轨迹方程的 几种求法整理(例题+答案)

合集下载

动点轨迹方程问题的解法

动点轨迹方程问题的解法

考点透视董纪琴动点的轨迹方程问题主要考查圆锥曲线的定义与几何性质,通常要求根据已知的条件,求动点的轨迹方程.此类问题具有较强的抽象性,且解题过程中的运算量较大.很多同学由于在解题时没有选择合适的方法,导致解题失败.下面,笔者结合例题探讨一下动点轨迹方程问题的解法.一、直接法运用直接法求解动点的轨迹方程问题,需充分利用题设中的几何条件,寻找与动点有关的几何量或等量关系,并将其转化为关于动点的坐标的关系式,进而得到动点的轨迹方程.其解题步骤为:(1)设动点的坐标;(2)找等量关系;(3)根据已知条件列出方程;(4)整理化简该方程,求得动点的轨迹方程.例1.已知点A(-2,0),B(2,0),直线AM与BM的斜率之积为-12,求点M的轨迹C的方程,并说明C是什么曲线.解:由题意知kAM=yx+2,kBM=yx-2.因为直线AM与BM的斜率之积为-12,故y x+2∙y x-2=-12,化简得x24+y22=1(||x≠2),故曲线C为中心在坐标原点,半长轴为2,半短轴为2,焦点在x轴上,且不含左、右顶点的椭圆.运用直接法求动点的轨迹方程,通常需仔细寻找与动点有关的一些几何量,如相等距离、相等角、成比例的线段等,然后根据两点间的距离公式、点到直线的距离公式、斜率公式、相似三角形的性质等建立关于x,y的等量关系式,再通过化简,就能求出动点轨迹的方程.二、参数法若题目较为复杂,根据题意难以快速建立与动点有关的关系式,或明确动点的运动轨迹,就可以运用参数法,设出相关参数,建立关于参数的方程,再通过化简、消去参数,进而得到动点的轨迹方程.例2.若点A在x轴上移动,点B在y轴上移动,线段AB的长为a,点P是AB上的一动点,且||AP=2||PB,求点P的轨迹方程.解:过点P作PM⊥x轴于M,过点P作PN⊥y轴于N.设点P()x,y,AB与x轴的夹角为θ(||θ≤π2),则||AP=2a3,||BP=a3,于是x=13a cosθ,y=23a sinθ,消去参数,可得æèöø3xa2+æèçöø÷3y2a2=1,即动点的P轨迹方程为36x2+9y2=4a2.由于A,B为动点,所以直线AB与x轴的夹角直接影响着A、B点的横、纵坐标,此时我们要引入参数,运用参数法解题.根据题意绘制出相应的几何图形,再添加合适的辅助线,并根据直角三角形的性质列出关于参数的方程,就能通过消参,快速得出动点的轨迹方程.三、相关点法若动点P随点Q的变化而变化,就可以采用相关点法来求动点的轨迹方程.在解题时,我们首先要设出点P与点Q的坐标,然后根据题意建立两点之间的关系式,再将其代入关系式中进行运算,即可求出动点的轨迹方程.例3.已知点B为椭圆x2a2+y2b2=1(a>b>0)上的动点,点A(2a,0)为定点,试求线段AB的中点M的轨迹方程.解:设中点M的坐标为()x,y,B点的坐标为()x0,y0,因为M为线段AB的中点,所以ìíîïïx0+2a2=x,y0+02=y,可得{x0=2x-2a,y0=2y,则B(2x-2a,2y),因为点B在椭圆x2a2+y2b2=1,所以x02a2+y02b2=1,即(2x-2a)2a2+(2y)2b2=1,整理可得4(x-a)2a2+4y2b2=1,该方程即为中点M的轨迹方程.仔细分析题意可以知道,点M都随着点B的变化而变化,因此需采用相关点法解题比较便捷,用M点的坐标表示B点的坐标,再将其代入题设中进行运算,化简所得的结果,即可快速求得问题的答案.由此可见,无论运用哪种方法求动点的轨迹方程,都要设出动点的坐标,建立关于动点的坐标与已知曲线方程之间的关系式,再通过化简,求得关于动点坐标的方程,从而求出动点的轨迹方程.虽然此类问题较为复杂,难度系数较大,但是只要明确题目中与动点相关的已知条件,选择与之相应的方法进行求解,问题就能迎刃而解.(作者单位:南京航空航天大学附属高级中学)37。

轨迹方程的求法

轨迹方程的求法

解:以BC所在的直线为x轴,BC中点为坐标
原点,建立如图所示的直角坐标系,则B
(一a/2,0),C(a/2,0),设A(x,y)

由sinC- sinB=
∴c-b=
1 2
a
1 2
sinA
A
B
C
即|AB|-|AC|=
1 2
a(定值)
些密如发丝的暗青色珠粒被烟一晃,立刻变成皎洁辉映的珠光,不一会儿这些珠光就闪烁着飞向罕见异绳的上空,很快在四金砂地之上 变成了隐隐约约的凸凹飘动的摇钱树……这时,宝石状的物体,也快速变成了树皮模样的湖青色胶状物开始缓缓下降……只见女政客
4、参数法 例题4、已知线段AB的长为a,P分AB为
AP∶PB= 2∶l两部分,当A点在y轴上运动时, B点在x轴上运动,求动点P的轨迹方程。
解 : 设 动 点 P ( x , y ) , AB 和 x 轴 的 夹 角 为 θ ,
|θ|≤
2
,作PM⊥x于M,
PN⊥y轴于N
∵|AB|= a, | AP | 2
皮肤时浓时淡渗出水睡朦胧般的晃动!接着玩了一个,飞蟒吊灯翻一千零八十度外加狐嚎排骨旋七周半的招数,接着又来了一出,怪体 牛蹦海飞翻七百二十度外加笨转四百周的尊贵招式……紧接着异常的如同原木一样的脚立刻蠕动变形起来……鲜红色酒罐耳朵闪出水绿 色的团团明烟……深灰色麦穗样的嘴唇闪出中灰色的点点神响。最后摆起多变的深黄色土堆模样的卷发一嚎,飘然从里面涌出一道佛光, 她抓住佛光冷峻地一颤,一件银晃晃、黄澄澄的咒符『蓝鸟骨怪火腿宝典』便显露出来,只见这个这件东西儿,一边转化,一边发出“咝 咝”的神响。骤然间女政客T.克坦琳叶女士急速地弄了一个侧卧扭曲炸蛤蟆的怪异把戏,,只见她修长的淡灰色怪石一样的脑袋中,威

轨迹方程的求法

轨迹方程的求法

轨迹方程求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法、交轨法,待定系数法。

求轨迹方程,一定要注意轨迹的纯粹性和完备性.要注意区别“轨迹”与“轨迹方程”是两个不同的概念.1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这种方法称之为直接法;例1、已知直角坐标系中,点Q (2,0),圆C 的方程为221x y +=,动点M 到圆C 的切线长与MQ 的比等于常数()0λλ>,求动点M 的轨迹。

◎◎如图,圆1O 与圆2O 的半径都是1,124O O =. 过动点P 分别作圆2O 、圆2O 的切线PM PN ,(M N ,分别为切点),使得PM . 试建立适当的坐标系,并求动点P 的轨迹方程.2.定义法:运用解析几何中一些常用定义(例如圆锥曲线的定义),可从曲线定义出发直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程。

例2、动圆过定点,02p ⎛⎫ ⎪⎝⎭,且与直线2p x =-相切,其中0p >.求动圆圆心C 的轨迹的方程.◎◎ 已知圆C 的方程为 (x-2)2+y 2=100,点A 的坐标为(-2,0),M 为圆C 上任一点,AM 的垂直平分线交CM 于点P ,求点P 的方程。

◎◎已知A 、B 、C 是直线l 上的三点,且|AB|=|BC|=6,⊙O ′切直线l 于点A ,又过B 、C 作⊙O ′异于l 的两切线,设这两切线交于点P ,求点P 的轨迹方程.三、代入法:动点所满足的条件不易表述或求出,但形成轨迹的动点P(x,y)却随另一动点Q(x ’,y ’)的运动而有规律的运动,且动点Q 的轨迹为给定或容易求得,则可先将x ’,y ’表示为x,y 的式子,再代入Q 的轨迹方程,然而整理得P 的轨迹方程,代入法也称相关点法。

例3、P 是椭圆191622=+y x 上的动点, 作PD ⊥y 轴, D 为垂足, 求PD 中点的轨迹方程.◎◎已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别是F 1(-c ,0)、F 2(c ,0),Q 是椭圆外的动点,满足.2||1a F =点P 是线段F 1Q 与该椭圆的交点,点T 在线段F 2Q 上,并且满足.0||,022≠=⋅TF TF PT 求点T 的轨迹C 的方程.练习:1、方程y=122+--x x 表示的曲线是: ( )A 、双曲线B 、半圆C 、两条射线D 、抛物线2. 抛物线的准线l 的方程是y =1, 且抛物线恒过点P (1,-1), 则抛物线焦点弦的另一个端点Q 的轨迹方程是( ).A. (x -1)2=-8(y -1)B. (x -1)2=-8(y -1) (x ≠1)C. (y -1)2=8(x -1)D. (y -1)2=8(x -1) (x ≠1)3、动点p 与定点A(-1,0), B(1,0)的连线的斜率之积为-1,则p 点的轨迹方程是: ( )A 、x 2+y 2=1B 、x 2+y 2=1(x ≠±1)C 、x 2+y 2=1(x ≠1)D 、y=21x -4、一动点到两坐标轴的距离之和的2倍,等于该点到原点距离的平方,则动点的轨迹方程是: ( )A 、x 2+y 2=2(x+y)B 、x 2+y 2=2|x+y|C 、x 2+y 2=2(|x|+|y|)D 、x 2+y 2=2(x -y)5、动点P 到直线x=1的距离与它到点A (4,0)的距离之比为2,则P 点的轨迹是:( )A 、中心在原点的椭圆B 、中心在(5,0)的椭圆C 、中点在原点的双曲线D 、中心在(5,0)的双曲线6、已知圆x 2+y 2=4,过A (4,0)作圆的割线ABC ,则弦BC 中点的轨迹方程是 ( )A 、(x -2)2+y 2=4B 、(x -2)2+y 2=4(0≤x <1)C 、(x -1)2+y 2=4D 、(x -1)2+y 2=4(0≤x <1)7 . P 是椭圆191622=+y x 上的动点, 作PD ⊥y 轴, D 为垂足, 则PD 中点的轨迹方程为( ). A. 116922=+y x B. 196422=+y x C. 14922=+y x D. 19422=+y x 8、若一动圆与两圆x 2+y 2=1, x 2+y 2-8x+12=0都外切,则动圆圆心的轨迹为: ( )A 、抛物线B 、圆C 、双曲线的一支D 、椭圆9、点M 到F (3,0)的距离比它到直线x+4=0 的距离小1,则点M 的轨迹方程是:( )A 、y 2=12xB 、y 2=12x(x>0)C 、y 2=6xD 、y 2=6x(x>0)10、已知圆x 2+y 2=1,点A (1,0),△ABC 内接于圆,且∠BAC=60°,当B 、C 在圆上运动时,BC 中点的轨迹方程是 ( )A 、x 2+y 2=21B 、x 2+y 2=41C 、x 2+y 2=21(x<21)D 、x 2+y 2=41(x<41) 11、抛物线过点M (2,-4),且以x 轴为准线,此抛物线顶点的轨迹方程是 ( )A 、(x -2)2+(y+4)2=16 (0)y ¹B 、(x -2)2+4(y+2)2=16 (0)y ¹C 、(x -2)2-(y+4)2=16D 、(x -2)2+4(y+4)2=1612、中心在原点,焦点在坐标为(0,±52)的椭圆被直线3x -y -2=0截得的弦的中点的横坐标为21,则椭圆方程为 ( ) 222222222222A. 1 B. 1 C. 1 D.12575752525757525x y x y x y x y +=+=+=+= 13、已知⊙O :x 2+y 2=a 2, A(-a, 0), B(a, 0), P 1, P 2为⊙O 上关于x 轴对称的两点,则直线AP 1与直线BP 2的交点P 的轨迹方程为 ( )A 、x 2+y 2=2a 2B 、x 2+y 2=4a 2C 、x 2-y 2=4a 2D 、x 2-y 2=a 214、动圆与x 轴相切,且被直线y=x 所截得的弦长为2,则动圆圆心的轨迹方程为 。

轨迹方程的求法及典型例题含答案

轨迹方程的求法及典型例题含答案

轨迹方程的求法一、知识复习轨迹方程的求法常见的有1直接法;2定义法;3待定系数法4参数法5交轨法;6相关点法注意:求轨迹方程时注意去杂点,找漏点.一、知识复习例1:点P-3,0是圆x2+y2-6x-55=0内的定点,动圆M与已知圆相切,且过点P,求圆心M的轨迹方程;例2、如图所示,已知P 4,0是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程.解:设AB 的中点为R ,坐标为x ,y ,则在Rt △ABP 中,|AR |=|PR |.又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-x 2+y 2 又|AR |=|PR |=22)4(y x +-所以有x -42+y 2=36-x 2+y 2,即x 2+y 2-4x -10=0因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动. 设Qx ,y ,Rx 1,y 1,因为R 是PQ 的中点,所以x 1=2,241+=+y y x , 代入方程x 2+y 2-4x -10=0,得244)2()24(22+⋅-++x y x -10=0 整理得:x 2+y 2=56,这就是所求的轨迹方程.例3、如图, 直线L 1和L 2相交于点M, L 1⊥L 2, 点N ∈L 1. 以A, B 为端点的曲线段C 上的任一点到L 2的距离与到点N 的距离相等. 若∆AMN 为锐角三角形, |AM|= 错误!, |AN| = 3, 且|BN|=6. 建立适当的坐标系,求曲线段C 的方程.解法一:如图建立坐标系,以l 1为x 轴,MN 的垂直平分线为y 轴,点O 为坐标原点;依题意知:曲线段C 是以点N 为焦点,以l 2为准线的抛物线的一段,其中A ,B 分别为C 的端点;设曲线段C 的方程为)0,(),0(22>≤≤>=y x x x p px y B A ,其中x A,x B 分别为A ,B 的横坐标,P=|MN|;)2(92)2()1(172)2(3||,17||)0,2(),0,2(22=+-=++==-A A A A px px px px AN AM p N p M 得由所以 由①,②两式联立解得p x A 4=;再将其代入①式并由p>0解得⎩⎨⎧⎩⎨⎧====2214A A x p x p 或 因为△AMN 是锐角三角形,所以Ax p >2,故舍去⎩⎨⎧==22A x p∴p=4,x A =1由点B 在曲线段C 上,得42||=-=pBN x B ;综上得曲线段C 的方程为)0,41(82>≤≤=y x x y解法二:如图建立坐标系,分别以l 1、l 2为作AE ⊥l 1,AD ⊥l 2,BF ⊥l 2垂足分别为E 、D 、F 设Ax A , y A 、Bx B , y B 、Nx N , 0 依题意有)0,63)(2(8}0,,)(|),{(),(6||||4||||||||||22||||||3|||||22222222>≤≤-=>≤≤=+-====++=+=∆=+======y x x y C y x x x x y x x y x P C y x P NB BE x AE AM ME EN ME x AMN DA AM DM y AN DA ME x B A N B N A A 的方程故曲线段属于集合上任一点则由题意知是曲线段设点为锐角三角形故有由于例4、已知两点)2,0(),2,2(Q P -以及一条直线ι:y =x ,设长为2的线段AB 在直线λ上移动,求直线PA 和QB 交点M 的轨迹方程.解:PA 和QB 的交点Mx ,y 随A 、B 的移动而变化,故可设)1,1(),,(++t t B t t A , 则PA :),2)(2(222-≠++-=-t x t t y QB :).1(112-≠+-=-t x t t y 消去t ,得.082222=+-+-y x y x当t =-2,或t =-1时,PA 与QB 的交点坐标也满足上式,所以点M 的轨迹方程是.0822222=+--+-y x x y x例5、设点A 和B 为抛物线 y 2=4pxp >0上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线.解法一:设Mx ,y ,直线AB 的方程为y =kx +b 由OM ⊥AB ,得k =-yx由y 2=4px 及y =kx +b ,消去y ,得k 2x 2+2kb -4px +b 2=0 所以x 1x 2=22kb , y 1y 2=kpb 4,由OA ⊥OB ,得y 1y 2=-x 1x 2所以k pk4=-22kb , b =-4kp故y =kx +b =kx -4p , 得x 2+y 2-4px =0x ≠0故动点M 的轨迹方程为x 2+y 2-4px =0x ≠0,它表示以2p ,0为圆心,以2p 为半径的圆,去掉坐标原点.解法二:设Ax 1,y 1,Bx 2,y 2,Mx ,y依题意,有⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧--=---=--⋅-=⋅==112121212122112221211144x x y y x x y y x x y y x y x yx y px y px y①-②得y 1-y 2y 1+y 2=4px 1-x 2 若x 1≠x 2,则有2121214y y px x y y +=-- ⑥ ①×②,得y 12·y 22=16p 2x 1x 2 ③代入上式有y 1y 2=-16p 2⑦⑥代入④,得yxy y p -=+214 ⑧ ⑥代入⑤,得py x y y x x y y y y p442111121--=--=+所以211214)(44y px y y p y y p --=+ 即4px -y 12=yy 1+y 2-y 12-y 1y 2 ⑦、⑧代入上式,得x 2+y 2-4px =0x ≠0 当x 1=x 2时,AB ⊥x 轴,易得M 4p ,0仍满足方程.故点M 的轨迹方程为x 2+y 2-4px =0x ≠0它表示以2p ,0为圆心,以2p 为半径的圆,去掉坐标原点.① ②③ ④ ⑤|轨 迹 方 程练习11.08、山东文22已知曲线1C :||||1(0)x y a b a b+=>>所围成的封闭图形的面积为 45,曲线1C 的内切圆半径为253,记2C 为以曲线1C 与坐标轴的交点为顶点的椭圆.1求椭圆2C 的标准方程; 2设AB 是过椭圆2C 中心的任意弦,L 是线段AB 的 垂直平分线,M 是L 上异于椭圆中心的点.①若||MO =λ||OA O 为坐标原点,当点A 在椭圆2C 上运动时,求点M 的轨迹方程;②若M 是L 与椭圆2C 的交点,求AMB ∆的面积的最小值.解:1由题意得22245253ab ab a b⎧=⎪⎨=⎪+⎩⇒4522==b a ,⇒椭圆方程:2254x y +=1.2若AB 所在的斜率存在且不为零,设 AB 所在直线方程为y =kxk≠0,A A A y x ,.①由22154,x y y kx ⎧+=⎪⎨⎪=⎩⇒2222220204545A A k x y k k ==++, ⇒2222220(1)||45AAk OA x y k+=+=+. 设Mx,y,由|MO|=λ|OA|λ≠0⇒|MO|2=λ2|OA|2⇒2222220(1)45k x y k λ++=+.因为L 是AB 的垂直平分线,所以直线L 的方程为y =1x k -⇒k =x y-,代入上式有:22222222222220(1)20()4545x x y y x y x y x yλλ+++==++⨯,由022≠+y x ⇒2225420x y λ+=, 当k =0或不存时,上式仍然成立.,综上所述,M 的轨迹方程为22245x y λ+=,λ≠0.②当k 存在且k ≠0时,2222220204545AA k x y k k ==++,⇒|OA|2=222220(1)45A A k x y k ++=+. 由221541x y y xk ⎧+=⎪⎪⎨⎪=-⎪⎩⇒2222220205454M M k x y k k ==++,⇒22220(1)||54k OM k +=+. ⇒222222111120(1)20(1)4554k k OAOMk k +=+++++=209. 222119||||20OA OB OA OM≤+=⨯⇒||||OB OA ⨯≥940.||||21OB OA S AMB ⨯⨯⨯=∆=||||OB OA ⨯≥40,当且仅当4+5k 2=5+4k 2时,即k =±1时等号成立.当1400229AMB k S ∆==⨯=>,; 当k 不存在时,140429AMB S ∆==>.综上所述,AMB ∆的面积的最小值为409.2.07、江西理21设动点P 到点(10)A -,和(10)B ,的距离分别为1d 和2d ,2APB θ∠=,且存在常数(01)λλ<<,使得212sin d d θλ=.1证明:动点P 的轨迹C 为双曲线,并求出C 的方程;2过点B 作直线与双曲线C 的右支于M N ,两点,试确定λ的范围,使OM ·ON =0,其中点O 为坐标原点.解:1在PAB △中,2AB =,即222121222cos 2d d d d θ=+-, 2212124()4sin d d d d θ=-+,即2121244sin 212d d d d θλ-=-=-<常数,点P 的轨迹C 是以A B ,为焦点,实轴长221a λ=-的双曲线,方程为:2211x y λλ-=-. 2设11()M x y ,,22()N x y ,①当MN 垂直于x 轴时,MN 的方程为1x =,(11)M ,,(11)N -,在双曲线上.即2111511012λλλλλ-±-=⇒+-=⇒=-, 因为01λ<<,所以512λ-=. ②当MN 不垂直于x 轴时,设MN 的方程为(1)y k x =-.由2211(1)x y y k x λλ⎧-=⎪-⎨⎪=-⎩得: 2222(1)2(1)(1)()0k x k x k λλλλλ⎡⎤--+---+=⎣⎦,由题意知:2(1)0k λλ⎡⎤--≠⎣⎦ ⇒21222(1)(1)k x x k λλλ--+=--,2122(1)()(1)k x x kλλλλ--+=-- ⇒22212122(1)(1)(1)k y y k x x k λλλ=--=--. 由OM ·ON =0,且M N ,在双曲线右支上,所以2121222122212(1)0(1)5121011231001x x y y k x x k x x λλλλλλλλλλλλλλλ-⎧+=⎧-⎧=⎪>-⎪⎪⎪+-+>⇒⇒⇒<<+--⎨⎨⎨⎪⎪⎪>+->>⎩⎩⎪-⎩. 由①②知32215<≤-λ.3.09、海南已知椭圆C 的中心为直角坐标系xOy 的原点,焦点在x 轴上,它的一个顶点到两个焦点的距离分别是7和1.1求椭圆C 的方程;2若P 为椭圆C 上的动点,M 为过P 且垂直于x 轴的直线上的点,2OP e OMe 为椭圆C 的离心率,求点M 的轨迹方程,并说明轨迹是什么曲线.解:Ⅰ设椭圆长半轴长及分别为a,c .由已知得⎩⎨⎧=+=-71c a c a ⇒a =4,c =3⇒椭圆C 的方程为221167x y +=. 2设Mx,y,P 0x ,0y . 其中0x ∈-4,4,0x =x .有22001167x y +=……① 由OP e OM=得:2240022x y e x y +=+=169. 故22220016()9()x y x y +=+下面是寻找关系式0x =fx,y,0y =gx,y 的过程又⎪⎩⎪⎨⎧-==167112220220x y x x ……………………………………②②式代入①:22001167x y +=并整理得:47(44)3y x =±-≤≤,所以点M 的轨迹是两条平行于x 轴的线段.轨 迹 方 程练习24.09、重庆理已知以原点O 为中心的椭圆的一条准线方程为433y =,离心率32e =,M 是椭圆上的动点. 1若C 、D 的坐标分别是0,√3、0,-√3,求||MC ·||MD 的最大值;2如图,点A 的坐标为1,0,点B 是圆221x y +=上的点,点N 是点M 椭圆上的点在x 轴上的射影,点Q 满足条件:OQ =OM +ON ,QA ·BA =0.求线段QB 的中点P 的轨迹方程.解:1设椭圆方程为:22221x y a b +=a >b >0.准线方程3y ==c a 2,2e ==ac ⇒2=a ,32=c 1=⇒b ⇒椭圆方程为:2214y x +=.所以:C 、D 是椭圆2214y x +=的两个焦点⇒||MC +||MD =4.||MC ·||MD ≤4)2||||(2=+MD MC ,当且仅当||MC =||MD ,即点M 的坐标为(1,0)±时上式取等号⇒||MC ·||MD 的最大值为4.2设M(,),(,)m m B B x y B x y ,(,)Q Q Q x y ,N 0,m x ⇒4422=+m m y x ,122=+B B y x . 由OQ =OM +ON⇒m Q x x 2=,m Q y y =⇒4)2(2222=+=+m m Q Qy x y x ………①由QA ·BA =0 ⇒Q Q y x --,1·B B y x --,1=Q x -1B x -1+B Q y y =0 ⇒=+B Q B Q y y x x 1-+B Q x x …………②记P 点的坐标为P x ,P y ,因为P 是BQ 的中点⇒B Q P x x x +=2,B Q P y y y +=2⇒2222)2()2(BQ B Q P P y y x x y x +++=+=)22(412222B Q B Q B Q B Q y y x x y y x x +++++ =)]1(25[41-++B Q x x =)245(41-+P x ⇒P P P x y x +=+4322 ⇒动点P 的方程为:1)21(22=+-y x .5.09、安徽已知椭圆22a x +22by =1a >b >0的离心率为33.以原点为圆心,以椭圆短半轴长为半径的圆与直线y =x +2相切.1求a 与b 的值;2设该椭圆的左,右焦点分别为1F 和2F ,直线1L 过2F 且与x 轴垂直,动直线2L 与y 轴垂直,2L 交1L 于点p.求线段1PF 的垂直平分线与直线2L 的交点M 的轨迹方程,并指明曲线类型解:1e =33⇒22a b =32.又圆心0,0到直线y =x +2的距离d =半径b =22112+, ∴2b =2,2a =3.12322=+y x 21F -1,0、2F 1,0,由题意可设P 1,tt ≠0.那么线段1PF 的中点为N0,2t . 2L 的方程为:y =t,设M M M y x ,是所求轨迹上的任意点.下面求直线MN 的方程,然后与直线2L 的方程联立,求交点M 的轨迹方程直线1PF 的斜率k =2t ,∴线段1PF 的中垂线MN 的斜率=-t2. 所以:直线MN 的方程为:y -2t =-t 2x .由⎪⎩⎪⎨⎧+-==22t x t y t y ⇒⎪⎩⎪⎨⎧=-=t y t x MM 42, 消去参数t 得:M M x y 42-=,即: x y 42-=,其轨迹为抛物线除原点.又解:由于MN =-x,2t -y,1PF =-x,2t -y .∵MN ·1PF =0, ∴⎪⎩⎪⎨⎧==---ty y t x t x 0)2(·)2,(,,消参数t 得:x y 42-=x ≠0,其轨迹为抛物线除原点.6.07湖南理20已知双曲线222x y -=的左、右焦点分别为1F ,2F ,过点2F 的动直线与双曲线相交于A B ,两点.直接法求轨迹1若动点M 满足1111F M F A F B FO =++其中O 为坐标原点,求点M 的轨迹方程;2在x 轴上是否存在定点C ,使CA ·CB 为常数 若存在,求出点C 的坐标;若不存在,请说明理由.解:1由条件知1(20)F -,,2(20)F ,,设11()A x y ,,22()B x y ,.设()M x y ,,则1(2)F M x y =+,,111(2)F A x y =+,,1221(2)(20)F B x y FO =+=,,,, 由1111F M F A F B FO =++⇒121226x x x y y y +=++⎧⎨=+⎩ ⇒12124x x x y y y+=-⎧⎨+=⎩⇒AB 的中点坐标为422x y -⎛⎫ ⎪⎝⎭,. 当AB 不与x 轴垂直时,1212024822y y y y x x x x --==----, 即1212()8y y y x x x -=--. 又因为A B ,两点在双曲线上,所以22112x y -=,22222x y -=,两式相减得12121212()()()()x x x x y y y y -+=-+,即1212()(4)()x x x y y y --=-.将1212()8y y y x x x -=--代入上式,化简得22(6)4x y --=. 当AB 与x 轴垂直时,122x x ==,求得(80)M ,,也满足上述方程. 所以点M 的轨迹方程是22(6)4x y --=. 2假设在x 轴上存在定点(0)C m ,,使CA ·CB 为常数. 当AB 不与x 轴垂直时,设直线AB 的方程是(2)(1)y k x k =-≠±.代入222x y -=有2222(1)4(42)0k x k x k -+-+=. 则12x x ,是上述方程的两个实根,所以212241k x x k +=-,2122421k x x k +=-,于是CA ·CB 22221212(1)(2)()4k x x k m x x k m =+-++++22222222(1)(42)4(2)411k k k k m k m k k +++=-++-- 222222(12)2442(12)11m k m m m m k k -+-=+=-++--. 因为CA ·CB 是与k 无关的常数,所以440m -=,即1m =,此时CA ·CB =-1.当AB 与x 轴垂直时,点A B ,的坐标可分别设为(2,(2,此时CA ·CB =1,√2·1,-√2=-1.故在x 轴上存在定点(10)C ,,使CA ·CB 为常数.。

轨迹方程的 几种求法整理(例题+答案)

轨迹方程的 几种求法整理(例题+答案)

轨迹方程的六种求法整理求轨迹方程是高考中常见的一类问题.本文对曲线方程轨迹的求法做一归纳,供同学们参考.求轨迹方程的一般方法:1. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。

2. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ), y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。

4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。

5. 交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。

6. 待定系数法:已知曲线是圆,椭圆,抛物线,双曲线等 一、直接法把题目中的等量关系直接转化为关于x,y,的方程基本步骤是:建系。

设点。

列式。

化简。

说明等,圆锥曲线标准方程的推导。

1. 已知点(20)(30)A B -,,,,动点()P x y ,满足2PAPB x =·,求点P 的轨迹。

26y x =+, 2. 2.已知点B (-1,0),C (1,0),P 是平面上一动点,且满足.||||CB PB BC PC ⋅=⋅ (1)求点P 的轨迹C 对应的方程;(2)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD 和AE ,且AD ⊥AE ,判断:直线DE 是否过定点?试证明你的结论.(3)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD ,AE ,且AD ,AE 的斜率k 1、k 2满足k 1·k 2=2.求证:直线DE 过定点,并求出这个定点.解:(1)设.4,1)1(||||),(222x y x y x CB PB BC PC y x P =+=+-⋅=⋅化简得得代入二、定义法利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件.1、 若动圆与圆4)2(22=++y x 外切且与直线x =2相切,则动圆圆心的轨迹方程是解:如图,设动圆圆心为M ,由题意,动点M 到定圆圆心(-2,0)的距离等于它到定直线x =4的距离,故所求轨迹是以(-2,0)为焦点,直线x =4为准线的抛物线,并且p =6,顶点是(1,0),开口向左,所以方程是)1(122--=x y .选(B ).2、一动圆与两圆122=+y x 和012822=+-+x y x 都外切,则动圆圆心轨迹为解:如图,设动圆圆心为M ,半径为r ,则有.1,2,1=-+=+=MO MC r MC r MO 动点M 到两定点的距离之差为1,由双曲线定义知,其轨迹是以O 、C 为焦点的双曲线的左支3、在ABC △中,24BC AC AB =,,上的两条中线长度之和为39,求ABC △的重心的轨迹方程.解:以线段BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立直角坐标系,如图1,M为重心,则有239263BM CM +=⨯=.M ∴点的轨迹是以B C ,为焦点的椭圆,其中1213c a ==,.225b a c =-=∴.∴所求ABC △的重心的轨迹方程为221(0)16925x y y +=≠.注意:求轨迹方程时要注意轨迹的纯粹性与完备性.4、设Q 是圆x 2+y 2=4上动点另点A (3。

求轨迹的几种求法

求轨迹的几种求法
由 题:意 2a得 8,2c6 b242327
15
M
10
N
5
P
-30
-20
点P的 轨 迹 方 x2 程 y2 为 1
16 7
-10
A
B
10
-5
-10
【练习3】第3题-----变式
已知A圆 的方程 (x为 3)2 y2 1166,B(3,0)为一定 , 点 15 M为圆 A上的一个 ,线动段 M点的 B 中垂线A和M直
求轨迹的几种求法
三、定义法
分析题设几何条件,根据所学曲线的定义, 判断轨迹是何种类型的曲线,直接求出该曲 线的方程.
圆的定义:
|PC|=r (r>0)
椭圆的定义: |PF1| + |PF2| = 2a (2a > |F1F2|)
双曲线的定义: ||PF1| - |PF2|| = 2a (0 < 2a < |F1F2|)
的交点 P,N为 为垂,求 足动P的 点轨迹.方程 10
5
M
N
-20
-10
A
B
P
-5
【练习3】第3题-----变式
已知A圆 的方程 (x为 3)2 y2 1166,B(3,0)为一定 , 点 M为圆 A上的一个 ,线动段 M点的 B 中垂线A和M直 的交点 P,N为 为垂,求 足动P的 点轨迹.方程
问题1:一动圆与圆O1:(x+3)2+y2=4外切, 同时与圆O2:(x-3)2+y2=9内切,求动圆圆心 的轨迹方程,并说明它是什么类型的曲线.
想一想:
在两定圆不动的前提下,适当改变其他条件 使动圆圆心形成新的轨迹?
【例题3】
已知圆A:(x+2)2+y2=1与点A(-2,0),B(2,0), 分别求出满足下列条件的动点P的轨迹方程. (1)△PAB的周长为10; (2)圆P与圆A外切,且点B在动圆P上(P为动圆圆心); (3)圆P与圆A外切且与直线x=1相切(P为动圆圆心).

与圆有关的轨迹方程的求法

与圆有关的轨迹方程的求法

与圆有关的轨迹方程的求法Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】与圆有关的轨迹方程的求法若已知动点P 1(α ,β)在曲线C 1:f 1(x,y )=0上移动,动点P (x,y )依动点P 1而动,它满足关系:⎩⎨⎧βα=βα=),(),(y y x x ① 则关于α 、β反解方程组①,得⎩⎨⎧=β=α),(),(y x h y x g ② 代入曲线方程f 1(x,y )=0,即可求得动点P 的轨迹方程C :f (x,y )=0. 例1、(求轨迹):已知线段AB 的端点B 的坐标是(4,3),端点A 在圆4)1(22=++y x 上运动,求线段AB 的中点M 的轨迹方程.【例2】已知点A (3,0),点P 在圆x 2+y 2=1的上半圆周上,∠AOP 的平分线交PA 于Q ,求点Q 的轨迹方程.【法一】如图所示,设P (x 0,y 0)(y 0>0),Q (x ,y ).∵OQ 为∠AOP 的平分线,∴31||||==OQ OP QA PQ , ∴Q 分PA 的比为31.∴⎪⎪⎩⎪⎪⎨⎧=-=⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+⨯+=+=+⨯+=y y x x y y y x x x 3413443311031)1(43311313000000即 又因2020y x +=1,且y 0>0,∴19164391622=+⎪⎭⎫ ⎝⎛-y x . ∴Q 的轨迹方程为)0(169)43(22>=+-y y x .例3、已知圆,422=+y x 过A (4,0)作圆的割线ABC ,则弦BC 中点的轨迹方程为( )A .4)1(22=+-y xB .)10(4)1(22<≤=+-x y xC .4)2(22=+-y xD .)10(4)2(22<≤=+-x y x变式练习1:已知定点)0,3(B ,点A 在圆122=+y x 上运动,M 是线段AB 上的一点,且MB AM 31=,则点M 的轨迹方程是 解:设),(),,(11y x A y x M .∵MB AM 31=,∴),3(31),(11y x y y x x --=--, ∴⎪⎪⎩⎪⎪⎨⎧-=--=-y y y x x x 31)3(3111,∴⎪⎪⎩⎪⎪⎨⎧=-=y y x x 3413411.∵点A 在圆122=+y x 上运动,∴12121=+y x ,∴1)34()134(22=+-y x ,即169)43(22=+-y x ,∴点M 的轨迹方程是169)43(22=+-y x . 2:已知定点)0,3(B ,点A 在圆122=+y x 上运动,AOB ∠的平分线交AB 于点M ,则点M 的轨迹方程是 .解:设),(),,(11y x A y x M .∵OM 是AOB ∠的平分线,∴31==OB OA MB AM , ∴MB AM 31=.由变式1可得点M 的轨迹方程是169)43(22=+-y x . 3:已知直线1+=kx y 与圆422=+y x 相交于A 、B 两点,以OA 、OB 为邻边作平行四边形OAPB ,求点P 的轨迹方程.解:设),(y x P ,AB 的中点为M .∵OAPB 是平行四边形,∴M 是OP 的中点,∴点M 的坐标为)2,2(y x ,且AB OM ⊥.∵直线1+=kx y 经过定点)1,0(C ,∴CM OM ⊥,∴0)12(2)2()12,2()2,2(2=-+=-⋅=⋅y y x y x y x CM OM ,化简得1)1(22=-+y x .∴点P 的轨迹方程是1)1(22=-+y x .4、圆9)1()2(22=++-y x 的弦长为2,则弦的中点的轨迹方程是5、已知半径为1的动圆与圆16)7()5(22=++-y x 相切,则动圆圆心的轨迹方程是( )A.25)7()5(22=++-y x B. 17)7()5(22=++-y x 或15)7()5(22=++-y xC. 9)7()5(22=++-y x D. 25)7()5(22=++-y x 或9)7()5(22=++-y x 6.已知两定点A(-2,0),B(1,0),如果定点P 满足PA=2PB,则定点P 的轨迹所 包围的面积等于( B )A B 4 C 8 D 97:已知点M 与两个定点)0,0(O ,)0,3(A 的距离的比为21,求点M 的轨迹方程. 8 如图所示,已知圆422=+y x O :与y 轴的正方向交于A 点,点B 在直线2=y 上运动,过B 做圆O 的切线,切点为C ,求ABC ∆垂心H 的轨迹.分析:按常规求轨迹的方法,设),(y x H ,找y x ,的关系非常难.由于H 点随B ,C 点运动而运动,可考虑H ,B ,C 三点坐标之间的关系.解:设),(y x H ,),(''y x C ,连结AH ,CH ,则BC AH ⊥,AB CH ⊥,BC 是切线BC OC ⊥,所以AH OC //,OA CH //,OC OA =,所以四边形AOCH 是菱形.所以2==OA CH ,得⎪⎩⎪⎨⎧=-=.,2''x x y y 又),(''y x C 满足42'2'=+y x ,所以)0(4)2(22≠=-+x y x 即是所求轨迹方程.说明:题目巧妙运用了三角形垂心的性质及菱形的相关知识.采取代入法求轨迹方程.做题时应注意分析图形的几何性质,求轨迹时应注意分析与动点相关联的点,如相关联点轨迹方程已知,可考虑代入法.9. 已知圆的方程为222r y x =+,圆内有定点),(b a P ,圆周上有两个动点A 、B ,使PB PA ⊥,求矩形APBQ 的顶点Q 的轨迹方程.分析:利用几何法求解,或利用转移法求解,或利用参数法求解. 解法一:如图,在矩形APBQ 中,连结AB ,PQ 交于M ,显然AB OM ⊥,PQ AB =,在直角三角形AOM 中,若设),(y x Q ,则)2,2(b y a x M ++. 由222OA AM OM =+,即 22222])()[(41)2()2(r b y a x b y a x =-+-++++, 也即)(222222b a r y x +-=+,这便是Q 的轨迹方程.解法二:设),(y x Q 、),(11y x A 、),(22y x B ,则22121r y x =+,22222r y x =+. 又22AB PQ =,即)(22)()()()(2121222122122y y x x r y y x x b y a x +-=-+-=-+-.① 又AB 与PQ 的中点重合,故21x x a x +=+,21y y b y +=+,即)(22)()(2121222y y x x r b y a x ++=+++ ②①+②,有)(222222b a r y x +-=+.这就是所求的轨迹方程.解法三:设)sin ,cos (ααr r A 、)sin ,cos (ββr r B 、),(y x Q ,由于APBQ 为矩形,故AB 与PQ 的中点重合,即有βαcos cos r r a x +=+, ①βαsin sin r r b y +=+, ②又由PB PA ⊥有1cos sin cos sin -=--⋅--ar b r a r b r ββαα ③ 联立①、②、③消去α、β,即可得Q 点的轨迹方程为)(222222b a r y x +-=+.说明:本题的条件较多且较隐含,解题时,思路应清晰,且应充分利用图形的几何性质,否则,将使解题陷入困境之中.10、由动点P 向圆122=+y x 引两条切线PA 、PB ,切点分别为A 、B ,APB ∠=600,则动点P 的轨迹方程是 .解:设),(y x P .∵APB ∠=600,∴OPA ∠=300.∵AP OA ⊥,∴22==OA OP ,∴222=+y x ,化简得422=+y x ,∴动点P 的轨迹方程是422=+y x .练习巩固:设)0)(0,(),0,(>-c c B c A 为两定点,动点P 到A 点的距离与到B 点的距离的比为定值)0(>a a ,求P 点的轨迹.解:设动点P 的坐标为),(y x P .由)0(>=a a PB PA ,得a y c x y c x =+-++2222)()(,化简得0)1()1(2)1()1(2222222=-+++-+-a c x a c y a x a .当1≠a 时,化简得01)1(222222=+-+++c x a a c y x ,整理得222222)12()11(-=+-+-a ac y c a a x ; 当1=a 时,化简得0=x .所以当1≠a 时,P 点的轨迹是以)0,11(22c a a -+为圆心,122-a ac 为半径的圆; 当1=a 时,P 点的轨迹是y 轴.11、已知两定点)0,2(-A ,)0,1(B ,如果动点P 满足PB PA 2=,则点P 的轨迹所包围的面积等于 解:设点P 的坐标是),(y x .由PB PA 2=,得2222)1(2)2(y x y x +-=++,化简得4)2(22=+-y x ,∴点P 的轨迹是以(2,0)为圆心,2为半径的圆,∴所求面积为π4.。

高二数学轨迹问题的求法

高二数学轨迹问题的求法
点P到直线x十y=6的距离
故P点的轨迹方程为:
即:(x+y-6)2=2|xy| 当xy≥0时,方程为(x-6)2+(y-6)2=36 当xy<0时,方程为x2+4xy+y2-12x-21y+36=0 2、定义法
[例2]如图,1 在△ABC中边BC=a,若三内角满足 sinC- sinb= 2 sinA,求点 A的轨迹方程。
移动,且,BE CF DG
BC CD DA
P为GE与OF的交点(如图),问是
否存在两个定点,使P到这两点的距离的和为定值?若存在,求
出这两点的坐标及此定值;若不存在,请说明理由。
解:根据题意,首先求出点P 坐标满足的方程, y
根据此判断是否存在两定点,使得
DF
点P到两定点的距离和为定值。
P
依题意有A(-2,0),B(2,0),C(2,4a),D(-2,4a)
……(1)
………(2)
解得
代入①得a2=2|x|
当 x> 0时得(x— 5)2+ y2=9 当x<0时得(x+5)2+y2=9
由2<a<4,知2<|x|<8
故所求轨迹为半径为3,分别以(5,0)及(-5,0)〕圆心
的两个圆。
2003年高考第22题:已知常数a>0,在矩形ABCD中,
AB=4,BC=4a,O为AB中点,点E、F、G分别在BC、CD、DA上
整理得
x2 ( y a)2

1
1
a2
当a2=
1 2
时,点2 P的轨迹为圆弧,所以不存在符合题意的两点;
距当离a之2≠和为12 定时值,;点P的轨迹为椭圆的一部分,点P到该椭圆焦点的
2 1

求轨迹方程的常用方法及例题

求轨迹方程的常用方法及例题

求解轨迹方程的常用方法主要有以下几种:
参数方程法:通过引入参数,将轨迹上的点的坐标表示为参数的函数形式,然后通过给定参数的取值范围,确定轨迹上的点的位置关系。

隐式方程法:将轨迹方程中的自变量与因变量通过一个方程联系起来,形成一个隐式方程,然后通过对方程进行求解和化简,得到轨迹的几何性质。

极坐标方程法:对于某些曲线,使用极坐标系可以更方便地描述其轨迹。

通过将轨迹上的点的极坐标表示,可以得到轨迹的极坐标方程。

下面是一个例题:
例题:求解椭圆的轨迹方程。

解答:椭圆是一个平面上的闭合曲线,其定义特点是到两个焦点的距离之和恒定。

我们可以使用参数方程法来求解椭圆的轨迹方程。

假设椭圆的焦点为F1和F2,长轴长度为2a,短轴长度为2b。

取参数θ,定义点P在椭圆上的坐标为(x, y)。

那么根据椭圆的定义,可以得到以下参数方程:
x = a * cos(θ) y = b * sin(θ)
其中,θ的取值范围为0到2π。

通过给定θ的取值范围,我们可以得到椭圆上的点的坐标关系。

进一步化简参数方程,可以得到椭圆的隐式方程:
(x^2 / a^2) + (y^2 / b^2) = 1
这就是椭圆的轨迹方程,其中a和b分别为椭圆的长轴和短轴长度。

以上是求解轨迹方程的常用方法和一个椭圆轨迹方程的例题。

根据具体的问题和曲线类型,选择合适的方法进行求解和推导。

轨迹方程的求法及典型例题含答案

轨迹方程的求法及典型例题含答案

轨迹方程的求法及典型例题(含答案) 轨迹方程是描述一条曲线在平面上的运动轨迹的方程。

在二维平面上,轨迹方程通常由一元二次方程、三角函数方程等形式表示。

在三维空间中,轨迹方程可能会更加复杂,可以由参数方程或参数化表示。

一、轨迹方程的求解方法:1. 根据题目给出的条件,确定轨迹上的点的特点或特殊性质。

2. 将轨迹上的点的坐标表示为一般形式。

3. 将坐标表示代入到方程中,消去多余的变量,得到轨迹方程。

二、典型例题及其解答:【例题1】已知点P(x,y)到坐标原点O的距离为定值d,求点P的轨迹方程。

解答:1. 设点P(x,y)的坐标表示为一般形式。

2. 根据题目给出的条件,根据勾股定理,可以得到点P到原点O的距离公式:d = √(x^2 + y^2)3. 将坐标表示代入到距离公式中,得到轨迹方程:d^2 = x^2 + y^2【例题2】已知点P(x,y)到直线Ax+By+C=0的距离为定值d,求点P的轨迹方程。

解答:1. 设点P(x,y)的坐标表示为一般形式。

2. 根据题目给出的条件,点P到直线Ax+By+C=0的距离公式为:d = |Ax+By+C| / √(A^2 + B^2)3. 将点P的坐标表示代入到距离公式中,得到轨迹方程:(Ax+By+C)^2 = d^2(A^2 + B^2)【例题3】已知点P(x,y)满足|x|+|y|=a,求点P的轨迹方程。

解答:1. 设点P(x,y)的坐标表示为一般形式。

2. 根据题目给出的条件,可以得到两种情况下的轨迹方程:当x≥0,y≥0时,有x+y=a,即y=a-x;当x≥0,y<0时,有x-y=a,即y=x-a;当x<0,y≥0时,有-x+y=a,即y=a+x;当x<0,y<0时,有-x-y=a,即y=-a-x。

3. 将上述四种情况合并,得到轨迹方程:|x|+|y|=a【例题4】已知点P(x,y)满足y = a(x^2 + b),求点P的轨迹方程。

轨迹方程求法及经典例题汇总

轨迹方程求法及经典例题汇总

轨迹方程求法及经典例题汇总一、轨迹为圆的例题:1、 必修2课本P 124B 组2:长为2a 的线段的两个端点在x 轴和y 轴上移动,求线段AB 的中点M 的轨迹方程:必修2课本P 124B 组:已知M 与两个定点(0,0),A (3,0)的距离之比为21,求点M 的轨迹方程;(一般地:必修2课本P 144B 组2:已知点M(x ,y )与两个定点21,M M 的距离之比为一个常数m ;讨论点M(x ,y )的轨迹方程(分m =1,与m ≠1进行讨论)2、 必修2课本P 122例5:线段AB 的端点B 的坐标是(4,3),端点A 在圆1)1(22=++y x 上运动,求AB 的中点M 的轨迹。

(2013新课标2卷文20)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为32。

(1)求圆心的P 的轨迹方程;(2)若P 点到直线x y =的距离为22,求圆P 的方程。

如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程.解:设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR |.又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2)又|AR |=|PR |=22)4(y x +-所以有(x-4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动.设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1=2,241+=+y y x ,代入方程x 2+y 2-4x -10=0,得244)2()24(22+⋅-++x y x -10=0整理得:x 2+y 2=56,这就是所求的轨迹方程.在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l .设圆C 的半径为1,圆心在l 上. (1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线,求切线的方程;(2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐标a 的取值范围. (2013陕西卷理20)已知动圆过定点)0,4(A ,且在y 轴上截得弦MN 的长为8. (1) 求动圆圆心的轨迹C 的方程;(2) 已知点)0,1(-B ,设不垂直于x 轴的直线l 与轨迹C 交于不同的两点Q P ,,若x 轴是PBQ ∠的角平分线,证明直线l 过定点。

轨迹方程的类型及其求法(3)

轨迹方程的类型及其求法(3)

轨迹方程的求法一:定义法:1设圆C 与两圆2222(4,(4x y x y +=+=中的一个内切,另一个外切。

2求C 的圆心轨迹L 的方程;2:2004:某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到一声巨响,正东观测点听到巨响的时间比其他两个观测点晚4s ,已知各观测点到中心的距离都是1020m ,试确定该巨响的位置.(假定当时声音传播的速度为340/m s ,各相关点均在同一平面上)3.为了考察冰川的融化状况,一支科考队在某冰川上相距8km 的A ,B 两点各建一个考察基地.视冰川面为平面形,以过A ,B 两点的直线为x 轴,线段AB 的垂直平分线为y 轴建立平面直角坐标系(图6).在直线2x =的右侧,考察范围为到点B 的距离不超过5km的区域;在直线2x =的左侧,考察范围为到A ,B 两点的距离之和不超过的区域. (Ⅰ)求考察区域边界曲线的方程;4.(2005辽宁卷第21题,)已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别是F 1(-c ,0)、F 2(c ,0),Q 是椭圆外的动点,满足.2||1a Q F =点P 是线段F 1Q 与该椭圆的交点,点T 在线段F 2Q 上,并且满足.0||,022≠=⋅TF TF (Ⅰ)设x 为点P 的横坐标,证明x aca F +=||1; (Ⅱ)求点T 的轨迹C 的方程;5. 在平面直角坐标系xOy 中,已知点A(0,-1),B 点在直线y = -3上,M 点满足//, BA MB AB MA ⋅=⋅,M 点的轨迹为曲线C 。

(Ⅰ)求C 的方程;6:.平面内与两定点1(,0)A a -,2(,0)A a (0)a >连线的斜率之积等于非零常数m 的点的轨迹,加上1A 、2A 两点所成的曲线C 可以是圆、椭圆或双曲线. (Ⅰ)求曲线C 的方程,并讨论C 的形状与m 值得关系;7在平面直角坐标系xOy 中,如图,已知椭圆1的左、右顶点为A 、B ,右焦点为F .设过点T (t ,m )的直线TA ,TB 与此椭圆分别交于点M (x 1,y 1)、N (x 2,y 2),其中m >0,y 1>0,y 2<0. (1)设动点P 满足PF 2-PB 2=4,求点P 的轨迹;8已知定点A (-1,0),F (2,0),定直线l :x =21,不在x 轴上的动点P 与点F 的距离是它到直线l 的距离的2倍.设点P 的轨迹为E ,过点F 的直线交E 于B 、C 两点,直线AB 、AC 分别交l 于点M 、N . (1)求E 的方程;9.已知双曲线2212x y -=的左、右定点分别为12,A A ,点P (12,x y ),Q (12,x y -)是双曲线上不同的两个动点。

求轨迹方程的方法(整理)

求轨迹方程的方法(整理)

§2.1 曲线与方程知识点一 直接法求曲线的方程已知线段AB 的长度为10,它的两个端点分别在x 轴、y 轴上滑动,则AB 的中点P 的轨迹方程是________.解析 设点P 的坐标为(x ,y),则A 点坐标为(2x,0),B 点坐标为(0,2y).由两点间的距离公式可得(2x)2+(2y)2=10,即(2x)2+(2y)2=100,整理、化简得x 2+y 2=25. 答案 x 2+y 2=25知识点二 代入法求曲线的方程已知△ABC 的两顶点A 、B 的坐标分别为A(0,0)、B(6,0),顶点C 在曲线y =x 2+3上运动,求△ABC 重心的轨迹方程.分析 由重心坐标公式,可知△ABC 的重心坐标可以由A 、B 、C 三点的坐标表示出来,而A 、B 是定点,且C 在曲线y =x 2+3上运动,故重心与C 相关联.因此,设出重心与C 点坐标,找出它们之间的关系,代入曲线方程y =x 2+3即可.解 设G(x ,y)为所求轨迹上任一点,顶点C 的坐标为(x′,y′),则由重心坐标公式,得⎩⎪⎨⎪⎧x =0+6+x′3,y =0+0+y′3∴⎩⎨⎧x′=3x -6,y′=3y.∵顶点C(x′,y′)在曲线y =x 2+3上, ∴3y=(3x -6)2+3,① 整理,得y =3(x -2)2+1, 故所求轨迹方程为y =3(x -2)2+1.知识点三 定义法求曲线的方程设A(1,0),B(-1,0),若动点M 满足k MA ²k MB =-1,求动点M 的轨迹方程. 解 如图所示,设动点M 的坐标为(x ,y).由题意知:MA⊥MB.所以△MAB 为直角三角形,AB 为斜边. 又因为原点O 是AB 的中点, 所以,|MO|=12, |AB|=1,所以,动点M 在以O(0,0)为圆心,|MO|为半径的圆上. 根据圆的方程的定义知:方程为x 2+y 2=1.又因为动点M 不能与点A ,B 重合,所以,x ≠±1, 所以,动点M 的轨迹方程为x 2+y 2=1 (x ≠±1). 知识点四 参数法求曲线的方程已知定点P(a ,b)不在坐标轴上,动直线l 过点P ,并分别交x 轴,y 轴于点A ,B ,分别过A ,B 作x 轴,y 轴的垂线交于点M ,求动点M 的轨迹方程.解 设M(x ,y),并设l :y -b =k(x -a),由题意知k 存在,且k≠0,则得A(a -bk ,0),B(0,b -ak),又AM ,BM 分别是x 轴,y 轴的垂线,得M(a -bk,b -ak).即⎩⎨⎧x =a -b k ,y =b -ak ,消去参数k ,得xy -ay -bx =0.所以动点M 的轨迹方程是xy -ay -bx =0. 知识点五 交轨法求曲线的方程如果两条曲线的方程是f 1(x ,y)=0和f 2(x ,y)=0,它们的交点是P(x 0,y 0),证明:f 1(x ,y)+λf 2(x ,y)=0的曲线也经过P 点(λ∈R ),并求经过两条曲线x 2+y 2+3x -y =0和3x 2+3y 2+y =0的交点的直线方程.解 ∵P (x 0,y 0)是两曲线的交点, ∴f 1(x 0,y 0)=0,f 2(x 0,y 0)=0, ∴f 1(x 0,y 0)+λf 2(x 0,y 0)=0.即方程f 1(x ,y )+λf 2(x ,y )=0的曲线经过P 点.⎩⎨⎧x 2+y 2+3x -y =0, ①3x 2+3y 2+y =0, ②①³3-②得9x -4y =0.即过两曲线的交点的直线方程为9x -4y =0.考点赏析1.(福建高考) 如图,已知点F (1,0),直线l:x=-1,P 为平面上的动点,过P 作直线l 的垂线,垂足为点Q ,且²=².求动点P 的轨迹C 的方程.解 方法一 设点P(x ,y),则Q(-1,y),由PQ →²QF →=FP →²FQ → 得:(x +1,0)²(2,-y )=(x -1,y )²(-2,y ), 化简得C :y 2=4x .方法二 由 QF →²QF →=FP →²FQ → 得:(PQ →²(PQ →+PF →) =0,∴ PF →-PF →)²(PQ →+PF →)=0, PQ →2-PF →2-PF →2=0, ∴ |PQ →|=|PF →|.所以点P 的轨迹C 是抛物线, 由题意,轨迹C 的方程为:y 2=4x .2.(陕西高考)如图所示,三定点A (2,1)B (0, -1),C (-2,1);三动点D ,E ,M 满足=t ,=t BC , =t ,t ∈[0,1].(1)求动直线DE 斜率的变化范围; (2)求动点M 的轨迹方程.解 (1)设D (x D ,y D ),E (x E ,y E ),M (x ,y )由=t ,=t ,知(x D -2,y D -1)= t (-2, -2), ∴⎩⎨⎧x D =-2t +2,y D =-2t +1.同理⎩⎨⎧x E =-2t ,y E =2t -1.∴k DE =y E -y D x E -x D =2t -1-(-2t +1)-2t -(-2t +2)=1-2t . ∵t ∈[0,1],∴k DE ∈[-1,1]. (2)∵ tDE→=tDE →,∴(x +2t -2,y +2t -1) =t (-2t +2t -2,2t -1+2t -1) =t (-2,4t -2)=(-2t,4t 2-2t ). ∴⎩⎨⎧x =2(1-2t ),y =(1-2t )2.∴y =x 24,即x 2=4y .∵t ∈[0,1],∴x =2(1-2t )∈[-2,2]. 所求轨迹方程为x 2=4y ,x ∈[-2,2]1.如果命题“坐标满足方程f (x ,y )=0的点都在曲线C 上”是不正确的,那么下列命题中正确的是( )A .坐标满足f (x ,y )=0的点都不在曲线C 上B .曲线C 上的点的坐标不都满足方程f (x ,y )=0C .坐标满足方程f (x ,y )=0的点有些在曲线C 上,有些不在曲线C 上D .至少有一个不在曲线C 上的点,其坐标满足f (x ,y )=0 答案 D解析 对于命题“坐标满足方程f (x ,y )=0的点都在曲线C 上”的否定是“坐标满足方程f (x ,y )=0的点不都在曲线C 上”,即至少有一个不在曲线C 上的点,它的坐标满足方程f (x ,y )=0.2.△ABC 中,若B 、C 的坐标分别是(-2,0)、(2,0),中线AD 的长度是3,则A 点的轨迹方程是( )A .x 2+y 2=3B .x 2+y 2=4C .x 2+y 2=9(y ≠0)D .x 2+y 2=9(x ≠0) 答案 C解析 易知B 、C 中点D 即为原点O ,所以|OA |=3, 所以点A 的轨迹是以原点为圆心,以3为半径的圆, 又因△ABC 中,A 、B 、C 三点不共线,所以y ≠0.所以选C.3.已知A (-1,0),B (2,4),△ABC 的面积为10,则动点C 的轨迹方程是( ) A .4x -3y -16=0或4x -3y +16=0 B .4x -3y -16=0或4x -3y +24=0 C .4x -3y +16=0或4x -3y +24=0 D .4x -3y +16=0或4x -3y -24=0 答案 B解析 由两点式,得直线AB 的方程是y -04-0=x +12+1,即4x -3y +4=0,线段AB 的长度|AB |=(2+1)2+42=5.设C 的坐标为(x ,y ),则12³5³|4x -3y +4|5=10,即4x -3y -16=0或4x -3y +24=0.4.在下列图中方程表示图中曲线的是( )答案 C解析 对于A ,方程x 2+ y 2=1表示一个完整的圆.对于B ,x 2-y 2=(x+y)(x -y)=0,它表示两条相交直线.对于D ,由lgx+lgy=0知xy=1,x>0且y>0.5. 设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A 、B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若=2,且²=1,则P 点的轨迹方程是 ( ) A .3x 2+32y 2=1(x >0,y >0)B .3x 2-32y 2=1(x >0,y >0)C.32x 2-3y 2=1(x >0,y >0) D.32x 2+3y 2=1(x >0,y >0) 答案 D解析 如图所示,若P (x ,y ),则A ⎝ ⎛⎭⎪⎫32x ,0,B (0,3y ),=⎝ ⎛⎭⎪⎫-32x ,3y ,OQ →=⎝ ⎛⎭⎪⎫-32x ,3y ,OQ →=(-x ,y ),AB →=⎝ ⎛⎭⎪⎫-32x ,3y ,OQ →=1,∴32x 2+3y 2=1(x >0,y >0),即为点P 轨迹方程.6.设动点P 是曲线y =2x 2+1上任意一点,定点A (0,-1),点M 分PA 所成的比为2∶1,则点M 的轨迹方程是( )A .y =6x 2-13B .y =3x 2+13C .y =-3x 2-1D .x =6y 2-13答案 A解析 设点M 的坐标为(x 0,y 0),因为点A (0,-1),点M 分PA 所成的比为2∶1,所以P 点的坐标为(3x 0,3y 0+2),代入曲线y =2x 2+1得y 0=6x 20-13,即点M 的轨迹方程是y =6x2-13. 7.点P (a ,b )是单位圆上的动点,则Q (a +b ,ab )的轨迹方程是________________. 答案 x 2-2y -1=0解析 设Q (x ,y )则⎩⎨⎧x =a +b ,y =ab .因为a 2+b 2=1,即(a +b )2-2ab =1.所以x 2-2y =1.所以点Q 的轨迹方程是x 2-2y -1=0.8.平面上有三个点A (-2,y ),B (0,y2),C (x ,y ) 若⊥,则动点C 的轨迹方程为________.答案 y 2=8x解析 =⎝ ⎛⎭⎪⎫-32x ,3y ,OQ →=(0,y 2)-(-2,y )=(2,-y 2),=(x ,y )-(0,y 2)=(x ,y2).因为⊥,所以²,所以(2,-y 2)²(x ,y2)=0,即y 2=8x .所以动点C 的轨迹方程为y 2=8x .9.过点P (2,4)作两条互相垂直的直线l 1、l 2.若l 1交x 轴于A 点,l 2交y 轴于B 点,求线段AB 的中点M 的轨迹方程.解 方法一 设点M 的坐标为(x ,y ). ∵M 为线段AB 的中点,∴A 的坐标为(2x,0),B 的坐标为(0,2y ). ∵l 1⊥l 2,且l 1、l 2过点P (2,4), ∴PA ⊥PB ,k PA ²k PB =-1. 而k PA =4-02-2x (x ≠1),k PB =4-2y2-0, ∴21-x ²2-y 1=-1(x ≠1). 整理,得x +2y -5=0(x ≠1).∵当x =1时,A 、B 的坐标分别为(2,0)、(0,4), ∴线段AB 的中点坐标是(1,2), 它满足方程x +2y -5=0.综上所述,点M 的轨迹方程是x +2y -5=0. 方法二设M 的坐标为(x ,y),则A 、B 两点的坐标分别是(2x,0)、(0,2y),连结PM. ∵l 1⊥l2,∴2|PM|=|AB|.而|PM|=|AB|=∴=化简,得x+2y -5=0,为所求轨迹方程. 方法三 ∵l 1⊥l 2,OA ⊥OB , ∴O 、A 、P 、B 四点共圆, 且该圆的圆心为M , ∴|MP|=|MO|,∴点M 的轨迹为线段OP 的中垂线. ∵kOP==204-- = 2,OP 的中点坐标为(1,2), ∴点M 的轨迹方程是y -2= -21(x -1),x+2y -5=0.方法四 设点M 的坐标为(x ,y),则A(2x,0),B(0,2y), ∵PA ⊥PB ,即⊥,∴ ²=0.∴(2x-2,-4)²(-2,2y-4)=0,即-2(2x-2)-4(2y -4)=0,化简得:x+2y-5=0.10. 设F (1,0),点M 在x 轴上,点P 在y 轴上,且MN =2, ⊥.当点P 在y 轴上运动时,求N 点的轨迹C 的方程.设 M (a,0),P(0,b),动点N (x,y ), 则=(x-a,y ),=(-a,b),PF →=(1,-b ).因为MN →=2MP →, PF →⊥PF →,所以⎩⎨⎧x -a =-2a ,y =2b ,且-a -b 2=0.上述方程组消去a ,b ,得y 2=4x .所以动点N 的轨迹方程为y 2=4讲练学案部分2.1.1 曲线与方程对点讲练知识点一 曲线的方程与方程的曲线如果曲线C 上的点的坐标满足方程F (x ,y )=0,则下列说法正确的是( ) A .曲线C 的方程是F (x ,y )=0 B .方程F (x ,y )=0的曲线是CC .坐标不满足方程F (x ,y )=0的点都不在曲线C 上D .坐标满足方程F (x ,y )=0的点都在曲线C 上 答案 C解析 直接法:原说法写成命题形式即“若点M (x ,y )是曲线C 上的点,则M 点的坐标适合方程F (x ,y )=0”,其逆否命题即“若M 点的坐标不适合方程F (x ,y )=0,则M 点不在曲线C 上”,此即说法C.特值方法:作如上图所示的曲线C ,考查C 与方程F(x ,y)=x 2 -1=0的关系,显然A 、B 、D 中的说法全不正确.【反思感悟】 “曲线上的点的坐标都是这个方程的解”,阐明曲线上点的坐标没有不满足方程的,也就是说曲线上所有的点都符合这个条件而毫无例外,“以这个方程的解为坐标的点都是曲线上的点”,阐明符合条件的所有点都在曲线上而毫无遗漏.设方程f (x ,y )=0的解集非空,如果命题“坐标满足方程f (x ,y )=0的点都在曲线C 上”是不正确的,则下面命题中正确的是( )A .坐标满足f (x ,y )=0的点都不在曲线C 上B .曲线C 上的点的坐标都不满足f (x ,y )=0C.坐标满足f(x,y)=0的点有些在C上,有些不在曲线上D.一定有不在曲线上的点,其坐标满足f(x,y)=0答案 D解析“坐标满足方程f(x,y)=0的点都在曲线C上”不正确,就是说“坐标满足方程f(x,y)=0的点不都在曲线C上”是正确的,这意味着一定有这样的点(x,y0),虽然f(x0,y)=0,但(x0,y0)∉C,即一定有不在曲线上的点,其坐标满足f(x,y)=0.故应选D知识点二判断方程是否为曲线的方程(1)过P(0,-1)且平行于x轴的直线l的方程是|y|=1吗?为什么?(2)设A(2,0),B(0,2),能否说线段AB的方程是x+y-2=0?为什么?解(1)如图所示,过点P且平行于x轴的直线l的方程为y=-1,因而在直线l上的点的坐标都满足|y|=1,但是以|y|=1这个方程的解为坐标的点不会都在直线l上.所以|y|=1不是直线l的方程,直线l只是方程|y|=1所表示曲线的一部分.(2)由方程x+y -2=0知,当x=4时,y= -2.故点(4,- 2)的坐标是方程x+y -2=0的一个解,但点(4,- 2)不在线段AB上.∴x+y -2=0不是线段AB的方程.【反思感悟】判断方程是否是曲线的方程,要从两个方面着手,一是检验点的坐标是否适合方程;二是检验以方程的解为坐标的点是否在曲线上.下列命题是否正确?若不正确,说明原因.(1)过点A(2,0)平行于y轴的直线l的方程是|x|=2;(2)到两坐标轴距离相等的点的轨迹方程是y=x.解(1)错误.因为以方程|x|=2的解为坐标的点,不都在直线l上,直线l只是方程|x|=2所表示的图形的一部分.(2)错误.因为到两坐标轴距离相等的点的轨迹有两条直线l1和l2,直线l1上的点的坐标都是方程y=x 的解,但是直线l2上的点(除原点)的坐标不是方程y=x 的解.故y=x 不是所求的轨迹方程.知识点三 证明方程是曲线的方程证明与两条坐标轴的距离的积是常数k (k >0)的点的轨迹方程是xy =±k . 证明 (1)如图所示,设M(x 0,y 0)是轨迹上的任意一点.因为点M 与x 轴的距离为| y 0|,与y 轴的距离为|x0|,所以| x 0 |²| y 0|=k ,即(x0,y0)是方程xy=±k 的解.(2)设点M1的坐标(x 1 ,y 1)是方程xy=±k 的解,则x 1y 1=±k , 即| x 1|²| y 1|=k.而| x 1|、| y 1|正是点M1到纵轴、横轴的距离,因此点M1到这两条直线的距离的积是常数k ,点M1是曲线上的点.由(1)(2)可知,xy=±k 是与两条坐标轴的距离的积为常数k(k>0)的点的轨迹方程. 【反思感悟】 要证某轨迹的方程为f(x ,y),由曲线的方程的概念可知,既要证轨迹上的任意一点M(x0,y0)的坐标都是f(x ,y)=0的解,也要证明方程的任一解(x1,y1)对应的点都在轨迹上.已知两点A (0,1),B (1,0),且|MA |=2|MB |,求证:点M 的轨迹方程为⎝⎛⎭⎪⎫x -432+⎝⎛⎭⎪⎫y +132=89. 证明 设点M 的坐标为(x ,y ),由两点间距离公式, 得|MA |=(x -0)2+(y -1)2 |MB |=(x -1)2+(y -0)2 又|MA |=2|MB |, ∴(x -0)2+(y -1)2=2(x -1)2+(y -0)2.两边平方,并整理得3x 2+3y 2+2y -8x +3=0, 即⎝⎛⎭⎪⎫x -432+⎝ ⎛⎭⎪⎫y +132=89①所以轨迹上的每一点的坐标都是方程①的解; 设M 1的坐标(x 1,y 1)是方程①的解, 即⎝⎛⎭⎪⎫x 1-432+⎝ ⎛⎭⎪⎫y 1+132=89.即3x 21+3y 21-8x 1+2y 1+3=0,|M 1A |=(x 1-0)2+(y 1-1)2=x 21+y 21-2y 1+1=x 21+y 21+3x 21+3y 21-8x 1+3+1=2(x 1-1)2+(y 1-0)2=2|M 1B | 即点M 1(x 1,y 1)在符合条件的曲线上. 综上可知:点M 的轨迹方程为 ⎝⎛⎭⎪⎫x -432+⎝ ⎛⎭⎪⎫y +132=89.课堂小结: 1.称曲线C 的方程是f(x,y)=0(或称方程f(x,y)=0的曲线是C)必须具备两个条件:(1)曲线C 上的点的坐标都是方程f(x , y)=0的解(纯粹性);(2)以方程f(x,y)=0的解为坐标的点都在曲线C 上(完备性).2.设曲线C 的方程是f(x , y)=0,则点P(x 0 , y 0)在曲线C 上f(x 0 , y 0)=0.课时作业一、选择题1.已知曲线C 的方程为x 3+x +y -1=0,则下列各点中在曲线C 上的点是( ) A .(0,0) B .(-1,3) C .(1,1) D .(-1,1) 答案 B解析 点P (x 0,y 0)在曲线f (x ,y )上⇔f (x 0,y 0)=0.2.已知直线l 的方程是f (x ,y )=0,点M (x 0,y 0)不在l 上,则方程f (x ,y )-f (x 0,y 0)=0表示的曲线是( )A .直线lB .与l 垂直的一条直线C.与l平行的一条直线D.与l平行的两条直线答案 C解析方程f(x,y)-f(x0,y0)=0表示过M(x0,y0)且和直线l平行的一条直线.选C.3.已知圆C的方程f(x,y)=0,点A(x0,y0)在圆外,点B(x′,y′)在圆上,则f(x,y)-f(x,y0)+f(x′,y′)=0表示的曲线是( )A.就是圆CB.过A点且与圆C相交的圆C.可能不是圆D.过A点与圆C同心的圆答案 D解析由点B(x′,y′)在圆上知f(x′,y′)=0.由A(x0,y0)在圆外知f(x0,y0)为不为0的常数,点A(x0,y0)代入方程f(x,y)-f(x0,y0)=0成立.所以f(x,y)-f(x0,y0)=0表示的曲线过A点.因此选D.4.下列各组方程中表示相同曲线的是( )A.y=x,yx=1 B.y=x,y=x2C.|y|=|x|,y=x D.|y|=|x|,y2=x2答案 D解析A中y=x表示一条直线,而yx=1表示直线y=x除去(0,0)点;B中y=x表示一条直线,而y=x2表示一条折线;C中|y|=|x|表示两条直线,而y=x表示一条射线;D 中|y|=|x|和y2=x2均表示两条相交直线,故选D.5.“以方程f(x,y)=0的解为坐标的点都是曲线C上的点”是“曲线C的方程是f(x,y)=0”的( )A.充分不必要条件B.必要不充分条件C.充要条件D .既不充分也不必要条件 答案 B解析 f (x ,y )=0是曲线C 的方程必须同时满足以下两个条件:①以f (x ,y )=0的解为坐标的点都在曲线C 上;②曲线C 上的点的坐标都符合方程f (x ,y )=0,故选B.二、填空题6.求方程|x |+|y |=1所表示的曲线C 围成的平面区域的面积为________. 答案 2 解析方程|x|+|y|=1所表示的图形是正方形ABCD(如图),其边长为2. ∴方程|x|+|y|=1所表示的曲线C 围成的平面区域的面积为2. 7.到直线4x +3y -5=0的距离为1的点的轨迹方程为______________________________.答案 4x +3y -10=0和4x +3y =0 解析 可设动点坐标为(x ,y ), 则|4x +3y -5|5=1,即|4x +3y -5|=5. ∴所求轨迹为4x +3y -10=0和4x +3y =0.8.若方程ax 2+by =4的曲线经过点A (0,2)和B ⎝ ⎛⎭⎪⎫12,3,则a =____________,b =________.答案 16-8 3 2 三、解答题9.已知直线l 1:mx -y =0,l 2:x +my -m -2=0. 求证:对m ∈R ,l 1与l 2的交点P 在一个定圆上.证明 l 1与l 2分别过定点(0,0)及(2,1),且l 1⊥l 2,∴l 1与l 2的交点P 必在以(0,0),(2,1)为端点的直径的圆上,其方程为x 2+y 2-2x -y =0.10.曲线x 2+(y -1)2=4与直线y =k (x -2)+4有两个不同的交点,求k 的范围,若有一个交点呢?无交点呢?解 由⎩⎨⎧y =k (x -2)+4,x 2+(y -1)2=4,得(1+k 2)x 2+2k (3-2k )x +(3-2k )2-4=0, Δ=4k 2(3-2k )2-4(1+k 2)[(3-2k )2-4]=48k -20. ∴Δ>0,即k >512时,直线与曲线有两个不同的交点; Δ=0,即k =512时,直线与曲线有一个交点; Δ<0,即k <512时,直线与曲线没有交点. 2.1.2 求曲线的方程.对点讲练知识点一 直接法求轨迹的方程设动直线l 垂直于x 轴,且与椭圆x 2+2y 2=4交于A 、B 两点, P 是l 上满足²=1的点,求点P 的轨迹方程.解 设P 点的坐标为(x ,y ), 又由方程x 2+2y 2=4得2y 2=4-x 2, ∴y =±4-x 22, ∴A 、B 两点的坐标分别为(x, 4-x 22),(x ,-4-x 22) ²PB →=1. ∴(0,4-x 22-y )²(0,-4-x 22-y )=1, 即y 2-4-x 22=1,∴x 26+y 23=1又直线l 与椭圆交于两点, ∴-2<x <2∴点P 的轨迹方程为x 26+y 23=1(-2<x <2).【反思感悟】 直接法:根据条件、直接寻求动点坐标所满足的关系式,或依据圆锥曲线定义直接确定曲线类型.已知△ABC 的一边AB 的长为定值4,边BC 的中线AD 的长为定值3,求顶点C的轨迹方程.解 方法一以A 为原点,AB 为x 轴建立直角坐标系,则B 点坐标为(4,0).设C 点坐标为(x ,y). ∵D 为BC 边中点, ∴D 点坐标为(24+x , 2y). 又∵|AD|=3,∴(24+x )2 + (2y)2 = 9 化简得(x+4)2+y2=36,即为C 点的轨迹方程(点(2,0),(-10,0)除外). 方法二 如图,作CB ′∥OD 交x 轴于B ′ ∵D 是BC 中点,则OD 为△BCB ′的中位线 ∴B ′(-4,0)且|B ′C|=6,|AD|=3,故C 在以B ′(-4,0)为圆心,6为半径的圆上. 其方程为(x+4)2+y2=36 (y ≠0).知识点二 代入法(相关点法)求轨迹方程已知△ABC 的两顶点A 、B 的坐标分别为A (0,0)、B (6,0),顶点C 在曲线y =x 2+3上运动,求△ABC 重心的轨迹方程.分析 由重心坐标公式,可知△ABC 的重心坐标可以由A 、B 、C 三点的坐标表示出来,而A 、B 是定点,且C 在曲线y =x 2+3上运动,故重心与C 相关联.因此,设出重心与C 点坐标,找出它们之间的关系,代入曲线方程y =x 2+3即可.解 设G (x ,y )为所求轨迹上任一点,顶点C 的坐标为(x ′,y ′),则由重心坐标公式,得⎩⎪⎨⎪⎧x =0+6+x ′3,y =0+0+y ′3∴⎩⎨⎧x ′=3x -6,y ′=3y .∵顶点C (x ′,y ′)在曲线y =x 2+3上, ∴3y =(3x -6)2+3,整理,得y =3(x -2)2+1, 故所求的轨迹方程为y =3(x -2)2+1.【反思感悟】 代入法求轨迹方程就是根据条件建立所求动点与相关动点坐标间的关系式,用所求动点坐标表示相关动点的坐标,并代入相关动点所在曲线的方程,从而得到所求动点的轨迹方程.此法也称相关点法.已知一条长为6的线段两端点A 、B 分别在x 、y 轴上滑动,点M 在线段AB 上,且AM ∶MB =1∶2,求动点M 的轨迹方程.解(代入法)设A(a,0)、B(0,b)、M(x 、y), 一方面:∵|AB |=6,∴a 2+b 2=36.① 另一方面:M 分AB 的比为12,∴⎩⎪⎪⎨⎪⎪⎧x =a +12³01+12=23a ,y =0+12b1+12=13b .⇒⎩⎨⎧a =32x ,b =3y .②将②式代入①式化简为:x 216+y 24=1. 知识点三 参数法求轨迹方程已知∠AOB =π3,P ,Q 分别是∠AOB 两边上的动点,若△POQ 的面积为8,试建立适当的坐标系,求线段PQ 中点M 的轨迹方程.解以O 为原点,∠AOB 的平分线所在直线为x 轴建立直角坐标系(如图所示).则射线OA 的方程为y=33x( x >0)射线OB 的方程为y= -33x( x >0) 设P{x 1 ,33 x 1}, Q{ x 2 , -33x 2} M(x ,y).由题意得x= 21( x 1+x 2), 又S △POQ=21|OP|²|OQ|sin60° =21²32 x 1²32 x 2²23 = 33 x 1²x 2∴2121212,x x x x x x x +=⎧⎪-=⎨⎪⨯=⎩ 由(x 1+x 2)2 - (x 1 -x 2)2=4x 1x 2, 消去x 1,x 2得x 2 -3y 2=83 由于x 1>0,x 2>0,故x>0,动点M 的轨迹方程为x 2 -3y 2=83 (x>0).【反思感悟】 参数法:根据条件,将所求动点的坐标用恰当的参数(如角度、直线斜率等)解析式表示出来,再利用某些关系式消去参数得到轨迹方程.过点P 1(1,5)作一直线交x 轴于点A ,过点P 2(2,7)作直线P 1A 的垂线,交y轴于点B ,点M 在线段AB 上,且BM ∶MA =1∶2,求动点M 的轨迹方程.解 设P 2B 的直线方程为:y -7=k (x -2),则P 1A 的方程为:y -5=-1k(x -1),则有A (5k +1,0)、B (0,-2k +7).设M (x ,y ),则由BM ∶MA =1∶2,得⎩⎪⎨⎪⎧x =5k +13,y =-4k +143.消去k ,并整理得12x +15y -74=0. ∴动点M 的轨迹方程为12x +15y -74=0. 课堂小结:1.坐标系建立的不同,同一曲线的方程也不相同.2.一般的,求哪个点的轨迹方程,就设哪个点的坐标是(x ,y ),而不要设成(x 1,y 1)或(x ′,y ′)等.3.方程化简到什么程度,课本上没有给出明确的规定,一般指将方程f(x,y)=0化成x,y 的整式.如果化简过程破坏了同解性,就需要剔除不属于轨迹上的点,找回属于轨迹而遗漏的点.求轨迹时需要说明所表示的是什么曲线,求轨迹方程则不必说明.课时作业一、选择题1.已知点A (-2,0),B (2,0),C (0,3),则△ABC 底边AB 的中线的方程是( ) A .x =0 B .x =0(0≤y ≤3) C .y =0 D .y =0(0≤x ≤2) 答案 B解析 直接法求解,注意△ABC 底边AB 的中线是线段,而不是直线.所以选B. 2.与点A (-1,0)和点B (1,0)的连线的斜率之积为-1的动点P 的轨迹方程是( ) A .x 2+y 2=1 B .x 2+y 2=1(x ≠±1) C .y =1-x 2 D .x 2+y 2=9(x ≠0) 答案 B解析 设P (x ,y ),则k PA =y x +1,k PB =y x -1,所以k PA ²k PB =yx +1²yx -1=-1.整理得x 2+y 2=1,又k PA 、k PB 存在,所以x ≠±1. 所以所求轨迹方程为x 2+y 2=1 (x ≠±1),所以选B.3. 设动点P 是抛物线y=2x 2+1上任意一点,定点A (0,- 1),点M 分所成的比 为2∶1,则点M 的轨迹方程是( )A .y =6x 2-13 B .y =3x 2+13C .y =-3x 2-1 D .x =6y 2-13答案 A解析 设点M 的坐标为(x,y),点P 的坐标为(x 0 , y 0),因点P 在抛物线上,即y 0=2x 02+1MA12PM=2,即(x - x 0 , y - y 0)=2(-x, -1 -32y + y),所以002,22,x x x y y y -=-⎧⎨-=--⎩即003,32,x x y y =⎧⎨=+⎩因此有 :32y += 2⨯9x 2 +1,即y=6x 2 - 31.4.自圆x 2+y 2=1外动点P 作该圆的两条切线,切点分别为A ,B .若∠APB =π2,则动点P 的轨迹方程是( )A .x 2+y 2=4B .x 2+y 2=2 C.x 24+y 2=1 D.x 22+y 2=1 答案 B解析 四边形PAOB 为正方形,故|OP |= 2.5.已知点A (2,0)及原点O ,动点P 满足(|PA |+|PO |)²(|PA |-|PO |)=1,则点P 的轨迹方程是( )A .x =14B .x =12C .x =34D .x =32答案 C解析 设P (x ,y ),条件即|PA |2-|PO |2=1,故[(x -2)2+y 2]-(x 2+y 2)=1,化简得x =34. 二、填空题6.方程(x +y -1)x -1=0表示的曲线是________.答案 射线x +y -1=0(x ≥1)与直线x =1解析 由(x +y -1)x -1=0得:⎩⎨⎧ x +y -1=0,x -1≥0,或⎩⎨⎧ x -1≥0,x -1=0.即x +y -1=0(x ≥1),或x =1.所以,方程表示的曲线是射线x +y -1=0(x ≥1)和直线x =1.7. 已知两点M (-2,0),N (2,0),点P 为坐标平面内的动点,满足||²||+²= 0,则动点P(x,y)的轨迹方程为. ________.答案 y 2=-8x解析 由题意知 =(4,0), MP →=(x +2,y ),NP →=(x -2,y ),所以|MN →|=4,|MP →|=(x +2)2+y 2,MN →²NP →=4(x -2),根据已知条件得4(x +2)2+y 2=4(2-x ),整理,得y 2=-8x ,所以点P 的轨迹方程为y 2=-8x .8.两条直线ax +y +1=0和x -ay -1=0(a 为参数且a ≠±1)的交点的轨迹方程是______________.答案 x 2+y 2-x +y =0解析 设两条直线的交点为(x 0,y 0).则有⎩⎨⎧ ax 0+y 0+1=0,x 0-ay 0-1=0.求出(x 0,y 0)的方程即为轨迹的方程.当a =0时,交点为(1,-1).当a ≠0时,由ax 0+y 0+1=0,∴a =-y 0+1x 0, 代入x 0-ay 0-1=0,得x 20+y 20-x 0+y 0=0,即交点的轨迹方程为x 2+y 2-x +y =0.同时,点(1,-1)也适合方程x 2+y 2-x +y =0,综上可知所求方程为x 2+y 2-x +y =0.三、解答题9.设圆C :(x -1)2+y 2=1,过原点O 作圆C 的任意弦,求所作弦的中点的轨迹方程. 解 方法一 直接法:如图所示,设OQ 为过O 的一条弦,P (x ,y )为其中点,则CP ⊥OQ .设OC 中点为M (12,0), 则|MP |=12|OC |=12,由两点间距离公式得方程(x -12)2+y 2=12,考虑轨迹的范围知0<x ≤1.所以弦的中点轨迹方程为(x -12)2+y 2=14(0<x ≤1).方法二 定义法:如图所示,设OQ 为过O 的一条弦,P(x ,y)为其中点,则CP ⊥OQ ,即∠OPC=90°,设OC 中点为M(21,0),所以|PM|=21|OC|=21,所以动点P 在以M(21,0)为圆心,OC 为直径的圆上,圆的方程为(x-)2+y 2=.14因为所作弦的中点应在已知圆的内部,所以弦中点轨迹方程为(x-21)2+y 2=14 (0<x ≤1). 方法三 代入法:如图所示,设OQ 为过O 的一条弦,P(x ,y)为其中点,设Q(x 1,y 1),则11,2,2x x y y ⎧=⎪⎪⎨⎪=⎪⎩⇒112,2,x x y y =⎧⎨=⎩ 又因为点Q(x 1,y 1)在⊙C 上,所以(x 1-1)2+y 12 =1.将112,2,x x y y =⎧⎨=⎩代入上式得:(2x-1)2+(2y)2=1,即(x - 21)2 + y 2 =41,又因为OQ 为过O 的一条弦,所以0<x1≤2,所以0<x ≤1,所以所求轨迹方程为(x -21)2 + y 2 =41 (0<x ≤1). 方法四 参数法:如图所示,设OQ 为过O 的一条弦,P(x ,y)为其中点,动弦OQ 所在直线的方程为y=kx ,代入圆的方程得(x -1)2+k 2x 2=1,即(1+k 2)x 2-2x=0.设方程(1+k 2)x 2-2x=0.的两根为x 1,x 2,所以212x x x +==21k k +,y = kx = 21k k +. 消去参数k 得:x 2 -x+y 2=0, 所以,所求轨迹方程为x 2+y 2 -x=0(0<x ≤1).10.点A (3,0)为圆x 2+y 2=1外一点,P 为圆上任意一点,动点M 满足|AM ||MP |=12,求点M 的轨迹方程.解 设M (x ,y ),P (x 0,y 0).(1)若=12MP →,则(x -3,y )=12(x 0-x ,y 0-y ), ∴⎩⎪⎨⎪⎧ x -3=12(x 0-x )y =12(y 0-y )∴⎩⎨⎧ x 0=3x -6y 0=3y又∵P (x 0,y 0)在圆x 2+y 2=1上∴(3x -6)2+(3y )2=1即(x -2)2+y 2=19. (2)若=-12MP →,则(x -3,y )=-12(x 0-x ,y 0-y ) ∴⎩⎪⎨⎪⎧ x -3=x -x 02y =y -y 02,∴⎩⎨⎧ x 0=-x +6y 0=-y .又∵P (x 0,y 0)在圆x 2+y 2=1上,∴(-x +6)2+(-y )2=1,即(x -6)2+y 2=1. ∴M 点的轨迹方程为(x -2)2+y 2=19或(x -6)2+y 2=1.。

轨迹方程的求法

轨迹方程的求法
解 :由已知可得 PM PB , 且 PM PA AM
又 AM 4, AB 6 PA PM PA PB 8 AB
点P的轨迹是以 A, B为焦点的椭圆
x2 y2 设 椭 圆 的 方 程 为 2 + 2 1(a b 0) a b
15
M
10
N
5
由题意得 : 2a 8,2c 6 b 4 3 7
2 2
3 2 则|PM|· |PN|=|t1t2|= . 1+11sin2α 所以当 sin2α=0 时,即 α=0,|PM|· |PN|的最小值为 .
(2011· 课标高考 ) 在直角坐标系 xOy 中,曲线 x =2cosα , C1 的参数方程为 y=2+ 2sin α (α 为参数).M 是 C1 上的动
因此其方程为
(2)设圆P的半径为r,则|PA|=r+1,|PB|=r,
2 x(y≠0) y2 1 . 9 5
5 5
因此|PA|-|PB|=1.
由双曲线的定义知,P点的轨迹为双曲线的右支, 1 且2a=1,2c=4,即a= ,c=2,b= , 15 2 2 因此其方程为 2
4y 1 4x 1(x ) 15 2
y
o
x
复习1:
求动点轨迹方程的基本步骤是什么?
(1)建系: 建立直角坐标系; (2)设点: 设所求动点P(x,y); (3)列式: 根据条件列出动点P满足的关系式; (4)化简: 化简方程; (5)检验:检验所得方程的纯粹性和完备性, 多余的点要剔除,不足的点要补充。
复习2:
求动点轨迹方程的基本方法有哪些?
B x



?
过点
P

求轨迹方程的几种常用方法

求轨迹方程的几种常用方法

求轨迹方程的几种常用方法求轨迹的方程,是学习解析几何的基础,求轨迹的方程常用的方法主要有:1.直接法:若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点坐标为(,x y )后,就可根据命题中的已知条件,研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有,x y 的关系式。

从而得到轨迹方程,这种求轨迹方程的方法称作直接法。

例1:在直角△ABC 中,斜边是定长2a (0)a >,求直角顶点C 的轨迹方程。

解:由于未给定坐标系,为此,首先建立直角坐标系,取AB 所在的直线为x 轴,AB 的中点O 为坐标原点,过O 与AB 垂直的直线为y 轴(如图).则有A (,0)a -,B (,0)a 。

设动点C 为(,)x y ,∵222||||||AC BC AB +=,∴2224a +=,即222x y a +=.由于C 点到达A 、B 位置时直角三角形ABC 不存在,轨迹中应除去A 、B 两点,故所求方程为222x y a +=(x a ≠±)。

2.代入法(或利用相关点法):即利用动点是定曲线上的动点,另一动点依赖于它,那么可寻求它们坐标之间的关系,然后代入定曲线的方程进行求解,就得到原动点的轨迹。

例2:已知一条长为6的线段两端点A 、B 分别在x 、y 轴上滑动,点M 在线段AB 上,且:1:2AM MB =,求动点M 的轨迹方程。

解:设A (,0)a ,B (0,)b ,M (,)x y ,一方面,∵||6AB =,∴2236a b +=, ①另一方面,M 分AB 的比为12,∴1022133122130121312a x a a xb y b y b ⎧+⨯⎪==⎪⎪+⎧=⎪⎪⇒⎨⎨⎪⎪=+⎩⎪==⎪+⎪⎩ ② ②代入①得:223()(3)362x y +=,即221164x y +=。

评注:本例中,由于M 点的坐标随着A 、B 的变化而变化,因而动点M 的坐标(,)x y 可以用A 、B 点的坐标来表示,而点M 又满足已知条件,从而得到M 的轨迹方程。

高考数学难点:轨迹方程的求法

高考数学难点:轨迹方程的求法

高考数学难点:轨迹方程的求法求曲线的轨迹方程是解析几何的两个基本问题之一.求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系.这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点.●难点磁场(★★★★)已知A 、B 为两定点,动点M 到A 与到B 的距离比为常数λ,求点M 的轨迹方程,并注明轨迹是什么曲线.●案例探究[例1]如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程.命题意图:本题主要考查利用“相关点代入法”求曲线的轨迹方程,属★★★★★级题目.知识依托:利用平面几何的基本知识和两点间的距离公式建立线段AB 中点的轨迹方程.错解分析:欲求Q 的轨迹方程,应先求R 的轨迹方程,若学生思考不深刻,发现不了问题的实质,很难解决此题.技巧与方法:对某些较复杂的探求轨迹方程的问题,可先确定一个较易于求得的点的轨迹方程,再以此点作为主动点,所求的轨迹上的点为相关点,求得轨迹方程.解:设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR |. 又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2)又|AR |=|PR |=22)4(y x +-所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动. 设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1=2,241+=+y y x , 代入方程x 2+y 2-4x -10=0,得244)2()24(22+⋅-++x y x -10=0 整理得:x 2+y 2=56,这就是所求的轨迹方程.[例2]设点A 和B 为抛物线 y 2=4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线.(2000年北京、安徽春招)命题意图:本题主要考查“参数法”求曲线的轨迹方程,属★★★★★级题目. 知识依托:直线与抛物线的位置关系.错解分析:当设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2)时,注意对“x 1=x 2”的讨论.技巧与方法:将动点的坐标x 、y 用其他相关的量表示出来,然后再消掉这些量,从而就建立了关于x 、y 的关系.解法一:设A (x 1,y 1),B (x 2,y 2),M (x ,y )依题意,有⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧--=---=--⋅-=⋅==112121212122112221211144x x y y x x y y x x y y x y x y x y px y px y ①-②得(y 1-y 2)(y 1+y 2)=4p (x 1-x 2) 若x 1≠x 2,则有2121214y y px x y y +=-- ⑥①×②,得y 12·y 22=16p 2x 1x 2③代入上式有y 1y 2=-16p 2 ⑦ ⑥代入④,得yxy y p -=+214⑧⑥代入⑤,得pyx y y x x y y y y p442111121--=--=+ 所以211214)(44y px y y p y y p --=+ 即4px -y 12=y (y 1+y 2)-y 12-y 1y 2⑦、⑧代入上式,得x 2+y 2-4px =0(x ≠0)当x 1=x 2时,AB ⊥x 轴,易得M (4p ,0)仍满足方程.故点M 的轨迹方程为x 2+y 2-4px =0(x ≠0)它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点.解法二:设M (x ,y ),直线AB 的方程为y =kx +b由OM ⊥AB ,得k =-yx由y 2=4px 及y =kx +b ,消去y ,得k 2x 2+(2kb -4p )x +b 2=0所以x 1x 2=22kb ,消x ,得ky 2-4py +4pb =0① ② ③ ④ ⑤所以y 1y 2=kpb4,由OA ⊥OB ,得y 1y 2=-x 1x 2 所以k pk4=-22kb ,b =-4kp故y =kx +b =k (x -4p ),用k =-yx代入,得x 2+y 2-4px =0(x ≠0) 故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点.[例3]某检验员通常用一个直径为2 cm 和一个直径为1 cm 的标准圆柱,检测一个直径为3 cm 的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径为多少?命题意图:本题考查“定义法”求曲线的轨迹方程,及将实际问题转化为数学问题的能力,属★★★★★级题目.知识依托:圆锥曲线的定义,求两曲线的交点.错解分析:正确理解题意及正确地将此实际问题转化为数学问题是顺利解答此题的关键.技巧与方法:研究所给圆柱的截面,建立恰当的坐标系,找到动圆圆心的轨迹方程.解:设直径为3,2,1的三圆圆心分别为O 、A 、B ,问题转化为求两等圆P 、Q ,使它们与⊙O 相内切,与⊙A 、⊙B 相外切.建立如图所示的坐标系,并设⊙P 的半径为r ,则 |P A |+|PO |=1+r +1.5-r =2.5∴点P 在以A 、O 为焦点,长轴长2.5的椭圆上,其方程为3225)41(1622y x ++=1 ① 同理P 也在以O 、B 为焦点,长轴长为2的椭圆上,其方程为 (x -21)2+34y 2=1 ② 由①、②可解得)1412,149(),1412,149(-Q P ,∴r =73)1412()149(2322=+-故所求圆柱的直径为76cm. ●锦囊妙计求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法.(1)直接法 直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程.(2)定义法 若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求.(3)相关点法 根据相关点所满足的方程,通过转换而求动点的轨迹方程.(4)参数法 若动点的坐标(x ,y )中的x ,y 分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程.求轨迹方程,一定要注意轨迹的纯粹性和完备性.要注意区别“轨迹”与“轨迹方程”是两个不同的概念.●歼灭难点训练 一、选择题1.(★★★★)已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A.圆B.椭圆C.双曲线的一支D.抛物线2.(★★★★)设A 1、A 2是椭圆4922y x +=1的长轴两个端点,P 1、P 2是垂直于A 1A 2的弦的端点,则直线A 1P 1与A 2P 2交点的轨迹方程为( )A.14922=+y xB.14922=+x yC.14922=-y xD.14922=-x y二、填空题3.(★★★★)△ABC 中,A 为动点,B 、C 为定点,B (-2a ,0),C (2a,0),且满足条件sin C -sin B =21sin A ,则动点A 的轨迹方程为_________. 4.(★★★★)高为5 m 和3 m 的两根旗杆竖在水平地面上,且相距10 m ,如果把两旗杆底部的坐标分别确定为A (-5,0)、B (5,0),则地面观测两旗杆顶端仰角相等的点的轨迹方程是_________.三、解答题5.(★★★★)已知A 、B 、C 是直线l 上的三点,且|AB |=|BC |=6,⊙O ′切直线l 于点A ,又过B 、C 作⊙O ′异于l 的两切线,设这两切线交于点P ,求点P 的轨迹方程.6.(★★★★)双曲线2222by a x -=1的实轴为A 1A 2,点P 是双曲线上的一个动点,引A 1Q ⊥A 1P ,A 2Q ⊥A 2P ,A 1Q 与A 2Q 的交点为Q ,求Q 点的轨迹方程.7.(★★★★★)已知双曲线2222ny m x -=1(m >0,n >0)的顶点为A 1、A 2,与y 轴平行的直线l 交双曲线于点P 、Q .(1)求直线A 1P 与A 2Q 交点M 的轨迹方程;(2)当m ≠n 时,求所得圆锥曲线的焦点坐标、准线方程和离心率.8.(★★★★★)已知椭圆2222by a x +=1(a >b >0),点P 为其上一点,F 1、F 2为椭圆的焦点,∠F 1PF 2的外角平分线为l ,点F 2关于l 的对称点为Q ,F 2Q 交l 于点R .(1)当P 点在椭圆上运动时,求R 形成的轨迹方程;(2)设点R 形成的曲线为C ,直线l :y =k (x +2a )与曲线C 相交于A 、B 两点,当△AOB 的面积取得最大值时,求k 的值.参考答案难点磁场解:建立坐标系如图所示, 设|AB |=2a ,则A (-a ,0),B (a ,0). 设M (x ,y )是轨迹上任意一点.则由题设,得||||MB MA =λ,坐标代入,得2222)()(ya x y a x +-++=λ,化简得(1-λ2)x 2+(1-λ2)y 2+2a (1+λ2)x +(1-λ2)a 2=0(1)当λ=1时,即|M A|=|M B|时,点M 的轨迹方程是x =0,点M 的轨迹是直线(y 轴).(2)当λ≠1时,点M 的轨迹方程是x 2+y 2+221)1(2λ-λ+a x +a 2=0.点M 的轨迹是以 (-221)1(λ-λ+a ,0)为圆心,|1|22λ-λa 为半径的圆. 歼灭难点训练一、1.解析:∵|PF 1|+|PF 2|=2a ,|PQ |=|PF 2|, ∴|PF 1|+|PF 2|=|PF 1|+|PQ |=2a ,即|F 1Q |=2a ,∴动点Q 到定点F 1的距离等于定长2a ,故动点Q 的轨迹是圆. 答案:A2.解析:设交点P (x ,y ),A 1(-3,0),A 2(3,0),P 1(x 0,y 0),P 2(x 0,-y 0) ∵A 1、P 1、P 共线,∴300+=--x yx x y y ∵A 2、P 2、P 共线,∴300-=-+x yx x y y解得x 0=149,149,3,92220200=-=-=y x y x x y y x 即代入得答案:C二、3.解析:由sin C -sin B =21sin A ,得c -b =21a ,∴应为双曲线一支,且实轴长为2a,故方程为)4(1316162222a x a y a x >=-.答案:)4(1316162222ax a y a x >=-4.解析:设P (x ,y ),依题意有2222)5(3)5(5yx yx +-=++,化简得P 点轨迹方程为4x 2+4y 2-85x +100=0.答案:4x 2+4y 2-85x +100=0三、5.解:设过B 、C 异于l 的两切线分别切⊙O ′于D 、E 两点,两切线交于点P .由切线的性质知:|BA |=|BD |,|PD |=|PE |,|CA |=|CE |,故|PB |+|PC |=|BD |+|PD |+|PC |=|BA |+|PE |+|PC | =|BA |+|CE |=|AB |+|CA |=6+12=18>6=|BC |,故由椭圆定义知,点P 的轨迹是以B 、C 为两焦点的椭圆,以l 所在的直线为x 轴,以BC 的中点为原点,建立坐标系,可求得动点P 的轨迹方程为728122y x +=1(y ≠0) 6.解:设P (x 0,y 0)(x ≠±a ),Q (x ,y ). ∵A 1(-a ,0),A 2(a ,0).由条件⎪⎩⎪⎨⎧-=±≠-=⎪⎪⎩⎪⎪⎨⎧-=-⋅--=+⋅+y a x y a x x x a x y a x y a x y a x y 220000000)( 11得 而点P (x 0,y 0)在双曲线上,∴b 2x 02-a 2y 02=a 2b 2. 即b 2(-x 2)-a 2(ya x 22-)2=a 2b 2化简得Q 点的轨迹方程为:a 2x 2-b 2y 2=a 4(x ≠±a ).7.解:(1)设P 点的坐标为(x 1,y 1),则Q 点坐标为(x 1,-y 1),又有A 1(-m ,0),A 2(m ,0), 则A 1P 的方程为:y =)(11m x mx y ++ ①A 2Q 的方程为:y =-)(11m x mx y -- ②①×②得:y 2=-)(2222121m x mx y --③又因点P 在双曲线上,故).(,12212221221221m x m n y n y m x -==-即代入③并整理得2222ny m x +=1.此即为M 的轨迹方程.(2)当m ≠n 时,M 的轨迹方程是椭圆.(ⅰ)当m >n 时,焦点坐标为(±22n m -,0),准线方程为x =±222nm m -,离心率e =mn m 22-;(ⅱ)当m <n 时,焦点坐标为(0,±22n m -),准线方程为y =±222mn n -,离心率e =nm n 22-.8.解:(1)∵点F 2关于l 的对称点为Q ,连接PQ , ∴∠F 2PR =∠QPR ,|F 2R |=|QR |,|PQ |=|PF 2|又因为l 为∠F 1PF 2外角的平分线,故点F 1、P 、Q 在同一直线上,设存在R (x 0,y 0),Q (x 1,y 1),F 1(-c ,0),F 2(c ,0).|F 1Q |=|F 2P |+|PQ |=|F 1P |+|PF 2|=2a ,则(x 1+c )2+y 12=(2a )2.又⎪⎪⎩⎪⎪⎨⎧=+=221010y y c x x 得x 1=2x 0-c ,y 1=2y 0.∴(2x 0)2+(2y 0)2=(2a )2,∴x 02+y 02=a 2. 故R 的轨迹方程为:x 2+y 2=a 2(y ≠0)(2)如右图,∵S △AOB =21|OA |·|OB |·sin AOB =22a sin AOB当∠AOB =90°时,S △AOB 最大值为21a 2.此时弦心距|OC |=21|2|kak +.在Rt △AOC 中,∠AOC =45°,.33,2245cos 1|2|||||2±=∴=︒=+=∴k k a ak OA OC。

高考数学复习---轨迹方程规律方法及典型例题

高考数学复习---轨迹方程规律方法及典型例题

高考数学复习---轨迹方程规律方法及典型例题【规律方法】求动点的轨迹方程有如下几种方法:(1)直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程;(2)定义法:如果能确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程;(3)相关点法:用动点Q 的坐标x 、y 表示相关点P 的坐标0x 、0y ,然后代入点P 的坐标()00,x y 所满足的曲线方程,整理化简可得出动点Q 的轨迹方程;(4)参数法:当动点坐标x 、y 之间的直接关系难以找到时,往往先寻找x 、y 与某一参数t 得到方程,即为动点的轨迹方程;(5)交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程.【典型例题】例1.(2022·全国·高三专题练习)双曲线2222:1(0,0)x y C a b a b−=>>的一条渐近线为y =,(1)求双曲线方程;(2)过点()0,1的直线l 与双曲线交于异支两点,,P Q OM OP OQ =+,求点M 的轨迹方程. 【解析】(1)由渐近线为y知,ba=(),0c 到直线y ==2c =,224a b +=②,联立①②,解得21a =,23b =,则双曲线方程为2213y x −=.(2)因为直线l 与双曲线交于异支两点,P Q ,所以直线l 的斜率必存在,且经过()01,点,可设直线:1l y kx =+,与双曲线联立得:()223240kxkx −−−=,设()()()1122,,,,,M x y P x y Q x y ,则有122122Δ023403k x x k x x k ⎧⎪>⎪⎪+=⎨−⎪−⎪⋅=<⎪−⎩解得k <由OM OP OQ =+uuu r uu u r uuu r 知,()1221212223623k x x x k y y y k x x k ⎧=+=⎪⎪−⎨⎪=+=++=⎪−⎩两式相除得3x k y =,即3x k y =代入263y k=−得22230y y x −−=,又k <2y …, 所以点M 的轨迹方程为()222302y y x y −−=…. 例2.(2022春·吉林辽源·高三辽源市第五中学校校考期中)已知过定点()01P ,的直线l 交曲线2214y x −=于A ,B 两点.(1)若直线l 的倾斜角为45︒,求AB ;(2)若线段AB 的中点为M ,求点M 的轨迹方程.【解析】(1)由题得l 方程为:1y x =+,将其与2214yx −=联立有22114y x y x =+⎧⎪⎨−=⎪⎩,消去y 得:23250x x −−=,解得=1x −或53x =. 则令A ()1,0−,B 5833⎛⎫ ⎪⎝⎭,,则AB=. (2)由题,直线l 存在,故设l 方程为:1y kx =+.将其与2214y x −=联立有:22114y kx y x =+⎧⎪⎨−=⎪⎩,消去y 得:()224250k x kx −−−= 因l 与双曲线有两个交点,则2240Δ80160k k ⎧−≠⎨=−>⎩, 得205k ≤<且24k ≠.设()()1122,,A x y B x y ,. 又设M 坐标为()00x y ,,则12120022,x x y y x y ++==. 因A ,B 在双曲线上,则有()221112012212120222144414y x x x x y y k y y x x y y x ⎧−=⎪+−⎪⇒=⇒=⎨+−⎪−=⎪⎩. 又M ,()01P ,在直线l 上,则001y k x −=.故000014y x x y −=2200040x y y ⇒−+= 由韦达定理有,12224k x x k +=−,12284y y k +=−. 则M 坐标为22444,k k k ⎛⎫ ⎪−−⎝⎭.又0244y k=−,205k ≤<且24k ≠,则01y ≥或04y <−. 综上点M 的轨迹方程为:2240x y y −+=,其中()[)41y ⋃∞∈−∞−+,,. 例3.(2022·全国·高三专题练习)在学习数学的过程中,我们通常运用类比猜想的方法研究问题.(1)已知动点P 为圆222:O x y r +=外一点,过P 引圆O 的两条切线PA 、PB ,A 、B 为切点,若0PA PB ⋅=,求动点P 的轨迹方程;(2)若动点Q 为椭圆22:194x y M +=外一点,过Q 引椭圆M 的两条切线QC 、QD ,C 、D 为切点,若0QC QD ⋅=,求出动点Q 的轨迹方程;(3)在(2)问中若椭圆方程为22221(0)x y a b a b +=>>,其余条件都不变,那么动点Q 的轨迹方程是什么(直接写出答案即可,无需过程).【解析】(1)由切线的性质及0PA PB ⋅=可知,四边形OAPB 为正方形, 所以点P 在以O 为圆心,||OP长为半径的圆上,且|||OP OA , 进而动点P 的轨迹方程为2222x y r += (2)设两切线为1l ,2l ,①当1l 与x 轴不垂直且不平行时,设点Q 的坐标为0(Q x ,0)y 则03x ≠±, 设1l 的斜率为k ,则0k ≠,2l 的斜率为1k−,1l 的方程为00()y y k x x −=−,联立22194x y +=, 得2220000(49)18()9()360k x k y kx x y kx ++−+−−=,因为直线与椭圆相切,所以Δ0=,得22222000018()4(49)9[()4]0k y kx k y kx −−+⋅−−=, 化简,2222200009()(49)()(49)40k y kx k y kx k −−+−++=,进而2200()(49)0y kx k −−+=,所以2220000(9)240−−+−=x k x y k y 所以k 是方程222000(9)240−−+−=x k x y k y 的一个根, 同理1k−是方程222000(9)240−−+−=x k x y k y 的另一个根, 202041()9y k k x −∴⋅−=−,得220013x y +=,其中03x ≠±,②当1l 与x 轴垂直或平行时,2l 与x 轴平行或垂直, 可知:P 点坐标为:(3,2)±±,P 点坐标也满足220013x y +=,综上所述,点P 的轨迹方程为:220013x y +=.(3)动点Q 的轨迹方程是222200x y a b +=+以下是证明: 设两切线为1l ,2l ,①当1l 与x 轴不垂直且不平行时,设点Q 的坐标为0(Q x ,0)y 则0x a ≠±, 设1l 的斜率为k ,则0k ≠,2l 的斜率为1k−,1l 的方程为00()y y k x x −=−,联立22221x y a b+=, 得2222222220000()2()()0b a k x a k y kx x a y kx a b ++−+−−=,因为直线与椭圆相切,所以Δ0=,得()222222220000222()4()[()]0a k y kx k y kx b a a b −−+⋅−−=,化简,222220002222202()()()()0a b a b a k y kx k y kx b k −−+−++=, 进而220220()()0y x b k a k −−+=,所以222000022()20x k x y k y a b −−+−= 所以k 是方程22200022()20x k x y k y a b −−+−=的一个根, 同理1k−是方程222000022()20x k x y k y a b −−+−=的另一个根,2020221()y k ax b k −∴⋅−=−,得222200x y a b +=+,其中0x a ≠±, ②当1l 与x 轴垂直或平行时,2l 与x 轴平行或垂直, 可知:P 点坐标为:(,)a b ±±,P 点坐标也满足222200x y a b +=+,综上所述,点P 的轨迹方程为:222200x y a b +=+.。

正三形的轨迹方程

正三形的轨迹方程

正三形的轨迹方程正三形的轨迹方程例题:求内接于抛物线y2=4cx(c>0)的正三角形的中心所形成的轨迹方程.试题来源答案解析:【解答】y2=4c(x−8c)9.【分析】设三角形的三个顶点A,B,C的坐标分别为(y2i4c,yi)(i=1,2,3),△ABC的中心为P(x,y),则⎧⎧⎧⎧⎧3x=y21+y22+y234c3y=y1+y2+y3,①当直线AB,BC,CA的斜率均存在时,分别设为k1,k2,k3,则k1=4cy1+y2,k2=4cy2+y3,k3=4cy3+y1,∵△ABC是正三角形,∴∠A=∠B=∠C=60∘,∴k2−k11+k2k1=k3−k21+k3k2=k1−k31+k1k3=√3,∴4c(y1−y3)(y1+y2)(y2+y3)+16c2=4c(y2−y1)(y2+y3)(y3+y1)+16c2=4c(y3−y2)(y3+y1)(y1+y2)+16c2=√3,∴⎧⎧⎧⎧⎧⎧⎧⎧⎧4c(y1−y3)=√3[(y1+y2)(y2+y3)+16c2]=√3(y22+y1y2+y2y3+y3y1+16c2)4c(y2−y1)=√3[(y2+y3)(y3+y1)+16c2]=√3(y23+y1y2+y2y3+y3y1+16c2)4c(y3−y2)=√3[(y3+y1)(y1+y2)+16c2]=√3(y21+y1y2+y2y3+y3y1+16c2),∴4c(y1−y3+y2−y1+y3−y2)=√3[(y21+y22+y23)+3(y1y2+y2y3+y3y1)+48c2],∴12cx+3(y1y2+y2y3+y3y1)+48c2=0,∴y1y2+y2y3+y3y1=−16c2−4cx,∵(y1+y2+y3)2=y21+y22+y23+2(y1y2+y2y3+y3y1),∴9y2=12cx−32c2−8cx,即y2=4c(x−8c)9,②当有一边的斜率不存在时,假设直线AB的斜率不存在,要使△ABC 是正三角形,则点C必为坐标原点,∴C(0,0),A(y214c,y1),B(y214c,−y1),且y214c=√3|y1|(y1≠0),∴y1=±4√3c,此时x=2y2112c=8c,y=0,此时点P(8c,0)亦满足方程y2=4c(x−8c)9,∴综上所述,中心P的轨迹方程为y2=4c(x−8c)9.知识复习:轨迹方程的求法常见的有(1)直接法;(2)定义法;(3)待定系数法(4)参数法(5)交轨法;(6)相关点法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轨迹方程的六种求法整理求轨迹方程是高考中常见的一类问题.本文对曲线方程轨迹的求法做一归纳,供同学们参考.求轨迹方程的一般方法:1. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。

2. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ), y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。

4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。

5. 交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。

6. 待定系数法:已知曲线是圆,椭圆,抛物线,双曲线等 一、直接法把题目中的等量关系直接转化为关于x,y,的方程基本步骤是:建系。

设点。

列式。

化简。

说明等,圆锥曲线标准方程的推导。

1. 已知点(20)(30)A B -,,,,动点()P x y ,满足2PAPB x =·,求点P 的轨迹。

26y x =+, 2. 2.已知点B (-1,0),C (1,0),P 是平面上一动点,且满足.||||CB PB BC PC ⋅=⋅ (1)求点P 的轨迹C 对应的方程;(2)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD 和AE ,且AD ⊥AE ,判断:直线DE 是否过定点?试证明你的结论.(3)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD ,AE ,且AD ,AE 的斜率k 1、k 2满足k 1·k 2=2.求证:直线DE 过定点,并求出这个定点.解:(1)设.4,1)1(||||),(222x y x y x CB PB BC PC y x P =+=+-⋅=⋅化简得得代入二、定义法利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件.1、 若动圆与圆4)2(22=++y x 外切且与直线x =2相切,则动圆圆心的轨迹方程是解:如图,设动圆圆心为M,由题意,动点M到定圆圆心(-2,0)的距离等于它到定直线x=4的距离,故所求轨迹是以(-2,0)为焦点,直线x=4为准线的抛物线,并且p=6,顶点是(1,0),开口向左,所以方程是)1(122--=xy.选(B).2、一动圆与两圆122=+yx和012822=+-+xyx都外切,则动圆圆心轨迹为解:如图,设动圆圆心为M,半径为r,则有.1,2,1=-+=+=MOMCrMCrMO动点M到两定点的距离之差为1,由双曲线定义知,其轨迹是以O、C为焦点的双曲线的左支3、在ABC△中,24BC AC AB=,,上的两条中线长度之和为39,求ABC△的重心的轨迹方程.解:以线段BC所在直线为x轴,线段BC的中垂线为y轴建立直角坐标系,如图1,M为重心,则有239263BM CM+=⨯=.M∴点的轨迹是以B C,为焦点的椭圆,其中1213c a==,.225b a c=-=∴.∴所求ABC△的重心的轨迹方程为221(0)16925x yy+=≠.注意:求轨迹方程时要注意轨迹的纯粹性与完备性.4、设Q是圆x2+y2=4上动点另点A(3。

0)。

线段AQ的垂直平分线l交半径OQ于点P(见图2-45),当Q点在圆周上运动时,求点P的轨迹方程.解:连接PA ∵l⊥PQ,∴|PA|=|PQ|.又P在半径OQ上.∴|PO|+|PQ|=2.由椭圆定义可知:P点轨迹是以O、A为焦点的椭圆.5、已知ΔABC 中,∠A,∠B,∠C 所对应的边为a,b,c,且a>c>b,a,c,b 成等差数列,|AB|=2,求顶点C 的轨迹方程解:|BC|+|CA|=4>2,由椭圆的定义可知,点C 的轨迹是以A 、B 为焦点的椭圆,其长轴为4,焦距为2, 短轴长为23,∴椭圆方程为13422=+y x , 又a>b, ∴点C 在y 轴左侧,必有x<0,而C 点在x 轴上时不能构成三角形,故x≠─2,因此点C 的轨迹方程是:13422=+y x (─2<x<0) 点评:本题在求出了方程以后讨论x 的取值围,实际上就是考虑条件的必要性6、一动圆与圆22650x y x +++=外切,同时与圆226910x y x +--=切,求动圆圆心M 的轨迹方程,并说明它是什么样的曲线。

解析:(法一)设动圆圆心为(,)M x y ,半径为R ,设已知圆的圆心分别为1O 、2O ,将圆方程分别配方得:22(3)4x y ++=,22(3)100x y -+=, 当M 与1O 相切时,有1||2O M R =+ ①当M 与2O 相切时,有2||10O M R =-②将①②两式的两边分别相加,得21||||12O M O M +=,即2222(3)(3)12x y x y +++-+= ③移项再两边分别平方得:222(3)12x y x ++=+ ④两边再平方得:22341080x y +-=,整理得2213627x y +=, 所以,动圆圆心的轨迹方程是2213627x y +=,轨迹是椭圆。

(法二)由解法一可得方程2222(3)(3)12x y x y +++-+=,由以上方程知,动圆圆心(,)M x y 到点1(3,0)O -和2(3,0)O 的距离和是常数12,所以点M 的轨迹是焦点为1(3,0)O -、2(3,0)O ,长轴长等于12的椭圆,并且椭圆的中心在坐标原点,焦点在x 轴上,∴26c =,212a =,∴3c =,6a =,∴236927b =-=,∴圆心轨迹方程为2213627x y +=。

xy1O2OP三、相关点法此方法适用于动点随已知曲线上点的变化而变化的轨迹问题.若动点P(x,y)随已知曲线上的点Q(x0,y0)的变动而变动,且x0、y0可用x、y表示,则将Q点坐标表达式代入已知曲线方程,即得点P的轨迹方程.这种方法称为相关点法(或代换法).1、已知抛物线y2=x+1,定点A(3,1)、B为抛物线上任意一点,点P在线段AB 上,且有BP∶PA=1∶2,当B点在抛物线上变动时,求点P的轨迹方程.分析解:设点P(x,y),且设点B(x0,y0)∵BP∶PA=1∶2,且P为线段AB的分点.2、双曲线2219xy-=有动点P,12,F F是曲线的两个焦点,求12PF F∆的重心M的轨迹方程。

解:设,P M点坐标各为11(,),(,)P x y M x y,∴在已知双曲线方程中3,1a b==,∴9110c=+=∴已知双曲线两焦点为12(10,0),(10,0)F F-,∵12PF F∆存在,∴1y≠由三角形重心坐标公式有11(10)103003xxyy⎧+-+=⎪⎪⎨++⎪=⎪⎩,即1133x xy y=⎧⎨=⎩。

∵1y≠,∴0y≠。

3、已知点P在双曲线上,将上面结果代入已知曲线方程,有22(3)(3)1(0)9xy y-=≠即所求重心M 的轨迹方程为:2291(0)x y y -=≠。

4、(2001,3)设P 为双曲线-42x y 2=1上一动点,O 为坐标原点,M 为线段OP 的中点,则点M 的轨迹方程是 。

解析:设P (x 0,y 0) ∴M (x ,y )∴2,200y y x x == ∴2x =x 0,2y =y 0∴442x -4y 2=1⇒x 2-4y 2=15、已知△ABC 的顶点(30)(10)B C -,,,,顶点A 在抛物线2y x =上运动,求ABC △的重心G 的轨迹方程.解:设()G x y ,,00()A x y ,,由重心公式,得003133x x y y -++⎧=⎪⎪⎨⎪=⎪⎩,,00323x x y y =+⎧⎨=⎩, ①∴. ② 又00()A x y ,∵在抛物线2y x =上,200y x =∴. ③将①,②代入③,得23(32)(0)y x y =+≠,即所求曲线方程是2434(0)3y x x y =++≠.四、参数法如果不易直接找出动点的坐标之间的关系,可考虑借助中间变量(参数),把x ,y 联系起来.若动点P (x ,y )的坐标x 与y 之间的关系不易直接找到,而动点变化受到另一变量的制约,则可求出x 、y 关于另一变量的参数方程,再化为普通方程.1、已知线段2AA a '=,直线l 垂直平分AA '于O ,在l 上取两点P P ',,使有向线段OP OP ',满足4OPOP '=·,求直线AP 与A P ''的交点M 的轨迹方程. 解:如图2,以线段AA '所在直线为x 轴,以线段AA '的中垂线为y 轴建立直角坐标系.设点(0)(0)P t t ≠,, 则由题意,得40P t ⎛⎫' ⎪⎝⎭,.由点斜式得直线AP A P '',的方程分别为4()()t y x a y x a a ta=+=--,.两式相乘,消去t ,得222244(0)x a y a y +=≠.这就是所求点M 的轨迹方程.评析:参数法求轨迹方程,关键有两点:一是选参,容易表示出动点;二是消参,消参的途径灵活多变.2、设椭圆中心为原点O ,一个焦点为F (0,1),长轴和短轴的长度之比为t .(1)求椭圆的方程;(2)设经过原点且斜率为t 的直线与椭圆在y 轴右边部分的交点为Q ,点P 在该直线上,且12-=t t OQOP ,当t 变化时,求点P 的轨迹方程,并说明轨迹是什么图形.解:(1)设所求椭圆方程为).0(12222>>b a b x a y =+由题意得⎪⎩⎪⎨⎧==-,,122t ba b a 解得⎪⎪⎩⎪⎪⎨⎧-=-=.11.122222t b t t a 所以椭圆方程为222222)1()1(t y t x t t =-+-. (2)设点),,(),,(11y x Q y x P 解方程组⎩⎨⎧==-+-,,)1()1(1122122122tx y t y t x t t 得⎪⎪⎩⎪⎪⎨⎧-=-=.)1(2,)1(212121t t y t x 由12-=t t OQ OP 和1x x OQ OP =得⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==,2,2,2222t y t x t y t x 或其中t >1.消去t ,得点P 轨迹方程为)22(222>=x y x 和)22(222-<-=x y x .其轨迹为抛物线y x 222=在直线22=x 右侧的部分和抛物线y x 222-=在直线22-=x 在侧的部分. 3、已知双曲线2222ny m x -=1(m >0,n >0)的顶点为A 1、A 2,与y 轴平行的直线l 交双曲线于点P 、Q 求直线A 1P 与A 2Q 交点M 的轨迹方程;解设P 点的坐标为(x 1,y 1),则Q 点坐标为(x 1,-y 1),又有A 1(-m ,0),A 2(m ,0),则A 1P 的方程为MPQA 2A 1o y xy =)(11m x mx y ++ ①A 2Q 的方程为 y =-)(11m x mx y -- ②①×②得 y 2=-)(2222121m x mx y --③又因点P 在双曲线上,故).(,12212221221221m x m n y n y m x -==-即代入③并整理得2222ny m x +=1 此即为M 的轨迹方程4、设点A 和B 为抛物线 y 2=4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线解法一 设A (x 1,y 1),B (x 2,y 2),M (x ,y ) (x ≠0) 直线AB 的方程为x =my +a由OM ⊥AB ,得m =-y x由y 2=4px 及x =my +a ,消去x ,得y 2-4p my -4pa =0所以y 1y 2=-4pa , x 1x 2=22122()(4)y y a p = 所以,由OA ⊥OB ,得x 1x 2 =-y 1y 2 所以244a pa a p =⇒= 故x =my +4p ,用m =-yx代入,得x 2+y 2-4px =0(x ≠0) 故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点解法二 设OA 的方程为y kx =,代入y 2=4px 得222(,)p p A k k则OB 的方程为1y x k =-,代入y 2=4px 得2(2,2)B pk pk - ∴AB 的方程为2(2)1ky x p k=--,过定点(2,0)N p , 由OM ⊥AB ,得M 在以ON 为直径的圆上(O 点除外) 故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点解法三 设M (x ,y ) (x ≠0),OA 的方程为y kx =,NAM Boyx代入y 2=4px 得222(,)p p A k k则OB 的方程为1y x k=-,代入y 2=4px 得2(2,2)B pk pk -由OM ⊥AB ,得M 既在以OA 为直径的圆 222220p p x y x y k k+--=……①上, 又在以OB 为直径的圆 222220x y pk x pky +-+=……②上(O 点除外),①2k ⨯+②得 x 2+y 2-4px =0(x ≠0)故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点5、过点A (-1,0),斜率为k 的直线l 与抛物线C :y 2=4x 交于P ,Q 两点.若曲线C 的焦点F 与P ,Q ,R 三点按如图顺序构成平行四边形PFQR ,求点R 的轨迹方程;解:要求点R 的轨迹方程,注意到点R 的运动是由直线l 的运动所引起的,因此可 以探求点R 的横、纵坐标与直线l 的斜率k 的关系.然而,点R 与直线l 并无直接联系.与l 有直接联系的是点P 、Q ,通过平行四边形将P 、Q 、R 这三点联系起来就成为解题的关键.由已知:(1)l y k x =+,代入抛物线C :y 2=4x 的方程,消x 得:204k y y k -+=∵ C l P 直线交抛物线于两点、Q ∴ 20410k k ⎧≠⎪⎨⎪∆=->⎩解得1001k k -<<<<或设1122(,),(,),(,)P x y Q x y R x y ,M 是PQ 的中点,则由韦达定理可知:122,2My y y k +==将其代入直线l 的方程,得2212M M x k y k ⎧=-⎪⎪⎨⎪=⎪⎩∵ 四边形PFQR 是平行四边形, ∴ RF 中点也是PQ 中点M .∴242342M F Mx x x k y y k ⎧=-=-⎪⎪⎨⎪==⎪⎩又(1,0)(0,1)k ∈-⋃ ∴ (1,)M x ∈+∞.∴ 点R 的轨迹方程为.1),3(42>+=x x y6、垂直于y 轴的直线与y 轴及抛物线y 2=2(x –1)分别交于点A 和点P ,点B 在y 轴上且点A 分OB 的比为1:2,求线段PB 中点的轨迹方程解:点参数法 设A(0,t),B(0,3t),则P(t 2/2 +1, t),设Q(x,y),则有⎪⎪⎩⎪⎪⎨⎧=+=+=+=t tt y t t x 223)2(4121222,消去t 得:y 2=16(x –21) 点评:本题采用点参数,即点的坐标作为参数在求轨迹方程时应分析动点运动的原因,找出影响动点的因素,据此恰当地选择参数7、过双曲线C :x 2─y 2/3=1的左焦点F 作直线l 与双曲线交于点P 、Q ,以OP 、OQ 为邻边作平行四边形OPMQ ,求M 的轨迹方程解:k 参数法 当直线l 的斜率k 存在时,取k 为参数,建立点M 轨迹的参数方程设M(x,y),P(x 1,y 1), Q(x 2,y 2),PQ 的中点N(x 0,y 0), l: y=k(x+2), 代入双曲线方程化简得:(3─k 2)x 2─4k 2x─4k 2─3=0,依题意k≠±3, ∴3─k 2≠0,x 1+x 2=4k 2/(3─k 2),∴x=2x 0=x 1 +x 2=4k 2/(3─k 2), y=2y 0=2k(x 0+2)=12k/(3─k 2),∴⎪⎪⎩⎪⎪⎨⎧-=-=22231234k ky k k x , 消去k 并整理,得点M 的轨迹方程为:1124)2(22=-+y x 当k 不存在时,点M (─4,0)在上述方程的曲线上,故点M 的轨迹方程为:1124)2(22=-+y x 点评:本题用斜率作为参数,即k 参数法,k 是常用的参数设点P 、Q 的坐标,但没有求出P 、Q 的坐标,而是用韦达定理求x 1+x 2,y 1+y 2,从整体上去处理,是处理解析几何综合题的常见技巧8、(06,20)已知点11(,)A x y ,22(,)B x y 12(0)x x ≠是抛物线22(0)y px p =>上的两个动点,O 是坐标原点,向量OA ,OB 满足OA OB OA OB +=-.设圆C 的方程为221212()()0x y x x x y y y +-+-+=(I) 证明线段AB 是圆C 的直径;(II)当圆C 的圆心到直线X-2Y=0的距离的最小值为255时,求p 的值。

相关文档
最新文档