高中数学必修四全册 ppt课件

合集下载

人教B版高中数学必修第四册1.1平行直线与异面直线-异面直线的判断ppt课件14张

人教B版高中数学必修第四册1.1平行直线与异面直线-异面直线的判断ppt课件14张
1.平面内的一条直线和平面外的一条 直线是异面直线。
❖ 答:错。
b
a
判断题2
分别在两个平面内的两条直线一定异面。 答:不一定:它们可能异面,可能相交,也可能平行。
b a
M
ab
a
b
a与b是异面直线
a与b是相交直线
a与b是平行直线
注2
在不同平面内的两条直线不一定异面。
BACK
NEXT
例1 例子:如图,在长方体中,
AB与HG不是异面直线。
()
(3)判定定理:平面外一点A与平面内一点B的连线和平面内不经过该点B的直线是异面直线.
(A)①② (B)①③ C
(C)①④ (D)③④
例3 下图长方体中 说出以下各对线段的位置关系? ① EC 和BH是 相交 直线 ② BD 和FH是 平行 直线 ③EB和HG是 异面 直线
a
b
a'
b'
找不到一个平面使得
3. 能否找到一个平面,
直线a,b在
使得a,b两条直线都在这个平面内? 同一共面内!
BACK
NEXT
1.异面直线的定义:
不同在 任何 一个平面内的两条直线叫做异面直线。
定义中是指“任何”一个平面,是指找不到一个平面, 使这两条直线在这个平面上,这样的两条直线才是异面直线。
复习与准备:平面内两条直线的位置关系
相交 平行
a
a
o
b
b
相交 (有一个公共点)
平行 (无公共点)
那空间中两直线还有没有 其他的位置关系呢?
看一下生活中的例子:
C
B
D A
立交桥中, 两条路线AB, CD
BA
六角螺母

高中数学人教版A版必修4《两角和与差的正弦、余弦、正切公式》优质PPT课件

高中数学人教版A版必修4《两角和与差的正弦、余弦、正切公式》优质PPT课件
明目标、知重点
(3)sin
1π2-
3cos
π 12.

方法一
原式=212sin
1π2-
3 2 cos
π 12
=2sin
π 6sin
1π2-cos
π 6cos
π 12
=-2cosπ6+1π2=-2cos π4=- 2.
方法二
原式=212sin
1π2-
3 2 cos
π 12
=2cos
π 3sin
3.函数f(x)=sin x- 3cos x(x∈R)的值域是 [-2,2] .
解析
∵f(x)=212sin
x-
3 2 cos
x=2sinx-π3.
∴f(x)∈[-2,2].
明目标、知重点
1234
4.已知锐角
α、β
满足
sin
α
=2
5 5
,cos
β=
1100,则
α+β

.
解析 ∵α,β 为锐角,sin α=255,cos β= 1100,
1π2-sin
π 3cos
π 12
=2sin1π2-π3=-2sin
π4=-
2.
明目标、知重点
例 2 已知 α∈0,π2,β∈-π2,0,且 cos(α-β)=35,sin β=
-102,求 α 的值. 解 ∵α∈0,π2,β∈-π2,0,∴α-β∈(0,π). ∵cos(α-β)=35,∴sin(α-β)=45. ∵β∈-π2,0,sin β=-102,∴cos β=7102.
明目标、知重点
跟踪训练 2 已知 sin α=35,cos β=-153,α 为第二象限角,β

高中数学必修4课件2-3-4

高中数学必修4课件2-3-4

第18页
第二章 2.3 2.3.4
高考调研
新课标A版 ·数学 ·必修四
思考题 3 已知 a=(1,2),b=(-3,2),当 k 为何值时,ka+b 与 a-3b 平行?平行时它们是同向还是反向?
第19页
第二章 2.3 2.3.4
高考调研
新课标A版 ·数学 ·必修四
【解析】 由已知可得 ka+b=(k-3,2k+2),a-3b=(10, -4),当 ka+b 与 a-3b 平行时
高考调研
新课标A版 ·数学 ·必修四
第二章 平面向量
第1页
第二章 平面向量
高考调研
新课标A版 ·数学 ·必修四
2.3 平面向量的基本定理及坐标表示
第2页
第二章 平面向量
高考调研
新课标A版 ·数学 ·必修四
2.3.4 平面向量共线的坐标表示
第3页
第二章 平面向量
高考调研
新课标A版 ·数学 ·必修四
高考调研
新课标A版 ·数学 ·必修四
答:设 A(x1,y1),B(x2,y2),C(x3,y3),要证明三点共线只 需证A→B=λB→C.
∵A→B=(x2-x1,y2-y2),B→C=(x3-x2,y3-y2), ∴只需证(x2-x1)(y3-y2)-(x3-x2)(y2-y1)=0 即可.
第7页
第37页
第二章 2.3 2.3.4
高考调研
新课标A版 ·数学 ·必修四
解析 λa+b=(3λ+2,2λ-1),a+b=(3+2λ,2-λ). ∵λa+b 与 a+λb(λ∈R)平行, ∴(3λ+2)(2-λ)-(2λ-1)(3+2λ)=0,即-7λ2+7=0,解得 λ =±1.
第38页

高中数学必修四三角函数PPT课件

高中数学必修四三角函数PPT课件

01
02
03
04
第一象限
正弦、余弦、正切均为正。
第二象限
正弦为正、余弦为负、正切为 负。
第三象限
正弦、余弦均为负、正切为正。
第四象限
正弦为负、余弦为正、正切为 负。
02 三角函数诱导公 式与变换
诱导公式及其应用
诱导公式的基本形式
01
通过角度的加减、倍角、半角等变换,得到三角函数的等价表
达式。
诱导公式的推导
02
正切函数的周期为$pi$,即$tan(x + kpi) = tan x$,其中$k in Z$。
三角函数的奇偶性
正弦函数是奇函数, 即$sin(-x) = -sin x$。
正切函数是奇函数, 即$tan(-x) = -tan x$。
余弦函数是偶函数, 即$cos(-x) = cos x$。
三角函数在各象限的符号
三角恒等变换
和差化积、积化和差等公式及应用
三角函数的图像与性质
周期性、奇偶性、单调性等
解三角形
正弦定理、余弦定理及应用
常见题型解析及技巧点拨
01
三角函数求值问题:利 用同角关系式、诱导公 式等求解
02
三角函数的图像与性质 应用:判断单调性、周 期性等
03
三角恒等变换的应用: 证明等式、化简表达式 等
余弦定理及其应用
余弦定理的公式表达 在任意三角形ABC中,有$a^2 = b^2 + c^2 - 2bccos A$,以及相应的其他两个式子。
余弦定理的推导 通过向量的数量积和投影进行推导。
余弦定理的应用 用于求解三角形的边和角,尤其在已知三边或两边及夹角 的情况下。同时,也可用于判断三角形的形状(锐角、直 角或钝角)。

(人教B版)高中数学必修四全册同步ppt课件:1-3-1-2

(人教B版)高中数学必修四全册同步ppt课件:1-3-1-2

(2)最小正周期的定义 对于一个 周期函数f(x),如果在它的所有周期中存在一个 最小的正数 ,那么这个最小正数 就叫做它的最小正周期.
2.正弦函数的图象和性质 函数
y=sinx
图象
定义域 值域
奇偶性 周期
x∈R -1≤y≤1
奇函数 2π
函数
y=sinx
单调性
在每一个闭区间 -π2+2kπ,2π+2kπ (k∈Z)上是 增函数; 在每一个闭区间 π2+2kπ,32π+2kπ(k∈Z )上是 减函数
(2)对于函数y=Asin(ωx+φ)(A>0,ω<0),可先用诱导公式
转化为y=-Asin(-ωx-φ),则y=-Asin(-ωx-φ)的增(减)区
间即为函数y=Asin(ωx+φ)的减(增)区间.
课堂互动探究
剖析归纳 触类旁通
典例剖析
例1 求下列函数的值域. (1)y=3-2sin2x(x∈R); (2)y=2sin2x+3π-6π≤x≤π6; (3)y=2cos2x+5sinx-43π≤x≤56π. 剖析 利用正弦函数的值域求解.
x+π2

sinx,因此2π不是sinx的周期.
(2)“f(x+T)=f(x)”是定义域内的恒等式,即对定义域内 的每一个值都成立,T是非零常数,周期T是使函数值重复出现 的自变量x的增加值.周期函数的周期不止一个,若T是周期, 则kT(k∈N+)一定也是周期.
(3)对于周期函数来说,如果所有的周期中存在着一个最 小的正数,就称它为最小正周期,今后提到的三角函数的周 期,如未特别指明,一般都是指它的最小正周期.
答Байду номын сангаас C
4.下列大小关系正确的是( ) A.sin23π<sin43π B.sin1<sin3 C.sin116π<sin43π D.sin-193π<sin-256π

高中教育数学必修第四册《目录》教学课件

高中教育数学必修第四册《目录》教学课件

第九章 解三角形 9.1 正弦定理与余弦定理
9.1.1 正弦定理 9.1.2 余弦定理 9.2 正弦定理与余弦定理的应用
第十章 复数 10.1 复数及其几何意义
10.1.1 复数的概念 10.1.2 复数的几何意义 10.2 复数的运算 10.2.1 复数的加法与减法 10.2.2 复数的乘法与除法
第十一章 立体几何初步 11.1 空间几何体
11.1.1 空间几何体与斜二测画法 11.1.2 构成空间几何体的基本元素 11.1.3 多面体与ห้องสมุดไป่ตู้柱 11.1.4 棱锥与棱台 11.1.5 旋转体 11.1.6 祖暅原理与几何体的体积
11.2 平面的基本事实与推论 11.3 空间中的平行关系
11.3.1 平行直线与异面直线 11.3.2 直线与平面平行 11.3.3 平面与平面平行 11.4 空间中的垂直关系 11.4.1 直线与平面垂直 11.4.2 平面与平面垂直

高中数学必修四课件全册

高中数学必修四课件全册

(2k+<<2k+
3
2
,
kZ)
第四象限角:
(2k+
3
2
<<2k+2,
kZ

2k-
2
<<2k,
kZ
)
②轴线角
x 轴的非负半轴: =k360º(2k)(kZ);
x 轴的非正半轴: =k360º+180º(2k+)(kZ);
y
轴的非负半轴:
=k360º+90º(2k+
2
)(kZ);
y 轴的非正半轴: =k360º+270º(2k+ 32) 或
二、象限角:角的终边(除端点外)在第几象限,我们就说这 个角是第几象限角。
注:如果角的终边在坐标轴上,则该角不是象限角。
三、所有与角 终边相同的角,连同角 在内,构成集合:
S { | k 360 , k Z} (角度制)
{ | 2k , k Z} (弧度制)
例1、求在 0 到 360( 0到2)范围内,与下列各角终边相同的角
混用角度制和弧度制
180 180 1 rad
1
rad
180
57.30
1 rad
180
(4)弧长公式和扇形面积公式.
lr
S r2 1 r2 1l r
2
2
2
l
n 360
2
r
n
180
r
S
n 360
r2
n
360
r2
2、角度与弧度的互化
2 360
1弧度 (180) 57.30 5718,

高中数学必修四:1.1.1《任意角》 PPT课件 图文

高中数学必修四:1.1.1《任意角》 PPT课件 图文

精讲领学
例题1 写出与下列各角终边相同的角的集合S,并把S中在 360~720范围的角写出来.
( 1 ) 6 0 ;( 2 ) 2 1 ;( 3 ) 3 6 3 1 4
解: ( 1 ) S {| k 3 6 0 6 0 , k Z }300,60,420
( 2 ) S {| k 3 6 0 2 1 , k Z }21,339,699
2、下列角中终边与330°相同的角是( ) A.30° B.-30° C.630° D.-630°
3、把-1485°转化为α+k·360° (0°≤α<360°, k∈Z)的形式是( ) A.45°-4×360° B.-45°-4×360° C.-45°-5×360° D.315°-5×360°
反馈固学
1.1.1 任意角
第一课时
(1)推广角的概念;理解并掌握正角、负角、零角的定义; (2)理解任意角以及象限角的概念; (3)掌握所有与角终边相同的角(包括角)的表示方法; (4)树立运动变化观点,深刻理解推广后的角的概念;
思考:那么工人在拧紧或拧松螺丝时,转动的角度 如何表示才比较合适?
逆时 针
4、下列结论中正确的是( ) A.小于90°的角是锐角 B.第二象限的角是钝角 C.相等的角终边一定相同 D.终边相同的角一定相等
5:任意两个角的数量大小可以相加、相减.
例如50°+80°=130°, 50°-80°=-30°, 你能解释一下这两个式子的几何意义吗?
130°是以50°角的终边为始边,逆时针旋转80°所成的角. -30°是以50°角的终边为始边,顺时针旋转80°所成的角.
注3:(1) 为任意角 (2) k Z这一条件必不可少;
(3) 终边相同的角不一定相等, 终边相等的角有无数多个,它们相差3600的整数倍.

(人教B版)高中数学必修四全册同步ppt课件:1-3-1-3

(人教B版)高中数学必修四全册同步ppt课件:1-3-1-3
第一章 基本初等函数(Ⅱ)
1.3 三角函数的图象与性质
1.3.1 正弦函数的图象与性质
第三课时
正弦型函数y=Asin(ω x+φ )
课前预习目标
课Hale Waihona Puke 互动探究课前预习目标梳理知识 夯实基础
学习目标 1.结合具体实例,了解y=Asin(ωx+φ)的实际意义. 2.会用图象变换法画出函数y=Asin(ωx+φ)的图象.
自学导航 1.正弦型函数 2π (1)对于函数y=Asin(ωx+φ)(ω>0)中,周期T= ω ,频率f 1 ω = = . φ 叫做初相. T 2π (2)一般地,函数y=Asinx的值域为[-|A|,|A|]φ,最大值为
|A| ,最小值为 -|A|, |A| 的大小,反映曲线y=Asinx波动的大
课堂互动探究
剖析归纳 触类旁通
典例剖析
例1
π 指出将 y=sinx 的图象变换为 y=sin(2x+3)的图象的
两种方法. 剖析 1 π π x→2x→2(x+ )=2x+ . 6 3
解析 1 y=sinx
y=sin2x
π π y=sin 2 x+6 =sin(2x+3).
)
A.最小正周期是π π B.直线x= 是f(x)图象的一条对称轴 12
π C.函数f(x)图象关于点-6,0对称
π D.f(x)的图象向右平移3个单位,可得到y=sin2x的图象
π π 解析 f(x)的图象向右平移3个单位,得到函数y=fx-3= π π π sin2 x-3+3=sin2x-3.
答案
D
4.函数y=Asin(ωx+φ)
π A>0,ω>0,|φ|< 2

(人教B版)高中数学必修四全册同步ppt课件:1-3-2-1

(人教B版)高中数学必修四全册同步ppt课件:1-3-2-1

解析 π μ=x+ 6 x y=cosμ 0 π - 6 1 π 2 2 π 6 0 π 5 π 6 -1 3 π 2 8 π 6 0 2π 11 π 6 1
描点作图(如图).
例2
求下列函数的值域.
π π π (1)y=3-2cos2x-3,x∈6,2;
(2)y=-3sin
∴函数的值域为[1,4]. (2)y=-3sin2x-4cosx+4=3cos2x-4cosx+1.
π 2π 1 1 设t=cosx,x∈3, 3 ,∴t∈-2,2.
∴y=3t
2
1 1 -4t+1在t∈-2,2时单调递减,
1 15 ∴当t=-2时,ymax= 4 ,
π x+ 2
的图象相同,
π 于是把正弦曲线向左平移 2 个单位就可以得到余弦函数的图 象. (2)余弦函数图象上有五个起关键作用的点,这五个点是
(0,1) 、π,0、 (π,-1) 、3π,0、 (2π,1). 2 2
2.余弦函数的性质: (1)定义域为R,值域为 [-1,1] ,周期为2π.
)
答案 C
名师点拨 1.正弦曲线与余弦曲线的关系 把y=sinx的图象向左平移 π 2 个单位就得到y=cosx的图
象.这说明余弦曲线的形状和正弦曲线相同,只是位置不同而 已.学了余弦曲线以后,应在同一坐标系中,画出[0,2π]上的 正弦曲线和余弦曲线,标出两条曲线与坐标轴的交点坐标并观 察曲线,弄明白它们的相同点和不同点.抓住[0,2π]上这一周 期的曲线的区别,就不会将两条曲线混淆.
自测自评
π 1.下列函数中,在 0,2 上为增函数且以π为周期的函数是
(
) x A.y=sin 2 C.y=-cosx B.y=sin2x D.y=-cos2x

(人教B版)高中数学必修四全册同步ppt课件:1-3-3

(人教B版)高中数学必修四全册同步ppt课件:1-3-3
[0,π] 上有唯一的x值和它对应,记为 x=arccosy 1,1]),那么在
(其中-1≤y≤1,0≤x≤π),即 arccosy表示[0,π]上余弦值等于y 的那个角. 3.一般地,对于正切函数y=tanx,x∈ 每一个正切值y,在开区间
π π - , 2 2 π π - , 2 2
π π (1)α∈-2,2;
(2)α∈[0,2π]; (3)α为第三象限角; (4)α∈R.
解析
π π (1)∵正弦函数在闭区间 -2,2 上是增函数,∴符
1 合sinα=-2条件的角只有一个.
π 1 π 又∵sin-6=-2,∴α=-6.
1 (2)∵sinα=- 2 <0,∴α是第三或第四象限角,由正弦函数 1 的单调性,符合sinα=-2条件的角有两个.
第一章 基本初等函数(Ⅱ)
1.3 三角函数的图象与性质
1.3.3 已知三角函数值求角
课前预习目标
课堂互动探究
课前预习目标
梳理知识 夯实基础
学习目标 1.会由已知三角函数值求角. 2.了解反正弦、反余弦、反正切的意义,并会用符号 arcsinx,arccosx,arctanx表示角.
自学导航 已知三角函数值求角的相关概念 1.一般地,对于正弦函数y=sinx,如果已知函数值y(y∈
π π 1 根据诱导公式sinπ+6=-sin6=-2和 π π 1 7 11 sin2π-6=-sin6=-2得α=6π或α= 6 π.
7 (3)∵α是第三象限角,在闭区间[0,2π]内有α= 6 π,∴符合
7π 1 . x | x = + 2 k π , k ∈ Z 条件sinα=-2的第三象限角的集合是 6

(人教B版)高中数学必修四全册同步ppt课件:3-1-3

(人教B版)高中数学必修四全册同步ppt课件:3-1-3

+tanB)=2,则 A+B 等于( π A.4 5π C. 4 3π B. 4
cos15° -sin15° (2) ; cos15° +sin15° (3) tan17° +tan28° +tan17° · tan28° . 剖析 本题主要考查两角和与差的正切公式,重点考查逆
用、变式的能力.
解析 = 3.
tan45° +tan15° (1) 原式= = tan(45° + 15° ) = tan60° 1-tan45° tan15°
本题从公式逆用、变形思想出发,灵活地运用
了两角和与差的正切公式.
变式训练 1
计算:
(1) tan57° -tan12° -tan57° tan12° ; 1- 3tan75° (2) ; 3+tan75° 3-tan105° (3) . 1+ 3tan105°
解析 (1)解法 1: 原式=tan(57° -12° )(1+tan57° tan12° )-tan57° tan12° =1+tan57° tan12° -tan57° tan12° =1. tan57° -tan12° 解法 2:∵tan(57° -12° )= , 1+tan57° · tan12° ∴1+tan57° · tan12° =tan57° -tan12° . ∴tan57° -tan12° -tan57° tan12° =1.
tanα-tanβ 2.tan(α-β)= 1+tanαtanβ
.
思 考 探 究 两角和与差的正切公式对任意的 α,β 均成立吗? 提示 不是的. 在两角和的正切公式中, 使用的条件是: α,
π β,α+β≠kπ+2(k∈Z);使用两角差的正切公式时条件是:α, π β,α-β≠kπ+2(k∈Z).

(人教B版)高中数学必修四全册同步ppt课件:3-1-1

(人教B版)高中数学必修四全册同步ppt课件:3-1-1

π π 4 已知 cosα=5,α∈-2,0,求 cosα-4.
先根据条件求出 sinα 的值, 再根据公式求
π cosα-4
解析
π 4 ∵cosα=5,α∈-2,0.
3 ∴sinα=-5,
π π π cosα-4=cosαcos4+sinαsin4
6+ 2 π π π π =cos3cos4+sin3sin4= 4 .
答案
D
2.cos70° cos335° +sin110° sin25° 的值为( A.1 3 C. 2 2 B. 2 1 D. 2
)
解析
原式=cos70° cos25° +sin70° sin25°
2 =cos(70° -25° )=cos45° = . 2
名 师 点 拨 对公式的理解 (1)上述公式中的 α、β 都是任意角. (2)公式的特点:公式左边是差角的余弦,公式右边的式子 含有同名弦函数之积的和 (差)式,可用口诀“余余、正正,号 相反”记忆公式. (3)要注意和(差)角的相对性, 掌握角的变化技巧, 如 2α=(α +β)+(α-β),α=(α+β)-β,α=(α-β)+β 等.
5 3 ∴sin(α+β)= 14 . ∴cosβ=cos[(α+β)-α] =cos(α+β)cosα+sin(α+β)sinα 11 1 5 3 4 3 1 =- × + × = . 14 7 14 7 2
答案 B
4 5 3.△ABC 中,cosA=5,cosB=13,则 cosC 的值为( 33 A.-65 16 C.65 33 B.65 16 D.-65
)
解析
4 5 ∵A、B 是△ABC 的内角,cosA=5,cosB=13.

(人教B版)高中数学必修四全册同步ppt课件:2-1-1

(人教B版)高中数学必修四全册同步ppt课件:2-1-1

(2)共线向量有四种情况:方向相同且模相等,方向相同 且模不等,方向相反且模相等,方向相反且模不等.这样,也 就找到了共线向量与相等向量的关系,即共线向量不一定是相 等向量,而相等向量一定是共线向量. (3)如果两个向量所在的直线平行或重合,那么这两个向 量是平行向量.
课堂互动探究
剖析归纳 触类旁通
思考探究 1.向量就是有向线段,这种说法对吗? 提示 不对,向量与有向线段是两个不同的概念,可以用
有向线段表示向量.
2.“若a∥b,且b∥c,则a∥c”这个说法对吗? 提示 不对,若b=0,则a、c均可以是任意向量,所以
a、c不一定平行.平面几何中平行的传递性:a∥b,且b∥c, 则a∥c,在向量的平行中不再适用.解题时我们也要充分考虑 0的特殊性.
→ → →
3.向量的有关概念 零向量 长度等于零的向量,记作0,零向 量的方向不确定
相等的向量 同向且等长的有向线段表示的向量 向量共线 (平行) 基线互相平行或重合的向量,记作 a∥b.共线向量的方向相同或相反 规定:零向量与任意向量平行
任给一定点O和向量a,过点O作有向线段 位置向量 → OA =a,则点A相对于点O的位置被向量a所 → 唯一确定,这时向量 OA ,叫做点A相对于点 O的位置向量
答案
B
规律技巧
要准确地对命题进行判断,必须对有关概念有
准确清晰的理解和把握.
变式训练2
下列说法中不正确的是(
)
A.零向量与任意向量共线 B.零向量只能与零向量相等 → → C.若AB=DC,则ABCD是平行四边形 → → D.平行四边形ABCD中,一定有AB=DC
解析
→ → AB=DC,有可能A、B、C、D四点共线,故C错.
第二章 平面向量

(人教B版)高中数学必修四全册同步ppt课件:1-2-2

(人教B版)高中数学必修四全册同步ppt课件:1-2-2
第一章 基本初等函数(Ⅱ)
1.2 任意角的三角函数
1.2.2
单位圆与三角函数线
课前预习目标
课堂互动探究
课前预习目标
梳理知识 夯实基础
学习目标 1.了解三角函数线的意义. 2.会用三角函数线表示一个角的正弦、余弦和正切.
自学导航 1.单位圆 一般地,我们把 半径为1的圆 叫做单位圆.
2.三角函数线 如图,已知角α的终边位置.
则由三角函数的定义可知点P的坐标为(cosα,sinα).点T 的坐标为(1,tanα). 其中cosα= OM ,sinα= ON ,tanα= AT(或AT′). → → → → 把轴上向量OM,ON,AT(或AT′)分别叫做α的 余弦线 、 . 正弦线和正切线
思考探究 1.怎样认识三角函数线与三角函数值之间的关系? 提示 正弦线、余弦线、正切线分别是正弦、余弦、正切
答案 B
2.如图所示是60° 角的三角函数线,其中余弦线为(
)A.MPB.OMC.ATD.OA
解析
MP是正弦线,OM是余弦线,AT是正切线.
答案 B
3.已知角α的终边和单位圆的交点为P,则点P的坐标为 ( ) A.(sinα,cosα) B.(sinα,tanα) C.(cosα,sinα) D.(tanα,sinα)
规律技巧
三角函数线可以用来求出满足形如fα=m的
三角函数的角α的终边.
变式训练1 合.
2 利用三角函数线确定满足sinx= 2 的角x的集
解析
利用正弦线作出角x的终边如图所示. π ∵在第一象限内与4终边相同, π ∴x=2kπ+4(k∈Z);
3π 而在第二象限内与 4 终边相同, 3π ∴x=2kπ+ 4 (k∈Z). ∴满足条件的角x的集合为:

高中数学人教版A版必修4《任意角的三角函数》优质PPT课件

高中数学人教版A版必修4《任意角的三角函数》优质PPT课件
第一章 三角函数
§1.2 任意角的三函数
明目标、知重点
内容 索引
01 明目标
知重点
填要点 记疑缺
04
明目标、知重点
明目标、知重点 1.通过借助单位圆理解并掌握任意角的三角函数定义, 了解三角函数是以实数为自变量的函数. 2.借助任意角的三角函数的定义理解并掌握正弦、余弦、 正切函数在各象限内的符号. 3.通过对任意角的三角函数定义的理解,掌握终边相同 角的同一三角函数值相等.
明目标、知重点
(2)sin(-1 320°)cos 1 110°+cos(-1 020°)sin 750°+tan 495°. 解 原式=sin(-4×360°+120°)cos(3×360°+30°)+ cos (-3×360°+60°)sin(2×360°+30°)+tan(360°+135°) =sin 120°cos 30°+cos 60°sin 30°+tan 135°
明目标、知重点
(2)cos α=xr(r>0),因此cos α的符号与x的符号相同,当α的终边 在第一、四象限时,cos α>0;当α的终边在第二、三象限时, cos α<0. (3)tan α=yx,因此tan α的符号由x、y确定,当α终边在第一、三 象限时,xy>0,tan α>0;当α终边在第二、四象限时,xy<0, tan α<0.
明目标、知重点
当堂测·查疑缺
1234
1.已知角α的终边经过点(-4,3),则cos α等于( D )
4
3
A.5
B.5
C.-35
D.-45
解析 因为角 α 的终边经过点(-4,3),所以 x=-4,y=3,r=5,
所以 cos α=xr=-45.

人教高中数学必修4PPT课件:平面向量的实际背景及基本概念

人教高中数学必修4PPT课件:平面向量的实际背景及基本概念
(× )
√ (5)物理学中的作用力与反作用力是一对共线向量( ) (6)直角坐标平面图上的x轴,y轴都是向量(√ )
人教高中数学必修4PPT课件:平面向 量的实 际背景 及基本 概念
2.判断下面命题的对错
(1)若a = b,b = c,则a = c。( √) (2)若|a|=0,则a = 0 (×) (3)若|a|=|b|,则a = b (×)
人教高中数学必修4PPT课件:平面向 量的实 际背景 及基本 概念
说明: 1、向量的几何表示:用有向线段表示。 人教高中数学必修4PPT课件:平面向量的实际背景及基本概念
向量AB的大小,也就是向量AB的长度(或称模),记
作 |AB |。
向量不能比较大小,模可以比较大小。
2、向量的字母符号表示:(1)a , b , c , . . . (2)用表示向量的有向线段的起点和终点字母表示, 例如,AB,CD。 注意字母的顺序

长度(模)符 概号 念表示 : AB , a
零向量
单位向量
关系相 平等 行向 (量 共线)向量 用向量表示点的位置:位置向量
CB、DO、FE
人教高中数学必修4PPT课件:平面向 量的实 际背景 及基本 概念
人教高中数学必修4PPT课件:平面向 量的实 际背景 及基本 概念
在平面图形中寻求共线向量、相等向量的方法: (1)在平面图形中找共线向量时,应逐个列举,做到不 重不漏,可先找在同一条直线上的共线向量,然后再 找平行直线上的共线向量,要注意一条线段有一正一 反两个共线向量,而方向相同、长度不等的有向线段 又可以表示不同的共线向量. 对于相等向量,一定是共线向量,因此在找相等向量 时,可以从共线向量中筛选,找出长度相等、方向相 同的共线向量即可.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

y
y
y
O
x
O
x
O
x
2k k Z k k Z
k k Z
2
一、角的基本概念
1.几类特殊角的表示方法
(1)与 角终边相同的角的集合: { | =2k+, k∈Z}.
(2)象限角、象限界角(轴线角)
①象限角
第一象限角:
(2k<<2k+
2
,
kZ)
第二象限角:
(2k+
2
<<2k+,
kZ)
(3)终边相同的角,具有共同的绐边和终边的角 叫终边相同的角,所有与角终边相同的角(包含
角在内)的集合为. k 360, k Z
(4)角在“到”范围内,指.0 360
一、任意角的三角函数
1、角的概念的推广
的终边
y 的终边
正角
o
x 零角
负角
( , )
一、在直角坐标系内讨论角,角的顶点与 原点重合,角的始边 与 x轴的非负半轴重合。逆时针旋转为正,顺时针旋转为负。
混用角度制和弧度制
180 180 1 rad
1 rad 180 57.30
1 rad
180
(4)弧长公式和扇形面积公式.
lr
S r2 1 r2 1l r
2
2
2
l n 2rnr
360
180
S n r2nr2
360
360
2、角度与弧度的互化
2360 1弧度(180)57.305718,
2
2
则α角属于( C )A.第-象限;B.第二象限;
2
C.第 三 象 限; D.第 四 象 限.
点评: 本题先由α所在象限确定α/2所在象限,再α/2的 余弦符号确定结论.
例1 求经过1小时20分钟时钟的分针所转过的角度:
解:分针所转过的角度 120360480
60
例2 已知a是第二象限角,判断下列各角是第几象限角
180 1 180
特殊角的角度数与弧度数的对应表
度 0 30 45 60 90120 135 150 180270360
弧度 0
6
4
3
2 3 5
3 2
2346
2
例3.已知角 和 满 足求角 – 的范围.
3
4
解:
Q , 0
.Q,.
3
3
Q , 7
4
4 3 12
例4、 已知扇形的周长为定值100,问扇形的半 径和圆心角分别为多少时扇形面积最大?最大值 是多少?
(1) 2
(2) 3
评析: 在解选择题或填空题时,
如求角所在象限,也可以不讨论k的
几种情况,如图所示利用图形来判断.
四、什么是1弧度的角? 长度等于半径长的弧所对的圆心角。
B r
Or A
B
2r
Or A
(3)角度与弧度的换算.只要记住,就可
以方便地进行换算. 应熟记一些特殊角的
度数和弧度数. 在书写时注意不要同时
( 1) 、 9 5 0 o1 2

2)
、1 9 3
129 48
1
3
三、终边相同的角
1、终边相同的角与相等角的区别
终边相同的角不一定相等,相等的角终边一定相同。
2、象限角、象间角与区间角的区别 y
2k ,2k k Z
O
x
3、角的终边落在“射线上”、“直线上”及“互相
垂直的两条直线上”的一般表示式
略解:S 1 l r1 ( 1 0 2 r )r 0 r 2 5r 0 (r 2)25 6.25
22
r2,5l5,0l 2(ra)扇d形面积最大值为625.
r
例7.已知一扇形中心角是α,所在圆的半径是R.
①若α=60°,R=10cm,求扇形的弧长及该弧
所在的弓形面积.
②若扇形的周长是一定值C(C>0),当α为多少
弧度时,该扇形的面积有最大值?并求出这一最大 值?
指导:扇形的弧长和面积计算公式都有角度制和弧度制 两种给出的方式,但其中用弧度制给出的形式不仅易 记,而且好用.在使用时,先要将问题中涉及到的角度 换算为弧度.
解:(1)设弧长为l,弓形面积为S弓。
2
(3)、终边落在象限平分线上的角度集合:
{ | k , k Z}
42
典型例题
例1.若α是第三象限的角,问α/2是哪个象限的 角?2α是哪个象限的角?
各个象限的半角范围可以用下图记 忆,图中的Ⅰ、Ⅱ、Ⅲ、Ⅳ分别指第 一、二、三、四象限角的半角范围;
例1(90年,上海)
设α角是第二象限且满足|cosα| cosα,
第三象限角:
(2k+<<2k+
3
2
,
kZ)
第四象限角:
(2k+
3
2
<<2k+2,
kZ

2k-
2
<&l =k360º(2k)(kZ);
x 轴的非正半轴: =k360º+180º(2k+)(kZ);
y
轴的非负半轴:
=k360º+90º(2k+
2
)(kZ);
y 轴的非正半轴: =k360º+270º(2k+ 32) 或
已知三角函数值,求角
一、基本概念:
1.角的概念的推广 (1)正角,负角和零角.用旋转的观点定义角, 并规定了旋转的正方向,就出现了正角,负角和 零角,这样角的大小就不再限于00到3600的范围.
(2)象限角和轴线角.象限角的前提是角的顶点与 直角坐标系中的坐标原点重合,始边与轴的非负半 轴重合,这样当角的终边在第几象限,就说这个角 是第几象限的角,若角的终边与坐标轴重合,这个 角不属于任一象限,这时也称该角为轴线角.
高中数学必修四课件全册 (人教A版)
2020年4月26日
知识网络结构
任意角的概念
角的度量方法 (角度制与弧度制)
弧长公式与 扇形面积公式
正弦型函数的图象
y Asin x
同角公式
任意角的 三角函数
诱导公式
两角和与差的 三角函数
三角函数的 图形和性质
二倍角的 三角函数
三角函数式的恒等变形 (化简、求值、证明)
=k360º-90º(2k-2 )(kZ);
x 轴: =k180º(k)(kZ);
y
轴:
=k180º+90º(k+
2
)(kZ);
坐标轴:
=k90º(
k
2
)(kZ).
例2、(1)、终边落在x轴上的角度集合:
{ | k , k Z}
(2)、终边落在y轴上的角度集合:
{ | k , k Z}
二、象限角:角的终边(除端点外)在第几象限,我们就说这 个角是第几象限角。
注:如果角的终边在坐标轴上,则该角不是象限角。
三、所有与角 终边相同的角,连同角 在内,构成集合:
S { | k 360 , k Z} (角度制)
{ | 2k , k Z} (弧度制)
例1、求在 0 o 到 3 6 0 o( 0到 2 )范围内,与下列各角终边相同的角
相关文档
最新文档