第六章排队论PPT课件
《运筹学排队论》课件
合理分配服务器资源,以提高系统的吞吐量 和响应时间。
最优服务策略问题
总结词
研究如何制定最优的服务策略,以最大化系 统的性能指标。
服务顺序策略
确定服务器的服务顺序,以最小化顾客的等 待时间和平均逗留时间。
服务中断策略
在服务器出现故障时,选择最优的服务中断 策略,以最小化对顾客的影响。
服务时间分布策略
等待队长
指在某一时刻,正在等待服务的顾客总数。
逗留时间与等待时间
逗留时间
指顾客从到达系统到离开系统所经过的时间 。包括接受服务和等待的时间。
等待时间
指顾客到达系统后到开始接受服务所经过的 时间。
忙期与空闲期
要点一
忙期
指系统连续有顾客到达并接受服务的时间段。在这个时间 段内,系统内的顾客数可能会超过系统的容量。
03
02
交通运输
分析铁路、公路、航空等交通系统 的调度和运输效率。
计算机科学
研究计算机网络、云计算、分布式 系统的性能和优化。
04
排队论的基本概念
服务器
提供服务的设施或 人员。
等待时间
顾客到达后到开始 接受服务所需的时 间。
顾客
需要接受服务的对 象。
队列
顾客按到达顺序等 待服务的排列。
服务时间
顾客接受服务所需 的时间。
《运筹学排队论》ppt课件
目录
• 排队论简介 • 排队系统的组成 • 排队模型的分类 • 排队模型的性能指标 • 排队论的优化问题 • 排队论的发展趋势与展望
01
排队论简介
排队论的定义与背景
1
排队论(Queueing Theory)是运筹学的一个重 要分支,主要研究排队系统(Queueing Systems)的行为特性。
排队论课件
③服务方式(输出)指同一时刻有多少服务台可接纳顾客, 每一顾客服务了多少时间。每次服务可以接待单个顾客, 也可以成批接待,例如公共汽车一次就装载大批乘客。 服务时间的分布主要有如下几种: • 负指数分布:即各顾客的服务时间相互独立,服从相 同的负指数分布(看病); • 爱尔朗分布:即各顾客的服务时间相互独立,具有相 同的爱尔朗分布。
• 定长分布:每一顾客的服务时间都相等(发放物品);
为叙述方便,引用下列符号,令
• M代表泊松分布输入或负指数分布服务;
• D代表定长分布输入或定长分布服务; • Ek代表爱尔朗分布的输入或服务。 于是泊松输入、负指数分布服务,N个服务台的排队系 统可以写成M/M/N; • 泊松输入、定长服务、单个服务台的系统可以写成M/D/1。 • 同样可以理解M/ Ek /N,D/M/N…等符号的含义。 • 如果不附其它说明,则这种符号一般都指先到先服务, 单个服务通道的等待制系统。
多通道服务方式
(1)系统中没有车辆的概率 为: 1 P (0) N 1 k N N !(1 / N ) k 0 k! ( 2)系统中有 k个车辆的概率: k .P (0), k! P(k) k P (0), kN N! N k N k N
1
5 5 10s / 辆
两种系统比较
4个M/M/1
平均车辆数 平均排队长 平均耗时 平均等候时间 20 16.68 30 25
M/M/4
6.6 3.3 10 5
设顾客平均到达率为,则到达的平均时距为1/ 。排队从单通道通过接受 服务的平均服务率为,则平均服务时间为1/ 。比率 / 叫做服务强度 或交通强度,可以确定系统的状态。所谓状态,指的是排队系统的顾客数。 1)在系统中没有顾客的概率为P(0) 1 2)在系统中有n个顾客的概率为P (n) n (1 ) 3)系统中的平均车辆数n 4)系统中的平均方差 2 5)平均排队长度q n 6)非零平均排队长度q w 1 1 n
排队论(脱产)PPT课件
等待制与损失制
等待制
顾客等待时间有限,超过一定时 间仍无法接受服务则离开;或者 顾客可以无限等待,直到获得服 务。
损失制
顾客到达时若无法立即接受服务 ,则离开系统。
稳态与瞬态
稳态
排队系统在长时间后达到平衡状态,顾客到达和服务的时间间隔均服从某一概 率分布。
瞬态
排队系统未达到平衡状态,顾客到达和服务的时间间隔不服从概率分布。
WENKU DESIGN
WENKU DESIGN
2023-2026
ONE
KEEP VIEW
排队论(脱产)ppt课件
WENKU DESIGN
WENKU DESIGN
WENKU
REPORTING
https://
CATALOGUE
目 录
• 引言 • 排队论的基本概念 • 常见的排队模型 • 排队论中的性能指标 • 排队论的应用实例 • 总结与展望
PART 04
排队论中的性能指标
队长与等待队长
队长
指在任意时刻队列中的顾客数。它通常用来衡量系统的负载状况。队长是描述系 统状态的重要参数,其分布情况决定了系统的性质。
等待队长
指在队列中等候的顾客数。等待队长是衡量系统性能的重要指标,特别是在处理 能力有限的情况下。等待队长的大小直接影响到顾客的等待时间和系统的效率。
交通系统
地铁调度
地铁调度中心需要确保列车按时到达车 站并保持适当的间隔。排队论可用于分 析列车的到达时间和等待时间,优化列 车的调度和运行计划,提高地铁系统的 运输效率和安全性。
VS
机场安检
机场安检是保证乘客安全的重要环节,但 安检队伍过长或等待时间过长会影响乘客 的满意度和机场的运行效率。排队论可用 于分析安检队伍的长度和等待时间,优化 安检流程和资源配置,提高机场的运行效 率和乘客满意度。
排队理论模型ppt课件
排队论是20世纪初由丹麦数学家Erlang应用数学 方法在研究电话话务理论过程中而发展起来的一门学 科,排队论也称随机服务系统理论,它涉及的是建立 一些数学模型,以对随机发生的需求提供服务的系统 预测其行为,它已应用于电讯、纺织、矿山、交通、 机器维修,可靠性,计算机设计和军事领域,都已取 得了显著的成绩。
1 n k
(9.3)
当S为可数状态集时(9.2)式变为
n01
pn1 p0
( n 1 p1
n ) pn
0
p n1 n1
0
从而可以求得概率分布列 {pn}
n1
(9.4
(五)、典型排队模型和理论结果
下面给出满足生灭过程典型排队M/M/1与M/M/C的 结果
(一)单服务台等待制M/M/1排队模型
1.M/M/1/ 顾客来到的时间间隔 服从参数 的
负指数分布,服务员为顾客服务时间 服从参数
的指数分布,且 与 相互独立,1个服务台,系
统容量为 的等待制排队模型。
可理解为:单位时间平均到达的顾客数-----平均到 达率
可理解为:单位时间平均服务完的顾客数----平均 服务率
(1)顾客输入过程 {N(t):t 0},( N(0) 0)是平均率为
3.排队系统的主要指标 研究排队问题的目的,是研究排队系统的运行效率估计
服务质量,确定系统参数最优值,以决定系统的结构是否 合理,设计改进措施等,所以必须确定用来判断系统运行 优劣的基本数量指标,这些数量指标通常是
(1)队长:是指系统中顾客(包括排队等待和正在接受服务 的)的数目,它的期望值为 Ls ;排队长度则仅指在队列中 排队等待的顾客数,其期望记为 Lq. 系统中的顾客数
煤矿 火车 煤仓
第六章排队论-PPT精选
统时,所有服务台都被先到的顾客占用, 那么他们就自动离开系统永不再来。
2.服务规则
(2)等待制 这是指当顾客来到系统时,所有服务台
都不空,顾客加入排队行列等待服务。等待制中,服务 台在选择顾客进行服务时常有如下四种规则: 1)先到先服务。按顾客到达的先后顺序对顾客进行服务。 2)后到先服务。 3)随机服务。即当服务台空闲时,不按照排队序列而随 意指定某个顾客接受服务。 4)优先权服务。
②排队等待的顾客数(排队长)的期望值Lq; ③顾客在系统中全部时间(逗留时间)的期望值W;
④顾客排队等待时间的期望值Wq。
第二节 M/N/1模型
模型的条件是: 1、输入过程――顾客源是无限的,顾客到
达完全是随机的,单个到来,到达过程 服从普阿松分布,且是平稳的; 2、排队规则――单队,且队长没有限制, 先到先服务; 3、服务机构――单服务台,服务时间的长 短是随机的,服从相同的指数分布 。
第六章 排 队 论
随机服务系统理论
第六章 排 队 论
排队系统描述 基本概念 M / M / 1 模型 M / M / S 模型
第一节 排队系统描述
顾客---要求服务的对象统称为“顾 客”
服务台---把提供服务的人或机构称 为“服务台”或“服务员”
各种形式的排队系统
各种形式的排队系统
(2)其他常用数量指标
Pn PNn:稳态系统任一 为n时 的刻 概状
特别n= 当0时(系统中0顾 )客 ,数为 P0即稳态系统所 全有 部服 空务 闲台 的概
(2)其他常用数量指标
ρ ——服务强度,即每个服务台单位时间内的平 均服务时间,—般有ρ =λ /(sμ ),这是衡量 排队系统繁忙程度的重要尺度,当ρ 趋近于0时, 表明对期望服务的数量来说,服务能力相对地 说是很大的。这时,等待时间一定很短,服务 台有大量的空闲时间;如服务强度ρ 趋近于1, 那么服务台空闲时间较少而顾客等待时间较多。 我们一般都假定平均服务率μ 大于平均到达率 λ ,即λ /μ <1,否则排队的人数会越来越多, 以后总是保持这个假设而不再声明。
排队论及应用举例PPT精选文档
0.78
2.0
0.14
0.86
5
5. 第二种情况:泊松分布。主要针 对某一时段T内有n人到达的概 率,到达过程是随机的,则服 从泊宋分布。如图5-5所示。计 算公式为:
时间T内
有n人到
.224
达的概率
.20 .149
期望值 3
.224
方差
.168
平滑曲线
PT(n)(T)nn!eT
(6-2)
.10
.102
2. 无限总体。对于服务系统来说顾客数量足够大,由于人数增减而引起的总体规模的变化不会对 系统的概率分布产生显著的影响。
3. 顾客到达的分布。这是一个到达率或单位时间到达数的问题。固定到达的分布呈周期性的,即 相继到达的两个顾客之间的时间间隔几乎相同。在生产系统中,通常运用一些技术控制顾客在固 定的时间间隔内到达。多数情况下,顾客的到达呈随机分布。
1
一、排队问题的经济含义
在日常经济生活中,经常遇到排队现象,如:在超市等待结帐、工厂中等待加工 的工件或待修理的机器、开车上班等,排队论是运作管理中重要的方法,它是计 划、工作设计、存货控制以及其他问题的基础。
每一个排队事例的核心问题就是对不同因素作权衡决策,管理者必须衡量为提供 更快捷服务而增加的成本和等待费用之间的关系。
表的第二栏是下一个到达的顾客时间间隔超
过 t分钟的概率;第三栏为下一个顾客到
达时间小于 t 分钟的概率。
(1)
t分钟
0 0.5 1.0
(2)
(3)
下一个顾客将在 大于t分钟内 到达的概率
下一个顾客将在小于t 分钟内到达的概率 (3)=(1)-(2)
1.00
0
0.61
0.39
排队论课件
,
令X
i 1
X
i
, E ( X ) n , D ( X ) n
X n n
2 2
,
则有
X E(X ) D(X )
~ N ( 0 ,1 )
附:在统计中,常令: X
1 n
n
i 1
X
i
例
某 单 位 内 部 有 260架 电 话 分 机 ,每 个 分 机 有 4
0 0
E (X ) 1/ u, D ( X ) 1 / u2
三。排队论的应用实例: 1.在损失制系统中 常用到下列已经推导过的公式: (1)服务系统中有k个服务设备被占用 的概率: p p p ( ) (1) k! k!
0 k 0 k
k
式中的 为到达率与服务率之比, 又叫通行率。
•
有限性:任意有限区间内到达有限个顾客 的概率为1。因而 V k (t ) 1
k o
对这样的最简单流,长为t的时间内到达k个顾 客的概率Vk(t)服从泊松分布,
•
即
V k (t )
t
e
.
( t )
k!
k
k 0 ,1, 2 ,...., t 0
式中 0 为一常数,叫平均到达率。 • E t [k ] t Var [ k ] t
的 时 间 要 用 外 线 通 话 .可 以 认 为 各 个 电 话 机 用 不 用
外线是相互独立的.
问: 总 机 要 有 多 少 条 外 线 才 能 以 95
0 0
的把握保证各
个分机在用外线时不必等候.
1 0 第 k个 分 机 要 用 外 线 第 k个 分 机 不 用 外 线
上海交通大学管理科学-运筹学课件第六章排队论
第6章 排队论在日常生活和工作中,人们常常会为了得到某种服务而排队等候。
比如顾客到商店购买东西,病人到医院看病,汽车进加油站加油,轮船进港停靠码头等,都会因为拥挤而发生排队等候的现象。
这时,商店的售货员和顾客,医院的医生和病人,加油站的加油泵和待加油的汽车,码头的泊位和停泊的轮船等,形成了各自的排队服务系统,简称排队系统。
在一个排队系统中,通常包括一个或多个“服务设施”,服务设施可以指人,如售货员,医院大夫等。
也可以是物,如加油泵、码头泊位等。
同时还包括许多进入排队系统要求得到服务的“顾客”。
这里的顾客是指请求服务的人或物。
如到医院看病的病人,或等待加油的汽车等。
作为顾客总希望一到系统马上就能得到服务,但客观情况并非如此。
由于顾客的到达和服务机构对每个顾客的服务时间具有随机性,因此出现排队现象几乎是不可避免的。
当然,为了方便顾客减少排队时间,排队系统可以多开设服务设施。
但那将增加系统的投资和运营成本,还可能发生空闲浪费。
排队论(Queueing Theory )是为解决上述问题而发展起来的一门学科。
排队论起源于上世纪初,当时的美国贝尔(Bell )电话公司发明了自动电话后,满足了日益增长的电话通讯的需要。
但另一方面,也带来了新的问题,即如何合理配置电话线路的数量,以尽可能减少用户的呼叫次数。
如今,通讯系统仍然是排队论应用的主要领域。
同时在运输、港口泊位设计、机器维修、库存控制等领域也获得了广泛的应用。
6. 1 排队系统的基本概念6. 1. 1排队系统的一般表示一个排队系统可以抽象描述为:为了获得服务的顾客到达服务设施前排队,等候接受服务。
服务完毕后就自行离开。
其中把要求得到服务的对象称为顾客,而把服务者统称为服务设施或服务台。
在排队论中,把顾客的到达和离开称为排队系统的输入和输出。
而潜在的顾客总体又称为顾客源或输入源。
因此任何一个排队系统是一种输入-输出系统,其基本结构如图6-1所示。
排队系统图6-16. 1. 2排队系统的特征由排队系统的基本结构可知,任何一个排队系统的特征可以从以下三个方面加以描述。
排队论大学课件6-泊松过程
复杂系统建模
02
对于复杂的服务系统,如多服务台、多队列等,基于泊松过程
的排队论模型建模难度较大。
数据获取与处理03在实际应用中,获取准确的顾客到达和服务时间数据较为困难,
对模型的验证和应用带来挑战。
未来发展趋势及研究方向
A
非齐次泊松过程研究
针对事件发生率变化的情况,研究非齐次泊松 过程在排队论中的应用。
均值与方差
指数分布的均值和方差都是1/λ,其中λ是单位时间内事件的平 均到达率。因此,到达时间间隔的期望值(均值)和波动程度 (方差)都与事件到达率成反比。
到达次数分布
泊松分布
在给定时间区间内,事件到达的次数服从泊松分布。泊松分布是一种离散型概率分布,用于描述在固 定时间或空间范围内随机事件发生的次数。
泊松过程应用场景
01 02
电话交换系统
在电话交换系统中,用户呼叫的到达可以看作是一个泊松过程。通过泊 松过程可以预测在给定时间内呼叫到达的次数,从而合理安排交换机的 容量。
交通流
道路上车辆到达的情况也可以看作是一个泊松过程。通过泊松过程可以 分析交通流的特性,如车流量、车速等,为交通规划和管理提供依据。
期望值与方差
对于单个事件的等待时间,其期望值(均值)是1/λ,方差也是1/λ。对于多个事件的等待时间,其期望值(均值) 和方差都与事件数量成正比。因此,等待时间的期望值(均值)和波动程度(方差)都与事件到达率成反比。
泊松过程参数估计与检验
03
参数估计方法
01
矩估计法
利用样本矩来估计总体矩,从而获得泊松过程参数的估 计值。
02
最大似然估计法
根据样本数据,构造似然函数,通过最大化似然函数得 到参数的估计值。
排队论(讲义)ppt课件
概率关系着对时间的数量分配。一个事件A的概率 P(A)是对应事件A要发生可能性 的数量分配。概率有很多不同的定义,常用的有三种:
(1)古个典数定。义:P(A)=NA/N 其中N是可能结果的总个数,NA是事件A在其中发生的结果的
例1. 求抛两个骰子并且决定和为7的概率p。
总共有36种可能的结果,所以N= 36
排队论 Queueing Theory
主讲:周在莹
;.
1
CONTENUNIT 1 排队模型
UNIT 2 排队网络模型
UNIT 3 应用之:QUICK PASS系统
结束语
;.
PREPARATION 概率论和随机过程
Part 1.概率论基础
1。 概率的定义
独立性: 如果P(AB)=P(A)P(B),事件A和B叫做相互独立的事件 独立性的概念可以推广到三个或多个事件。
;.
3 全概率公式和贝叶斯定理 全概率公式:给定一组互斥事件E1,E2,,…,En,这些事件的并集包括所有可能的
结果,同时给任一个任意事件A,那么全概率公式可以表示为: n
P(A)=∑P(A|Ei)P(Ei) i=1
在离散型随机变量中,只有几何分布具有无后效性。这两种分布可以分别用来描 绘离散等待时间和连续等待时间。
在排队理论中,指数分布是很重要的。
;.
6 k-爱尔朗分布 概率密度: f(x)= (λkx)n-1λke-λkx /(n-1)! x≥0,λ>0.
0 x<0 数字特征: E[X]=1/λ; Var[X]=1/(kλ2 )
;.
5 (负)指数分布
它是一种连续型的概率分布,它的概率密度为
f(x)= λe-λx x≥0
0
第六章排队论 ppt课件
到达两个或两个以上顾客的概率为 o(t );即两个顾客不可 能同时到达 • 泊松过程具有可迭加性 – 即独立的泊松分布变量的和仍为泊松分布
21
6.3.2.2 负指数分布
(1)推导
• 泊松过程的到达间隔时间为负指数分布 – 令 h 代表间隔时间,则概率 P{h > t}代表时间区间 △t 内没有顾客来的概率;由泊松分布
第六章 随机服务系统理论
排队论
Queuing Theory
确定型只是随机现象的特例
1
6.1 随机服务系统基础
• 系统的输入与输出是随机变量 • A.k.Erlang 于1909~1920年发表了一系列根据话务量计
算电话机键配置的方法,为随机服务理论奠定了基础 • 又称为排队论(Queuing Theory)或拥塞理论(Congestion
PB3 (1 / 8)PA0 (1 / 8)
(16 1 / 8)3 3!
e 161 / 8
e 81 / 8
0.0664
(2) 3 个顾客全是购买 B 类商品的概率为
Pn ( t ) 0
n2
26
例-2
某铁路与公路相交的平面交叉口,当火车通过 交叉口时,横木护栏挡住汽车通行。每次火车 通过时,平均封锁公路3min,公路上平均每分 钟有4辆汽车到达交叉口。求火车通过交叉口 时,汽车排队长度超过100m的概率(即排队 汽车超过12辆的概率)。
笨,没有学问无颜见爹娘 ……” • “太阳当空照,花儿对我笑,小鸟说早早早……”
4
6.1.1 基本要素
排队系统的三个基本组成部分. •输入过程 (顾客按照怎样的规律到达); •排队规则 (顾客按照一定规则排队等待服务); •服务机构 (服务机构的设置,服务台的数量,服务的 方式,服务时间分布等)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常见的系统常用X/Y/Z表示,(无特别说明时) 缺省部分表示:无限顾客源、队长不限、等待制(先 到先服务)。
1、某店仅有一个修理工人,顾客到达过程为
Poisson流,流入速度λ,修理时间服从负指数 例
分布, 流出速度μ; M/M/1/∞/∞/FCFS( M/M/1 )排队模型
2、某社区理发店只有一名理发师,小店只能容纳6人,
1、排队现象
(1)、排队系统的常见例子 ❖商店、售票处、医院等服务系统 ❖商业及工业的投资活动中的等待 ❖通讯,如电话、Internet等 ❖维修服务系统、系统可靠性 ❖库存预测及库存控制 ❖军事,如巡航、空防、火力封锁等 ❖公共设施,如消防系统
(2)、排队系统的分类 排队论中,排队、等待等统称为“拥挤现象”,
从参数的意义可知,作为顾客,希望队长小,等 待和逗留时间短;对于服务台来说,这需要缩短每位 顾客的服务时间,这就增加了服务工作的强度,需要 支付更高的代价。
4、排队论研究的目的 排队论研究的目的归根到底是要达到系统优化,由
于保证服务(顾客的要求)与降低服务强度(服务台的 要求)是相互矛盾的,使顾客与服务台的“优化”存在 无法比较的现象,因而最终的评价要借助于经济性指标, 即使得顾客等待引起的损失与服务工作发生费用之和最 小。
四个最主要参数:
1、排队系统中等待的人数Lq; 2、排队系统中的总人数L; 3、排队等待的时间Wq; 4、逗留时间W;
(3)服务台:忙期和闲期分布
从有顾客到来至服务台变空(服务完毕)为忙期;
忙期结束至有顾客到来(服务台空着的时间)为闲期。
忙期与闲期是交替出现的。这两个时间长度也是 随机的,所求得的是平均值(期望值)。它们关系到 服务台的服务工作强度和承受力,从而决定服务的成 本。
3、有关参数 排队论对拥挤现象的研究,主要是对过程的研究,其中, 各系统的不同特性与规律由一些参数(指标)表征。 (1)队长:
排队队列的长度,即等待者数量或队列中的人数, 指单位时间内的人数,它是一个平均值(期望值),服 从一定的概率分布规律。
(2)顾客:等待和逗留时间分布 顾客从到来至接受服务的这段时间为等待时间; 顾客从到来至离去(离开服务台)的这段时间为逗留时 间。 这两个时间指标同样是平均值,并且服从于一定的概率 分布,这两个时间越短,表明系统服务质量越高。
输出
一、顾客源 (输入过程) 有三个相关要素: (1)顾客总体数:有限或无限 (2)顾客到来方式:个别或成批 (3)顾客流分布:到来的时间规律
二、服务规则 有三大类: (1)等待制:后到顾客加入队列等待,如等车 就服务顺序而言,又有“先到先服务”、“后到先服 务”、“随机服务”、“优先服务” (2)损失制:先到顾客占用服务台,其余离去,即 不形成队列,如打的
顾客到达过程为Poisson流,流入速度λ,理发时间服
从负指数分布, 流出速度μ; M/M/1/6/∞/FCFS 排队模型
3、某医院有4名专家医生,一天只挂40个门诊号,病人
到达过程为Poisson流,流入速度λ,看病时间服从负指
数分布, 流出速度μ; M/M/4/40/∞/FCFS 排队模型
二* 、顾客到达流与服务时间分布
X/Y/Z/A/B/C
X——顾客流的时间分布 Y——服务时间分布 Z——服务台个数 A――系统容量,可容纳最多顾客数 B――顾客源数目(顾客人数) C——服务规则
X、Y:M--马尔科夫过程,即泊松流、负指数分布; Z: 1、2…c--单台,多台; A: N、∞--有限容量、无限容量; B: N、∞--有限顾客、无限顾客; C: FCFS--先到先服务
可以归纳为两大类: ❖有形排队――同时、同地,如售票、银行 ❖无形排队――同时、异地,如打的 排队论就是研究拥挤现象的一门科学。
(3)、排队论研究的任务 研究排队系统的规律,并应用于排队系统的最优
设计和最优控制。 排队系统也称服务系统。
(4)、排队论的产生与发展 排队论于20世纪初兴起,二战期间逐步完善,战后
从实际工作来看,这一标准也是十分有意义的,因 为提供服务者与被服务者的利益往往有很大的关联性: 即服务质量越高,顾客就越多,利润也越高。
归结起来,研究目的为:保证服务、降低强度、节 省可用。
5、排队系统的基本组成 排队系统一般由三个要素组成,它们是顾客源
(输入过程)、服务规则和服务台。
顾客源
输入
服务台 服务规则
第六章 排队论
教学大纲
一、基本要求: 1、掌握排队系统的基本概念; 2、了解顾客到达流(泊松流)与服务时间分布
(负指数分布); 3、熟练掌握单服务台排队系统 (M/M/1/∞/∞/FCFS排队模型 ); 4、了解多服务台排队系统 :
二、重点:单服务台排队系统
三、难点:单服务台排队系统
一、排队论概述
(3)混合制:队长有限制或者等待时间有限制,如 理发店
三、服务台 有三个相关因素: (1)布局 (2)服务方式:单个服务、成批服务 (3)服务时间分布
单台
一队多台
多队多台 多台串列 多台混合
6、排队系统的分类
系统的分类是依照三要素的不同组成来区分的。 Kendall记号为:X/Y/Z/A/B/C,其中 X——顾客流的时间分布 Y——服务时间分布 Z——服务台个数 A――系统容量,可容纳最多顾客数 B――顾客源数目(顾客人数) C——服务规则
影响排队系统效率的主要因素是:单位时间内到达 系统的顾客数和一个顾客接受服务所需时间。由于这 两个量都带有随机性,因此只能对它们进行概率的描 述。
现实中,大量出现的顾客流服从泊松分布、服务时 间(长度)服从负指数分布的情况。在具体分布难以 确定时,按照上述假设进行处理,偏差很小。只有在 必要时,才按其它分布形式进行处理。因此,泊松流 假设具有普适性。
被推广,目前应用十分广泛。
2、排队系统的共同特征
我们把不同的人或物,统称为顾客 ❖服务台――有提供服务的人或物,统称为服务台 ❖(随机性)不确定性――顾客到来的时间间隔与 服务时间这二者具有不确定性。
由于不确定性(随机性)是其重要特征,排队系 统还被称作随机系统(概率)。