高温高压燃气,在尾喷管中继续膨胀,以高速从尾部喷口向后排出。这一速度比气流进入发动机的速度大得多,从而产生了对发动机的反作用推力,驱使飞机向前飞行。

涡喷发动机剖视示意图

涡轮喷气发动机的优缺点

这类发动机具有加速快、设计简便等优点,是较早实用化的喷气发动机类型。但如果要让涡喷发动机提高推力,则必须增加燃气在涡轮前的温度和增压比,这将会使排气速度增加而损失更多动能,于是产生了提高推力和降低油耗的矛盾。因此涡喷发动机油耗大,对于商业民航机来说是个致命弱点。

涡轮风扇发动机

涡轮风扇喷气发动机的诞生

二战后,随着时间推移、技术更新,涡轮喷气发动机显得不足以满足新型飞机的动力需求。尤其是二战后快速发展的亚音速民航飞机和大型运输机,飞行速度要求达到高亚音速即可,耗油量要小,但是因为飞机重量增大了,推力也要增大。综合起来,新型发动机必须提高效率,而不能单纯的提高推力。涡轮喷气发动机的效率已经无法满足这种需求,因此一段时期内出现了较多的使用涡轮螺旋桨发动机的

大型飞机。

实际上早在30年代起,带有外涵道的喷气发动机已经出现了一些粗糙的早期设计。40和50年代,早期涡扇发动机开始了试验。但由于对风扇叶片设计制造的要求非常高。因此直到60年代,人们才得以制造出符合涡扇发动机要求的风扇叶片,从而揭开了涡扇发动机实用化的阶段。

50年代,美国的NACA(即NASA 美国航空航天管理局的前身)对涡扇发动机进行了非常重要的科研工作。55到56年研究成果转由通用电气公司(GE)继续深入发展。GE在1957年成功推出了CJ805-23型涡扇发动机,立即打破了超音速喷气发动机的大量纪录。但最早的实用化的涡扇发动机则是普拉特·惠特尼(Pratt & Whitney)公司的

JT3D涡扇发动机。实际上普·惠公司启动涡扇研制项目要比GE晚,他们是在探听到GE在研制CJ805的机密后,匆忙加紧工作,抢先推出了了实用的JT3D。

1960年,罗尔斯·罗伊斯公司的“康维”(Conway)涡扇发动机开始被波音707大型远程喷气客机采用,成为第一种被民航客机使用的涡扇发动机。60年代洛克西德“三星”客机和波音747“珍宝”客机采用了罗·罗公司的RB211-22B大型涡扇发动机,标志着涡扇发动机的全面成熟。此后涡轮喷气发动机迅速的被西方民用航空工业抛弃。

JT-3D或CJ805-23的研制,粗略的说是在现有的涡喷发动机加上风扇。这种以现有发动机作为“核心机”的做法,降低了技术上最难解决的部分的难度。

波音707的军用型号之一,KC-135加油机。不加力式涡扇发动机实际上较为容易辨认,其外部有一直径很大的风扇外壳。

涡轮风扇喷气发动机的原理

战斗机动力装置的设计,总是追求更高的推重比;大型飞机自重和载重的不断增大,对发动机提出了更高的推力要求。而涡扇发动机的诞生就是为了顺应人们对航空发动机越来越高的推力要求而诞生的。因为提高喷气发动机的推力最简单的办法就是提高发动机的空气流量。

涡桨发动机的推力有限,同时影响飞机提高飞行速度。因此必需提高喷气发动机的效率。发动机的效率包括热效率和推进效率两个部分。提高燃气在涡轮前的温度和压气机的增压比,就可以提高热效率。因为高温、高密度的气体包含的能量要大。但是,在飞行速度不变的条件下,提高涡轮前温度,自然会使排气速度加大。而流速快的气体在排出时动能损失大。因此,片面的加大热功率,即加大涡轮前温度,

会导致推进效率的下降。要全面提高发动机效率,必需解决热效率和推进效率这一对矛盾。

涡轮风扇发动机的妙处,就在于既提高涡轮前温度,又不增加排气速度。涡扇发动机的结构,实际上就是涡轮喷气发动机的前方再增加了几级涡轮,这些涡轮带动一定数量的风扇。风扇吸入的气流一部分如普通喷气发动机一样,送进压气机(术语称“内涵道”),另一部分则直接从涡喷发动机壳外围向外排出(“外涵道”)。因此,涡扇发动机的燃气能量被分派到了风扇和燃烧室分别产生的两种排气气流上。这时,为提高热效率而提高涡轮前温度,可以通过适当的涡轮结构和增大风扇直径,使更多的燃气能量经风扇传递到外涵道,从而避免大幅增加排气速度。热效率和推进效率取得了平衡,发动机的效率得到极大提高。效率高就意味着油耗低,飞机航程变得更远。

加力式涡扇发动机

相关文档
最新文档