数学建模实验答案_简单的优化模型
数学建模第二讲简单的优化模型
数学建模第二讲简单的优化模型数学建模是利用数学方法对实际问题进行建模、分析和求解的过程。
在实际问题中,常常需要针对一些指标进行优化,以达到最优的效果。
本讲将介绍一些简单的优化模型。
一、线性规划模型线性规划是一种重要的数学优化方法,广泛应用于工程、经济、管理等领域。
其数学模型可以表示为:\begin{aligned}&\text{max} \quad c^Tx \\&\text{s.t.} \quad Ax \leq b, \quad x \geq 0\end{aligned}\]其中,$x$为决策变量,$c$为目标函数系数,$A$为约束条件系数矩阵,$b$为约束条件右端向量。
线性规划模型指的是目标函数和约束条件都是线性的情况。
通过线性规划模型,可以求解出使得目标函数取得最大(或最小)值时的决策变量取值。
二、非线性规划模型非线性规划模型指的是目标函数或约束条件中存在非线性部分的情况。
非线性规划模型相对于线性规划模型更为复杂,但在实际问题中更为常见。
对于非线性规划问题,通常采用数值优化方法进行求解,如梯度下降法、牛顿法等。
这些方法通过迭代的方式逐步靠近最优解。
三、整数规划模型整数规划模型是指决策变量必须为整数的规划模型。
整数规划在实际问题中应用广泛,如物流配送问题、工程调度问题等。
整数规划模型通常难以求解,因为整数规划问题是一个NP难问题。
针对整数规划问题,常用的求解方法有枚举法、分支定界法、遗传算法等。
四、动态规划模型动态规划模型是指将问题划分为子问题,并通过求解子问题最优解来求解原问题最优解的方法。
动态规划通常用于求解具有重叠子问题和最优子结构性质的问题。
动态规划模型具有递推性质,通过递归或迭代的方式求解子问题的最优解,并保存中间结果,以提高求解效率。
五、模拟退火模型模拟退火是一种用来求解组合优化问题的随机优化算法。
模拟退火算法基于固体退火过程的模拟,通过温度的控制和随机跳出来避免陷入局部最优解。
数学建模知到章节答案智慧树2023年山东师范大学
数学建模知到章节测试答案智慧树2023年最新山东师范大学第一章测试1.人类研究原型的目的主要有()。
参考答案:优化;预测;评价;控制2.概念模型指的是以图示、文字、符号等组成的流程图形式对事物的结构和机理进行描述的模型。
()参考答案:对3.数学建模的全过程包括()。
参考答案:模型应用;模型检验;模型求解;模型建立4.下面()不是按问题特性对模型的分类。
参考答案:交通模型5.椅子放稳问题中,如果椅子是长方形的,则不能在不平的地面上放稳。
()参考答案:错第二章测试1.山崖高度的估计模型中,测量时间中需要考虑的时间包括()。
参考答案:物体下落的时间;声音返回的时间;人体的反应时间2.落体运动模型当阻力趋于零时变为自由落体模型。
()参考答案:对3.安全行车距离与()有关。
参考答案:车辆速度;车辆品牌;驾驶员水平4.人体反应时间的确定一般使用测试估计法进行。
()参考答案:对5.当车速为80-120千米/小时时,简便的安全距离判断策略是()。
参考答案:等于车速1.存贮模型的建模关键是()。
参考答案:一个周期内存贮量的确定2.下面对简单的优化模型的描述()是正确的。
参考答案:没有约束条件的优化模型3.商品生产费用因为数值太小,所以不需要考虑。
()参考答案:错4.同等条件下,允许缺货时的生产周期比不允许缺货时的生产周期()。
参考答案:偏大5.开始灭火后,火灾蔓延的速度会()。
参考答案:变小1.如果工人工作每小时的影子价格是2元,则雇佣工人每小时的最高工资可以是3元。
()参考答案:错2.下面关于线性规划的描述正确的是()。
参考答案:可行域是凸多边形;最优解可以在可行域内部取得;目标函数是线性的;约束条件是线性的3.在牛奶加工模型中,牛奶资源约束是紧约束。
()参考答案:对4.在牛奶加工模型中,A1的价格由24元增长到25元,应该生产计划。
()参考答案:错5.求整数规划时,最优解应该采用()获得。
参考答案:使用整数规划求解方法重新求解1.人口过多会带来()。
数学建模与数学实验:第八章 优化模型
u sin
kuy)) sec2 d
•
k 0
u
k
1 0
(cos
sec
sec0
) sec2
d
u 2k
(sec0
tan 0
2 sec0
tan 1
sec1
tan
0
ln
sec1 sec0
tan tan
1 0
)
•
•
• 1200
1000
800
600
•
•
8.2 最短路问题
• 8.2.1 图的基本概念
• 图中不含自己到自己的边,我们就称图为 简单图
• 图的邻接矩阵表示
•
• 例( 调度问题)为了向本市居民提供更好 的服务,市政府决定修建一个小型体育馆。 通过竞标,一家建筑公司获得了此项工程, 并且希望尽快完成工程。表8.1列出了工程中 的主要任务,时间以周计算。
(v2 2 u 2 )T122 2v2 (500 x)T12 [(500 x)2 380 2 ] 0
•
对于问题(2)
•
x 500 380 (u cos1 v(200 ))
•
u sin1
x 200 v u cos dy
0 u sin
•
dy u sindt
dt dy u sec2 sin d sec2 d
• 16. 考虑下图所描述的最短路问题。 • (1)写出从位置1到位置9的最短路的数学
模型 。
• (2)给出从位置1经过位置5到位置9的最 短路。
• (3)给出从位置1到位置9的最短路。
• 需要解决的问题是:
• (1)最早能在什么时候完成此工程?
• (2)市政府希望能够提前完工,为此市 政府决定工期每缩短一周,则向公司支付3 万元奖励。为缩短工期,公司需要雇用更 多工人,并租用更多设备(表中额外支出 部分)。如果公司希望获利最大,那么应 该在何时完成该工程?
数学建模简明教程课件:简单优化模型
由上面三个表达式可求得:
r
1
4a 4,
cos
r1
4
r 2
r1
22
这也是在能量消耗最小原则下血管分岔处几何形状的 结果.由这个结果得:
a4
cos 2a 4
r 若取a=1和a=2可得 r1 和θ的大致范围约为:
r
1.26
1.32
r1
37
49
23
3.模型检验
记动物大动脉和最细的毛细血管半径分别为rmax和rmin
时刻为t=t2,设t时刻森林烧毁面积为B(t),则造成损失的森
林烧毁面积为B(t2);单位时间烧毁的面积为 dB(t) (这 dt
也表示了火势蔓延的程度).在消防队员到达之前,即0≤t≤t1
期间,火势越来越大,从而
dB随(t )t的增加而增加 dt
;开始救火之后,即t1≤t≤t2期间,如果消防队员救火能力足
合来确定.式(3.3.2)还表明最优价格包括两部分:一部分为
成本的一半,另一部分与“绝对需求量”成正比,与市场
需求对价格的敏感系数成反比.
29
3.4 存贮模型
为了使生产和销售有条不紊地进行,一般的工商企业 总需要存贮一定数量的原料或商品,然而大量库存不但积 压了资金,而且会使仓库保管的费用增加.因此,寻求合理 的库存量乃是现代企业管理的一个重要课题.
min[订货费(或生产费)+存贮费+缺货损失费]
下面我们讨论几个重要的存贮模型.
31
3.4.1 不允许缺货的订货销售模型
为了使问题简化,我们作如下假设: (1)由于不允许缺货,所以规定缺货损失费为无穷大. (2)当库存量为零时,可立即得到补充. (3)需求是连续均匀的,且需求速度(单位时间的需求量) 为常数. (4)每次订货量不变,订货费不变. (5)单位存贮费不变.
数学建模简单的优化模型
q T1 时, t 0, 故有 Q rT1 . 在 T1 到 T 这段缺货时间内需求率
量,当 t
⑻
q
q 不变, t 按原斜率继续下降,
Q
由于规定缺货量需补足,所以在
R A r
T1
t T 时数量为 R 的产品立即达,
B
T
t
使下周期初的存储量恢复到Q. 与不容许缺货的模型相似,一个周期内的存储费是c2 乘以图中三角形 A 的面积,缺货损失费是 c3乘以三角形 面积B, 加上准备费,得一周期内的总费用为
2
⑷
而
2c1r Q rT . c2
将⑷代入到⑶式,得最小的平均费用为
⑸
C 2c1c2 r .
⑷,⑸被称为经济订货批量公式(EOQ公式).
⑹
结果解释 由⑷,⑸式可以看到,当 c1(准备费用)提高时,生 产周期和产量都变大;当 c2存储费增加时,生产周期和 产量都变小;当需求量 r 增加时,生产周期变小而产量 变大。这些结果都是符合常识的。
从而赢得竞争上的优势。
模型假设 为处理上的方便,假设模型是连续型的,即周期 T , 产量Q 均为连续变量. 1.每天的需求量为常数 r; 2.每次生产的准备费用为 c1 ,每天每件的存储费为 c2 ,
Q 3.生产能力无限大,即当存储量为零时, 件产品可以
立即生产出来.
建模 设存储量为 q t , q 0 Q. q t 以 r 递减,直到
0.1不变,研究 r 变化
40r 60 t r
r 1.5
⑶
t 是 r 的增函数,下图反映了t 与 r 的关系。
t 20
15
10
5
1.5
数学建模-简单的优化模型
3)f1(x)与B(t2)成正比,系数c1 (烧毁单位面积损失费) 4)每个队员的单位时间灭火费用c2, 一次性费用c3
火势以失火点为中心,
均匀向四周呈圆形蔓延,
假设1) 的解释
半径 r与 t 成正比
r
B
面积 B与 t2成正比, dB/dt与 t成正比.
模型建立
假设1) 假设2)
dB
b t1,
t t b
由模型决定队员数量x
问题
4 最优价格
根据产品成本和市场需求,在产销平
衡条件下确定商品价格,使利润最大
假设
1)产量等于销量,记作 x 2)收入与销量 x 成正比,系数 p 即价格 3)支出与产量 x 成正比,系数 q 即成本 4)销量 x 依赖于价格 p, x(p)是减函数
进一步设 x( p) a bp, a, b 0
C~
c1
c2
Q 2
T
c1 c2
rT 2 2
每天总费用平均 值(目标函数)
~ C(T ) C c1 c2rT
TT 2
模型求解
dC 0 dT 模型分析
求 T 使C(T ) c1 c2rT Min T2
T 2c1 rc2
Q rT 2c1r c2
c1 T,Q
模型应用
c2 T,Q
失火时刻t=0, 开始救火时刻t1, 灭火时刻t2, 画出时刻 t 森林烧毁面积B(t)的大致图形
分析B(t)比较困难, 转而讨论森林烧毁 速度dB/dt.
B B(t2)
0
t1
t2
t
模型假设
1)0tt1, dB/dt 与 t成正比,系数 (火势蔓延速度)
2)t1tt2, 降为-x (为队员的平均灭火速度)
3.数学建模之优化模型实例[1]
即按照模式1、2、3分别切割10、10、8根原料钢管,使用 原料钢管总根数为28根。第一种切割模式下一根原料钢管 切割成3根4米钢管和1根6米钢管;第二种切割模式下一根 原料钢管切割成2根4米钢管、1根5米钢管和1根6米钢管; 第三种切割模式下一根原料钢管切割成2根8米钢管。 如果充分利用LINGO建模语言的能力,使用集合和属性 的概念,可以编写以下LINGO程序,这种方法更具有一 般的通用性,并有利于输入更大规模的下料问题的优化模 型:
优化建模
模型建立 决策变量 由于不同切割模式不能超过3种,可以用xi 表 示按照第i种模式(i=1, 2, 3)切割的原料钢管的根数, 显然它们应当是非负整数。设所使用的第i种切割模式 下每根原料钢管生产4米长、5米长、6米长和8米长的 钢管数量分别为r1i, r2i, r3i, r4i(非负整数)。 决策目标 以切割原料钢管的总根数最少为目标,即目标为
优化建模
问题1)的求解
问题分析 首先,应当确定哪些切割模式是可行的。 所谓一个切割模式,是指按照客户需要在原料钢管上 安排切割的一种组合。例如,我们可以将19米长的钢 管切割成3根4米长的钢管,余料为7米显然,可行的 切割模式是很多的。 其次,应当确定哪些切割模式是合理的。通常假设一 个合理的切割模式的余料不应该大于或等于客户需 要的钢管的最小尺寸。在这种合理性假设下,切割 模式一共有7种,如表1所示。
Reduced Cost 1.000000 1.000000 1.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
优化建模
数学建模最优化模型
或[x,fval]= fminsearch(...) (4)[x,fval,exitflag]= fminunc(...);
或[x,fval,exitflag]= fminsearch (5)[x,fval,exitflag,output]= fminunc(...);
41m外点法sutm内点法障碍罚函数法1罚函数法2近似规划法罚函数法罚函数法基本思想是通过构造罚函数把约束问题转化为一系列无约束最优化问题进而用无约束最优化方法去求解这类方法称为序列无约束最小化方法简称为sumt法其一为sumt外点法其二为sumt内点法其中txm称为罚函数m称为罚因子带m的项称为罚项这里的罚函数只对不满足约束条件的点实行惩罚
曲线不一定通过那m个测量点,而要产生“偏差”.
将测量点沿垂线方向到曲线的距离的
y
平方和作为这种“偏差”的度量.即
2
x
S
m i 1
yi
a1
1 a3
a2 ln 1 exp
xi a4 a5
显然偏差S越小,曲线就拟合得越好,说明参数值就选择得越好,从而 我们的问题就转化为5维无约束最优化问题。即:
一下是否达到了最优。 (比如基金人投资)
• 在各种科学问题、工程问题、生产管理、社会 经济问题中,人们总是希望在有限的资源条件 下,用尽可能小的代价,获得最大的收获。
(比如保险)
数学家对最优化问题的研究已经有很多年的 历史。
以前解决最优化问题的数学方法只限于古典 求导方法和变分法(求无约束极值问题),拉格 朗日(Lagrange)乘数法解决等式约束下的条件 极值问题。
数学建模:第五章 运筹与优化模型
max c j x j
n
s.t aij x j bi
j 1
n
j 1
i 1.2 m
xj 0
j 1.2 n
8
二、整数规划模型
n min f c j x j j 1 n aij x j bi j 1 x j 0
对于线性规划:
22
二、货机装运
问题 某架货机有三个货舱:前仓、中仓、后仓。三个 货舱所能装载的货物的最大重量和体积都有限制,如表 3所示。并且,为了保持飞机的平衡,三个货舱中实际 装载货物的重量必须与其最大容许重量成比例。
重量限制 (吨)
前仓 中仓 后仓 10 16 8 6800 8700 5300
体积限制 (米3)
5
解:设x ij 表示 Ai (i=1.2)煤厂提供给 B j (j=1.2.3)居民区的煤量; f表示总运输费 此问题归结为:
min f 10 x11 5 x12 6 x13
s.t
x11 x12 x13 60 x21 x22 x23 100 x11 x21 50
s.t gi ( X ) 0
hi ( X ) 0
(1)
(2)
(3)
i 1,2,, m .
j 1,2,, l .
X D
其中X ( x1 , x2 ,, xn )T , D R n为可行集
f(X)为目标函数,(2)、(3)为约束条件, (2)为不等式约束,(3)为等式约束; 若只有(1)称为无约束问题。
max f x1 x2 15 x1 12 x2 85 如 5 x1 11 x , x 0 1 2 x1 , x2 为整数
数学建模作业---优化模型
P104页,复习题题目:考虑以下“食谱问题":某学校为学生提供营养套餐,希望以最小的费用来满足学生对基本营养的需求按照营养学家的建设,一个人一天要对蛋白质,维生素A和钙的需求如下:50g蛋白质、4000IU维生素A和1000mg的钙,我们只考虑以不食物构成的食谱:苹果,香蕉,胡萝卜,枣汁和鸡蛋,其营养含量见下表。
制定食谱,确定每种食物的用量,以最小费用满足营养学家建议的营养需求,并考虑:(1)对维生素A的需求增加一个单位时是否需要改变食谱?成本增加多少?如果对蛋白质的需求增加1g呢?如果对钙的需求增加1mg呢?(2)胡萝卜的价格增加Ⅰ角时,是否需要改变食谱?成本增加多少?问题分析:(1)此优化问题的目标是使花费最小.(2)所做的决策是选择各种食物的用量,即用多少苹果,香蕉,胡萝卜,枣汁,鸡蛋来制定食谱。
(3)决策所受限制条件:最少应摄入的蛋白质、维生素和钙的含量(4)设置决策变量:用x1表示苹果的个数、x2表示香蕉的个数、x3表示胡萝卜的个数、x4表示枣汁的杯数量、x5表示鸡蛋的个数(5)x1个苹果花费10·x1角x2个香蕉花费15·x2角x3个胡萝卜花费5·x3角x4杯枣汁花费60·x4角x5个鸡蛋花费8·x5角目标函数为总花费金额:z=10·x1+15·x2+5·x3+60·x4+8·x5 (角)(6)约束条件为:最少摄入蛋白质的含量:0.3x1+1.2x2+0.7x3+3.5x4+5.5x5≥50最少摄入维生素A的含量:73x1+96x2+20253x3+890x4+279x5≥4000最少摄入钙的含量:10x1+15x2+5x3+60x4+8x5≥1000非负约束:x 1,x 2,x 3,x 4,x 5≥0优化模型:minz =10x 1+15x 2+5x 3+60x 4+8x 5s.t. 0.3x 1+1.2x 2+0.7x 3+3.5x 4+5.5x 5≥5073x 1+96x 2+20253x 3+890x 4+279x 5≥4000 9.6x 1+7x 2+19x 3+57x 4+22x 5≥1000 x 1,x 2,x 3,x 4,x 5≥0由线性规划模型的定义,容易得到线性规划的性质:1. 比例性 每个决策变量的对目标函数的“贡献”与该决策变量的取值成正比;每个决策变量对每个约束条件右端项的“贡献”,与该决策变量的取值成正比.2. 可加性 各个决策变量对目标函数的“贡献”,与其他决策变量的取值无关;各个决策变量对每个约束条件右端项的“贡献”,与其他决策变量的取值无关.3. 连续性 每个决策变量的取值是连续的. 考察本题,实际上隐含下面的假设 :1.购买苹果、香蕉、胡萝卜、枣汁、鸡蛋每个(杯)的花费是与各自的用量无关的常数;苹果、香蕉、胡萝卜、枣汁、鸡蛋每个(杯)所包含的蛋白质、维生素、钙的含量是与各自的用量无关的常数.(线性规划性质1—比例性)2.购买苹果、香蕉、胡萝卜、枣汁、鸡蛋每个(杯)的花费是与它们相互间用量无关的常数;苹果、香蕉、胡萝卜、枣汁、鸡蛋每个(杯)所包含的蛋白质、维生素A 、钙的含量是与它们相互间的用量无关的常数. (线性规划性质2—可加性)3. 购买苹果、香蕉、胡萝卜、枣汁、鸡蛋的数量都是实数. (线性规划性质3—连续性) 模型求解:(决策变量是5维的,不适用图解法求解模型)软件求解:线性规划模型:min z=10x1+15x2+5x3+60x4+8x5s.t. 0.3x1+1.2x2+0.7x3+3.5x4+5.5x5≥5073x1+96x2+20253x3+890x4+279x5≥40009.6x1+7x2+19x3+57x4+22x5≥1000x1,x2,x3,x4,x5≥0模型全局最优解:(Global optimal solution)x1=0x2=0x3=49.38272x4=0x5=2.805836z的最优值为269.3603角用LINGO 软件求解,得到如下输出:结果分析:1. 3个约束条件的右端项可视为3种资源:蛋白质含量、维生素A 含量、钙含量.LINGO 的输出项Row Slack or Surplus ,给出了3种资源在最优解下的剩余.2.目标函数可视为“支出(成本)”,紧约束的“资源”增加1单位时,“支出”的增加由LINGO 的输出项 Dual Price 给出。
2016数学建模作业
说明:本电子版题目与教材原题不符者以教材为准,教材上没有的做了会适当加分。
教材上有而本电子版题目没有原题的,请同学们自行录入原题。
所有基本题目解答过程均须不少于姜启源先生《数学模型第三版习题参考解答》之答案长度!第1章 数学模型引论1.1 在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何?(稳定的椅子问题见姜启源《数学模型》第6页)(小型题目模版)解:模型分析(黑体五号字):……宋体五号字 模型假设与符号说明(黑体五号字):……宋体五号字 模型建立:……宋体五号字 模型求解:……宋体五号字 程序源代码(如果需要编程):……宋体五号字 程序运行结果(如果有图形或数据):……宋体五号字 模型讨论:……宋体五号字1.2 在商人们安全过河问题中,若商人和随从各四人,怎样才能安全过河呢?一般地,有n 名商人带n 名随从过河,船每次能渡k 人过河,试讨论商人们能安全过河时,n 与k 应满足什么关系。
(商人们安全过河问题见姜启源《数学模型》第7页)1.3 人、狗、鸡、米均要过河,船需要人划,另外至多还能载一物,而当人不在时,狗要吃鸡,鸡要吃米。
问人、狗、鸡、米怎样过河?1.4 有3对阿拉伯夫妻过河,船至多载两人,条件是根据阿拉伯法典,任一女子不能在其丈夫不在的情况下与其他的男子在一起。
问怎样过河?1.5 如果银行存款年利率为5.5%,问如果要求到2010年本利积累为100000元,那么在1990年应在银行存入多少元?而到2000年的本利积累为多少元?1.6 某城市的Logistic 模型为2610251251N N dt dN ⨯-=,如果不考虑该市的流动人口的影响以及非正常死亡。
设该市1990年人口总数为8000000人,试求该市在未来的人口总数。
当∞→t 时发生什么情况。
1.7 假设人口增长服从这样规律:时刻t 的人口为)(t x ,最大允许人口为m x ,t 到t t ∆+时间内人口数量与)(t x x m -成正比。
优化类数学建模及求解
优化类数学建模及求解问题描述:假设有一个大型商场,为了最大化利润,商场希望能够合理安排商品的销售时间以及每种商品的折扣幅度,以吸引更多的顾客前来购物。
商场现有n种商品,每种商品每天的销售量受多种因素影响,例如天气、节假日、竞争对手等。
为了优化销售策略,商场希望能够找到一种最优的商品销售时间和折扣策略。
模型假设:1. 假设每个商品的销售时间只有一种,且每天只能销售一次。
2. 假设每个商品每天的销售量是固定的,不受其他商品的影响。
3. 假设每种商品的销售价格和折扣幅度可以调整。
4. 假设商场的成本与销售量成正比,且折扣越多,成本越高。
模型建立:设第i种商品在第j天销售时的销售量为Xi_j,折扣幅度为Dj。
由于每种商品每天的销售量是固定的,因此可以根据历史数据估计出每个商品每天的销售量。
假设每个商品的进货成本为Ci,销售价格为Pi,折扣后的销售价格为P_Dj。
根据商场的成本与销售量成正比,可得到以下方程:C_i * Xi_j + D_j * P_Dj = Y_j其中Y_j表示第j天的总销售额。
为了最大化利润,商场的目标函数可以设定为总销售额的函数,即:Maximize: Σ_j Y_jSubject to: D_j >= Dj_min (最小折扣)D_j <= Dj_max (最大折扣)P_Dj >= P_min (最低销售价格)P_Dj <= P_max (最高销售价格)其中Dj_min和Dj_max分别表示折扣的下限和上限,P_min和P_max分别表示最低和最高销售价格。
此外,还需要满足一些约束条件,例如每种商品的销售时间和折扣策略必须是唯一的,不能重复使用同一策略。
模型求解:由于这是一个复杂的优化问题,需要使用高级的数学建模方法进行求解。
可以使用一些高级的优化软件包(如LINGO、CVX等)进行求解。
在求解过程中,需要将历史数据输入到软件中,并设置好约束条件和目标函数。
数学建模之优化模型
数学建模之优化模型在我们的日常生活和工作中,优化问题无处不在。
从如何规划一条最短的送货路线,到如何安排生产以最小化成本并最大化利润,从如何分配资源以满足不同的需求,到如何设计一个系统以达到最佳的性能,这些都涉及到优化的概念。
而数学建模中的优化模型,就是帮助我们解决这些复杂问题的有力工具。
优化模型,简单来说,就是在一定的约束条件下,寻求一个最优的解决方案。
这个最优解可以是最大值,比如利润的最大化;也可以是最小值,比如成本的最小化;或者是满足特定目标的最佳组合。
为了更好地理解优化模型,让我们先来看一个简单的例子。
假设你有一家小工厂,生产两种产品 A 和 B。
生产一个 A 产品需要 2 小时的加工时间和 1 个单位的原材料,生产一个 B 产品需要 3 小时的加工时间和 2 个单位的原材料。
每天你的工厂有 10 小时的加工时间和 8 个单位的原材料可用。
A 产品每个能带来 5 元的利润,B 产品每个能带来 8 元的利润。
那么,为了使每天的利润最大化,你应该分别生产多少个A 产品和 B 产品呢?这就是一个典型的优化问题。
我们可以用数学语言来描述它。
设生产 A 产品的数量为 x,生产 B 产品的数量为 y。
那么我们的目标就是最大化利润函数 P = 5x + 8y。
同时,我们有加工时间的约束条件 2x +3y ≤ 10,原材料的约束条件 x +2y ≤ 8,以及 x 和 y 都必须是非负整数的约束条件。
接下来,我们就可以使用各种优化方法来求解这个模型。
常见的优化方法有线性规划、整数规划、非线性规划、动态规划等等。
对于上面这个简单的例子,我们可以使用线性规划的方法来求解。
线性规划是一种用于求解线性目标函数在线性约束条件下的最优解的方法。
通过将约束条件转化为等式,并引入松弛变量,我们可以将问题转化为一个标准的线性规划形式。
然后,使用单纯形法或者图解法等方法,就可以求出最优解。
在这个例子中,通过求解线性规划问题,我们可以得到最优的生产方案是生产 2 个 A 产品和 2 个 B 产品,此时的最大利润为 26 元。
数学建模案例分析--最优化方法建模7习题六
习题六1、某工厂生产四种不同型号的产品,而每件产品的生产要经过三个车间进行加工,根据该厂现有的设备和劳动力等生产条件,可以确定各车间每日的生产能力(折合成有效工时来表示)。
现将各车间每日可利用的有效工时数,每个产品在各车间加工所花费的工时数及每件产品可获得利润列成下表:试确定四种型号的产品每日生产件数,,,,4321x x x x 使工厂获利润最大。
2、在车辆拥挤的交叉路口,需要合理地调节各车道安置的红绿灯时间,使车辆能顺利、有效地通过。
在下图所示的十字路口共有6条车道,其中d c b a ,,,是4条直行道,f e ,是两条左转弯道,每条车道都设有红绿灯。
按要求制定这6组红绿灯的调节方案。
首先应使各车道的车辆互不冲突地顺利驶过路口,其次希望方案的效能尽量地高。
即各车道总的绿灯时间最长,使尽可能多的车辆通过。
da bc提示:将一分钟时间间隔划分为4321,,,d d d d 共4个时段,()()()f J b J a J ,,, 为相应车道的绿灯时间。
()d J3、某两个煤厂A 和B 每月进煤量分别为60吨和100吨,联合供应三个居民区C 、D 、E 。
这三个居民区每月对煤的需求量依次分别是50吨、70吨、40吨。
煤厂A 与三个居民区C 、D 、E 的距离分别为10公里、5公里和6公里。
煤厂B 与三个居民区C 、D 、E 的距离分别为4公里、8公里和12公里。
问如何分配供煤量可使运输总量达到最小?4、某工厂制造甲、乙两种产品,每种产品消耗煤、电、工作日及获利润如下表所示。
现有煤360吨,电力200KW.h ,工作日300个。
请制定一个使总利润最大的生产计划。
5、棉纺厂的主要原料是棉花,一般要占总成本的70%左右。
所谓配棉问题,就是要根据棉纱的质量指标,采用各种价格不同的棉花,按一定的比例配制成纱,使其既达到质量指标,又使总成本最低。
棉纱的质量指标一般由棉结和品质指标来决定。
这两项指标都可用数量形式来表示。
数学建模案例分析--最优化方法建模5产品试验与设计
*
克) , Q j 的供应量不超过 r j , (i 1,2,, n, j 1,2,, m) ,试确定各种饲料的产量及其原料配 比,使工厂的利润最大。 决策变量是各种饲料的产量及其中各原料所占百分比。记 Pi 的产量为 yi , Q j 在 Pi 中的比例 为 xij 。目标函数是工厂的利润,即总收入与总成本之差。 Pi 的收入为 pi yi ,而 Q j 在 Pi 中的成本 为 q j yi xij ,于是利润为
x
j 1
m
ij
1,
i 1,, n
(5)
yi 0, i 1,2,, n
问题归结为在条件(2)~(6)下求 yi , xij ,使(1)式给出的 Z 最大。
(6)
例12 在汽轮机转子叶片的安装设计中有如下的问题:由于考虑到共振等因素,各个叶片的质量 和形式需要微小的差别。这样当转子转动时,各个叶片产生的惯性离心力的大小就有差异,以至 形成总的偏离轴心的作用力。设计中要将各叶片适当排列,让不同方向的离心力尽量抵消,使总 的离心力达到最小。由于叶片数量很多(如一百以上) ,经验方法难以奏效,所以希望用建模方法 找到最佳的叶片排列方案。 假设有 n 个叶片,已知它们转动时产生的离心力的大小为 r j , ( j 1,2,, n) ,转子的一周分 为 n 等分,各分点表示安装叶片的位置,其幅角为
k 2k / n, (k 1,2,, n) ,于是当叶片 j
安装在位置 k 上时,产生的离心力(向量)可用复数
f ( j, k ) rj eik , eik cosk i sin k
表示。叶片的安装方案可以看作一个任务分派问题,我们引入0—1变量
1 , 叶片j安装在位置k x jk 0 , 否则
优化模型
MIN 66.8x11+75.6x12+87x13+58.6x14 +… … +67.4x51+71 x52+83.8x53+62.4x54 SUBJECT TO x11+x12+x13+x14 <=1 …… x41+x42+x43+x44 <=1 x11+x21+x31+x41+x51 =1 …… x14+x24+x34+x44+x54 =1 END INT 20
最优化模型
主讲人
张兴永
1
最优化模型
在数学建模竞赛中,经常会遇到有关最优化问题, 下面介绍几个简单的最优化模型。 最优化模型是在解决实际问题中应用最广泛的模 型之一,它涉及面广、内容丰富,且随着计算机的发 展,解决问题的范围越来越宽。一般地,人们做的任 何一件事情,小的如日常生活、学习工作等,大的如 工农业生产,国防建设及科学研究等,为了达到预先 设想的目的,都要做计划,选择好的方案,进行优化 处理。最优化模型主要有线性规划模型、整数规划模 型、非线性规划模型、动态规划模型等。
这样把多目标规划变成一个目标的线性规划,下 面给出三个单目标优化模型:
24
1、在实际投资中,投资者承受风险的程度不一样, 若给定风险一个界限a,使最大的一个风险qixi/M≤a, 可找到相应的投资方案。 模型1 固定风险水平,优化收益 目标函数:Q=max (ri pi ) xi i 0 约束条件: q x ≤a
9
问题二 混合泳接力队的选拔
5名候选人的百米成绩
蝶泳 仰泳 蛙泳 自由泳 甲 1’06”8 1’15”6 1’27” 58”6 乙 57”2 1’06” 1’06”4 53” 丙 1’18” 1’07”8 1’24”6 59”4 丁 1’10” 1’14”2 1’09”6 57”2 戊 1’07”4 1’11” 1’23”8 1’02”4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验03 简单的优化模型(2学时)
(第3章简单的优化模型)
1. 生猪的出售时机p63~65
目标函数(生猪出售纯利润,元):
Q(t) = ( 8 – g t )( 80 + rt ) – 4t–640
其中,t≥0为第几天出售,g为每天价格降低值(常数,元/公斤),r为每天生猪体重增加值(常数,公斤)。
求t使Q(t)最大。
1.1(求解)模型求解p63
(1) 图解法
绘制目标函数
Q(t) = ( 8 – g t )( 80 + rt ) – 4t–640
的图形(0 ≤t≤ 20)。
其中,g=0.1, r=2。
从图形上可看出曲线Q(t)的最大值。
(2) 代数法
对目标函数
Q(t) = ( 8 – g t )( 80 + rt ) – 4t–640
用MATLAB求t使Q(t)最大。
其中,r, g是待定参数。
(先对Q(t)进行符号函数求导,对导函数进行符号代数方程求解)
然后将代入g=0.1, r=2,计算最大值时的t和Q(t)。
要求:
①编写程序绘制题(1)图形。
②编程求解题(2).
③对照教材p63相关内容。
相关的MATLAB函数见提示。
★要求①的程序和运行结果:
程序:
t=0:1:30;
g=0.1;r=2;
Q=(8-g.*t).*(80+r.*t)-4.*t-640;
plot(t,Q)
图形:
★要求②的程序和运行结果:
程序:
syms g t r ;
Q=(8-g.*t).*(80+r.*t)-4.*t-640;
q=diff(Q,t);
q=solve(q);
g=0.1;r=2;
tm=eval(q)
Q=(8-g.*tm).*(80+r.*tm)-4.*tm-640
运行结果:
1.2(编程)模型解的的敏感性分析p63~64
对1.1中(2)所求得的符号表达式t(r,g),分别对g和r进行敏感性分析。
(1) 取g=0.1,对t(r)在r=1.5:0.1:3上求r与t的关系数据,绘制r与t的关系图形(见教材p65)。
(2) 取r=2,对t(g)在g=0.06:0.01:0.15上求g与t的关系数据,绘制g与t 的关系图形(见教材p65)。
要求:分别编写(1)和(2)的程序,调试运行。
★给出(1)的程序及运行结果:
程序:
syms g t r ;
Q=(8-g.*t).*(80+r.*t)-4.*t-640;
q=diff(Q,t);
q=solve(q);
g=0.1;r=1.5:0.1:3;
t=eval(q);
plot(r,t)
[r;t]
数值结果:
图形结果:
★给出(2)的程序及运行结果:程序:
syms g t r;
Q=(8-g.*t).*(80+r.*t)-4.*t-640; q=diff(Q,t);
q=solve(q);
r=2;g=0.06:0.01:0.15;
t=eval(q);
plot(g,t)
[g;t]
数值结果:
图形结果:
2.(编程)冰山运输模型求解p77~81
按函数调用顺序。
(1) 每立方米水所需费用
)
,(),(),(000V u W V u S V u Y = u 为船速,V 0为冰山的初始体积。
(2) 冰山运抵目的地后可获得水的体积
3
030133.4(,)(,)34T t V W u V r t u ππ=⎫=⎪⎪⎭∑ 400T u
=为冰山抵达目的地所需天数。
(3) 第t 天冰山球面半径融化速率:
3100015610(104)06(,)10000.2(10.4),6.u .u t,t u r t u u t u -⎧⨯+≤≤⎪⎪=⎨⎪+>⎪⎩
(4) 运送冰山费用
0011400()151(,)7.2(6)3lg (,)T t t k f V S u V u u r k u u u ==⎛⎫⎫=++- ⎪⎪⎪ ⎪⎭⎝⎭
∑∑ 400T u
=为冰山抵达目的地所需天数。
(5) 船的日租金
⎪⎩
⎪⎨⎧≤<≤<⨯⨯≤=7
06655
001010,0.8100105,2.6105,0.4)(V V V V f
参照教材p81的表4,求不同V 0,u 下每立方米水的费用。
下面是不完整的MATLAB 程序:
要求:
①编写所要求的程序。
②运行。
注:第一个函数为主函数,没有输入参数,可直接执行
③结果与教材p81表4比较。
★完整的程序:
end
★程序运行结果:
附1:实验提示
第1.1题
MATLAB函数:@,fplot,syms,sym,diff,solve,eval
附2:第3章简单的优化模型3.2 生猪的出售时机
3.7 冰山运输。