信号与系统 §4.3 周期信号的频谱
信号与系统第4章 周期信号的频域分析(3学时)
T0 /2
0
x(t )sin(n 0t )dt
四、信号对称性与傅里叶系数的关系
3、半波重迭信号
~ x (t ) ~ x (t T0 / 2)
~ x (t )
A t
T0
T0 / 2 0
T0 / 2
T0
特点: 只含有正弦与余弦的偶次谐波分量,而无奇次谐波分量。
四、信号对称性与傅里叶系数的关系
~ x (t )
2 1 -4 -3 -2 -1 1 2 3 4
~ x (t ) ~ x1 (t ) ~ x2 (t )
nπ nπt t~ x (t ) 1.5 Sa ( ) cos( ) 2 2 n 1
~ x1 (t )
2
x 1(t ) 2
1 2 3 4
-4 -3 -2 -1
三、周期信号的功率谱
一、周期信号频谱的概念
连续时间周期信号可以表示为虚指数信号之和,其 中Cn 为傅里叶系数 。
~ x (t )
n =
Cn e
jn0t
1 Cn T0
T0 t 0
t0
~ x (t )e jn 0t dt
问题1:不同信号的傅里叶级数形式是否相同? 相同 问题2:不同信号的傅里叶级数不同表现在哪里? 系数
例3 课本P129
例4 已知连续周期信号的频谱如图,试写出信号的 Fourier级数表示式。 Cn
3 2 1 1 3 4 3 2
9
6
0
3
6
9
n
解: 由图可知 C0 4
C 1 3
C2 1
C 3 2
~ x (t )
4.3 周期信号的频谱及特点
4.3
周期信号的频谱及特点
2)、周期矩形脉冲的频谱
有一幅度为E,脉冲宽度为τ的周期矩 形脉冲,其周期为T,如图所示。求 频谱。 T τ
−
τ
2
τ
2
Fn =
1 T
∫
2
T − 2
f (t ) e
− jnΩt
E e− jnΩt = T − jnΩ
τ
2 −
τ
2
E 2 − jnΩt dt = dt τ e ∫ − T 2 nΩτ sin( ) Eτ sin nΩτ 2E 2 2 = = T nΩτ T nΩ
1)、定义
依据复傅立叶系数Fn随nΩ的变化关系所画的图称为 双边频谱图,简称双边谱; |Fn|~ nΩ为双边幅度谱,见图4.3-1(b);其 以纵轴对称。 θn~ nΩ为双边相位谱。见图4.3-1(d)图。其 以原点对称。
第 第23 23-8 8页 页
■
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案 电子教案
, n = 0,1,2,..., φ0 = 0.
Fn ~ nΩ
θ n ~ nΩ
周期信号的频谱是指周期信号中各次谐波幅值、相位随 频率的变化关系。
第 第23 23-3 3页 页
■
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案 电子教案
4.3
A0 f (t ) = + 2
∞
周期信号的频谱及特点
ω1
T τ = = 2π Ω τ T
2π
见课本P131 页图4.3-4。
增多。
(b)、 τ 一定,T增大,谱线间隔 Ω 减小,频谱谱 线密度增大。谐波幅度减小:
周期信号的离散频谱
目
CONTENCT
录
• 引言 • 周期信号的离散频谱特性 • 离散频谱的生成方法 • 离散频谱的应用 • 离散频谱与连续频谱的比较 • 总结与展望
01
引言
背景介绍
周期信号在现实世界中广泛存在,如交流电、机械振动等。为了 更好地理解和分析这些信号,需要研究其离散频谱。
离散频谱是周期信号的频率成分的集合,表示信号在不同频率上 的分布情况。
计算过程
傅立叶变换法需要将时间域信 号进行无穷积分,计算过程较 为复杂,需要较高的数学水平 。
应用范围
适用于周期信号和非周期信号 ,是信号处理领域中非常重要 的工具之一。
离散时间傅立叶变换法
定义ቤተ መጻሕፍቲ ባይዱ
离散时间傅立叶变换法是一种将离散时间序列转换为频域 信号的方法,通过将离散时间序列进行傅立叶变换,得到 离散频谱。
干扰抑制
在复杂电磁环境下,雷达系统可能受到各种干扰的影响,离散频谱分 析有助于识别和抑制这些干扰,提高雷达的抗干扰能力。
在图像处理中的应用
01
频域滤波
图像处理中,离散频谱分析用于频域滤波,通过改变图像信号在不同频
率段的权重实现图像的模糊、锐化、边缘检测等效果。
02
去噪与增强
离散频谱分析在图像去噪与增强方面具有广泛应用,通过滤除噪声成分
离散频谱的定义
01
离散频谱是指周期信号的频率成 分以离散的形式分布在频率轴上 。
02
与连续频谱相比,离散频谱的频 率分量是分离的,而不是连续分 布的。
02
周期信号的离散频谱特性
离散频谱的形状
正弦波形状
对于正弦波形状的离散频谱,其峰值出现在中心频 率处,随着频率的增加或减少,幅度逐渐减小。
信号与系统知识要点
《信号与系统》知识要点第一章 信号与系统1、 周期信号的判断 (1)连续信号思路:两个周期信号()x t 和()y t 的周期分别为1T 和2T ,如果1122T N T N =为有理数(不可约),则所其和信号()()x t y t +为周期信号,且周期为1T 和2T 的最小公倍数,即2112T N T N T ==。
(2)离散信号思路:离散余弦信号0cos n ω(或0sin n ω)不一定是周期的,当 ①2πω为整数时,周期02N πω=;②122N N πω=为有理数(不可约)时,周期1N N =; ③2πω为无理数时,为非周期序列注意:和信号周期的判断同连续信号的情况。
2、能量信号与功率信号的判断 (1)定义连续信号 离散信号信号能量:2|()|k E f k ∞=-∞=∑信号功率: def2221lim ()d T T T P f t t T →∞-=⎰ /22/21lim|()|N N k N P f k N →∞=-=∑⎰∞∞-=t t f E d )(2def(2)判断方法能量信号: P=0E <∞, 功率信号: P E=<∞∞, (3)一般规律①一般周期信号为功率信号;②时限信号(仅在有限时间区间不为零的非周期信号)为能量信号;③还有一些非周期信号,也是非能量信号。
例如:ε(t )是功率信号; t ε(t )3、典型信号① 指数信号: ()at f t Ke =,a ∈R② 正弦信号: ()sin()f t K t ωθ=+tt4、信号的基本运算 1) 两信号的相加和相乘 2) 信号的时间变化 a) 反转: ()()f t f t →- b) 平移: 0()()f t f t t →± c)尺度变换: ()()f t f at →3) 信号的微分和积分注意:带跳变点的分段信号的导数,必含有冲激函数,其跳变幅度就是冲激函数的强度。
正跳变对应着正冲激;负跳变对应着负冲激。
《信号与系统》教与学第四章
j n e 3
j n
e3
1 n
sin
n 3
,
n
0, 1,
2,
2
《信号与系统》教与学第四章答案
4.4 周期信号 f (t ) 的双边频谱 Fn 如图所示,求其三角函数表达式。
【知识要点:】本题主要考查周期信号的频谱概念,单边谱与双边谱的关系。
(3)计算信号的功率。
【知识要点:】本题主要考查周期信号的频谱概念应用;帕斯瓦尔功率等式应用。
T
2
;
f
t
A0 2
n1
An
cos
nt n
;P
Fn 2 。
n
【解题方法:】利用已知条件观察求出 ,并带入公式计算求出各次谐波分量;
根据单边幅度谱和双边幅度谱的关系、单边相位谱和双边相位谱的关系画出双
边幅度谱和相位谱;最后利用帕斯瓦尔功率等式计算信号的功率。
解:(1)
x
t
16 cos
20
t
4
6
cos
30
t
6
4
cos
40
t
3
10 (rad/s) ,
T
2
2 10
1 (s) , 5
周期信号所含谐波次数为二次,三次,四次;
求得。
(1) cos( t ) sin 2t
解: T1
《信与系统》教与学
4.14
利用能量等式
f
2 (t )dt
1 2
2
F ( j) d ,计算
sin t
2t
2
dt
。
【解题方法:】先利用门函数常用对和对称性求出 sin(2t) 的傅里叶变换, t
4.11 如下图所示信号, f1 (t ) 的傅立叶变换 F1 ( j ) 已知,求信号 f 2 (t ) 的傅立叶 变换 F2 ( j ) 。
解:
f2 (t ) f1 (t t0 ) f1(t t0 ) f1(t ) F1( j)
f1(t t0 ) F1( j)e jt0
9
《信号与系统》教与学第四章答案
解: T1
2
2(s )
T2
2 2
(s)
故该信号为非周期信号。
(2)
cos(
t)
sin(
t)
2
4
T1 T2
2
为无理数,
解: cos
2
t
,
2
4
(s),
sin
4
t
,
2
8
(s),
2
4
8 (s)。
4.2 利用奇偶性判断下图所示各周期信号的傅里叶级数中所含的频率量。
【解题方法:】首先根据函数的奇偶特性判断信号的傅立叶级数中包含的正、余 弦分量;再根据函数的谐波特性判断信号的傅立叶级数中包含的 奇谐分量、偶谐分量。
df (t) ( j ) F ( j ) dt
jt
df (t) dt
d( j) F(
d
j)
jF
(j)
j
dF ( j ) d
4t
df (t dt
信号与系统 -第四章 傅里叶变换和系统的频域分析
A2cos(2 t+ 2)称为二次谐波,它的频率是基波的2倍; 一般而言,Ancos(n t+ n)称为n次谐波。
第4-13页
■
信号与系统电子教案
4.2 傅里叶级
例1:将图示方波信号f(t)展开为数傅里叶级数。
f (t)
1
T T 0 T T 3T
t
2 1 2
2
解:f (t)为T 3, 2 / T 2 / 3的周期信号,傅里叶系数为
号空间找到若干个相互正交的信号作为基本信号,使 得 信号空间中任意信号均可表示成它们的线性组合。
第4-5页
■
信号与系统电子教案
y C2v
y
0
A
x C1v x
4.1 信号分解为正交函 数
y C2vy
0 C3v
zz
A C1vx x
第4-6页
■
信号与系统电子教案
4.1 信号分解为正交函
二、信号正交与正交函数数集
第四章 傅里叶变换和系统的频域分析
傅里叶简介
法国数学家、物理学家。1768年3月21日生 于 欧塞尔,1830年5月16日卒于巴黎。
1807年向巴黎科学院呈交《热的传播》论文,推导出著 名
的热传导方程,并在求解该方程时发现解函数可以由三角函数 构成的级数形式表示,从而提出任一函数都可以展成三角函数 的无穷级数。
■
信号与系统电子教案
4.2 傅里叶级
A0
2
1 An
n1
e j n jn t
1数
2 An n1
e j n jn
t
令A0=A0
。
如三维空间中,以矢量 vx=(2,0,0)、vy=(0 ,2,0)、vz=(0,0,2) 所组成的集合就是一个 正交矢量集。
信号与系统分析基础----周期信号的频谱周期信号的频谱分析——傅里叶级数
n1t
sin
m1t
0
2
T 2 T 2
cos n1t
cos m1t
T , 2 0,
mn mn
T 2 T 2
sin n1t
sin m1t
T , 2 0,
mn mn
3
2.级数形式
周期信号
f t ,周期为T1
, 基波角频率为1
2
T1
在满足狄氏条件时,可展成:
f (t) a0 an cos n1t bn sin n1t
§3.2 周期信号的频谱分析——傅里叶级数
1
主要内容
•三角函数形式的傅氏级数 • 指数函数形式的傅氏级数 •两种傅氏级数的关系 • 频谱图
2
一.三角函数形式的傅里叶级数
1.三角函数集
cosn1t , sin n1 t是一个完备的正交函数集
由积分可知
t在一个周期内,n=0,1,....
T
2 T
cos
周期信号可分解为直流,基波(1)和各次谐波 (n1 : 基波角频率的整数倍)的线性组合.
cn ~ 关系曲线称为幅度频谱图 n ~ 关系曲线称为相位频谱图
可画出频谱图
周期信号频谱具有离散性,谐波性,收敛性
9
二.指数函数形式的傅里叶级数
1.复指数正交函数集 e jn1t n 0,1,2
2.级数形式 f (t ) F (n1 ) e jn1t
f
2
(
t
)dt
t2 t1
f 2 (t )
f
1
(t
)dt
0
若在区间(t1,t2)内,复变函数集 {gr (t)}(r 1,2,...,n)
满足关系
“信号与系统”周期信号频谱的教学分析
D O I 编码 : 1 0 . 3 9 6 9 6 . i s s n . 1 0 0 7 — 0 0 7 9 . 2 0 1 3 . 0 3 2 . 0 6 9
2 0 1 3 年 第 3 2 期
“ 信号与系统 ’ ’ 周期信号频谱的教学分析
杨 宇 贾永兴 荣传振 王 渊
一
图2 和图3 所 示。 从 时域 波形上 , 得不到什 么特别信 息来区别这 两个 号码。 接着, 展示这两个拨号 音对应的频谱图——幅度谱 , 如图4 和图5 所示 。 通 过对 比时域和频域 波形 , 学生可以直观地 从频谱 图上看 出按键 音的幅度在两个频率点上 的值 比较 大, 并 且这两个 频率点一 个为高频 和一个为低频 , 即两个频率成 分构 成。 这种 由两个 音频频率叠 加成一个双音频 信号 的拨号方 式称
频域分 析法是信 号与系统分析 的经典方法 , 也是学习后 续 专业课程的重要理论基础 。 其原理 主要包括 : 频谱的概念、 常用 信号的频谱及其性 质等。由于用积分定义 的频谱不易被理解 , 通
常教材多从周期信号的傅里叶级数展开开始, 【 1 逐步推广到一
般信号的积分 变换 , 最终 确立信号的频域表达, 所 以, 周期信号 的频谱就成 为学生理解频谱概念及其物理意义十分关键 的一堂 课。 本文以周期信号的频谱为例 , 来讨论教学过程 的设计。
本文 运用 “ 启发式 ”教学 法 , 以学 生 为主体 , 启发引导学
生, 激发其求知欲, 充分调动学生 的能动作用, 循序渐进地获取
并理解新知识。 教学过程大致分为四步: 第一 , 激发 兴趣 , 导入新知 。 从学 生熟悉 的现象 出发 , 引起
度谱和相位谱 , 如图1 所示。
第四章(1)周期信号的傅里叶级数和频谱
1 j n jnt f ( t ) An e e 2 n
1 j n j n 令复数量 2 An e Fn e Fn
,称其为复
Fn
傅里叶系数,简称傅里叶系数。其模为
,
相角为 n , 则得傅里叶级数的指数形式为 :
f (t )
n
F e
n
jnt
复傅里叶系数
n 2 , 4 , 6 , 8 ,...... n 1 , 3 , 5 , 7 ,.....
, 0 bn 4 n ,
4
1 1 1 f t [sin t sin3t sin5t .... sinnt ...] 3 5 n
2
0
T 2
2 an 0 T
n 0,1 , 2 , 3,.......
2 bn T 2 T
0
T 2 T 2
f ( t ) si nnt dt
2 T2 (1) si nnt dt T
0
T 2 0
si nnt dt
T 2
2 1 2 1 cosnt cosnt T T n T n 0
a0 an cos(nt ) bn sin(nt ) 2 n1 n 1 2 其中 an , bn 称为傅里叶系数, 。 T
那么,傅里叶系数如何求得呢?
T 2 T 2
a0 1 2 T
f ( t )dt
T 2 2 an T f ( t ) cos(nt )dt T 2 T b 2 2 f ( t ) sin( t )dt n n T T 2
A0 1 1 j n jnt j n jnt Ane e Ane e 2 2 n 1 2 n 1
周期信号的频谱及其特点
E
cos ( 0 t
) 2
1 2
cos (2
0t
) 2
1 3
cos (3
0t
) 2
1 4
cos (4
0t
2
)
精品课件
周期锯齿脉冲信号的频谱
f
(t )
E
[cos ( 0 t
) 2
1 2
cos
(2
0t
) 2
Ak
1 3
cos (3 0 t
2
)
1 4
cos (4 0 t
2
)
]
E
振幅频谱
0 0 20 30 40 50 相位频谱
精品课件
周期锯齿脉冲信号的频谱
f(t)
由于f(t)为奇函数,a0=ak=0
E 2
bk
2 T
T 2 T
f(t)si nk(0t)dt
T
0
T 2
TT
2
t
2
4E
T2
T
2 ts ink(0t)dt
0
E (1)k 1
k
E 2
f( t) E si0 tn ) 1 2 s ( 2 i0 n t) 1 3 (s3 i0 n t) 1 4 (s4 i0 n t) (
第3章 信号与系统的频域分析
•本章首先以正弦、余弦或复指数函数为基本信号,通过傅里叶级 数将信号分解为这些基本信号之和,引出周期信号频谱,并讨论 其特点。
•通过讨论周期信号周期趋于无穷大时频谱的变化,引出傅里叶变 换定义,并学习常用基本信号的频谱密度函数(频谱)。
•傅里叶变换建立了信号时域与频域表示之间的联系,而傅里叶变 换的性质则揭示了信号时域变化相应地引起频域变化关系。
周期信号的频谱的特点
周期信号的频谱的特点对于周期信号,其频谱特点主要有以下几个方面:1.频谱呈现出离散的频率分量:周期信号的频谱是由一系列离散的频率分量组成的,这些频率分量可以看作是正弦波的谐波。
具体来说,周期信号的基波频率对应着信号的周期,而高次谐波频率对应着信号的周期的整数倍。
因此,周期信号的频谱呈现出离散的频率分量。
2.频率分量的幅值逐渐衰减:对于周期信号的频谱,随着频率的增大,各个频率分量的幅值逐渐衰减。
这是因为周期信号的频谱是由一系列频率为整数倍的正弦波叠加而成的,而高次谐波频率对应着幅度较小的频率分量。
因此,随着频率的增大,高次谐波频率分量的幅值逐渐变小,频谱呈现出幅度逐渐衰减的特点。
3.频谱具有对称性:对于实信号的周期信号,其频谱具有对称性。
具体来说,周期信号的频谱关于零频率轴对称。
这是因为周期信号的频谱是由实信号频谱叠加而成的,而实信号频谱及其傅里叶变换的共轭都是对称的,因此周期信号的频谱具有对称的特点。
4.频谱的带宽与周期信号的周期有关:对于周期信号,其频谱的带宽与信号的周期有关。
具体来说,频谱的带宽在理论上等于周期的倒数。
这是因为在频谱中,由于频率分量的间隔等于周期的倒数,频谱的带宽也等于周期的倒数。
5.频谱的相位对称性:对于周期信号,它的频谱在幅度谱的基础上还有相位谱。
频谱的相位是随着频率变化的,由于周期信号的频率分量是正弦波,而正弦波的相位是以周期为单位的,所以频谱的相位也具有周期性。
具体来说,频谱的相位存在对称性,即频率分量的相位和其对称频率分量的相位相差180度。
这是由于正弦波的周期性特点决定的。
综上所述,周期信号的频谱特点包括频谱呈现出离散的频率分量、频率分量的幅值逐渐衰减、频谱具有对称性、频谱的带宽与周期信号的周期有关,以及频谱的相位对称性等。
这些特点在信号处理和通信系统中具有重要的理论和实际意义,为信号的分析、处理和传输提供了基础。
信号与系统分析《信号与系统分析》吴京,国防科技大学出版社第四章-1
图形上, 时域波形与频谱图的关系
能量的角度,时域与频域的对应关系 响应的角度
四 线性时不变系统对周期信号的响应
一 波形对称性与谐波特性的关系
f ( t ) a 0 [a n cos(nt ) bn sin( nt )],t 0 t t 0 T
n 1
2 , n 1,2,...} T f ( t ) a 0 [a n cos(nt ) bn sin( nt )],t 0 t t 0 T
正余弦信号集
n 1
{sin( nt ),1, cos(nt ),
f ( t ) c 0 c n cos(nt n ) f ( t ) d 0 d n sin( nt n )
n 1 n 1
1 t 0 T a 0= f ( t )dt T t0 2 t 0 T an f ( t ) cos(nt )dt T t0 2 t 0 T bn f ( t ) sin( nt )dt T t0
a0 c0 d 0
2 2 cn d n an bn
f ( t ) a0 [an cos(nt ) bn sin( nt )] ,t 0 t t 0 T
n1
在上式两边同乘以 1、 cos nt、 sin nt,并在 (t 0 , t 0 T )
1 t 0 T f ( t )dt T t 0 2 t 0 T an f ( t ) cos(nt )dt T t0 2 t 0 T bn f ( t ) sin( nt )dt t 0 T a 0=
区间上积分,得到:
a0 c0 d 0
2 2 cn d n an bn
周期信号的频谱的特点
图 3-10 给出了脉冲宽度 相同而周期 T 不同的周期矩形脉冲信号的频谱。 由 图可见, 这时频谱包络线的零点所在位置不变, 而当周期 T 增大时, 频谱线变密, 即在信号占有频带内谐波分量增多,同时振幅减小。当周期无限增大时, f (t ) 变 为非周期信号,相邻谱线间隔趋近于零。相应振幅趋于无穷小量,从而周期信号 的离散频谱过渡到非周期信号的连续频谱,这将在下一节中讨论。
故
PB 0.1806 0.9 P 0.2
从上式可以看出,在所给出的周期矩形脉冲情况下,包含在有效频谱宽度内 的信号平均功率约占整个信号平均功率的 90%。
关系图形反映,如图 3-7 所示。
Fn
0.25
7 5 - 4 - 3 - 0
ͼ 3 - 7
3
5 7
3 图 3-7 反映了周期矩形信号 f (t ) 频谱的一些性质,实际上它也是所有周期信 号频谱的普遍性质,这就是: (1) 离散性。指频谱由频率离散而不连续的谱线组成,这种频谱称为离散频 谱或线谱。
T 8
£® £® £®
-T
0 Fn
T
t
E / T 2 / 2 / 0
ͼ 3 - 10
w
如果保持周期矩形信号的周期 T 不变,而改变脉冲宽度 ,则可知此时谱线
间隔不变。若减小 ,则信号频谱中的第一个零分量频率
2
增大,即信号
的频谱宽度增大, 同时出现零分量频率的次数减小,相邻两个零分量频率间所含 的谐波分量增大。并且各次谐波的振幅减小,即振幅收敛速度变慢。若 增大, 则反之。 四、 周期信号的功率谱 周期信号 f (t ) 的平均功率可定义为在 1 电阻上消耗的平均功率,即
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
e-jnΩt,才能保证f(t)的实函数的性质不变。
▲
■
第3页
二、周期信号频谱的特点
举例:有一幅度为1,脉冲宽
f(t) 1
度为的周期矩形脉冲,其周
0
期为T,如图所示。求频谱。
-T
Fn
1 T
T
2 T
2
f (t) e d jnt t
(3)离散谱(谐波性)
(4)第一个零点坐标:2π T
当ω nΩ时取值 (5)Fn是复函数(此
处
令 n n= 2π
为实函2数),幅度/相位
Fn 0,相位为 0,Fn 0, 相位为π 。 ▲
■
第5页
周期信号频谱的特点
(1)周期信号的频谱具有谐波(离散)性。谱线位置是基频 Ω的整数倍;(2)一般具有收敛性。总趋势减小。
1 T
2
e
jnt
dt
2
2
2
1 e jnt T jn
2
2
2
sin(
n
2
)
T n
T
sin n
2
n
2
令Sa(x)=sin(x)/x (取样函数)
…
T
t
▲
■
第4页
Fn
Sa( n ) Sa( n )
T 2TT
, n = 0 ,±1,±2,…
图中T 5
Fn
T
2π
O 2
(1)包络线形状:抽样函数 (2)其最大值在 n 0处,为 。
§4.3 周期信号的频谱
• 信号频谱的概念 • 周期信号频谱的特点
■
第1页
一、信号频谱的概念
从广义上说,信号的某种特征量随信号频率变
化的关系,称为信号的频谱,所画出的图形称为信 号的频谱图。
周期信号的频谱是指周期信号中各次谐波幅值、 相位随频率的变化关系,即
将An~ω和n~ω的关系分别画在以ω为横轴的平
谱线的结构与波形参数的关系 ➢T一定,变小,此时(谱线间隔)不变。两零点之 间的谱线数目:1/=(2/)/(2/T)=T/ 增多。
➢ 一定,T增大,间隔减小,频谱变密。幅度减小。
如果周期T无限增长(这时就成为非周期信号),
那么,谱线间隔将趋近于零,周期信号的离散频谱就过
渡到非周期信号的连续频谱。各频率分量的幅度也趋近
于无穷小。
总结▲■来自第6页面上得到的两个图,分别称为振幅频谱图和相位频 谱图。因为n≥0,所以称这种频谱为单边谱。
也可画|Fn|~ω和n~ω的关系,称为双边谱。若Fn
为实数,也可直接画Fn 。
▲
■
第2页
频谱概念演示
T
f (t)
1
O T /2 T
t
1
方波
既是奇函数又是奇谐函数
例1
例2
只含奇次谐波,且为正弦波.
对于双边频谱,负频率,只有数学意义,而无物