高中数学导数极值点偏移专题(一)

合集下载

高中数学极值点偏移问题(解析版)

高中数学极值点偏移问题(解析版)

极值点偏移问题【典型例题】例1.已知函数f (x )=ln x -ax ,a 是常数且a ∈R .(1)若曲线y =f (x )在x =1处的切线经过点(-1,0),求a 的值;(2)若0<a <1e(e 是自然对数的底数),试证明:①函数f (x )有两个零点,②函数f (x )的两个零点x 1,x 2满足x 1+x 2>2e .【解析】(1)解:切线的斜率k =f (1)=1-af (1)=-a ,k =f (1)-01-(-1)=-a2,即1-a =-a2,解得a =2;(2)证明:①由f (x )=1x -a =0,得x =1a,当0<x <1a 时,f (x )>0;当x >1a 时,f (x )<0,∴f (x )在x =1a 处取得最大值f 1a=-ln a -1,f (1)=-a <0,∵0<a <1e ,∴f 1a =-ln a -1>0,f (x )在区间1,1a有零点,∵f (x )在区间0,1a 单调递增,∴f (x )在区间0,1a有唯一零点.由幂函数与对数函数单调性比较及f (x )的单调性知,f (x )在区间1a,+∞ 有唯一零点,从而函数f (x )有两个零点.②不妨设0<x 1<1a <x 2,作函数F (x )=f (x )-f 2a -x ,0<x <2a,则F 1a =0,F (x )=f (x )+f 2a -x =2(1-ax )2x (2-ax )≥0.∴F (x 1)<F 1a=0,即f (x 1)-f 2a -x 1 <0,f 2a-x 1 >f (x 1),又f (x 1)=f (x 2),∴f 2a-x 1 >f (x 2).∵0<x 1<1a<x 2,∴2a -x 1,x 2∈1a,+∞ ,∵f (x )在区间1a,+∞ 单调递减,∴2a -x 1<x 2,x 1+x 2>2a.又0<a <1e ,1a >e ,∴x 1+x 2>2e .例2.已知函数f (x )=ln x -ax (a ∈R ).(1)若曲线y =f (x )与直线x -y -1-ln2=0相切,求实数a 的值;(2)若函数y =f (x )有两个零点x 1,x 2,证明1ln x 1+1ln x 2>2.【解析】解:(1)由f (x )=ln x -ax ,得f (x )=1x-a ,设切点横坐标为x 0,依题意得1x 0-a =1x 0-1-ln2=ln x 0-ax 0,解得x 0=12a =1,即实数a 的值为1.(2)不妨设0<x 1<x 2,由ln x 1-ax 1=0ln x 2-ax 2=0,得ln x 2-ln x 1=a (x 2-x 1),即1a =x 2-x 1ln x 2-ln x 1,所以1ln x 2+1ln x 1-2=1ax 1+1ax 2-2=x 2-x 1ln x 2-ln x 11x 1+1x 2-2=x 2x 1-x 1x 2-2ln x2x 1ln x 2x 1,令t =x 2x 1>1,则ln x 2x 1>0,x 2x 1-x 1x 2-2ln x 2x 1=t -1t-2ln t ,设g (t )=t -1t -2ln t ,则g(t )=t 2-2t +1t 2>0,即函数g (t )在(1,+∞)上递减,所以g (t )>g (1)=0,从而x 2x 1-x 1x 2-2ln x2x 1ln x 2x 1>0,即1ln x 2+1ln x 1>2.例3.已知函数f (x )=x -e 2 (a -ln x )且f (e )=e4(其中e 为自然对数的底数).(Ⅰ)求函数f (x )的解析式;(Ⅱ)判断f (x )的单调性;(Ⅲ)若f (x )=k 有两个不相等实根x 1,x 2,证明:x 1+x 2>2e .【解析】解:(Ⅰ)f (e )=e 2a -12 =e 4,解得a =1,所以函数解析式为f (x )=x -e2(1-ln x );(Ⅱ)函数f (x )的定义域为(0,+∞),f (x )=1-ln x +x -e 2-1x =e2x-ln x ,设g(x)=e2x-ln x,g (x)=-e2x2-1x,在(0,+∞)上,g(x)<0恒成立,所以g(x)在(0,+∞)上单调递减,即f (x)在(0,+∞)上单调递减,又f (e)=0,则在(0,e)上f (x)>0,在(e,+∞)上f (x)<0.所以函数f(x)在(0,e)上单调递增,在(e,+∞)上单调递减;(Ⅲ)证明:构造函数F(x)=F(x)-f(2e-x),x∈(0,e),F (x)=f (x)+f (2e-x)=e2x-ln x+e2⋅12e-x-ln(2e-x)=ex(2e-x)-ln[x(2e-x)],设t=x(2e-x),当x∈(0,e)时,t∈(0,e),设h(t)=et-ln t,且h (t)=-et2-1t<0,可知h(t)在(0,e)上单调递减,且h(e)=0,所以h(t)>0在t∈(0,e)上恒成立,即F (x)>0在x∈(0,e)上恒成立,所以y=F(x)在(0,e)上单调递增,不妨设x1<x2,由(Ⅱ)知x1<e<x2F(x1)=f(x1)-f(2e-x1)<F(e)=f(e)-f(2e-e) =0,即f(x1)<f(2e-x1),因为f(x1)=f(x2),所以f(x2)<f(2e-x1),由(Ⅱ)知f(x)在(e,+∞)上单调递减,得x2>2e-x1,所以x1+x2>2e.例4.已知函数f(x)=e2x-a(x-1).(1)讨论函数f(x)的单调性;(2)若a>0,设f′(x)为f(x)的导函数,若函数f(x)有两个不同的零点x1,x2,求证:f′x1+x22<0.【解析】(1)解:f′(x)=2e2x-a,当a≤0时,f′(x)>0,函数f(x)在R上单调递增;当a>0时,令f′(x)>0,得x>12ln a2,令f′(x)<0,得x<12ln a2,所以f(x)在-∞,12ln a2上单调递减,在12ln a2,+∞上单调递增.(2)证明:由题意得e2x1-a(x1-1)=0e2x2-a(x2-1)=0,两式相减得a=e2x2-e2x1x2-x1,不妨设x1<x2,由f′(x)=2e2x-a,得f′x1+x22=2e x1+x2-e2x2-e2x1x2-x1=e x1+x2x2-x1[2(x2-x1)+e x1-x2-e x2-x1],令t=x2-x1,h(t)=2t-e t+e-t,因为当t>0时,h′(t)=2-e t-e-t=2-(e t+e-t)<0,所以h(t)在(0,+∞)上单调递减,所以当t>0时,h(t)<h(0)=0,又e x1+x2x2-x1>0,故f′x1+x22<0.例5.已知函数f(x)=12x2-(a+1)x+2(a-1)ln x,g(x)=-32x2+x+(4-2a)ln x.(1)若a>1,讨论函数f(x)的单调性;(2)是否存在实数a,对任意x1,x2∈(0,+∞),x1≠x2,有f(x1)-f(x2)x1-x2+a>0恒成立,若存在,求出a的范围,若不存在,请说明理由;(3)记h(x)=f(x)+g(x),如果x1,x2是函数h(x)的两个零点,且x1<x2<4x1,h′(x)是h(x)的导函数,证明:h2x1+x23>0.【解析】解:(1)f(x)的定义域为(0,+∞),f (x)=x-(a+1)+2(a-1)1x =x2-(a+1)x+2(a-1)x=(x-2)[x-(a-1)]x,①若a-1=2,则a=3,f (x)=(x-2)2x>0,f(x)在(0,+∞)上单调递增;②若a-1<2,则a<3,而a>1,∴1<a<3,当x∈(a-1,2)时,f′(x)<0;当x∈(0,a-1)及(2,+∞)时f′(x)>0,所以f(x)在(a-1,2)上单调递减,在(0,a-1)及(2,+∞)单调递增;③若a-1>2,则a>3,同理可得f(x)在(2,a-1)上单调递减,在(0,2)及(a-1,+∞)单调递增.(2)假设存在a,对任意x1,x2∈(0,+∞),x1≠x2,有f(x1)-f(x2)x1-x2+a>0恒成立,不妨设0<x1<x2,只要f(x2)-f(x1)x2-x1+a>0,即f(x2)+ax2>f(x1)+ax1,令g(x)=f(x)+ax,只要g(x)在(0,+∞)上为增函数,g(x)=12x2-x+2(a-1)ln xg (x)=x-1+2(a-1)x=x2-x+2(a-1)x=x-122+2a-94x,只要g′(x)≥0在(0,+∞)恒成立,只要2a-94≥0,a≥98,故存在a∈98,+∞时,对任意x1,x2∈(0,+∞),x1≠x2,有f(x1)-f(x2)x1-x2+a>0恒成立.(3)证明:由题意知,h(x)=12x2-(a+1)x+2(a-1)ln x+-32x2+x+(4-2a)ln x=2ln x-x2-ax,h(x1)=2ln x1-x21-ax1=0,h(x2)=2ln x2-x22-ax2=0两式相减,整理得2ln x2x1+(x1-x2)(x1+x2)=a(x2-x1),所以a=2ln x2x1x2-x1-(x2+x1),又因为h (x)=2x-2x-a,所以h2x1+x23=62x1+x2-23(2x1+x2)-a=-2x2-x1lnx2x1-3x2x1-32+x2x1-13(x1-x2),令t=x2x1∈(1,4),φ(t)=ln t-3t-3t+2,则φ(t)=(t-1)(t-4)t(t+2)2<0,所以φ(t)在(1,4)上单调递减,故φ(t)<φ(1)=0,又-2x2-x1<0,-13(x1-x2)>0,所以h2x1+x23>0.例6.设函数f(x)=x2-a ln x,g(x)=(a-2)x.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数F(x)=f(x)-g(x)有两个零点x1,x2.(ⅰ)求满足条件的最小正整数a的值;(ⅱ)求证:F′x1+x22>0.【解析】解:(Ⅰ)f (x)=2x-ax=2x2-ax(x>0).⋯(1分)当a≤0时,f (x)>0在(0,+∞)上恒成立,所以函数f(x)单调递增区间为(0,+∞),此时f(x)无单调减区间.⋯(2分)当a>0时,由f (x)>0,得x>2a2,f(x)<0,得0<x<2a2,所以函数f(x)的单调增区间为2a2,+∞,单调减区间为0,2a2.⋯(3分)(Ⅱ)(i)F (x)=2x-(a-2)-ax =2x2-(a-2)x-ax=(2x-a)(x+1)x(x>0).因为函数F(x)有两个零点,所以a>0,此时函数f(x)在a2,+∞单调递增,在0,a 2单调递减.⋯(4分)所以F(x)的最小值Fa2<0,即-a2+4a-4a ln a2<0.⋯(5分)因为a>0,所以a+4ln a2-4>0.令h(a)=a+4ln a2-4,显然h(a)在(0,+∞)上为增函数,且h(2)=-2<0,h(3)=4ln 32-1=ln8116-1>0,所以存在a0∈(2,3),h(a0)=0.⋯(6分)当a>a0时,h(a)>0;当0<a<a0时,h(a)<0,所以满足条件的最小正整数a=3.⋯(7分)又当a=3时,F(3)=3(2-ln3)>0,F(1)=0,所以a=3时,f(x)有两个零点.综上所述,满足条件的最小正整数a的值为3.⋯(8分)(ii)证明:不妨设0<x1<x2,于是x21-(a-2)x1-a ln x1=x22-(a-2)x2-a ln x2,即x21-(a-2)x1-a ln x1-x22+(a-2)x2+a ln x2=0,x21+2x1-x22-2x2=ax1+a ln x1-ax2-a ln x2=a(x1 +ln x1-x2-ln x2).所以a=x21+2x1-x22-2x2x1+ln x1-x2-ln x2.⋯(10分)因为Fa2=0,当x∈0,a2时,F (x)<0,当x∈a2,+∞时,F (x)>0,故只要证x1+x22>a2即可,即证明x1+x2>x21+2x1-x22-2x2x1+ln x1-x2-ln x2,⋯(11分)即证x21-x22+(x1+x2)(ln x1-ln x2)<x21+2x1-x22-2x2,也就是证ln x1x2<2x1-2x2x1+x2.⋯(12分)设t=x1x2(0<t<1).令m(t)=ln t-2t-2t+1,则m(t)=1t-4(t+1)2=(t-1)2t(t+1)2.因为t>0,所以m (t)≥0,⋯(13分)当且仅当t=1时,m (t)=0,所以m(t)在(0,+∞)上是增函数.又m(1)=0,所以当m∈(0,1),m(t)<0总成立,所以原题得证.⋯(14分)例7.设函数f(x)=x2-a ln x-(a-2)x.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数f(x)有两个零点x1,x2(1)求满足条件的最小正整数a的值;(2)求证:fx1+x22>0.【解析】解:(Ⅰ)f′(x)=2x-(a-2)-ax=(2x-a)(x+1)x,(x>0).当a≤0时,f′(x)>0在(0,+∞)上恒成立,所以函数f(x)单调递增区间为(0,+∞),此时f(x)无单调减区间;当a>0时,由f′(x)>0,得x>a2,f′(x)<0,得0<x<a2,所以函数f(x)的单调增区间为a2,+∞,单调减区间为0,a2;(Ⅱ)(1)由(Ⅰ)可知函数f(x)有两个零点,所以a>0,f(x)的最小值f a2<0,即-a2+4a-4a ln a2<0,∵a>0,∴a-4+4ln a2>0,令h(a)=a-4+4ln a2,显然h(a)在(0,+∞)上为增函数,且h(2)=-2<0,h(3)=4ln 32-1>0∴存在a0∈(2,3),h(a0)=0,当a>a0时,h(a)>0;当0<a<a0时,h(a)<0,所以满足条件的最小正整数a=3.又当a=3时,f(3)=3(2-ln3)>0,f32=341-4ln32<0,f(1)=0,所以a=3时,f(x)有两个零点.综上所述,满足条件的最小正整数a的值为3.(2)证明:不妨设0<x1<x2,于是x21-(a-2)x1-a ln x1=x22-(a-2)x2-a ln x2,∴a=x21+2x1-x22-2x2x1+ln x1-x2-ln x2.,因为f′a2=0,当x∈0,a2时,f′(x)<0;当x∈a2,+∞时,f′(x)>0.故只要证x1+x22>a2即可,即证明x1+x2>x21+2x1-x22-2x2x1+ln x1-x2-ln x2.,即证x21-x22+(x1+x2)(ln x1-ln x2)<x21+2x1-x22-2x2.也就是证ln x1x2<2x1-2x2x1+x2.设x1x2=t∈(0,1).令m(t)=ln t-2t-2t+1,则m′(t)=1t-4(t+1)2=(t-1)2t(t+1)2.∵t>0,所以m (t)≥0,当且仅当t=1时,m (t)=0,所以m(t)在(0,+∞)上是增函数.又m(1)=0,所以当m∈(0,1),m(t)<0总成立,所以原题得证.例8.已知函数f(x)=e x-12ax2(a∈R),其中e为自然对数的底数,e=2.71828⋯.f(x0)是函数f(x)的极大值或极小值,则称x0为函数f(x)的极值点,极大值点与极小值点统称为极值点.(1)函数f(x)在(0,+∞)上单调递增,求实数a的取值范围;(2)判断函数f(x)的极值点的个数,并说明理由;(3)当函数f(x)有两个不相等的极值点x1和x2时,证明:x1x2<ln a.【解析】解:(1)f′(x)=e x-ax≥0在(0,+∞)上恒成立,即a≤e xx在(0,+∞)上恒成立,令g(x)=e xx,x∈(0,+∞),g′(x)=e x⋅x-e xx2=e x(x-1)x2,在(0,1)上,g′(x)<0,g(x)单调递减,在(1,+∞)上,g′(x)>0,g(x)单调递增,所以g(x)≥g(1)=e,所以a≤e.所以a的取值范围为(-∞,e].(2)f′(x)=e x-ax,令g(x)=e x-ax,则g′(x)=e x-a,①当a<0时,g′(x)=e x-a>0,f′(x)=e x-ax在(-∞,+∞)上单调递增,又f′(0)=1>0,f′1a=e1a-1<0,于是f′(x)=e x-ax在(-∞,+∞)上有一个零点x1,x(-∞,x1)x1(x1,+∞) f′(x)-0+f(x)↓极小值↑于是函数f(x)的有1个极值点,②当a=0时,f(x)=e x单调递增,于是函数f(x)没有极值点,③当0<a≤e时,由g′(x)=e x-a=0,得x=ln a,x(-∞,ln a)ln a(ln a,+∞) g′(x)-0+f′(x)↓a(1-ln a)↑f′(x)≥0,当且仅当x=ln a时,取“=”号,所以函数f(x)在(-∞,+∞)上单调递增,所以函数f(x)没有极值点.④当a>e时,x(-∞,ln a)ln a(ln a,+∞) g′(x)-0+f′(x)↓a(1-ln a)↑f′(ln a)=a(1-ln a)<0,f′(0)=1>0,又因为a>ln a,所以f′(a)=e a-a2>a2-a2=0,于是,函数f′(x)在(-∞,ln a)和(ln a,+∞)上各有一个零点,分别为x2,x3,x(-∞,x2)x2(x2,x3)x3(x3,+∞) f′(x)+0-0+f(x)↑极大值↓极小值↑于是f(x)有2个极值点,综上,当a<0时,函数f(x)有1个极值点,当0≤a≤e时,函数f(x)没有极值点,当a>e时,函数f(x)有2个极值点.(3)证明:当函数f(x)有两个不等的极值点x1和x2时,由(2)知a>e且1<x1<ln a<x2,f′(x1)=f′(x2)=0,令F(x)=f′(x)-f′(2ln a-x),F′(x)=(e x-a)2 e x,由F′(x)=0,得x=ln a,x(-∞,ln a)ln a(ln a,+∞) F′(x)+0+F(x)↑非极值点↑F(x1)<F(ln a)=0,即f′(x1)<f′(2ln a-x1),即f′(x2)<f′(2ln a-x1),因为x2>ln a,2ln a-x1>ln a,f′(x)在(ln a,+∞)上单调递增,所以x2<2ln a-x1,即x1+x2<2ln a,又x1+x2>2x1x2,所以x1x2<ln a.例9.已知函数f(x)=ln x-1x,g(x)=ax+b.(1)若函数h(x)=f(x)-g(x)在(0,+∞)上单调递增,求实数a的取值范围;(2)若直线g(x)=ax+b是函数f(x)=ln x-1x图象的切线,求a+b的最小值;(3)当b=0时,若f(x)与g(x)的图象有两个交点A(x1,y1),B(x2,y2),求证:x1x2>2e2.(取e为2.8,取ln2为0.7,取2为1.4)【解析】(1)解:h(x)=f(x)-g(x)=ln x-1x-ax-b,则h (x)=1x+1x2-a,∵h(x)=f(x)-g(x)在(0,+∞)上单调递增,∴对∀x>0,都有h (x)=1x +1x2-a≥0,即对∀x >0,都有a ≤1x +1x2,∵1x +1x2>0,∴a ≤0,故实数a 的取值范围是(-∞,0];(2)解:设切点x 0,ln x 0-1x 0 ,则切线方程为y -ln x 0-1x 0=1x 0+1x 20(x -x 0),即y =1x 0+1x 20x -1x 0+1x 20 x 0+ln x 0-1x 0,亦即y =1x 0+1x 20x +ln x 0-2x 0-1,令1x 0=t >0,由题意得a =1x 0+1x 20=t +t 2,b =ln x 0-2x 0-1=-ln t -2t -1,令a +b =φ(t )=-ln t +t 2-t -1,则φ (t )=-1t +2t -1=(2t +1)(t -1)t,当t ∈(0,1)时,φ (t )<0,φ(t )在(0,1)上单调递减;当t ∈(1,+∞)时,φ (t )>0,φ(t )在(1,+∞)上单调递增,∴a +b =φ(t )≥φ(1)=-1,故a +b 的最小值为-1;(3)证明:由题意知ln x 1-1x 1=ax 1,ln x 2-1x 2=ax 2,两式相加得ln x 1x 2-x 1+x 2x 1x 2=a (x 1+x 2),两式相减得lnx 2x 1-x 1-x 2x 1x 2=a (x 2-x 1),即ln x2x 1x 2-x 1+1x 1x 2=a ,∴ln x 1x 2-x 1+x 2x 1x 2=ln x2x 1x 2-x 1+1x 1x 2 (x 1+x 2),即ln x 1x 2-2(x 1+x 2)x 1x 2=x 1+x 2x 2-x 1ln x 2x 1,不妨令0<x 1<x 2,记t =x 2x 1>1,令F (t )=ln t -2(t -1)t +1(t >1),则F ′(t )=(t -1)2t (t +1)2>0,∴F (t )=ln t -2(t -1)t +1在(1,+∞)上单调递增,则F (t )=ln t -2(t -1)t +1>F (1)=0,∴ln t >2(t -1)t +1,则ln x 2x 1>2(x 2-x 1)x 1+x 2,∴ln x 1x 2-2(x 1+x 2)x 1x 2=x 1+x 2x 2-x 1ln x 2x 1>2,又ln x 1x 2-2(x 1+x 2)x 1x 2<ln x 1x 2-4x 1x 2x 1x 2=ln x 1x 2-4x 1x 2=2ln x 1x 2-4x 1x 2,∴2ln x1x2-4x1x2>2,即ln x1x2-2x1x2>1,令G(x)=ln x-2x,则x>0时,G(x)=1x+2x2>0,∴G(x)在(0,+∞)上单调递增,又ln2e-22e=12ln2+1-2e≈0.85<1,∴G(x1x2)=ln x1x2-2x1x2>1>ln2e-22e,则x1x2>2e,即x1x2>2e2.【同步练习】1.已知函数f(x)=ln x+2x-ax2,a∈R.(Ⅰ)若f(x)在x=1处取得极值,求a的值;(Ⅱ)设g(x)=f(x)+(a-4)x,试讨论函数g(x)的单调性;(Ⅲ)当a=-2时,若存在正实数x1,x2满足f(x1)+f(x2)+3x1x2=x1+x2,求证:x1+x2>12.【解析】解:(Ⅰ)因为f(x)=ln x+2x-ax2,所以f′(x)=1x+2-2ax,因为f(x)在x=1处取得极值,所以f′(1)=1+2-2a=0,解得:a=3 2.验证:当a=32时,f′(x)=1x+2-3x=-(3x+1)(x-1)x(x>0),易得f(x)在x=1处取得极大值.(Ⅱ)因为g(x)=f(x)+(a-4)x=ln x-ax2+(a-2)x,所以g′(x)=-(ax+1)(2x-1)x(x>0),①若a≥0,则当x∈0,1 2时,g′(x)>0,所以函数g(x)在0,1 2上单调递增;当x∈12,+∞时,g′(x)<0,∴函数g(x)在12,+∞上单调递减.②若a<0,g′(x)=-a x+1a(2x-1)x(x>0),当a<-2时,易得函数g(x)在0,-1 a和12,+∞上单调递增,在-1a,12上单调递减;当a=-2时,g′(x)≥0恒成立,所以函数g(x)在(0,+∞)上单调递增;当-2<a<0时,易得函数g(x)在0,1 2和-1a,+∞上单调递增,在12,-1a上单调递减.(Ⅲ)证明:当a=-2时,f(x)=ln x+2x+2x2,因为f(x1)+f(x2)+3x1x2=x1+x2,所以ln x1+2x1+2x21+ln x2+2x2+2x22+3x1x2=x1+x2,即ln x1x2+2(x21+x22)+(x1+x2)+3x1x2=0,所以2(x1+x2)2+(x1+x2)=x1x2-ln x1x2,令t=x1x2,φ(t)=t-ln t(t>0),则φ′(t)=t-1t(t>0),当t∈(0,1)时,φ′(t)<0,所以函数φ(t)=t-ln t(t>0)在(0,1)上单调递减;当t∈(1,+∞)时,φ′(t)>0,所以函数φ(t)=t-ln t(t>0)在(1,+∞)上单调递增.所以函数φ(t)在t=1时,取得最小值,最小值为1.所以2(x1+x2)2+(x1+x2)≥1,即2(x1+x2)2+(x1+x2)-1≥0,所以x1+x2≥12或x1+x2≤-1,因为x1,x2为正实数,所以当x1+x2=12时,x1x2=1,此时不存在x1,x2满足条件,所以x1+x2>1 2.2.已知函数f(x)=ln x+x-ax2,a∈R.(1)若f(x)在x=1处取得极值,求a的值;(2)设g(x)=f(x)+(a-3)x,试讨论函数g(x)的单调性;(3)当a=-2时,若存在正实数x1,x2满足f(x1)+f(x2)+3x1x2=0,求证:x1+x2>12.【解析】(1)解:因为f(x)=ln x+x-ax2,所以f′(x)=1x+1-2ax,因为f(x)在x=1处取得极值,所以f′(1)=1+1-2a=0,解得:a=1.验证:当a=1时,f′(x)=1x+1-2x=-(x-1)(2x+1)x(x>0),易得f(x)在x=1处取得极大值.(2)解:因为g(x)=f(x)+(a-3)x=ln x-ax2+(a-2)x,所以g′(x)=-(ax+1)(2x-1)x(x>0),①若a≥0,则当x∈0,1 2时,g′(x)>0,所以函数g(x)在0,1 2上单调递增;当x∈12,+∞时,g′(x)<0,∴函数g(x)在12,+∞上单调递减.②若a<0,g′(x)=-a x+1a(2x-1)x(x>0),当a<-2时,易得函数g(x)在0,-1 a和12,+∞上单调递增,在-1a,12上单调递减;当a=-2时,g′(x)≥0恒成立,所以函数g(x)在(0,+∞)上单调递增;当-2<a<0时,易得函数g(x)在0,1 2和-1a,+∞上单调递增,在12,-1a上单调递减.(3)证明:当a=-2时,f(x)=ln x+x+2x2,因为f(x1)+f(x2)+3x1x2=0,所以ln x1+x1+2x12+ln x2+x2+2x22+3x1x2=0,即ln x1x2+2(x12+x22)+(x1+x2)+3x1x2=0,所以2(x1+x2)2+(x1+x2)=x1x2-ln x1x2,令t=x1x2,φ(t)=t-ln t(t>0),则φ′(t)=t-1t(t>0),当t∈(0,1)时,φ′(t)<0,所以函数φ(t)=t-ln t(t>0)在(0,1)上单调递减;当t∈(1,+∞)时,φ′(t)>0,所以函数φ(t)=t-ln t(t>0)在(1,+∞)上单调递增.所以函数φ(t)在t=1时,取得最小值,最小值为1.所以2(x1+x2)2+(x1+x2)≥1,即2(x1+x2)2+(x1+x2)-1≥0,所以x1+x2≥12或x1+x2≤-1,因为x1,x2为正实数,所以x1+x2≤-1,因为当x1+x2=12时,x1x2=1,不满足t∈(1,+∞),所以x1+x2>1 2.3.已知函数f(x)=x(1-ln x).(1)讨论f(x)的单调性;(2)设a,b为两个不相等的正数,且b ln a-a ln b=a-b,证明:2<1a +1b<e.【解析】(1)解:由函数的解析式可得f (x)=1-ln x-1=-ln x,∴x∈(0,1),f′(x)>0,f(x)单调递增,x∈(1,+∞),f′(x)<0,f(x)单调递减,则f(x)在(0,1)单调递增,在(1,+∞)单调递减.(2)证明:由b ln a-a ln b=a-b,得-1a ln1a+1bln1b=1b-1a,即1a1-ln1a=1b1-ln1b,由(1)f(x)在(0,1)单调递增,在(1,+∞)单调递减,所以f(x)max=f(1)=1,且f(e)=0,令x1=1a,x2=1b,则x1,x2为f(x)=k的两根,其中k∈(0,1).不妨令x1∈(0,1),x2∈(1,e),则2-x1>1,先证2<x1+x2,即证x2>2-x1,即证f(x2)=f(x1)<f(2-x1),令h(x)=f(x)-f(2-x),则h′(x)=f′(x)+f′(2-x)=-ln x-ln(2-x)=-ln[x(2-x)]在(0,1)单调递减,所以h′(x)>h′(1)=0,故函数h(x)在(0,1)单调递增,∴h(x1)<h(1)=0.∴f(x1)<f(2-x1),∴2<x1+x2,得证.同理,要证x1+x2<e,(法一)即证1<x2<e-x1,根据(1)中f(x)单调性,即证f(x2)=f(x1)>f(e-x1),令φ(x)=f(x)-f(e-x),x∈(0,1),则φ (x)=-ln[x(e-x)],令φ′(x0)=0,x∈(0,x0),φ (x)>0,φ(x)单调递增,x∈(x0,1),φ (x)<0,φ(x)单调递减,又0<x<e时,f(x)>0,且f(e)=0,故limx→0+φ(x)=0,φ(1)=f(1)-f(e-1)>0,∴φ(x)>0恒成立,x1+x2<e得证,(法二)f(x1)=f(x2),x1(1-ln x1)=x2(1-ln x2),又x1∈(0,1),故1-ln x1>1,x1(1-ln x1)>x1,故x1+x2<x1(1-ln x1)+x2=x2(1-ln x2)+x2,x2∈(1,e),令g(x)=x(1-ln x)+x,g′(x)=1-ln x,x∈(1,e),在(1,e)上,g′(x)>0,g(x)单调递增,所以g(x)<g(e)=e,即x2(1-ln x2)+x2<e,所以x1+x2<e,得证,则2<1a+1b<e.4.已知函数f(x)=ln x-x.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)设a,b为两个不相等的正数,ln a-ln b=a-b,证明:ab<1.【解析】解:(I)f′(x)=1x-1=1-xx,x>0,当0<x<1时,f′(x)>0,函数f(x)单调递增,当x>1时,f′(x)<0,函数f(x)单调递减,故函数在(0,1)上单调递增,在(1,+∞)上单调递减,(II)证明:由ln a-ln b=a-b,得ln a-a=ln b-b,令x1=a,x2=b,则x1,x2是f(x)=x的两根,不妨令x1∈(0,1),x2∈(1,+∞),则0<x1<1,0<1x2<1,要证ab<1,即证x1<1x2,即f(x1)=f(x2)<f1x2,令h(x)=f(x)-f1x=2ln x+1x-x,则h′(x)=2x-1x2-1=-(x-1)2x2<0,所以h(x)在(1,+∞)单调递减,h(x)<h(1)=0,所以f(x1)=f(x2)<f1x2 ,所以ab<1,5.已知函数f(x)=xe-x(x∈R).(Ⅰ)求函数f(x)的单调区间和极值;(Ⅱ)已知函数y=g(x)的图象与函数y=f(x)的图象关于直线x=1对称,证明:当x>1时,f(x) >g(x);(Ⅲ)如果x1≠x2,且f(x1)=f(x2),证明:x1+x2>2.【解析】解:(Ⅰ)解:f′(x)=(1-x)e-x令f′(x)=0,解得x=1当x变化时,f′(x),f(x)的变化情况如下表x(-∞,1)1(1,+∞)f′(x)+0-f(x)增极大值减所以f(x)在(-∞,1)内是增函数,在(1,+∞)内是减函数.函数f(x)在x=1处取得极大值f(1)且f(1)=1 e.(Ⅱ)证明:由题意可知g(x)=f(2-x),得g(x)=(2-x)e x-2令F(x)=f(x)-g(x),即F(x)=xe-x+(x-2)e x-2于是F (x)=(x-1)(e2x-2-1)e-x当x>1时,2x-2>0,从而e2x-2-1>0,又e-x>0,所以F′(x)>0,从而函数F(x)在[1,+∞)是增函数.又F(1)=e-1-e-1=0,所以x>1时,有F(x)>F(1)=0,即f(x)>g(x).(Ⅲ)证明:(1)若(x1-1)(x2-1)=0,由(I)及f(x1)=f(x2),则x1=x2=1.与x1≠x2矛盾.(2)若(x1-1)(x2-1)>0,由(I)及f(x1)=f(x2),得x1=x2.与x1≠x2矛盾.根据(1)(2)得(x1-1)(x2-1)<0,不妨设x1<1,x2>1.由(Ⅱ)可知,f(x2)>g(x2),则g(x2)=f(2-x2),所以f(x2)>f(2-x2),从而f(x1)>f(2-x2).因为x2>1,所以2-x2<1,又由(Ⅰ)可知函数f(x)在区间(-∞,1)内是增函数,所以x1>2-x2,即x1+x2>2.6.已知函数f(x)=x-e a+x(a∈R).(1)若a=1,求函数f(x)在x=0处的切线方程;(2)若f(x)有两个零点x1,x2,求实数a的取值范围,并证明:x1+x2>2.【解析】解:(1)f(x)=x-e1+x的导数为f′(x)=1-e1+x,则函数f(x)在x=0处的切线斜率为1-e,又切点为(0,-e),则切线的方程为y=(1-e)x-e,即(e-1)x+y+e=0;(2)设函数g(x)=x-ln x+a,与函数f(x)具有相同的零点,g (x)=x-1x,知函数g(x)在(0,1)上递减,(1,+∞)上递增,当x→0,g(x)→+∞;可证当x∈(0,+∞)时,ln x<x-1,即-ln x=ln 1x≤1x-1,即此时g(x)=x-ln x+a<x+1x+a-1,当x→+∞时,g(x)→+∞,f(x)有两个零点,只需g(1)<0,即a<-1;证明:方法一:设函数F(x)=g(x)-g(2-x),(1<x<2)则F(x)=2x-2-ln x+ln(2-x),且F (x)=2(x-1)2x(x-2)<0对x∈(1,2)恒成立即当x∈(1,2)时,F(x)单调递减,此时,F(x)<F(1)=0,即当x∈(1,2)时,g(x)<g(2-x),由已知0<x1<1<x2,则1-x1∈(1,2),则有g(2-x1)<g(2-2+x1)=g(x1)=g(x2)由于函数g(x)在(1,+∞)上递增,即2-x1<x2,即x1+x2>2.方法二:故x2-x1=ln x2-ln x1=ln x2 x1.设x2x1=t,则t>1,且x2=tx1x2-x1=ln t,解得x1=ln tt-1,x2=t ln tt-1.x1+x2=(t+1)ln tt-1,要证:x1+x2=(t+1)ln tt-1>2,即证明(t+1)ln t>2(t-1),即证明(t+1)ln t-2t+2>0,设g(t)=(t+1)ln t-2t+2(t>1),g (t)=ln t+1t-1,令h(t)=g (t),(t>1),则h (t)=t-1t2>0,∴h(t)在(1,+∞)上单调增,g (t)=h(t)>h(1)=0,∴g(t)在(1,+∞)上单调增,则g(t)>g(1)=0.即t>1时,(t+1)ln t-2t+2>0成立,7.已知函数f(x)=axe x-(a-1)(x+1)2(其中a∈R,e为自然对数的底数,e=2.718128⋯).(1)若f(x)仅有一个极值点,求a的取值范围;(2)证明:当0<a<12时,f(x)有两个零点x1,x2,且-3<x1+x2<-2.【解析】(1)解:f (x)=ae x+axe x-2(a-1)(x+1)=(x+1)(ae x-2a+2),由f (x)=0得到x=-1或ae x-2a+2=0(*)由于f(x)仅有一个极值点,关于x的方程(*)必无解,①当a=0时,(*)无解,符合题意,②当a≠0时,由(*)得e x=2a-2a,故由2a-2a≤0得0<a≤1,由于这两种情况都有,当x<-1时,f (x)<0,于是f(x)为减函数,当x>-1时,f (x)>0,于是f(x)为增函数,∴仅x=-1为f(x)的极值点,综上可得a的取值范围是[0,1];(2)证明:由(1)当0<a<12时,x=-1为f(x)的极小值点,又∵f(-2)=-2ae2-(a-1)=-2e2-1a+1>0对于0<a<12恒成立,f(-1)=-ae <0对于0<a<12恒成立,f(0)=-(a-1)>0对于0<a<12恒成立,∴当-2<x<-1时,f(x)有一个零点x1,当-1<x<0时,f(x)有另一个零点x2,即-2<x1<-1,-1<x2<0,且f(x1)=ax1e x1-(a-1)(x1+1)2=0,f(x2)=ax2e x2-(a-1)(x2+1)2=0,(#)所以-3<x1+x2<-1,下面再证明x1+x2<-2,即证x1<-2-x2,由-1<x2<0得-2<-2-x2<-1,由于x<-1,f(x)为减函数,于是只需证明f(x1)>f(-2-x2),也就是证明f(-2-x2)<0,f(-2-x2)=a(-2-x2)e-2-x2-(a-1)(-x2-1)2=a(-2-x2)e-2-x2 -(a-1)(x2+1)2,借助(#)代换可得f(-2-x2)=a(-2-x2)e-2-x2-ax2e x2=a[(-2-x2)e-2-x2-x2e x2],令g(x)=(-2-x)e-2-x-xe x(-1<x<0),则g (x)=(x+1)(e-2-x-e x),∵h(x)=e-2-x-e x为(-1,0)的减函数,且h(-1)=0,∴g (x)=(x+1)(e-2-x-e x)<0在(-1,0)恒成立,于是g(x)为(-1,0)的减函数,即g(x)<g(-1)=0,∴f(-2-x2)<0,这就证明了x1+x2<-2,综上所述,-3<x1+x2<-2.8.已知函数f(x)=e x-ax(a为常数),f′(x)是f(x)的导函数.(Ⅰ)讨论f(x)的单调性;(Ⅱ)当x>0时,求证:f(ln a+x)>f(ln a-x);(Ⅲ)已知f(x)有两个零点x1,x2(x1<x2),求证:f/x1+x22<0.【解析】证明:(Ⅰ)∵f′(x)=e x-a.当a≤0时,则f′(x)=e x-a>0,即f(x)在R上是增函数,当a>0时,由f′(x)=e x-a=0,得x0=ln a.当x∈(-∞,x0)时,f′(x)<0;当x∈(x0,+∞)时,f′(x)>0.即f(x)在(-∞,ln a)上是减函数,在(ln a,+∞)上是增函数,(Ⅱ)证明:设g(x)=f(ln a+x)-f(ln a-x)(x>0)=[e ln a+x-a(ln a+x)]-[e ln a-x-a(ln a-x)]= a(e x-e-x-2x),∴g′(x)=a(e x+e x-2)≥2a e x∙e-x-2a=0,当且仅当x=0时等号成立,但x>0,∴g′(x)>0,即g(x)在(0,+∞)上是增函数,所以g(x)>g(0)=0∴不等式f(x0+x)>f(x0-x)恒成立.(Ⅲ)由(I)知,当a≤0时,函数y=f(x)的图象与x轴至多有一个交点,故a>0,从而f(x)的最小为f(ln a),且f(ln a)<0.设A(x1,0),B(x2,0),0<x1<x2,则0<x1<ln a<x2.由(II)得f(2ln a-x1)=f(ln a+ln a-x1)>f(x1)=0.∵2ln a-x1=ln a+(ln a-x1)>ln a,x2>ln a,且f(x)在(ln a,+∞)上是增函数又f(2ln a-x1)>0=f(x2),∴2ln a-x1>x2.于是x1+x22<ln a,∵f(x)在(-∞,ln a)上减函数,∴fx1+x22<0.9.设函数f(x)=e x-ax+a,a∈R,其图象与x轴交于A(x1,0),B(x2,0)两点,且x1<x2.(1)求a的取值范围;(2)证明:f (x1x2)<0.【解析】解:(1)∵f(x)=e x-ax+a,∴f (x)=e x-a,若a≤0,则f (x)>0,则函数f(x)是单调增函数,这与题设矛盾.∴a>0,令f (x)=0,则x=ln a,当f (x)<0时,x<ln a,f(x)是单调减函数,当f (x)>0时,x>ln a,f(x)是单调增函数,于是当x=ln a时,f(x)取得极小值,∵函数f(x)=e x-ax+a(a∈R)的图象与x轴交于两点A(x1,0),B(x2,0)(x1<x2),∴f(ln a)=a(2-ln a)<0,即a>e2,此时,存在1<ln a,f(1)=e>0,存在3ln a>ln a,f(3ln a)=a3-3a ln a+a>a3-3a2+a>0,又由f(x)在(-∞,ln a)及(ln a,+∞)上的单调性及曲线在R上不间断,可知a>e2为所求取值范围.(2)∵e x1-ax1+a=0 e x2-ax2+a=0 ,∴两式相减得a=e x2-e x1x2-x1,记x2-x12=s(s>0),则f′x1+x22=e x1+x22-e x2-e x1x2-x1=ex1+x222s[2s-(e s-e-s)],设g(s)=2s-(e s-e-s),则g (s)=2-(e s+e-s)<0,∴g(s)是单调减函数,则有g(s)<g(0)=0,而e x1+x222s>0,∴f′x1+x22<0.又f (x)=e x-a是单调增函数,且x1+x22>x1x2,∴f′(x1x2)<0.10.设函数f(x)=e x-ax+a(a∈R)其图象与x轴交于A(x1,0),B(x2,0)两点,且x1<x2.(1)求f(x)的单调区间和极值点;(2)证明:f′(x1x2)<0(f′(x)是f(x)的导函数);(3)证明:x1x2<x1+x2.【解析】解:(1)设函数f(x)=e x-ax+a(a∈R)其图象与x轴交于A(x1,0),B(x2,0)两点,所以函数f(x)不单调,∵f (x)=e x-a=0有实数解,所以a>0,解得x=ln a,因为x<ln a,f (x)<0,f(x)单调递减,x>ln a时,f (x)>0,f(x)单调递增,且ln a是极小值点;f(ln a)极小值=e ln a-a ln a+a=2a2-ln a,由题意得,f(ln a)<0,所以a>e2,所以函数f(x)的单调递增区间(-∞,ln a),单调递减区间(ln a,+∞),极小值点是ln a,无极大值点,且a>e2.(2)证明:∵e x1-ax1+a=0 e x2-ax2+a=0 ,两式相减可得,a=e x2-e x1x2-x1,令s=ex2-x12(s>0),则fx1+x22=e x1+x22-e x2-e x1x2-x1,=e x1+x222s[2s-(e s-e-s)],令g(s)=2s-(e s-e-s),则g′(s)=2-(e s+e-s)<0,所以g(s)单调递减,g(s)<g(0)=0,而e x1+x222s>0,∴fx1+x22<0,又x1+x22>x1x2,∴f′(x1x2)<0;(3)证明:由e x1-ax1+a=0e x2-ax2+a=0,可得e x2-x1=x2-1x1-1,∴e(x2-1)-(x1-1)=x2-1 x1-1,令m=x1-1,n=x2-1,则0<m<1<n,∴e n-m=nm,设t=nm,则t>1,n=mt,∴e(t-1)m=t,∴m=ln tt-1,n=t ln tt-1,∴mn=t(ln t)2 (t-1)2,要证明:x1x2<x1+x2,等价于证明:(x1-1)(x2-1)<1,即证mn<1,即证t(ln t)2(t-1)2<1,即证ln tt-1<1t,即证ln t<t-1t ,令g(t)=2ln t-t+1t,(t>1),g′(t)=2t -1-1t2=-(t-1)2t2<0,∴g(t)在(1,+∞)上单调递减,∵t>1,故g(t)<0,∴2ln t-t+1t<0,∴ln t<t-1t,从而有:x1x2<x1+x2.11.已知函数f(x)=x2ln x+ax(a∈R)在x=1处的切线与直线x-y+2=0平行.(1)求实数a的值,并求f(x)的极值;(2)若方程f(x)=m有两个不相等的实根x1,x2,求证:x21+x22>2e.【解析】解:(1)函数f(x)的定义域为(0,+∞),f (x)=2x ln x+x-ax2,由题意知f′(1)=1-a=1,∴a=0.∴f′(x)=2x ln x+x=x(2ln x+1),令f′(x)=0,则x=e e,当x∈0,e e时,f′(x)<0;x∈e e,+∞时,f′(x)>0.∴f(x)的极小值为f ee=-12e,证明:(2)由(1)知f(x)=x2ln x,由f(x1)=f(x2)=m,得x12ln x1=x22ln x2,即2x12ln x1=2x22ln x2,所以x12ln x12=x22ln x22.∵x1≠x2,不妨设x1<x2,令t1=x12,t2=x22,h(t)=t ln t(t>0),则原题转化为h(t)=2m有两个实数根t1,t2(t1<t2),又h′(t)=1+ln t,令h′(t)>0,得t>e-1;令h′(t)<0,得t<e-1,∴h(t)在(0,e-1)上单调递减,在(e-1,+∞)上单调递增,又t→0+时,h(t)→0,h(1)=0,h(e-1)=-e-1,由h(t)图象可知,-e-1<2m<0,0<t1<e-1<t2<1.设g(t)=h(t)-h2e-t=t ln t-2e-tln2e-t,t∈0,1e,则g (t)=(ln t+1)--ln2e-t-1=2+ln t2e-t.当0<t<1e时,t2e-t=-t-1e2+1e2<1e2,则g′(t)<0∴g(t)在0,1 e上单调递减.又∵g1e=h1e -h2e-1e=0∴t∈0,1e时,g(t)>0,得到g(t1)=h(t1)-h2e-t1>0,即h(t1)>h2e-t1,又∵h(t1)=h(t2),∴h(t2)>h2e -t1,又0<t1<1e,则2e-t1>1e,且1>t2>1e,h(t)在1e,+∞上单调递增,∴t2>2e -t1,即t1+t2>2e,即x12+x22>2e.。

高中数学专题 微专题13 极值点偏移问题

高中数学专题 微专题13 极值点偏移问题

由 f′(x)=1-1x+ln x-2x+a=0 得
a=2x+1x-ln x-1,
所以直线 y=a 与函数 g(x)=2x+1x-ln x-1 的图象有两个交点,

g(x)

2x

1 x

பைடு நூலகம்
ln
x-1

g′(x)

2

1 x2

1 x

2x2-x-1 x2

2x+1x-1
x2
,x∈(0,+∞),
当x∈(0,1)时,g′(x)<0,g(x)单调递减, 当x∈(1,+∞)时,g′(x)>0,g(x)单调递增,因此g(x)min=g(1)=2, 当x→0时,g(x)→+∞, 当x→+∞时,g(x)→+∞, 作出y=g(x)的大致图象,如图所示. 所以若有两个交点,只需a>2,即a的取值范围为 (2,+∞).
(2)设x1,x2是函数f(x)的两个极值点,证明:x1+x2>2.
因为x1,x2是函数f(x)的两个极值点, 所以f′(x1)=f′(x2)=0,由(1)可知g(x1)=g(x2)=a,不妨设0<x1<1<x2, 要证明x1+x2>2,只需证明x2>2-x1, 显然2-x1>1, 由(1)可知,当x∈(1,+∞)时,g(x)单调递增,所以只需证明g(x2)>g(2 -x1), 而g(x1)=g(x2)=a, 所以证明g(x1)>g(2-x1)即可, 即证明函数h(x)=g(x)-g(2-x)>0在x∈(0,1)时恒成立,
123
(2)若f′(x0)=0(f′(x)为f(x)的导函数),方程f(x)=m有两个不相等的实数 根x1,x2,求证:x1+x2>2x0.

极值点偏移 高三

极值点偏移 高三

极值点处理方法一、极值点偏移的判定定理对于可导函数)(x f y =,在区间),(b a 上只有一个极大(小)值点0x ,方程0)(=x f 的解分别为21,x x ,且b x x a <<<21,(1)若)2()(201x x f x f -<,则021)(2x x x ><+,即函数)(x f y =在区间),(21x x 上极(小)大值点0x 右(左)偏;(2)若)2()(201x x f x f ->,则021)(2x x x <>+,即函数)(x f y =在区间),(21x x 上极(小)大值点0x 右(左)偏.证明:(1)因为对于可导函数)(x f y =,在区间),(b a 上只有一个极大(小)值点0x ,则函数)(x f 的单调递增(减)区间为),(0x a ,单调递减(增)区间为),(0b x ,由于b x x a <<<21,有01x x <,且0202x x x <-,又)2()(201x x f x f -<,故2012)(x x x -><,所以021)(2x x x ><+,即函数极(小)大值点0x 右(左)偏; (2)证明略.左快右慢(极值点左偏221x x m +<⇔) 左慢右快(极值点右偏221x x m +>⇔)左快右慢(极值点左偏221x x m +<⇔) 左慢右快(极值点右偏221x x m +>⇔) 二、运用判定定理判定极值点偏移的方法 1、方法概述:(1)求出函数)(x f 的极值点0x ;(2)构造一元差函数)()()(00x x f x x f x F --+=; (3)确定函数)(x F 的单调性;(4)结合0)0(=F ,判断)(x F 的符号,从而确定)(0x x f +、)(0x x f -的大小关系. 口诀:极值偏离对称轴,构造函数觅行踪;四个步骤环相扣,两次单调紧跟随. 2、抽化模型答题模板:若已知函数)(x f 满足)()(21x f x f =,0x 为函数)(x f 的极值点,求证:0212x x x <+. (1)讨论函数)(x f 的单调性并求出)(x f 的极值点0x ;假设此处)(x f 在),(0x -∞上单调递减,在),(0+∞x 上单调递增 (2)构造)()()(00x x f x x f x F --+=;注:此处根据题意需要还可以构造成)2()()(0x x f x f x F --=的形式.(3)通过求导)('x F 讨论)(x F 的单调性,判断出)(x F 在某段区间上的正负,并得出)(0x x f +与)(0x x f -的大小关系;假设此处)(x F 在),0(+∞上单调递增,那么我们便可得出0)()()()(000=-=>x f x f x F x F ,从而得到:0x x >时,)()(00x x f x x f ->+.(4)不妨设201x x x <<,通过)(x f 的单调性,)()(21x f x f =,)(0x x f +与)(0x x f -的大小关系得出结论;接上述情况,由于0x x >时,)()(00x x f x x f ->+且201x x x <<,)()(21x f x f =,故)2()]([)]([)()(2002002021x x f x x x f x x x f x f x f -=-->-+==,又因为01x x <,0202x x x <-且)(x f 在),(0x -∞上单调递减,从而得到2012x x x -<,从而0212x x x <+得证. (5)若要证明0)2('21<+x x f ,还需进一步讨论221x x +与0x 的大小,得出221xx +所在的单调区间,从而得出该处函数导数值的正负,从而结论得证.此处只需继续证明:因为0212x x x <+,故0212x x x <+,由于)(x f 在),(0x -∞上单调递减,故0)2('21<+x x f . 【说明】(1)此类试题由于思路固定,所以通常情况下求导比较复杂,计算时须细心;(2)此类题目若试题难度较低,会分解为三问,前两问分别求)(x f 的单调性、极值点,证明)(0x x f +与)(0x x f -(或)(x f 与)2(0x x f -)的大小关系;若试题难度较大,则直接给出形如0212x x x <+或0)2('21<+x x f 的结论,让你给予证明,此时自己应主动把该小问分解为三问逐步解题 三、对点详析,利器显锋芒 ★已知函数)()(R x xe x f x∈=-. (1)求函数)(x f 的单调区间和极值;(2)若21x x ≠,且)()(21x f x f =,证明:221>+x x .∵12>x ,∴122<-x ,)(x f 在)1,(-∞上单调递增,∴212x x ->,∴221>+x x . ★函数3434)(x x x f -=与直线)31(->=a a y 交于),(1a x A 、),(2a x B 两点. 证明:221<+x x .★已知函数2()ln f x x x=+,若1x ≠2x ,且)()(21x f x f =,证明:421>+x x . 【解析】由函数2()ln f x x x=+单调性可知:若)()(21x f x f =,则必有212x x <<。

高考导数极值点偏移练习题

高考导数极值点偏移练习题

高考导数极值点偏移练习题1.已知函数()()()2xx e a R f x a =-+∈.(1)试确定函数()f x 的零点个数;(2)设1x ,2x 是函数()f x 的两个零点,证明:122x x +<. 【分析】 (1)由0f x 得()2x a x e =-,然后利用导数求出()()2x g x x e =-的单调性即可(2)设121x x ,设()()()()21F x f x f x x =-->,然后利用导数可得()F x 在1,递增,()()10F x F >=,即()()2f x f x >-,进而可得()()222f x f x >-,即()()212f x f x -<,再由()()f x g x a =-+的单调性即可得到122x x +<. 【详解】 (1)由0f x得()2x a x e =-,令()()2x g x x e =-,函数()f x 的零点个数即直线y a =与曲线()()2xg x x e =-的交点个数, ∵()()()21xxxg x e x e x e =-+-=-',由0g x 得1x <;由0g x 得1x >,∴函数()g x 在(),1-∞单调递增,函数()g x 在1,单调递减.∴当1x =时,函数()g x 有最大值,()()max 1g x g e ==, 又当2x <时,()0gx >,()20g =,当2x >时,()0g x <,∴当a e >时,函数()f x 没有零点; 当a e =或0a ≤时,函数()f x 有一个零点; 当0a e <<时,函数()f x 有两个零点.(2)由(1)知0a >,不妨设121x x ,设()()()()21F x f x f x x =-->,∴()()22xxF x x e xe-=-+,由于()()()21xx F x x ee -'=--,又易知2x x y e e -=-是减函数,当1x >时,有20x x e e e e --<-=,又10x -<,得()0F x '>, 所以()F x 在1,递增,()()10F x F >=,即()()2f x f x >-.由21>x 得()()222f x f x >-,又()()210f x f x ==, ∴()()212f x f x -<,由()()2xg x x e =-在(),1-∞上单调递增,得()()f x g x a =-+在(),1-∞单调递减,又221x -<,∴212x x ->,即122x x +<.2.已知:()ln f x x =,32()(0)x g x e ax ax a =-+> (1)证明:对12(0,)x x ∀∈+∞、,且12x x ≠,有()()1212122f x f x x x x x ->-+;(2)若()()120g x g x ==,求证:124x x +>+ 【分析】(1)不妨设120x x >>,转化为()1122112122212ln 1x x x x x x x x x x ⎛⎫- ⎪-⎝⎭>=++,令12x t x =,只需要证明2(1)()ln 01t h t t t -=->+,求导得到单调性得到答案.(2)令()ln 2ln ln(1)P x x a x x =----,代入化简得到121222122x x x x >⋅+++-,设12x x t +=,即2880t t -+>,解不等式得到答案.【详解】(1)不妨设120x x >>,则原不等式化为()1122112122212ln 1x x x x xx x x x x ⎛⎫- ⎪-⎝⎭>=++令12x t x =,则只需证2(1)()ln 01t h t t t -=->+,22214(1)()0(1)(1)t f t t t t t '-=-=≥++ 故()f t 为增函数,而121x t x =>,故()(1)0f t f >=得证. (2)32()0x g x e ax ax =-+=,故2(1)x e ax x =-(此方程解必满足1x >),故ln 2ln ln(1)x a x x =++-,令()ln 2ln ln(1)P x x a x x =----,故1x 、2x 是()P x 的零点,且121x x >> 由()()111222ln 2ln ln 1ln 2ln ln 1x a x x x a x x ----=----, 故()()()1212122ln ln ln 1ln 1x x x x x x -=-+---, 即()()()()121212121212ln 1ln 1ln ln 22122112x x x x x x x x x x x x ----=⋅+>⋅+----++-,令12x x t +=,则由4212t t >+-,得:2880t t -+>,解得:4t >+4t <-(不合题意舍去).3.已知函数()2ln 2f x x x ax x =-+,a ∈R .(Ⅰ)若()f x 在()0,∞+内单调递减,求实数a 的取值范围;(Ⅱ)若函数()f x 有两个极值点分别为1x ,2x ,证明:1212x x a+>. 【分析】(I )先求得函数的导数,根据函数在()0,∞+上的单调性列不等式,分离常数a 后利用构造函数法求得a 的取值范围.(II )将极值点12,x x 代入导函数列方程组,将所要证明的不等式转化为证明12112221ln 1x x x x x x ⎛⎫- ⎪⎝⎭>+,利用构造函数法证得上述不等式成立.【详解】(I )()ln 24f x x ax +'=-. ∴()f x 在()0,∞+内单调递减,∴()ln 240f x x ax =+-≤在()0,∞+内恒成立,即ln 24x a x x ≥+在()0,∞+内恒成立. 令()ln 2x g x x x =+,则()21ln xg x x --'=, ∴当10e x <<时,()0g x '>,即()g x 在10,e ⎛⎫⎪⎝⎭内为增函数;当1x e >时,()0g x '<,即()g x 在1,e ⎛⎫+∞ ⎪⎝⎭内为减函数. ∴()g x 的最大值为1g e e ⎛⎫= ⎪⎝⎭,∴e,4a ⎡⎫∈+∞⎪⎢⎣⎭(Ⅱ)若函数()f x 有两个极值点分别为1x ,2x , 则()ln 240f x x ax =+-='在()0,∞+内有两根1x ,2x , 由(I ),知e 04a <<.由1122ln 240ln 240x ax x ax +-=⎧⎨+-=⎩,两式相减,得()1212ln ln 4x x a x x -=-.不妨设120x x <<,∴要证明1212x x a+>,只需证明()()121212142ln ln x x a x x a x x +<--.即证明()1212122ln ln x x x x x x ->-+,亦即证明12112221ln 1x x x x x x ⎛⎫- ⎪⎝⎭>+. 令函数.∴22(1)'()0(1)x h x x x --=≤+,即函数()h x 在(]0,1内单调递减. ∴()0,1x ∈时,有()()10h x h >=,∴2(1)ln 1x x x ->+. 即不等式12112221ln 1x x x x x x ⎛⎫- ⎪⎝⎭>+成立.综上,得1212x x a+>.4.已知函数()x f x e ax =-.(1)若函数()f x 在1(,2)2x ∈上有2个零点,求实数a 的取值范围.(注319e >)(2)设2()()g x f x ax =-,若函数()g x 恰有两个不同的极值点1x ,2x ,证明:12ln(2)2x x a +<.【分析】(1)将a 分离,构造函数()xe h x x=,利用导数研究()h x 的图像,得到a 的范围.(2)由已知()g x ,求其导函数,由x 1,x 2是g (x )的两个不同极值点,可得a >0,结合g ′(x 1)=0,g ′(x 2)=0得到1120x e ax a --=,2220x e ax a --=进一步得到12122x x e e a x x -=-,把问题转化为证明1212212x x x x e e ex x +--<,将其变形后整体换元构造函数()t ϕ.再利用导数证明()t ϕ>0得答案.【详解】(1)1,22x ⎡⎤∈⎢⎥⎣⎦时,由()0f x =得xea x=,令()()()21x xe x e h x h x x x='-=⇒ ∴112x ≤<时,()0h x '<, 12x <≤时,()0h x '>,∴()h x 在1,12⎡⎤⎢⎥⎣⎦上是减函数,在()1,2上是增函数.又12h ⎛⎫= ⎪⎝⎭,()222e h =,()1h e =()344161640444e e e e e e ---==>, ∴()122h h ⎛⎫>⎪⎝⎭,∴h (x )的大致图像:利用()y h x =与y a =的图像知(,2a e e ∈.(2)由已知()2xg x e ax ax =--,∴()2xg x e ax a =--',因为1x ,2x 是函数()g x 的两个不同极值点(不妨设12x x <),易知0a >(若0a ≤,则函数()f x 没有或只有一个极值点,与已知矛盾),且()10g x '=,()20g x '=.所以1120x e ax a --=,2220xe ax a --=.两式相减得12122x x e e a x x -=-,于是要证明()12ln 22x x a +<,即证明1212212x xx x e e e x x +-<-,两边同除以2x e ,即证12122121x x x x e ex x ---<-,即证()12122121x x x x x x e e --->-,即证()121221210x x x x x x ee ----+>,令12x x t -=,0t <.即证不等式210tt te e -+>,当0t <时恒成立.设()21tt t te e ϕ=-+,则()2212t t t t te t e e ϕ=+⋅⋅-'= 22211]22t t tt t t e e e e ⎡⎫⎛⎫+-=--+⎪⎢ ⎪⎝⎭⎣⎭. 设()212tth t e =--,则()221111222t th t e e ⎛⎫=-=- ⎪⎝⎭',当0t <时,()0h t '<,()h t 单调递减,所以()()00h t h >=,即2102t t e ⎛⎫-+> ⎪⎝⎭,所以()0t ϕ'<,所以()t ϕ在0t <时是减函数.故()t ϕ在0t =处取得最小值()00ϕ=. 所以()0t ϕ>得证.所以()12ln 22x x a +<.5.已知函数2()ln (1)()2a f x x x a x a R =-+-∈. (1)当0a ≥时,求函数()f x 的极值;(2)若函数()f x 有两个零点12,x x ,求a 的取值范围,并证明122x x +>. 【解析】试题分析:(1)求出()'f x ,令()'0f x >求得x 的范围,可得函数()f x 增区间,令()'0f x <求得x 的范围,可得函数()f x 的减区间,从而可得函数()f x 的极值;(2)对a 进行讨论:0a ≥,10a -<<,1a =-,1a <-,针对以上四种情况,分别利用导数研究函数的单调性,利用单调性讨论函数()f x 有两个零点情况,排除不是两个零点的情况,可得()f x 有两个零点时,a 的取值范围是()2,+∞,由(1)知()f x 在()1,+∞单调递减,故只需证明()()1220f x f x ->=即可,又()10f x =,只需利用导数证明()120f x ->即可.试题解析:(1)由()()2ln 12a f x x x a x =-+-得()()()1111x ax f x ax a x x-+=-+-=-', 当0a ≥时,10ax +>,若()01,0x f x <';若()1,x f x >'< 0,故当0a ≥时,()f x 在1x =处取得的极大值()112af =-;函数()f x 无极小值. (2)当0a ≥时,由(1)知()f x 在1x =处取得极大值()112af =-,且当x 趋向于0时,()f x 趋向于负无穷大,又()()2ln220,f f x =-<有两个零点,则()1102af =->,解得2a >.当10a -<<时,若()01,0x f x <';若()11,0x f x a '<<-<;若()1,0x f x a'>->,则()f x 在1x =处取得极大值,在1x a =-处取得极小值,由于()102af x =-<,则()f x 仅有一个零点. 当1a =-时,()()210x f x x-'=>,则()f x 仅有一个零点.当1a <-时,若()10,0x f x a '<-;若()11,0x f x a'-<<<;若()1,0x f x '>>,则()f x 在1x =处取得极小值,在1x a =-处取得极大值,由于()11ln 102f a a a ⎛⎫-=--+-< ⎪⎝⎭,则()f x 仅有一个零点.综上,()f x 有两个零点时,a 的取值范围是()2,+∞. 两零点分别在区间()0,1和()1,+∞内,不妨设1201,1x x <. 欲证122x x +>,需证明212x x >-,又由(1)知()f x 在()1,+∞单调递减,故只需证明()()1220f x f x ->=即可.()()()()()()()2211111112ln 2212ln 21222a a f x x x a x x x a x -=---+--=--++-, 又()()()21111ln 102a f x x x a x =-+-=, 所以()()()11112ln 2ln 22f x x x x -=--+-,令()()ln 2ln 22(01)h x x x x x =--+-<<,则()()()221112022x h x x x x x -=-+'=<--, 则()h x 在()0,1上单调递减,所以()()10h x h >=,即()120f x ->, 所以122x x +>.6.已知函数f (x )=(x ﹣1)e x +ax 2(a ∈R ). (1)讨论函数f (x )的单调性;(2)若函数f (x )有两个零点x 1,x 2(x 1<x 2),证明:x 1+x 2<0. 【分析】(1)对函数求导,根据a 的取值进行分情况讨论,判断函数的单调性;(2)先判断函数()f x 有两个零点时a 的取值范围为0a >,再利用极值点偏移法,构造函数()()()g x f x f x =--,0x >,证明即可.【详解】(1)f (x )=(x ﹣1)e x +ax 2, f ′(x )=x (e x +2a ), ①当a ≥0时,e x +2a >0,故当x ∈(﹣∞,0)时,f '(x )<0,当x ∈(0,+∞)时,f '(x )>0, 所以函数f (x )在(﹣∞,0)上单调递减,在(0,+∞)上单调递增; ②当a <0时,由f '(x )=x (e x +2a )=0,得x =0,或x =ln(﹣2a ),i 当﹣2a >1即a 12-<时,ln(﹣2a )>0,故当x ∈(﹣∞,0),(ln(﹣2a ),+∞)时,f '(x )>0,f (x )递增,当x ∈(0,ln(﹣2a ))时,f '(x )<0,f (x )递减; ii 当0<﹣2a <1即12-<a <0时,ln(﹣2a )<0,故当x ∈(﹣∞,ln(﹣2a )),(0,+∞)时,f '(x )>0,f (x )递增,当x ∈(ln(﹣2a ),0)时,f '(x )<0,f (x )递减; iii 当﹣2a =1即a 12=-,ln(﹣2a )=0,f '(x )≥0,f (x )在R 上递增; (2)函数f '(x )=x (e x +2a ),由(1)可知:①当a =0时,函数f (x )=(x ﹣1)e x 只有一个零点,不符合题意; ②当a <12-时,f (x )的极大值为f (0)=﹣1,f (x )极小值为(ln(2))(0)1f a f -<=-, 故最多有一个零点,不成立;③当12-<a <0时,f (x )的极大值为f (ln(﹣2a )=[ln(﹣2a )﹣1]e ln(﹣2a )+a ln 2(﹣2a )=a [ln 2(﹣2a )﹣2ln(﹣2a )+2]=a [(ln(﹣2a )﹣1)2+1]<0, 故最多有一个零点,不成立; ④当a 12=-时,f (x )在R 上递增, 故最多有一个零点不成立;③当a >0,函数f (x )在(﹣∞,0)上单调递减,在(0,+∞)上单调递增. 又f (0)=﹣1,f (1)=a >0,故()f x 在(0,1)存在一个零点x 2, 因为x <0,所以x ﹣1<0,0<e x <1,所以e x (x ﹣1)>x ﹣1, 所以f (x )>ax 2+x ﹣1,取x 012a-=,显然x 0<0且f (x 0)>0,所以f (x 0)f (0)<0,故()f x 在(x 0,0)存在一个零点x 1, 因此函数f (x )有两个零点,且x 1<0<x 2, 要证x 1+x 2<0,即证明x 1<﹣x 2<0,因为f (x )在(﹣∞,0)单调递减,故只需f (x 1)=f (x 2)>f (﹣x 2)即可, 令g (x )=f (x )﹣f (﹣x ),x >0,g '(x )=x (e x +2a )﹣xe ﹣x ﹣2ax =x (e x ﹣e ﹣x )>0,所以g (x )在()0+∞,上单调递增, 又g (0)=0,所以g (x )>0, 故f (x 1)=f (x 2)>f (﹣x 2)成立, 即x 1+x 2<0成立.7.已知函数21()ln ()2f x x x mx x m R =--∈. (1)若函数()f x 在(0,)+∞上是减函数,求实数m 的取值范围;(2)若函数()f x 在(0,)+∞上存在两个极值点1x ,2x ,且12x x <,证明:12ln ln 2x x +>.分析:(1)由题意得出'()ln 0f x x mx =-≤在定义域(0,)+∞上恒成立,即max ln ()xm x≥, 设ln ()xh x x =,则21ln '()x h x x-=,由此利用导数求得函数单调性与最值,即可求解; (2)由(1)知'()ln f x x mx =-,由函数()f x 在(0,)+∞上存在两个极值点1x ,2x ,推导出∴12ln ln x x +112212(1)ln 1x xx x x x +⋅=-,设12(0,1)x t x =∈,则12(1)ln ln ln 1t t x x t +⋅+=-,要证12ln ln 2x x +>,只需证2(1)ln 01t t t --<+,构造函数2(1)()ln 1t g t t t -=-+,利用导数求得函数的单调性与最值,即可作出求解. 详解:(1)∵()()21ln 2f x x x mx x m R =--∈在()0,+∞上是减函数, ∴()'ln 0f x x mx =-≤在定义域()0,+∞上恒成立,∴maxln x m x ⎛⎫≥ ⎪⎝⎭,设()ln x h x x =,则()21ln 'x h x x-=, 由()'0h x >,得()0,x e ∈,由()'0h x <,得x e >, ∴函数()h x 在()0,e 上递增,在(),e +∞上递减, ∴()()max 1h x h e e ==,∴1m e ≥. 故实数m 的取值范围是1,e⎡⎫+∞⎪⎢⎣⎭. 证明:(2)由(1)知()'ln f x x mx =-,∵函数()f x 在()0,+∞上存在两个极值点1x ,2x ,且12x x <,∴112200lnx mx lnx mx -=⎧⎨-=⎩,则12121212ln ln ln ln x x m x x x x m x x +⎧=⎪+⎪⎨-⎪=⎪-⎩,∴12121212ln ln ln ln x x x x x x x x +-=+-,∴12112122ln ln ln x x x x x x x x ++=⋅- 1122121ln 1x x x x x x ⎛⎫+⋅ ⎪⎝⎭=-,设()120,1x t x =∈,则()121ln ln ln 1t t x x t +⋅+=-, 要证12ln ln 2x x +>,只需证()1ln 21t t t +⋅>-,只需证()21ln 1t t t -<+,只需证()21ln 01t t t --<+,构造函数()()21ln 1t g t t t -=-+,则()()()()222114'011t g t t t t t -=-=>++, ∴()()21ln 1t g t t t -=-+在()0,1t ∈上递增,∴()()10g t g <=,即()()21ln 01t g t t t -=-<+,∴12ln ln 2x x +>.8.已知函数()2112xf x e ax =-+有两个极值点12,x x (e 为自然对数的底数). (1)求实数a 的取值范围; (2)求证:12ln 2x x a +< 【分析】(1)求导后得出()'xf x e ax =-,由题参变分离再构造函数求构造函数的单调性与取值范围即可.(2)利用极值点表示出a 与12,x x 的关系,再将12ln 2x x a +<中的a 代换,构造函数再换元证明不等式即可. 【详解】 (1)由()2112xf x e ax =-+,得()'x f x e ax =-, 由题意知函数()f x 有两个极值点,()'0f x ∴=有两个不等的实数解.即方程(0)xe a x x =≠有两个不等的实数解.即方程()0()xe g x x x =≠有两个不等的实数解.设()0()x e g x x x =≠,则()()21'x x e g x x-= ()g x ∴在(,0)-∞上单调递减,()0,1上单调递减,(1,)+∞上单调递增,作出函数图象知当a e >时,直线y a =与函数()g x 有两个交点, 当且仅当a e >时()f x 有两个极值点,综上所述,a e >. (2)因为12,x x 是()f x 的两个极值点,12x x ≠,12120,0x x e ax e ax ∴==--,1212x x e e a x x ∴=--故要证122x x lna +<,即证122x x e a +<,即证1212212x x x x e e e x x +<--,即证12122121x xx x e e x x --<-- 不妨设12x x <,即证1202x x t -=<,即证2210tt te e -+>设()()210ttF t te e t =-+<,则()()'21tF e t e t =+-,易证()1,'0tt e F t +<∴<,所以()F t 在(),0∞-上递减.()()00F t F ∴>=,得证2210t t te e -+>.综上所述:122x x lna +<成立,9.已知函数()x ax b f x =e+(e为自然对数的底数)在1x =-处的切线方程为0ex y e -+=. (1)求实数a ,b 的值;(2)若存在不相等的实数1x ,2x ,使得12()()f x f x =,求证:120x x +>. 【分析】(1)求出导函数,根据(1)0(1)f f e-='⎧⎨-=⎩即可求得实数a ,b 的值;(2)根据导函数求出()f x 的单调区间,通过构造()()()g x f x f x =--,研究()g x 的变化即可证明当12()()f x f x =时,有120x x +>。

高考数学《极值点偏移》精品复习资料

高考数学《极值点偏移》精品复习资料

高考数学《极值点偏移》精品复习资料第 一 节 极值点偏移初探值点偏移问题是最近几年数学的江湖红人,题目灵活多变,具有较大的难度和思考量,很受各地模拟卷命题人的青睐,具有很好的区分度。

很多同学对这类问题一筹莫展,找不到切入点。

那何为极值点偏移?又该从何入手?接下来的五节中,我们将逐渐渗透解决此类问题的三种普遍方法,并将不等式放缩法作为阅读材料,供有兴趣的读者阅读揣摩。

例3.1.1 已知函数x x x f ln )(-=。

(I )若)(x f 在)(,2121x x x x x ≠=处导数相等,证明:2ln 88)()(21-+>x f x f ;(II )略。

思路分析 )(x f 定义域()+∞=,0f D ,其导函数x x x f 22)(-='。

由题意可知22112222x x x x -=-。

题设条件转化后就只有这个式子,那我们来看往证结论:2ln 88)()(21-+>x f x f 。

带入)(x f 表达式有:-+=+2121)()(x x x f x f21ln x x 。

显然,这是一个有约束条件....的二元..不等式证明问题。

但是麻烦在于21x x +和21x x 是两个不同的组成元件,看起来并无联系,如果我们能将表达式统一由一个组件构成,那我们就有可能通过函数单调性进行证明! 唯一能进行转化的只有导数值相等的式子,那就尝试变形:去分母得12121222x x x x x x -=-,因此有2)(2)(121221=-=-x x x x x x))((1212x x x x -+,即有)(21221x x x x +=,那代入有212121ln 2)()(x x x x x f x f -=+。

将21x x 看作一个整体,我们可以引入函数t t t ln 221)(-=ϕ,往证2ln 88)(->t ϕ。

通过试验我们发现)16(2ln 88ϕ=-,那我们进一步来考察它的单调性:当16>t 时,0221)(>tt -='ϕ,)(t ϕ在),16(+∞上单调递增。

高考解答题专项突破(一) 第4课时 极值点偏移问题--2025年高考数学复习讲义及练习解析

高考解答题专项突破(一)  第4课时  极值点偏移问题--2025年高考数学复习讲义及练习解析

第4课时极值点偏移问题考点一对称构造法求极值点偏移问题例1(2023·黑龙江牡丹江市第一高级中学高三热身考试(二))已知函数f (x )=x x -32aa为实数.(1)求函数f (x )的单调区间;(2)若函数f (x )在x =e 处取得极值,f ′(x )是函数f (x )的导函数,且f ′(x 1)=f ′(x 2),x 1<x 2,证明:2<x 1+x 2<e.解(1)函数f (x )=x x -32a(0,+∞),f ′(x )=2x -32ax =x (2ln x -3a +1).令f ′(x )=0,得x =e3a -12,当x ∈(0,e3a -12)时,f ′(x )<0,当x ∈(e3a -12,+∞)时,f ′(x )>0,故函数f (x )的单调递减区间为(0,e3a -12),单调递增区间为(e3a -12,+∞).(2)证明:因为函数f (x )在x =e 处取得极值,所以x =e 3a -12=e ,得a =1,所以f (x )=x x 得f ′(x )=x (2ln x -2)=2x (ln x -1),令g (x )=2x (ln x -1),因为g ′(x )=2ln x ,当0<x <1时,g ′(x )<0,当x >1时,g ′(x )>0,所以函数g (x )在(0,1)上单调递减,在(1,+∞)上单调递增,且当x ∈(0,e)时,g (x )=2x (ln x -1)<0,当x ∈(e ,+∞)时,g (x )=2x (ln x -1)>0,故0<x 1<1<x 2<e.先证x 1+x 2>2,需证x 2>2-x 1.因为x 2>1,2-x 1>1,下面证明g (x 1)=g (x 2)>g (2-x 1).设t (x )=g (2-x )-g (x ),则当0<x <1时,t ′(x )=-g ′(2-x )-g ′(x )=-2ln (2-x )-2ln x =-2ln [(2-x )x ]>0,故t (x )在(0,1)上为增函数,故t (x )<t (1)=0,所以t (x 1)=g (2-x 1)-g (x 1)<0,则g (2-x 1)<g (x 2),所以2-x 1<x 2,即得x 1+x 2>2.下面证明:x 1+x 2<e.令g (x 1)=g (x 2)=m ,当x ∈(0,1)时,g (x )-(-2x )=2x ln x <0,所以g (x )<-2x 成立,所以-2x 1>g (x 1)=m ,所以x 1<-m2.当x ∈(1,e)时,记h (x )=g (x )-(2x -2e)=2x ln x -4x +2e ,所以当x ∈(1,e)时,h ′(x )=2ln x -2<0,所以h (x )为减函数,得h (x )>h (e)=2e -4e +2e =0,所以m =g (x 2)>2x 2-2e ,即得x 2<m2+e.所以x 1+x 2<-m 2+m2+e =e.综上,2<x 1+x 2<e.对称构造法主要用来解决与两个极值点之和(积)相关的不等式的证明问题.其解题要点如下:(1)定函数(极值点为x 0),即利用导函数符号的变化判断函数的单调性,进而确定函数的极值点x 0.(2)构造函数,即对结论x 1+x 2>2x 0型,构造函数F (x )=f (x )-f (2x 0-x )或F (x )=f (x 0+x )-f (x 0-x );对结论x1x 2>x 20型,构造函数F (x )=f (x )-f x 20x ,通过研究F(x )的单调性获得不等式.(3)判断单调性,即利用导数讨论F (x )的单调性.(4)比较大小,即判断函数F (x )在某段区间上的正负,并得出f (x )与f (2x 0-x )的大小关系.(5)转化,即利用函数f (x )的单调性,将f (x )与f (2x 0-x )的大小关系转化为x 与2x 0-x 之间的大小关系,进而得到所证或所求.1.(2022·全国甲卷)已知函数f (x )=e xx-ln x +x -a .(1)若f (x )≥0,求a 的取值范围;(2)证明:若f (x )有两个零点x 1,x 2,则x 1x 2<1.解(1)f (x )的定义域为(0,+∞),f ′(x )x -1x +1x 令f ′(x )=0,得x =1.当x ∈(0,1)时,f ′(x )<0,f (x )单调递减;当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增.所以f (x )≥f (1)=e +1-a ,若f (x )≥0,则e +1-a ≥0,即a ≤e +1,所以a 的取值范围为(-∞,e +1].(2)证法一:由题意知,f (x )的一个零点小于1,一个零点大于1.不妨设0<x 1<1<x 2,要证x 1x 2<1,即证x 1<1x 2.因为x 1,1x 2∈(0,1),即证f (x 1)>因为f (x 1)=f (x 2),即证f (x 2)>即证e x x -ln x +x -x e 1x -ln x -1x>0,x ∈(1,+∞),即证e xx-x e 1x -2lnx下面证明当x >1时,e x x -x e 1x >0,ln x0.设g (x )=e xx-x e 1x ,则g ′(x )x -e 1x+x e 1xx -设φ(x )=e xx,则当x >1时,φ′(x )x =x -1x 2e x >0,所以φ(x )>φ(1)=e ,而e 1x <e ,所以e x x-e 1x>0,所以当x >1时,g ′(x )>0,所以g (x )在(1,+∞)上单调递增,即g (x )>g (1)=0,所以e xx -x e 1x >0.令h (x )=ln x则当x >1时,h ′(x )=1x -=2x -x 2-12x 2=-(x -1)22x 2<0,所以h (x )在(1,+∞)上单调递减,即h (x )<h (1)=0,所以ln x 0.综上,e xx-x e 1x -2ln x 0,即x 1x 2<1得证.证法二:不妨设x 1<x 2,则由(1)知0<x 1<1<x 2,0<1x 2<1.由f (x 1)=f (x 2)=0,得e x 1x 1-ln x 1+x 1=e x 2x 2-ln x 2+x 2,即e x 1-lnx 1+x 1-ln x 1=e x 2-lnx 2+x 2-ln x 2.因为函数y =e x +x 在R 上单调递增,所以x 1-ln x 1=x 2-ln x 2成立.构造函数h (x )=x -ln x ,g (x )=h (x )-x -1x -2ln x ,则g ′(x )=1+1x 2-2x =(x -1)2x 2≥0,所以函数g (x )在(0,+∞)上单调递增,所以当x >1时,g (x )>g (1)=0,即当x >1时,h (x )>所以h (x 1)=h (x 2)>又h ′(x )=1-1x =x -1x ,当0<x <1时,h ′(x )<0,所以h (x )在(0,1)上单调递减,所以0<x 1<1x 2<1,即x 1x 2<1.考点二比(差)值换元法求极值点偏移问题例2(2024·湖北黄冈浠水县第一中学高三上学期质量检测)已知函数f (x )=x (ln x -a ),g (x )=f (x )x+a -ax .(1)当x ≥1时,f (x )≥-ln x -2恒成立,求a 的取值范围;(2)若g (x )的两个相异零点为x 1,x 2,求证:x 1x 2>e 2.解(1)当x ≥1时,f (x )≥-ln x -2恒成立,即当x ≥1时,(x +1)ln x -ax +2≥0恒成立,设F (x )=(x +1)ln x -ax +2,所以F (1)=2-a ≥0,即a ≤2;F ′(x )=ln x +1x+1-a ,设r(x)=ln x+1x+1-a,则r′(x)=1x-1x2=x-1x2,所以当x≥1时,r′(x)≥0,即r(x)在[1,+∞)上单调递增,所以r(x)≥r(1)=2-a≥0,所以当x≥1时,F′(x)=r(x)≥0,即F(x)在[1,+∞)上单调递增,所以F(x)≥F(1)=2-a≥0.所以a的取值范围为(-∞,2].(2)证明:由题意知,g(x)=ln x-ax,不妨设x1>x2>0,x1=ax1,x2=ax2,(x1x2)=a(x1+x2),x1x2=a(x1-x2),则ln(x1x2)ln x1x2=x1+x2x1-x2=x1x2+1x1x2-1,令t=x1x2>1,则ln(x1x2)ln t=t+1t-1,即ln(x1x2)=t+1t-1ln t.要证x1x2>e2,只需证ln(x1x2)>2,只需证t+1t-1ln t>2,即证ln t>2(t-1)t+1(t>1),即证ln t-2(t-1)t+1>0(t>1),令m(t)=ln t-2(t-1)t+1(t>1),因为m′(t)=(t-1)2t(t+1)2>0,所以m(t)在(1,+∞)上单调递增,又当t从右侧趋近于1时,m(t)趋近于0,所以当t∈(1,+∞)时,m(t)>0,即ln t-2(t-1)t+1>0成立,故x1x2>e2.比(差)值换元的目的也是消参、减元,就是根据已知条件首先建立极值点之间的关系,然后利用两个极值点之比(差)作为变量,从而实现消参、减元的目的.设法用比值或差值(一般用t表示)表示两个极值点,即t=x1x2,化为单变量的函数不等式,继而将所求解问题转化为关于t 的函数问题求解.2.已知函数f (x )=x ln x -x 2e+tx -1(t ∈R )有两个极值点x 1,x 2(x 1<x 2).(1)求t 的取值范围;(2)证明:x 1+x 2>4e x 1x 2.解(1)f ′(x )=ln x +1-2xe+t ,令g (x )=f ′(x ),则g ′(x )=1x -2e =e -2xe x (x >0),令g ′(x )=0,解得x =e2,所以当x ,g ′(x )>0;当x +,g ′(x )<0,所以g (x ),+,所以g (x )max =1-ln 2+t .因为f (x )有两个极值点,所以g (x )有两个变号零点,所以g (x )max >0,即1-ln 2+t >0,所以t >ln 2-1,即t 的取值范围为(ln 2-1,+∞).(2)证明:由题意,知ln x 2-2x 2e +t +1=0,ln x 1-2x1e+t +1=0,所以ln x 2-ln x 1=2e (x 2-x 1),即ln x 2-ln x 1x 2-x 1=2e .要证x 1+x 2>4e x 1x 2,只需证1x 1+1x 2>4e,即证1x 1+1x 2>2(ln x 2-ln x 1)x 2-x 1,即证2lnx 2x 1<x 2-x 1x 1+x 2-x 1x 2=x 2x 1-x 1x 2,设x2x 1=u (u >1),则只需证u -1u >2ln u (u >1),令h (u )=u -1u-2ln u (u >1),则h ′(u )=1+1u 2-2u =u 2-2u +1u 2=(u -1)2u 2>0,所以h (u )在(1,+∞)上单调递增,又当u 从右侧趋近于1时,h (u )趋近于0,所以h (u )>0,即u -1u >2ln u (u >1),则x 1+x 2>4ex 1x 2.课时作业1.(2024·福建福州格致中学高三上学期质检)已知函数f (x )=a ln x +ax .(1)讨论函数f (x )的极值;(2)若(e x 1)x 2=(e x 2)x 1(e 是自然对数的底数),且x 1>0,x 2>0,x 1≠x 2,证明:x 1+x 2>2.解(1)函数f (x )的定义域为(0,+∞),求导得f ′(x )=-a ln xx 2,若a =0,则f ′(x )=0,函数f (x )无极值;若a ≠0,由f ′(x )=0,可得x =1;若a <0,当0<x <1时,f ′(x )<0,则f (x )单调递减,当x >1时,f ′(x )>0,则f (x )单调递增,此时函数f (x )有唯一极小值f (1)=a ,无极大值;若a >0,当0<x <1时,f ′(x )>0,则f (x )单调递增,当x >1时,f ′(x )<0,则f (x )单调递减,此时函数f (x )有唯一极大值f (1)=a ,无极小值.综上,当a =0时,函数f (x )无极值;当a <0时,函数f (x )有极小值f (1)=a ,无极大值;当a >0时,函数f (x )有极大值f (1)=a ,无极小值.(2)证明:由(e x 1)x 2=(e x 2)x 1,两边取对数可得x 2(ln x 1+1)=x 1(ln x 2+1),即ln x 1+1x 1=ln x 2+1x 2,当a =1时,f (x )=ln x +1x,f ′(x )=-ln xx 2,由(1)可知,函数f (x )在(0,1)上单调递增,在(1,+∞)上单调递减,所以f (x )max =f (1)=1,而0,当x >1时,f (x )>0恒成立,因此当a =1时,存在x 1,x 2且0<x 1<1<x 2,满足f (x 1)=f (x 2),若x 2∈[2,+∞),则x 1+x 2>x 2≥2成立;若x 2∈(1,2),则2-x 2∈(0,1),记g(x)=f(x)-f(2-x),则当x∈(1,2)时,g′(x)=f′(x)+f′(2-x)=-ln xx2-ln(2-x)(2-x)2>-ln xx2-ln(2-x)x2=-ln[-(x-1)2+1]x2>0,即函数g(x)在(1,2)上单调递增,所以g(x)>g(1)=0,即f(x)>f(2-x),于是f(x1)=f(x2)>f(2-x2),而x2∈(1,2),2-x2∈(0,1),x1∈(0,1),函数f(x)在(0,1)上单调递增,因此x1>2-x2,即x1+x2>2.综上,x1+x2>2.2.(2024·广东深圳中学高三阶段考试)设函数f(x)=(x+a)e x,已知直线y=2x+1是曲线y=f(x)的一条切线.(1)求a的值,并讨论函数f(x)的单调性;(2)若f(x1)=f(x2),其中x1<x2,证明:x1x2>4.解(1)设直线y=2x+1与曲线y=f(x)相切于点(x0,f(x0)),∵f′(x)=(x+a+1)e x,∴f′(x0)=(x0+a+1)e x0=2;又f(x0)=(x0+a)e x0=2x0+1,∴2-e x0=2x0+1,即e x0+2x0-1=0.设g(x)=e x+2x-1,则g′(x)=e x+2>0,∴g(x)在R上单调递增,又g(0)=0,∴g(x)有唯一零点x=0,∴x0=0,∴a+1=2,解得a=1,∴f(x)=(x+1)e x,f′(x)=(x+2)e x,则当x∈(-∞,-2)时,f′(x)<0;当x∈(-2,+∞)时,f′(x)>0.∴函数f(x)在(-∞,-2)上单调递减,在(-2,+∞)上单调递增.(2)证明:由(1)知,f(x)min=f(-2)=-e-2<0,当x<-1时,f(x)<0;当x>-1时,f(x)>0,∴x1<-2<x2<-1.要证x1x2>4,只需证x1<4x2<-2.∵f(x)在(-∞,-2)上单调递减,∴只需证f (x 1)>又f (x 1)=f (x 2),则只需证f (x 2)>f x 2∈(-2,-1)恒成立.设h (x )=f (x )-∴h ′(x )=(x +2)e x +8(x +2)x 3e 4x =(x +2)e 4x x 3(x 3e x -4x +8).设p (x )=x 3e x-4x +8,则当-2<x <-1时,p ′(x )=x e x +74<0,∴p (x )在(-2,-1)上单调递减,∴p (x )<p (-2)=-8+8=0,又当-2<x <-1时,(x +2)e x4x 3<0,∴当-2<x <-1时,h ′(x )>0,∴h (x )在(-2,-1)上单调递增,∴h (x )>h (-2)=0,即f (x )>f x ∈(-2,-1)时恒成立,又x 2∈(-2,-1),∴f (x 2)>原不等式得证.3.(2023·湖北武汉华中师范大学第一附属中学高三下学期压轴卷(一))已知f (x )=2x -sin x -a ln x .(1)当a =1时,讨论函数f (x )的极值点个数;(2)若存在x 1,x 2(0<x 1<x 2),使f (x 1)=f (x 2),求证:x 1x 2<a .解(1)当a =1时,f (x )=2x -sin x -ln x ,则f ′(x )=2-cos x -1x,当x ≥1时,f ′(x )≥1-cos x ≥0,故f (x )在[1,+∞)上单调递增,不存在极值点;当0<x <1时,令h (x )=2-cos x -1x,则h ′(x )=sin x +1x2>0恒成立,故函数h (x )即f ′(x )在(0,1)上单调递增,且f ′(1)=1-cos1>0,f cos 14-2<0,所以存在x 0使得f ′(x 0)=0,所以当0<x <x 0时,f ′(x )<0,f (x )单调递减;当x 0<x <1时,f ′(x )>0,f (x )单调递增,故函数f (x )在(0,1)上存在唯一极值点.综上,当a =1时,函数f (x )的极值点有且仅有一个.(2)证明:由f (x 1)=f (x 2),知2x 1-sin x 1-a ln x 1=2x 2-sin x 2-a ln x 2,整理,得2(x 1-x 2)-(sin x 1-sin x 2)=a (ln x 1-ln x 2)(*),不妨令g (x )=x -sin x (x >0),则g ′(x )=1-cos x ≥0,故g (x )在(0,+∞)上单调递增,当0<x 1<x 2时,有g (x 1)<g (x 2),即x 1-sin x 1<x 2-sin x 2,那么sin x 1-sin x 2>x 1-x 2,因此(*)即转化为a >x 1-x 2ln x 1-ln x 2.接下来证明x 1-x 2ln x 1-ln x 2>x 1x 2(0<x 1<x 2),等价于证明ln x 1x 2>x 1x 2-x 2x 1,不妨令x 1x 2=t (0<t <1),建构新函数φ(t )=2ln t -t +1t(0<t <1),φ′(t )=2t -1-1t 2=-(t -1)2t 2<0,则φ(t )在(0,1)上单调递减,又当t 从左侧趋近于1时,φ(t )趋近于0,所以φ(t )>0,故lnx 1x 2>x 1x 2-x 2x 1即x 1-x 2ln x 1-ln x 2>x 1x 2(0<x 1<x 2)得证,由不等式的传递性知x 1x 2<a ,即x 1x 2<a .4.(2023·湖南长沙实验中学高三三模)已知函数h (x )=x -a ln x (a ∈R ).(1)若h (x )有两个零点,求实数a 的取值范围;(2)若方程x e x -a (ln x +x )=0有两个实根x 1,x 2,且x 1≠x 2,证明:e x 1+x2>e 2x 1x 2.解(1)函数h (x )的定义域为(0,+∞).当a =0时,函数h (x )=x 无零点,不符合题意,所以a ≠0,由h (x )=x -a ln x =0,可得1a =ln x x,构造函数f (x )=ln x x ,其中x >0,所以直线y =1a与函数f (x )的图象有两个交点,f ′(x )=1-ln x x 2,由f ′(x )=0可得x =e ,列表如下:x(0,e)e (e ,+∞)f ′(x )+0-f (x )单调递增极大值1e 单调递减所以函数f (x )的极大值为f (e)=1e ,函数f (x )的大致图象如下图所示:且当x >1时,f (x )=ln x x>0,由图可知,当0<1a <1e ,即a >e 时,直线y =1a与函数f (x )的图象有两个交点,故实数a 的取值范围是(e ,+∞).(2)证明:因为x e x -a (ln x +x )=0,则x e x -a ln (x e x )=0,令t =x e x >0,其中x >0,则有t -a ln t =0,t ′=(x +1)e x >0,所以函数t =x e x 在(0,+∞)上单调递增,因为方程x e x -a (ln x +x )=0有两个实根x 1,x 2,令t 1=x 1e x 1,t 2=x 2e x 2,则关于t 的方程t -a ln t =0也有两个实根t 1,t 2,且t 1≠t 2,要证e x 1+x 2>e 2x 1x 2,即证x 1e x 1·x 2e x 2>e 2,即证t 1t 2>e 2,即证ln t 1+ln t 2>2,=a ln t 1,=a ln t 2,-t 2=a (ln t 1-ln t 2),+t 2=a (ln t 1+ln t 2),整理可得t 1+t 2t -t =ln t 1+ln t 2ln t -ln t ,不妨设t 1>t 2>0,即证ln t 1+ln t 2=t 1+t 2t 1-t 2ln t 1t 2>2,即证ln t 1t 2>2(t 1-t 2)t 1+t 2=t 1t 2+1令s =t 1t 2>1,即证ln s >2(s -1)s +1,其中s >1,构造函数g (s )=ln s -2(s -1)s +1,其中s >1,g ′(s )=1s -4(s +1)2=(s -1)2s (s +1)2>0,所以函数g (s )在(1,+∞)上单调递增,又当s 从右侧趋近于1时,g (s )趋近于0,所以当s >1时,g (s )>0,故原不等式成立.5.(2024·河北石家庄部分重点高中高三月考)已知函数f (x )=x 2ln x -a (a ∈R ).(1)求函数f (x )的单调区间;(2)若函数f (x )有两个零点x 1,x 2,证明:1<x 1+x 2<2e .解(1)因为f (x )=x 2ln x -a (a ∈R )的定义域为(0,+∞),则f ′(x )=2x ln x +x =x (2ln x +1),令f ′(x )>0,解得x >1e,令f ′(x )<0,解得0<x <1e,所以f (x )+(2)证明:不妨设x 1<x 2,由(1)知,必有0<x 1<1e <x 2.要证x 1+x 2<2e ,即证x 2<2e-x 1,即证f (x 2)<又f (x 2)=f (x 1),即证f (x 1)-令g (x )=f (x )-则g ′(x )=x (2ln x +1)1,令h (x )=g ′(x ),则h ′(x )=2(ln x +1)+1-2ln 1-2=2ln x 2e-x <0在x 恒成立,所以h (x ),即g ′(x ),所以g ′(x )>g 0,所以g (x ),所以g (x 1)<0,即f (x 1)-,所以x 1+x 2<2e.接下来证明x 1+x 2>1,令x 2x 1=t ,则t >1,又f (x 1)=f (x 2),即x 21ln x 1=x 22ln x 2,所以ln x 1=t 2ln t 1-t 2,要证1<x 1+x 2,即证1<x 1+tx 1,即证(t +1)x 1>1,不等式(t +1)x 1>1两边取对数,即证ln x 1+ln (t +1)>0,即证t 2ln t 1-t 2+ln (t +1)>0,即证(t +1)ln (t +1)t>t ln t t -1,令u (x )=x ln x x -1,x ∈(1,+∞),则u ′(x )=(ln x +1)(x -1)-x ln x (x -1)2=x -ln x -1(x -1)2,令p (x )=x -ln x -1,其中x ∈(1,+∞),则p ′(x )=1-1x =x -1x>0,所以p (x )在(1,+∞)上单调递增,又当x 从右侧趋近于1时,p (x )趋近于0,所以当x ∈(1,+∞)时,p (x )>0,故当x ∈(1,+∞)时,u ′(x )=x -ln x -1(x -1)2>0,可得函数u (x )单调递增,可得u (t +1)>u (t ),即(t +1)ln (t +1)t>t ln t t -1,所以x 1+x 2>1.综上可知,1<x 1+x 2<2e .6.(2021·新高考Ⅰ卷)已知函数f (x )=x (1-ln x ).(1)讨论f (x )的单调性;(2)设a ,b 为两个不相等的正数,且b ln a -a ln b =a -b ,证明:2<1a +1b<e.解(1)因为f (x )=x (1-ln x ),所以f (x )的定义域为(0,+∞),f ′(x )=1-ln x +x ln x .当x ∈(0,1)时,f ′(x )>0;当x ∈(1,+∞)时,f ′(x )<0.所以函数f (x )在(0,1)上单调递增,在(1,+∞)上单调递减.(2)证明:由题意,a ,b 是两个不相等的正数,且b ln a -a ln b =a -b ,两边同时除以ab ,得ln a a-ln b b =1b -1a ,即ln a +1a =ln b +1b,即令x 1=1a ,x 2=1b,由(1)知f (x )在(0,1)上单调递增,在(1,+∞)上单调递减,且当0<x <e 时,f (x )>0,当x >e 时,f (x )<0,不妨设x 1<x 2,则0<x 1<1<x 2<e.要证2<1a +1b<e ,即证2<x 1+x 2<e.先证x 1+x 2>2:要证x 1+x 2>2,即证x 2>2-x 1,因为0<x 1<1<x 2<e ,所以x 2>2-x 1>1,又f (x )在(1,+∞)上单调递减,所以即证f (x 2)<f (2-x 1),又f (x 1)=f (x 2),所以即证f (x 1)<f (2-x 1),即证当x ∈(0,1)时,f (x )-f (2-x )<0.构造函数F (x )=f (x )-f (2-x ),则F ′(x )=f ′(x )+f ′(2-x )=-ln x -ln (2-x )=-ln [x (2-x )],当0<x <1时,0<x (2-x )<1,则-ln [x (2-x )]>0,即当0<x <1时,F ′(x )>0,所以F (x )在(0,1)上单调递增,所以当0<x <1时,F (x )<F (1)=0,所以当0<x <1时,f (x )-f (2-x )<0成立,所以x 1+x 2>2成立.再证x 1+x 2<e :由(1)知,f (x )的极大值点为x =1,f (x )的极大值为f (1)=1,过点(0,0),(1,1)的直线方程为y =x ,设f (x 1)=f (x 2)=m ,当x ∈(0,1)时,f (x )=x (1-ln x )>x ,直线y =x 与直线y =m 的交点坐标为(m ,m ),则x 1<m .欲证x 1+x 2<e ,即证x 1+x 2<m +x 2=f (x 2)+x 2<e ,即证当1<x <e 时,f (x )+x <e.构造函数h (x )=f (x )+x ,则h ′(x )=1-ln x ,当1<x <e 时,h ′(x )>0,所以函数h (x )在(1,e)上单调递增,所以当1<x <e 时,h (x )<h (e)=f (e)+e =e ,即f (x )+x <e 成立,所以x 1+x 2<e 成立.综上可知,2<1a +1b<e 成立.。

极值点偏移四种题型的解法及例题

极值点偏移四种题型的解法及例题

极值点偏移是高中数学中的一个重要概念,也是学生们比较头疼的一个知识点。

在解决数学问题时,我们经常会遇到一些与极值点有关的题型,比如函数的极值问题、优化问题等。

而在解决这些问题时,极值点偏移方法是一种非常实用的解题技巧。

本文将从四种题型出发,对极值点偏移方法进行详细解析,并结合具体例题进行说明。

1. 函数的极值问题函数的极值问题是高中数学中的一个重要内容。

在解决这类问题时,我们常常会用到导数的概念,来求函数的极值点。

但有些情况下,我们可以通过极值点偏移方法更快地得到函数的极值点。

比如对于一些简单的函数,通过极值点的平移和对称性,可以用更简洁的方法求得函数的极值点。

举例说明:已知函数 $f(x)=x^3-3x^2+2$,求 $f(x)$ 的极值点。

解:求导得 $f'(x)=3x^2-6x$。

令导数为零,得到 $x=0$ 或 $x=2$。

根据导数的符号,可知 $x=0$ 是极小值点,$x=2$ 是极大值点。

但通过极值点偏移方法,我们可以发现,当 $x=0$ 时,$f(x)=2$;而当$x=2$ 时,$f(x)=2$。

也就是说,极小值点 $x=0$ 对应的函数值和极大值点 $x=2$ 对应的函数值相等。

这就是极值点偏移的思想。

2. 优化问题优化问题是数学建模中常见的类型之一,也是考察学生综合运用数学知识解决实际问题的一种形式。

当我们遇到优化问题时,常常需要求解函数的极值点。

而极值点偏移方法可以帮助我们更快地找到函数的极值点,从而解决优化问题。

举例说明:一块长为20厘米的铁皮,可以做成一个底面积为 $x cm^2$ 的正方形盒子和一个底面积为 $y cm^2$ 的开口放平盒子,求怎样分割这块铁皮才能使总体积最大。

解:设正方形盒子的边长为 $a$,开口朝下的放平矩形盒子的底边长为 $b$,高为 $h$。

则根据题意可知,$b=a+2h$,且 $x=a^2$,$y=bh$。

问题转化为求 $x+y$ 的最大值。

专题1.1 极值点偏移“0”开始(解析版)

专题1.1 极值点偏移“0”开始(解析版)

极值点偏移“0”开始学习极值点偏移咱们从“0”开始……极值点偏移的含义 众所周知,函数)(x f 满足定义域内任意自变量x 都有)2()(x m f x f -=,则函数)(x f 关于直线m x =对称;可以理解为函数)(x f 在对称轴两侧,函数值变化快慢相同,且若)(x f 为单峰函数,则m x =必为)(x f 的极值点. 如二次函数)(x f 的顶点就是极值点0x ,若c x f =)(的两根的中点为221x x +,则刚好有0212x x x =+,即极值点在两根的正中间,也就是极值点没有偏移.若相等变为不等,则为极值点偏移:若单峰函数)(x f 的极值点为m ,且函数)(x f 满足定义域内m x =左侧的任意自变量x 都有)2()(x m f x f ->或)2()(x m f x f -<,则函数)(x f 极值点m 左右侧变化快慢不同. 故单峰函数)(x f 定义域内任意不同的实数21,x x 满足)()(21x f x f =,则221x x +与极值点m 必有确定的大小关系: 2x x +2x x +如函数x e x x g =)(的极值点10=x 刚好在方程c x g =)(的两根中点221x x +的左边,我们称之为极值点左偏.极值点偏移问题的一般题设形式: 1. 若函数)(x f 存在两个零点21,x x 且21x x ≠,求证:0212x x x >+(0x 为函数)(x f 的极值点);2. 若函数)(x f 中存在21,x x 且21x x ≠满足)()(21x f x f =,求证:0212x x x >+(0x 为函数)(x f 的极值点);3. 若函数)(x f 存在两个零点21,x x 且21x x ≠,令2210x x x +=,求证:0)('0>x f ; x x +问题初现,形神合聚★函数x ae x x x f ++-=12)(2有两极值点21,x x ,且21x x <.证明:421>+x x .★已知函数x x f ln )(=的图象1C 与函数)0(21)(2≠+=a bx ax x g 的图象2C 交于Q P ,,过PQ 的中点R 作x 轴的垂线分别交1C ,2C 于点N M ,,问是否存在点R ,使1C 在M 处的切线与2C 在N 处的切线平行?若存在,求出R 的横坐标;若不存在,请说明理由.内练精气神,外练手眼身★【2019江苏无锡高三上学期期末】已知函数 f(x) = -ax(a > 0).(1) 当 a = 1 时,求证:对于任意 x > 0,都有 f(x) > 0 成立;(2) 若函数 y = f(x) 恰好在 x = x 1 和 x = x 2 两处取得极值,求证:x 1+x 22< ln a.★过点P(_?,0)作曲线f(x)=e x 的切线l .(1)求切线的方程; (2)若直线l 与曲线交于不同的两点A(x 1,y 1),B(x 2,y 2),求证:.极值点偏移问题在近几年高考及各种模考,作为热点以压轴题的形式给出,很多学生对待此类问题经常是束手无策,而且此类问题变化多样,有些题型是不含参数的,而更多的题型又是含有参数的. 其实,此类问题处理的手段有很多,方法也就有很多,下面我们来逐一探索!极值点偏移“0”开始 学习极值点偏移咱们从“0”开始……极值点偏移的含义众所周知,函数)(x f 满足定义域内任意自变量x 都有)2()(x m f x f -=,则函数)(x f 关于直线m x =对称;可以理解为函数)(x f 在对称轴两侧,函数值变化快慢相同,且若)(x f 为单峰函数,则m x =必为)(x f 的极值点. 如二次函数)(x f 的顶点就是极值点0x ,若c x f =)(的两根的中点为221x x +,则刚好有0212x x x =+,即极值点在两根的正中间,也就是极值点没有偏移.若相等变为不等,则为极值点偏移:若单峰函数)(x f 的极值点为m ,且函数)(x f 满足定义域内m x =左侧的任意自变量x 都有)2()(x m f x f ->或)2()(x m f x f -<,则函数)(x f 极值点m 左右侧变化快慢不同. 故单峰函数)(x f 定义域内任意不同的实数21,x x 满足)()(21x f x f =,则221x x +与极值点m 必有确定的大小关系: 若221x x m +<,则称为极值点左偏;若221x x m +>,则称为极值点右偏. 如函数x e x x g =)(的极值点10=x 刚好在方程c x g =)(的两根中点221x x +的左边,我们称之为极值点左偏.极值点偏移问题的一般题设形式:1. 若函数)(x f 存在两个零点21,x x 且21x x ≠,求证:0212x x x >+(0x 为函数)(x f 的极值点);2. 若函数)(x f 中存在21,x x 且21x x ≠满足)()(21x f x f =,求证:0212x x x >+(0x 为函数)(x f 的极值点);3. 若函数)(x f 存在两个零点21,x x 且21x x ≠,令2210x x x +=,求证:0)('0>x f ; 4. 若函数)(x f 中存在21,x x 且21x x ≠满足)()(21x f x f =,令2210x x x +=,求证:0)('0>x f . 问题初现,形神合聚★函数x ae x x x f ++-=12)(2有两极值点21,x x ,且21x x <.证明:421>+x x .所以)2()2(x h x h -<+,所以)4()]2(2[)]2(2[)()(22221x h x h x h x h x h -=--<-+==,因为21<x ,242<-x ,)(x h 在)2,(-∞上单调递减所以214x x ->,即421>+x x .学科&网★已知函数x x f ln )(=的图象1C 与函数)0(21)(2≠+=a bx ax x g 的图象2C 交于Q P ,,过PQ 的中点R 作x 轴的垂线分别交1C ,2C 于点N M ,,问是否存在点R ,使1C 在M 处的切线与2C 在N 处的切线平行?若存在,求出R 的横坐标;若不存在,请说明理由.内练精气神,外练手眼身★【2019江苏无锡高三上学期期末】已知函数f(x) = -ax(a > 0).(1) 当a = 1 时,求证:对于任意x > 0,都有f(x) > 0 成立;(2) 若函数y = f(x) 恰好在x = x1和x = x2两处取得极值,求证:< ln a. 【答案】(1)见解析;(2)见解析.【解析】(1)当a=1时,f(x)=e x x2﹣x,则f′(x)=e x﹣x﹣1,∴f″(x)=e x﹣1>0,(x>0),∴f′(x)=e x﹣x﹣1单调递增,∴f′(x)>f′(0)=0,∴f(x)单调递增,∴f(x)>f(0)=1>0,故对于任意x>0,都有f(x)>0成立;(2)∵函数y=f(x)恰好在x=x1和x=x2两处取得极值∴x1,x2是方程f′(x)=0的两个实数根,不妨设x1<x2,∵f′(x)=e x﹣ax﹣a,f″(x)=e x﹣a,当a≤0时,f″(x)>0恒成立,∴f′(x)单调递增,f′(x)=0至多有一个实数解,不符合题意,当a>0时,f″(x)<0的解集为(﹣∞,lna),f″(x)>0的解集为(lna,+∞),∴f′(x)在(﹣∞,lna)上单调递减,在(lna,+∞)上单调递增,∴f′(x)min=f′(lna)=﹣alna,由题意,应有f′(lna)=﹣alna<0,解得a>1,此时f′(﹣1)0,∴存在x1∈(﹣1,lna)使得f′(x1)=0,易知当时,f(x).∴存在x2∈(lna,)使得f′(x2)=0,∴a>1满足题意,∵f′(x1)=f′(x2)=0,∴a a=0,∴a,∴f″()a(),设t>0,∴e t,设g(t)=(2t﹣e t)e t+1,∴g′(t)=2(t+1﹣e t)e t,由(1)可知,g′(t)=2(t+1﹣e t)e t<0恒成立,∴g(t)单调递减,∴g(t)<g(0)=0,即f″()<0,∴∴lna.★过点作曲线f(x)=e x的切线l.(1)求切线l的方程;(2)若直线l与曲线交于不同的两点A(x1,y1),B(x2,y2),求证:.【答案】(1)y=x+1(2)见解析【解析】试题分析:(1)先根据导数几何意义求切线斜率y′|x=0=1,再根据点斜式求切线方程y=x+1.因为,不妨设x1<−2,x2>−2.设g(x)=f(x)−f(−4−x),则g′(x)=f′(x)+f′(−4−x)=(x+2)e x(1−e−2(2+x)),当x>−2时,g′(x)>0,g(x)在单调递增,所以g(x)>g(−2)=0,所以当x>−2时,f(x)>f(−4−x).因为x2>−2,所以f(x2)>f(−4−x2),从而f(x1)>f(−4−x2),因为−4−x2<−2,f(x)在单调递减,所以x1<−4−x2,即x1+x2<−4.学科&网极值点偏移问题在近几年高考及各种模考,作为热点以压轴题的形式给出,很多学生对待此类问题经常是束手无策,而且此类问题变化多样,有些题型是不含参数的,而更多的题型又是含有参数的. 其实,此类问题处理的手段有很多,方法也就有很多,下面我们来逐一探索!。

专题突破卷05 导数中的极值点偏移问题 (学生版) 2025年高考数学一轮复习考点通关卷(新高考通用

专题突破卷05 导数中的极值点偏移问题 (学生版) 2025年高考数学一轮复习考点通关卷(新高考通用

专题突破卷05 导数中的极值点偏移问题题型一 极值点偏移解决零点问题1.已知函数()ln 1f x x ax =+-有两个零点12,x x ,且12x x <,则下列命题正确的是( )A .1a >B .122x x a +<C .121x x ×<D .2111x x a->-2.已知函数()ln 1f x x ax =+-有两个零点1x 、2x ,且12x x <,则下列命题正确的个数是( )①01a <<;②122x x a +<;③121x x ×>;④2111x x a->-;A .1个B .2个C .3个D .4个3.已知函数()ln f x x ax =-有两个零点1x ,()212x x x <,则下列说法:①函数()f x 有极大值点0x ,且1202x x x +>;②212e x x >;③1232x x a+>;④若对任意符合条件的实数a ,曲线()y f x =与曲线1y b x=-最多只有一个公共点,则实数b 的最大值为ln2.其中正确说法的有( )A .1个B .2个C .3个D .4个4.已知函数()ln x f x x =,对于正实数a ,若关于t 的方程()a f t f t æö=ç÷èø恰有三个不同的正实数根,则a 的取值范围是( )A .()1,8B .()2,8e C .()8,+¥D .()2,e +¥5.关于函数()2ln f x x x=+,下列说法错误的是( )A .2x =是()f x 的极小值点B .函数()y f x x =-有且只有1个零点C .存在正实数k ,使得()f x kx >恒成立D .对任意两个正实数1x ,2x ,且12x x >,若()()12f x f x =,则124x x +>6.关于函数2()ln f x x x=+,下列说法正确的是( )A .2x =是()f x 的极大值点B .函数()y f x x =-有2个零点C .存在正整数k ,使得()f x kx >恒成立D .对任意两个正实数12,x x ,且12x x ¹,若()()12f x f x =,则124x x +>7.已知函数()x f x e ax =-有两个零点1x ,2x ,则下列判断:①a e <;②122x x +<;③121x x ×>;④有极小值点0x ,且1202x x x +<.则正确判断的个数是( )A .4个B .3个C .2个D .1个8.已知函数3()2f x x =+的图象与函数()g x kx =的图象有三个不同的交点11(,)x y 、22(,)x y 、33(,)x y ,其中123x x x <<.给出下列四个结论:①3k >;②12x <-;③232x x +>;④231x x >.其中正确结论的个数有( )个A .1B .2C .3D .49.已知()e x f x ax =-有两个零点12x x <,下列说法正确的是A .e a <B .122x x +>C .121x x ×>D .有极小值0x 且1202x x x +>10.已知函数()2πcos f x x x a =++在()0,π上有两个不同的零点()1212,x x x x <,给出下列结论:①()10f x ¢<;②()20f x ¢>;③12πx x +<.其中错误结论的个数是( )A .0B .1C .2D .311.已知a b >,c d >,e e 1.0111a b a b ==++,()()1e 1e 0.99c dc d -=-=,则( )A .0a b +<B .0c d +>C .0a d +>D .0b c +>12.已知1a >,1x ,2x ,3x 均为2x a x =的解,且123x x x <<,则下列说法正确的是( )A .1(2,1)x Î--B .2e (1,e )a ÎC .120x x +<D .232ex x +<题型二 极值点偏移解决不等式问题13.已知函数()e xf x x =-,则下列说法正确的是( )A .()f x 在R 上是增函数B .1x ">,不等式()()2ln f ax f x ³恒成立,则正实数a 的最小值为2eC .若()f x t =有两个零点12,x x ,则120x x +>D .若过点()1,M m 恰有2条与曲线()y f x =相切的直线,则1e 1m -<<-14.关于函数2()ln f x x x=+,下列说法正确的是( )A .2x =是()f x 的极大值点B .函数()y f x x =-有且只有1个零点C .存在正整数k ,使得()f x kx >恒成立D .对任意两个正实数12,x x ,且12x x ¹,若12()()f x f x =,则124x x +>15.设函数1cos ,0(),0e x x x f x x x -£ìï=í>ïî,下面四个结论中正确的是( )A .函数在()0,1上单调递增B .函数()y f x x =-有且只有一个零点C .函数的值域为[]1,e -D .对任意两个不相等的正实数12,x x ,若()()12f x f x =,则122x x +<16.已知函数()e xf x x =,()lng x x x =,则下列说法正确的是( )A .函数()f x 与函数()g x 有相同的极小值B .若方程()f x a =有唯一实根,则a 的取值范围为0a ³C .若方程()g x a =有两个不同的实根12,x x ,则212x x a>D .当0x >时,若()()12f x g x t ==,则12x x t =成立17.已知函数ln ()xf x x=,则( )A .(2)(3)f f >B .若()f x m =有两个不相等的实根1x ,2x ,则212ex x >C .ln 2<D .若23x y =,x ,y 均为正数,则23x y >18.关于函数()2ln f x x x=+,下列说法正确的是( )A .()f x 在()2,+¥上单调递增B .+12,R x x "Î且21x x >,若()()12f x f x =,则124x x +>C .R k +$Î,使得()f x kx >恒成立D .函数()y f x x =-有且只有1个零点19.定义在R 上的函数()f x 满足()()e xf x f x =¢+,且()01f =,则下列说法正确的是( )A .()f x 在2x =-处取得极小值B .()f x 有两个零点C .若0x ">,()f x k >恒成立,则1k <D .若1x $,2R x Î,12x x ¹,()()12f x f x =,则124x x +<-20.宠物很可爱,但身上会有寄生虫,小猫“墩墩”的主人每月定期给“墩墩”滴抺驱虫剂.刚开始使用的时候,寄生虫的数量还会继续增加,随着时间的推移,奇生虫增加的幅度逐渐变小,到一定时间,寄生虫数量开始减少.若已知使用驱虫剂t 小时后寄生虫的数量大致符合函数()()()47e 50(0720),t f t t t f t -=-+¢£<为()f t 的导数,则下列说法正确的是( )A .驱虫剂可以杀死所有寄生虫B .()100f ¢表示100t =时,奇生虫数量以10052e -的速度在减少C .若存在,,a b a b ¹,使()()f a f b =,则96a b +<D .寄生虫数量在48t =时的瞬时变化率为021.已知()()12()ln ,f x x x f x f x ==且12x x ¹,则( )A .1212ex x +>B .1212ex x +<C1e>D1e<22.已知关于x 的方程e 0x x a -=有两个不等的实根12,x x ,且12x x <,则下列说法正确的有( )A .1e 0a --<<B .122x x +<-C .2x a>D .11e 0xx +<23.已知函数()e xf x x =-,()lng x x x =-,则下列说法正确的是( )A .()ln f x 在()1,+¥上是增函数B .1x ">,不等式()()2ln f ax f x ³恒成立,则正实数a 的最小值为2eC .若()g x t =有两个根1x ,1x ,则121x x ×>D .若()()()122f x g x t t ==>,且210x x >>,则21ln t x x -的最大值为1e24.已知2.86ln ln a ba b==,ln ln 0.35c c d d ==-,a b <,c d <,则有( )A .2e a b +<B .2ec d +>C .1ad <D .1bc >题型三 极值点偏移解决双变量问题25.已知函数 ()()2e xx f x g x x ax ==+,,且曲线()y f x =在()0,0处切线也是曲线()y g x =的切线.(1)求a 的值;(2)求证:()()f x g x £;(3)若直线y k =与曲线()y f x =有两个公共点()11,A x y ,()22,B x y ,与曲线()y g x =有两个公共点()()33,C x g x ,()()44,D x g x ,求证:12341x x x x +++>26.已知函数()()2e ln 1xf x a x a -=+-ÎR .(1)若函数()f x 在()0,¥+上单调递增,求实数a 的取值范围;(2)若函数()f x 恰有两个极值点()1212,x x x x <,且21x x 的最大值为2e ,求证:2122e 1e 1x x ++£-.27.已知函数()22ln 1f x x x x =-+.(1)证明:()1f x <;(2)若120x x <<,且()()120f x f x +=,证明:122x x +>.28.设函数23115e ()e e (1),[0,)232x f x x x x =---+Î+¥.(1)判断函数()f x 的单调性;(2)若12x x ¹,且()()126e f x f x +=,求证:122x x +<.29.已知函数()()1ln f x x x =+.(1)求曲线()y f x =在1x =处的切线方程;(2)若关于x 的不等式()(1)f x m x >-在(1,)+¥上恒成立,求实数m 的最大值;(3)若关于x 的方程2()(1)10()f x ax a x a ++++=ÎR 有两个实根1x ,()212x x x ¹,求证:121123a a x x -<+<+.30.设()()()()1ln 1ln 0f x x x x a a =+-->.(1)若1a =,求函数()y f x =的图象在1x =处的切线方程;(2)若()0f x ³在 [)1,+¥上恒成立,求实数a 的取值范围;(3)若函数()y f x =存在两个极值点1212x x x x (<)、,求证:122x x +>.31.已知函数()11e ,0axf x x a a a -æö=-+>ç÷èø.(1)若()f x 的极小值为-4,求a 的值;(2)若()()ln g x f x a x =-有两个不同的极值点12,x x,证明:12x x +>32.已知函数()e 1xf x ax =--.(1)讨论函数()f x 的单调性;(2)当0a >时,若满足()()()1212f x f x x x =<,求证:122ln x x a +<;(3)若函数()()sin g x f x x =+,当0x ³时,()0g x ³恒成立,求实数a 的取值范围.33.已知函数()()2ln 2g x x ax a x =-+-(R a Î).(1)求()g x 的单调区间;(2)若函数()()()212f x g x a x x =++-,()1212,0x x x x <<是函数()f x 的两个零点,证明:1202x x f +æö¢<ç÷èø.34.已知函数()23ln 4(0)f x x ax x a =+->.(1)当1a =时,讨论()f x 的单调性;(2)当12a =时,若方程()f x b =有三个不相等的实数根123,,x x x ,且123x x x <<,证明:314x x -<.35.已知常数0a >,函数221()2ln 2f x x ax a x =--.(1)若20,()4x f x a ">>-,求a 的取值范围;(2)若1x 、2x 是()f x 的零点,且12x x ¹,证明:124x x a +>.36.已知函数()()2ln R af x x x a x=+Î有两个零点()1212,x x x x <.(1)求实数a 的取值范围;(2)证明:121x x +>.1.已知a b >,且e e 1.01a b a b -=-=,则下列说法正确的有( )①1b <-; ②102a << ;③0b a +<; ④1a b -<.A .①②③B .②③④C .②④D .③④2.已知函数()ln f x x x =-,过点()()1,1P b b >-作函数()f x 的两条切线,PA PB ,切点分别为,A B ,下列关于直线AB 斜率k 的正负,说法正确的是( )A .0k <B .0k =C .0k >D .不确定3.关于函数()22ln x f x x x =++,下列说法错误的是( )A .不存在正实数k ,使得()f x kx >恒成立B .对任意12,(0,)x x Î+¥,若12x x <,有()2112()x f x x f x <C .对任意121212()(),(0,1),()22x x f x f x x x f ++ΣD .若正实数12,x x ,满足12()()4f x f x +=,则122x x +³4.已知函数()()()e ,e xxxf x x a ag x =+Î=R ,下列说法正确的是( )A .若()()1212,x x g x g x ¹=,则122x x +>B .若0a =,则“120x x +=”是“()()120f x g x +=”的充要条件C .若不等式()()f x g x <恰有3个整数解,则实数a 的取值范围是22e e 212e ,e éö--÷êëøD .若不等式()()f x g x <恰有2023个整数解122023,,x x x ×××,则()()20232023112023kkk k f x g x a==+=åå5.已知()()e e ,, 1.01,1e 1e 0.9911a bc d a b c d c d a b >>==-=-=++,则( )A .0a b +>B .0c d +>C .0a d +>D .0b c +>6.已知函数()e xf x x =,若120x x >>,则下列结论正确的是( )A .2121()()f x f x x x ->-B .1122()()x f x x f x +>+C .1221()()x f x x f x >D .若12()()f x f x -=-,则122x x +>7.已知函数()()e xf x x a bx =--,则下列结论正确的是( )A .当1,2a b =-=时,()1f x ³恒成立B .当1,a b R =Î时,()f x 必有零点C .若()f x 有两个极值点12x x 、,则1224x x a +>-D .若()f x 在R 上单调递增,则1a b +£8.已知函数()ln f x x x a =--有两个零点1x 、2x ,则下列说法正确的是( ).A .1a >B .121x x >C .121x x <D .122x x +>9.已知函数()ln xf x x=,则( )A .()()25f f >B .若()f x m =有两个不相等的实根1x 、2x ,则212ex x <C.ln 2>D .若23x y =,x ,y 均为正数,则23x y >10.关于函数f (x )=2x+ln x ,则下列结论正确的是( )A .x =2是f (x )的极小值点B .函数y =f (x )-x 有且只有1个零点C .对任意两个正实数x 1,x 2,且x 2>x 1,若f (x 1)=f (x 2),则x 1+x 2>4D .存在正实数k ,使得f (x )>kx 恒成立11.已知函数()2ln 2a f x x x x =-有两个极值点1x ,212()x x x <,则( )A .a 的取值范围为(-∞,1)B .122x x +>C .12112x x +>D .2111x x a->-12.已知关于x 的方程ln 0x x a -=有两个不等的正根1x ,2x 且12x x <,则下列说法正确的有( )A .1ea -<<B .122ex x +>C .122x x a +<-D .1x a<-13.设函数1,0()cos ,0x xx f x e x x -ì>ï=íï£î,下列四个结论中正确的是( )A .函数()f x 在区间[),1p -上单调递增B .函数()y f x x =-有且只有两个零点C .函数()f x 的值域是[]1,1-D .对任意两个不相等正实数12,x x ,若12()()f x f x =,则122x x +>14.已知函数()e x f x x a =-,则下面结论成立的是( )A .当10ea <<时,函数()0f x =有两个实数根B .函数()0f x =只有一个实数根,则0a £C .若函数()0f x =有两个实数根1x ,2x ,则122x x +>D .若函数()0f x =有两个实数根1x ,2x ,则123x x +>15.已知函数()e x x m f x +=的极大值点为0,则实数m 的值为 ;设12t t ¹,且211212ln ln t t t t t t -=-,不等式12ln ln l +>t t 恒成立,则实数l 的取值范围为 .16.已知函数()2ln ,R f x x x ax x a =-+Î.(1)若函数()f x 是减函数,求a 的取值范围;(2)若()f x 有两个零点12,x x ,且212x x >,证明:1228e x x >.17.已知函数()2ln ,R a f x x a x=+Î.若函数()f x 有两个不相等的零点12,x x .(1)求a 的取值范围;(2)证明:124x x a +>.18.已知函数()ln f x x x a =--有两个不同的零点12,x x .(1)求实数a 的取值范围;(2)求证:122x x +>.19.已知函数ln ()a x a f x x +=.(1)讨论()f x 的极值;(2)若()()2112e e x xx x =(e 是自然对数的底数),且1>0x ,20x >,12x x ¹,证明:122x x +>.20.已知函数()()()2ln 3,0f x x a x x a a =+-->.(1)当1x ³时,()0f x ³,求a 的取值范围.(2)若函数()f x 有两个极值点12,x x ,证明:12122e x x -+>.。

高考数学极值点偏移练习题(含答案)

高考数学极值点偏移练习题(含答案)

高考数学极值点偏移练习题(含答案)第I卷(选择题)一、多选题+lnx,下列判断正确的是()1.关于函数f(x)=2xA. x=2是f(x)的极大值点B. 函数y=f(x)−x有且只有1个零点C. 存在正实数k,使得f(x)>kx恒成立D. 对任意两个正实数x1,x2,且x1>x2,若f(x1)=f(x2),则x1+x2>4+lnx,下列说法正确的是2.关于函数f(x)=2xA. x=2是f(x)的极大值点B. 函数y=f(x)−x有且只有1个零点C. 存在正整数k,使得f(x)>kx恒成立D. 对任意两个正实数x1,x2,且x1≠x2,若f(x1)=f(x2),则x1+x2>4第II卷(非选择题)二、解答题(k∈R)的图像有两个不同的交点A(x1,y1),3.已知函数f(x)=xlnx与函数g(x)=kxB(x2,y2),且x1<x2.(1)求实数k的取值范围;(2)证明:x1+x2<.√e4.已知函数g(x)=e x−ax2−ax(a∈R),ℎ(x)=e x−2x−lnx.(1)若f(x)=ℎ(x)−g(x).①讨论函数f(x)的单调性;②若函数f(x)有两个不同的零点,求实数a的取值范围.(2)已知a>0,函数g(x)恰有两个不同的极值点x1,x2,证明:x1+x2<ln(4a2).5.已知函数f(x)=e x−ax2(a∈R)有两个极值点.(I)若a的取值范围;(Ⅱ)若函数f(x)的两个极值点为x1,x2,证明:x1⋅x2<1.6.已知函数f(x)=lnx−ax(a∈R).(1)若f(x)有两个零点,求实数a的取值范围;(2)当f(x)有两个零点x1,x2,且x1<x2,求证:x1⋅x2>e2.x2−alnx.其中a为常数.7.已知函数f(x)=12(1)若函数f(x)在定义域内有且只有一个极值点,求实数a的取值范围;(2)已知x1,x2是函数f(x)的两个不同的零点,求证:x1+x2>2√e.8.已知函数f(x)=ae2x+(1−2a)e x−x.(1)当a<0时,讨论f(x)的单调性;(2)若f(x)有两个不同零点x1,x2,证明:a>1且x1+x2<0.x2−alnx有两个不同的零点x1,x2.9.已知函数f(x)=12(1)求实数a的取值范围;(2)证明:x1+x2>2√e.10.已知f(x)=e x−ax,g(x)=ax2−e.(1)若f(x)的图象在x=1处的切线与g(x)的图象也相切,求实数a的值;(2)若F(x)=f(x)−g(x)有两个不同的极值点x1,x2(x1<x2),求证:e x1e x2<4a2.11.已知函数f(x)=xe−x(x∈R).(1)若方程f(x)+2a2−3a+1=0有两个不同的根,求实数a的取值范围;(2)如果x1≠x2,且f(x1)=f(x2),求证:x1+x2>2.x2(e=2.71828…)为自然对数的底数)有两个极值点x1,12.已知函数f(x)=e x−a2x2.(1)求a的取值范围;(2)求证:x1+x2<2lna.13.已知函数f(x)=lnx−ax,a是常数且a∈R.(Ⅰ)若曲线y=f(x)在x=1处的切线经过点(−1,0),求a的值;(e是自然对数的底数),试证明:①函数f(x)有两个零点,②函(Ⅱ)若0<a<1e数f(x)的两个零点x1、x2满足x1+x2>2e.14.已知函数f(x)=lnx−ax,a是常数且a∈R.(1)若曲线y=f(x)在x=1处的切线经过点(−1,0),求a的值;(e是自然对数的底数),试证明:(2)若0<a<1e①函数f(x)有两个零点,②函数f(x)的两个零点x1,x2满足x1+x2>2e.选做题(在答题卡上涂选做信息点)15.已知函数f(x)=lnx.x(1)若对任意x∈(0,+∞),f(x)<kx恒成立,求k的取值范围;−m有两个不同的零点x1,x2,证明:x1+x2>2.(2)若函数g(x)=f(x)+1x16.已知函数f(x)=2xlnx−ax2−2x+a2(a>0)在其定义域内有两个不同的极值点.(1)求a的取值范围;(2)设f(x)两个极值点分别为x1,x2,证明:√x1x2>e.17.已知函数f(x)=xlnx+x2−ax+2(a∈R)有两个不同的零点x1,x2.(1)求实数a的取值范围;(2)求证:x1⋅x2>1.答案和解析1.【答案】BD本题考查导数知识的运用,考查函数的单调性,考查学生分析解决问题的能力,属于难题.根据极值的概念,构造函数判断单调性确定零点个数,参变分离再确定新函数的最值以及极值点偏移逐个判断选项正误.对选项分别进行判断,即可得出结论.【解答】解:f′(x)=x−2x2,∴在(0,2)上函数单调递减,在(2,+∞)上单调递增,∴x=2是函数的极小值点,无极大值,故A错误,y=f(x)−x=2x+lnx−x,∴y′=−x2+x−2x2<0,函数在(0,+∞)上单调递减,f(1)−1=2−1>0f(2)−2=1+ln2−2<0∴函数y=f(x)−x有且只有1个零点,即B正确;f(x)>kx,可得k<2x2+lnxx,令g(x)=2x2+lnxx,则g′(x)=−4+x−xlnxx3,令ℎ(x)=−4+x−xlnx,则ℎ′(x)=−lnx,∴(0,1)上,函数单调递增,(1,+∞)上函数单调递减,∴ℎ(x)≤ℎ(1)<0,′∴g(x)=2x2+lnx x在(0,+∞)上函数单调递减,函数无最小值,∴不存在正实数k ,使得f(x)>kx 恒成立,即C 不正确;当t ∈(0,2),则2−t ∈(0,2) 2+t >2 g(t)=f(2+t)−f(2−t)=22+t +ln(2+t)−22−t−ln(2−t)=4t t 2−4+ln 2+t 2−t g ′(t)=4(t 2−4)−4t ·2t (t 2−4)2+2−t 2+t ·2−t +2+t (2−t)2=−8t 2(t 2−4)2<0g(t)在(0,2)上单调递减,g(t)<g(0)=0,x 2=2−t,由f(x 1)=f(x 2),得x 1>2+t.则x 1+x 2>4,当,所以D 正确.故选BD .2.【答案】BD本题考查导数知识的综合运用,考查函数的零点问题和不等式恒成立问题,考查分析解决问题的能力,属于难题.A 选项,对函数求导,结合函数极值的定义进行判断即可;B 选项,求函数的导数,结合函数的单调性和零点个数进行判断即可;C 选项,利用参数分离,构造函数g(x)=2x 2+lnx x,再进行求导,研究函数的单调性和极值进而判断即可;D 选项为典型的极值点偏移问题,令f(4−x 1)−f(x 2)=f(4−x 1)−f(x 1)=24−x 1+ln (4−x 1)−2x 1−ln x 1=4(x 1−2)(4−x1)x 1+ln 4−x 1x 1,通过令4−x 1x 1=t ,则t >1,x 1=41+t ,原式=F(t)=1−t22t+ln t ,判断单调性即可. 【解答】解:对于A ,∵f′(x)=−2x 2+1x =x−2x 2(x >0),令f′(x)<0,解得0<x <2,令f′(x)>0,解得x >2, ∴f(x)在(0,2)上单调递减,在(2,+∞)上单调递增, ∴x =2是函数的极小值点,无极大值点,故A 错误; 对于B ,∵y =f(x)−x =2x +lnx −x , ∴y′=−2x 2+1x −1=−x 2−x+2x 2<0,∴该函数在(0,+∞)上单调递减,且当x =1e 时,y =2e −1−1e >0,x =e 时,y =2e +1−e <0,∴函数y =f(x)−x 有且只有1个零点,即B 正确. 对于C ,由f(x)>kx ,且x >0, 可得k <2x 2+lnx x,令g(x)=2x 2+lnx x,则g′(x)=x−xlnx−4x 3,令ℎ(x)=x −xlnx −4,则ℎ′(x)=−lnx , ∵x ≥1时,ℎ′(x)≤0,0<x <1时,ℎ′(x )>0, ∴ℎ(x)在[1,+∞)上单调递减,ℎ(x)在(0,1)上单调递增, ∴ℎ(x)≤ℎ(1)=−3<0, ∴g′(x)<0, ∴g(x)=2x +1nx x在(0,+∞)上函数单调递减,函数无最小值,且x →+∞时,g(x)→0,因此,不存在正实数k ,使得f(x)>kx 恒成立,故C 不正确. 对于D ,对于任意两正实数x 1,x 2,且x 1≠x 2,由选项A 可知函数f(x)在区间(0,2)上单调递减,在区间(2,+∞)上单调递增, 若f(x 1)=f(x 2),不妨设0<x 1<2<x 2,则4−x 1>2,由f(4−x 1)−f(x 2)=f(4−x 1)−f(x 1)=24−x 1+ln (4−x 1)−2x 1−ln x 1=4(x 1−2)(4−x1)x 1+ln 4−x 1x 1,令4−x 1x 1=t ,则t >1,x 1=41+t ,原式=F(t)=1−t22t+ln t ,则,所以F(t)=1−t 22t+ln t 在(1,+∞)上是减函数,所以F(t)<F(1)=0,所以f(4−x 1)−f(x 2)<0,又因为f(x)在(2,+∞)上单调递增,所以4−x 1<x 2,故x 1+x 2>4.所以D 正确. 故选 BD .3.【答案】解:(1)根据题意,方程xlnx =kx ⇔k =x 2lnx (k ∈R )有两个不同的根,设ℎ(x)=x2lnx,则ℎ′(x)=2xlnx+x,根据ℎ′(x)=2xlnx+x>0⇒x>√e ,所以ℎ(x)在(√e+∞)上单调递增;ℎ′(x)=2xlnx+x<0⇒0<x<√e ,所以ℎ(x)在e)上单调递减.所以x=1√e时,ℎ(x)取得极小值.又因为x→0时,ℎ(x)→0,ℎ(1)=0,作出ℎ(x)的大致图像如图所示,所以−12e<k<0.(2)根据(1)可知0<x1<√e<x2<1,设φ(x)=ℎ(x)−ℎ(√e−x)=,则φ′(x)=2[xlnx+(√e x)ln(√e−x)]√e.设m(x)=xlnx+(√e x)ln(√ex),则m′(x)=lnx−ln(√e−x),根据m′(x)<0⇒0<x<√e ,则m(x)在e)上单调递减,所以当0<x<√e时,m(x)>m(√e )=√e,所以φ′(x)>0,所以φ(x)在√e)上单调递增,则当x∈√e )时,φ(x)<φ(√e)=0,即ℎ(x)<ℎ(√e−x),所以ℎ(x2)=ℎ(x1)<ℎ(√ex1),又因为ℎ(x )在(√e+∞)上单调递增,所以x 2<√e−x 1,即x 1+x 2<√e.【解析】本题考查导数在解决函数问题中的应用,属难题.(1)函数图象有2个交点转化为方程f(x)=g(x)有2个不同的根,分离参数得到k =x 2lnx ,构造函数ℎ(x)=x 2lnx ,利用导数研究单调性,求出极值,结合函数图象,可得到k 的取值范围; (2)由(1)得到x 1和x 2的范围,构造函数φ(x)=ℎ(x)−ℎ(e −x),由导数研究单调性, 求得φ(x)<0,从而ℎ(x)<ℎ(√ex),由ℎ(x)的单调性,证得结果.4.【答案】解:(1)f(x)=ℎ(x)−g(x)=e x −2x −lnx −e x +ax 2+ax =ax 2+(a −2)x −lnx(x >0),①f′(x)=2ax +(a −2)−1x =2ax 2+(a−2)x−1x=(2x+1)(ax−1)x(x >0),(i)当a ≤0时,f′(x)<0,函数f(x)在(0,+∞)上递减;(ii)当a >0时,令f′(x)>0,解得x >1a ;令f′(x)<0,解得0<x <1a , ∴函数f(x)在(0,1a )递减,在(1a ,+∞)递增;综上,当a ≤0时,函数f(x)在(0,+∞)上单调递减;当a >0时,函数f(x)在(0,1a )上单调递减,在(1a ,+∞)上单调递增;②由①知,若a ≤0,函数f(x)在(0,+∞)上单调递减,不可能有两个不同的零点,故a >0;且当x →0时,f(x)→+∞;当x →+∞时,f(x)→+∞;故要使函数f(x)有两个不同的零点,只需f(x)min =f(1a )=a ⋅(1a )2+a−2a−ln 1a <0,即lna −1a +1<0,又函数y =lnx −1x +1在(0,+∞)上为增函数,且ln1−11+1=0,故lna −1a +1<0的解集为(0,1).故实数a 的取值范围为(0,1);(2)证明:g′(x)=e x −2ax −a ,依题意,{e x 1−2ax 1−a =0e x 2−2ax 2−a =0,两式相减得,2a =e x1−e x2x1−x2(x1<x2),要证x1+x2<ln(4a2),即证x1+x22<ln2a,即证e x1+x22<e x1−e x2x1−x2,两边同除以e x2,即证(x1−x2)e x1−x22>e x1−x2−1,令t=x1−x2(t<0),即证te t2−e t+1>0,令ℎ(t)=te t2−e t+1(t<0),则ℎ′(t)=−e t2[e t2−(t2+1)],令p(t)=e t2−(t2+1),则p′(t)=12(e t2−1),当t<0时,p′(t)<0,p(t)在(−∞,0)上递减,∴p(t)>p(0)=0,∴ℎ′(t)<0,∴ℎ(t)在(−∞,0)上递减,∴ℎ(t)>ℎ(0)=0,即te t2−e t+1>0,故x1+x2<ln(4a2).【解析】(1)①求出f(x)并求导,解关于导函数的不等式即可得到单调区间;②显然a>0,分析可知只需f(x)的最小值小于0即可满足条件,进而得解;(2)依题意,将所证不等式转化为证明(x1−x2)e x1−x22>e x1−x2−1,再通过换元构造新函数即可得证.本题考查利用导数研究函数的单调性及函数的零点问题,考查极值点偏移问题,考查转化思想,换元思想及化简运算能力,逻辑推理能力,属于中档题.5.【答案】解:(Ⅰ)设g(x)=f′(x)=e x−2ax,则x1,x2是方程g(x)=0的两个根.g′(x)=e x−2a当a≤0时,g′(x)>0恒成立,g(x)单调递增,方程g(x)=0不可能有两个根;当a>0时,由g′(x)=0,得x=ln 2a,当x∈(−∞,ln2a)时,g′(x)<0,g(x)单调递减,当x∈(ln2a,+∞)时,g′(x)>0,g(x)单调递增.又因为x➡−∞时,g(x)➡+∞;x➡+∞时,g(x)➡+∞,∴当且仅当g(x)min<0时,方程g(x)=0才有两个根,∴g(x)min=g(ln2a)=2a−2aln2a<0,令ℎ(t)=t−tlnt,(t>0),ℎ′(t)=−lnt,可得t∈(1,+∞)时,ℎ(t)递减,且t ∈(0,e)时,1−lnt >0,∴ℎ(t)=t(1−lnt)>0,ℎ(e)=0 ∴t >e 时,ℎ(t)<0 ∴a 的取值范围:a >e2.(Ⅱ)不妨设x 1<x 2,由(Ⅰ)知x 1,x 2是方程e x −2ax =0的两个根, {e x 1=2ax 1e x 2=2ax 2⇒{x 1=lnx 1+ln2a x 2=lnx 2+ln2a ⇒x 1−x 2lnx 1−lnx 2=1,亦可得0<x 1<x 2,令,g′(t)=1+1t 2−2t =(1t −1)2≥0,则t >1时,g(t)>g(1)=0, ∴t >1时,,即.,∴x 1⋅x 2<1.【解析】本题考查了导数与函数极值,关键步骤的证明颇有技巧性,属于难题. (Ⅰ)设g(x)=f′(x),则x 1,x 2是方程g(x)=0的两个根,求导数可得g′(x),若a ≤0时,不合题意,若a >0时,求导数可得单调区间,进而可得最大值,可得关于a 的不等式,解之可得.(Ⅱ)不妨设x 1<x 2,由(Ⅰ)知x 1,x 2是方程e x −2ax =0的两个根,即可得{e x 1=2ax 1e x 2=2ax 2⇒{x 1=lnx 1+ln2a x 2=lnx 2+ln2a ⇒x 1−x 2lnx 1−lnx 2=1,通过证明不等式x 1−x 2lnx 1−lnx 2>√x 1x 2,即可证明x 1⋅x 2<1.6.【答案】解:(1)f (x )有两个零点⇔关于x 的方程e ax =x 有两个相异实根,由e ax >0,知x >0∴f (x )有两个零点⇔a =lnx x有两个相异实根.令G (x )=lnx x,则G′(x)=1−lnx x由G′(x)>0得:0<x <e ,由G′(x)<0得:x >e ,∴G (x )在(0,e )单调递增,在(e,+∞)单调递减,∴G (x )max =G (e )=1e ,又∵G (1)=0,∴当0<x <1时,G (x )<0,当x >1时,G (x )>0当x →+∞时,G (x )→0,∴f (x )有两个零点时,实数a 的取值范围为(0,1e ). (2)由题意得{e ax 1=x 1e ax 2=x 2∴x 1>0,x 2>0∴{ax 1=lnx 1ax 2=lnx 2,∴a (x 1+x 2)=lnx 1+lnx 2 ①a (x 2−x 1)=lnx 2−lnx 1 ∵x 1<x 2, ∴a =lnx 2−lnx 1x 2−x 1.,要证:x 1·x 2>e 2,只需证lnx 1+lnx 2>2由①知:lnx 1+lnx 2=a (x 1+x 2)=lnx 2−lnx 1x 2−x 1·(x 1+x 2)=(x 2x 1+1x 2x 1−1)·ln x2x1∵0<x 1<x 2,∴x2x 1>1,令t =x2x 1,t >1,∴只需证(t+1t−1)·lnt >2 ∵t >1∴t+1t−1>0,∴只需证:lnt >2(t−1)(t+1),令F (t )=lnt −2(t−1)(t+1)(t >1)∴F′(t)=1t −4(t+1)2=(t−1)2t (t+1)2>0,∴F (t )在(1,+∞)递增,∴F (t )>0,∴lnt >2(t−1)(t+1)即lnx 1+lnx 2>2,即x 1·x 2>e 2.【解析】本题考查利用导数研究函数的单调性,极值及最值,考查不等式的证明,考查逻辑推理能力及运算求解能力,属于常规题目. (1)f (x )有两个零点⇔a =lnx x有两个相异实根,令G (x )=lnx x,根据G(x)的最值确定a的取值范围;(2)利用处理极值点偏移问题的常见解法求解即可7.【答案】解:(1)f′(x)=x −ax =x 2−a x(x >0),当a ≤0时,f′(x )>0,f (x )在(0,+∞)上单调递增,不符合题意, 当a >0时,令f′(x )=0,得x =√a , 当x ∈(0,√a)时,f′(x )<0,f (x )单调递减, 当x ∈(√a,+∞)时,f′(x )>0,f (x )单调递增, ∴a >0; 证明:(2)由(1)知:当a ≤0时,f′(x )>0,f (x )在(0,+∞)上单调递增,函数f (x )至多有一个零点,不符合题意,当a>0时,令f′(x)=0,得x=√a,当x∈(0,√a)时,f′(x)<0,f(x)单调递减,当x∈(√a,+∞)时,f′(x)>0,f(x)单调递增,故当x=√a时,函数f(x)取得最小值f(√a)=a2(1−lna),当0<a<e时,1−lna>0,f(√a)>0,函数f(x)无零点,不合题意,当a=e时,1−lna=0,f(√a)=0,函数f(x)仅有一个零点,不合题意,当a>e时,1−lna<0,f(√a)<0,又f(1)=12>0,所以f(x)在x∈(0,√a)上只有一个零点,令p(x)=lnx−x+1,则p′(x)=1x−1,故当0<x<1时,p′(x)>0,p(x)单调递增,当x>1时,p′(x)<0,p(x)单调递减,所以p(x)≤p(1)=0,即lnx≤x−1,所以ln2a≤2a−1,所以f(2a)=2a2−aln2a≥2a2−a(2a−1)=a>0,又2a>√a,所以f(x)在x∈(√a,+∞)上只有一个零点.所以a>e满足题意.不妨设x1<x2,则x1∈(0,√a),x2∈(√a,+∞),令g(x)=f(√a+x)−f(√a−x)(0≤x≤√a),则g(x)=2√ax−aln(√a+x)+aln(√a−x),g′(x)=2√a−√a+x x−√a =2√ax2x2−a,当0<x<√a时,g′(x)<0,所以g(x)在(0,√a)上单调递减,所以当x ∈(0,√a)时,g (x )<g (0)=0,即f(√a +x)<f(√a −x), 因为x 1∈(0,√a),所以√a −x 1∈(0,√a),所以f (x 2)=f (x 1)=f[√a −(√a −x 1)]>f[√a +(√a −x 1)]=f(2√a −x 1), 又x 2∈(√a,+∞),2√a −x 1∈(√a,+∞),且f (x )在(√a,+∞)上单调递增, 所以x 2>2√a −x 1,故x 1+x 2>2√a >2√e 得证.【解析】本题考查利用导数研究函数的极值点,考查不等式的证明,考查逻辑推理能力及运算求解能力,属于难题. (1)f′(x)=x −ax=x 2−a x(x >0),讨论a ≤0和a >0,即可得到结果;(2)先对函数f(x)求导,分a ≤0,a >0可判断函数f(x)在x ∈(0,√a)上有一个零点,在x ∈(√a,+∞)上有一个零点,且a >e ,再设x 1<x 2,则x 1∈(0,√a),x 2∈(√a,+∞),构造函数g(x)=f(√a +x)−f(√a −x)(0≤x ≤√a),利用极值点偏移的解决方法求证即可.8.【答案】解:(1)f′(x)=2ae 2x +(1−2a)e x −1=(e x −1)(2ae x +1),因为a <0,由f′(x)=0得,x =0或x =ln(−12a ), i)ln(−12a )<0即a <−12时,f(x)在(−∞,ln(−12a ))单调递减,在(ln(−12a),0)单调递增,在(0,+∞)单调递减;ii)ln(−12a )=0即a =−12时,f(x)在(−∞,+∞)单调递减;iii)ln(−12a )>0即−12<a <0时,f(x)在(−∞,0)单调递减,在(0,ln(−12a ))单调递增,在(ln(−12a ),+∞)单调递减;(2)由(1)知,a <−12时,f(x)的极小值为f(ln(−12a ))=1−14a −ln(−12a )>1>0; −12<a <0时,f(x)的极小值为f(0)=1−a >1>0;a =−12时,f(x)在(−∞,+∞)单调递减,故a <0时,f(x)至多有一个零点, 当a ≥0时,由f′(x)=2ae 2x +(1−2a)e x −1=(e x −1)(2ae x +1),f(x)在(−∞,0)单调递减,在(0,+∞)单调递增.要使f(x)有两个零点,则f(0)<0,得a+1−2a<0,即a>1,令F(x)=f(x)−f(−x),(x>0),则F′(x)=f′(x)+f′(−x)=[2ae2x+(1−2a)e x−1]+[2ae−2x+(1−2a)e−x−1]= 2a(e x+e−x+1)(e x+e−x−2)+(e x+e−x)−2≥0,所以F(x)在x>0时单调递增,F(x)>F(0)=0,f(x)>f(−x),不妨设x1<x2,则x1<0,x₂>0,−x2<0,f(x1)=f(x2)>f(−x2),由f(x)在(−∞,0)单调递减,得x1<−x2,即x1+x2<0,故a>1且x1+x2<0,原命题得证.【解析】(1)对f(x)求导,根据a对函数的单调性进行讨论;(2)根据(1)的f(x)在a<0的单调性,根据题意得a≥0,令F(x)=f(x)−f(−x),(x>0),利用极值点偏移的方法证明即可.考查含参函数导数法判断单调性,导数法证明极值点偏移问题,利用了分类讨论思想,构造函数法等,难度较大.9.【答案】(1)解:∵函数f(x)=12x2−alnx的定义域为(0,+∞),且f′(x)=x−ax =x2−ax,∴若a⩽0,f′(x)>0恒成立,这时函数f(x)在(0,+∞)内单调递增,函数f(x)至有多一个零点,不合条件;若a>0,令f′(x)=0,得x=√a,当x∈(0,√a)时,f′(x)<0,函数f(x)单调递减,当x∈(√a,+∞)时,f′(x)>0,函数f(x)单调递增,这时函数f(x)有最小值,且f(x)min=f(√a)=a2(1−lna).∵函数f(x)=12x2−alnx的定义域(0,+∞)内有两个零点,∴首先必须满足条件:f(x)min=f(√a)=a2(1−lna)<0,解之,得:a>e.在此条件下,∵f(1)=12>0,f(√a)<0,又函数f(x)在(0,√a)内单调递减,∴函数f(x)在(0,√a)内有且仅有一个零点;令ℎ(x)=x−1−lnx,∵ℎ′(x)=1−1x =x−1x,当0<x<1时,ℎ′(x)<0,ℎ(x)单调递减,当x>1时,ℎ′(x)>0,ℎ(x)单调递增,∴ℎ(x)⩾ℎ(1)=0,即x−1−lnx⩾0,∴2a−1−ln2a⩾0,ln2a⩽2a−1于是f(2a)=2a2−aln2a⩾2a2−a(2a−1)=a>0.又2a>√a,f(√a)<0,函数f(x)在(√a,+∞)内单调递增,∴函数f(x)在(√a,+∞)内也有且仅有一个零点.可见a>e符合条件.综上所述,实数a的取值范围是(e,+∞).(2)证明:不妨设x1<x2,则x1∈(0,√a),,令g(x)=f(√a+x)−f(√a−x) (0⩽x⩽√a),则g′(x)=[f(√a+x)−f(√a−x)]′=2√a−√a+x +√a−x=2√ax2x2−a,当0<x<√a时,g′(x)<0,g(x)在(0,√a)内单调递减,这时g(x)<g(0)=0,f(√a+x)−f(√a−x)<0,f(√a−x)>f(√a+x).∵x1∈(0,√a),∴√a−x1∈(0,√a),而f(x2)=f(x1)=f[√a−(√a−x1)]>f[√a+(√a−x1)]=f(2√a−x1),又x2∈(√a,+∞),2√a−x1∈(√a,+∞),函数f(x)在(√a,+∞)内单调递增,∴x2>2√a−x1,即x1+x2>2√a>2√e成立,问题得证.【解析】本题考查利用导数研究含参数的函数的零点个数以及零点的性质问题,考查分类讨论思想,考查构造法的运用,属于难题.(1)探究函数的单调性与最值,对参数分离讨论,问题可解决;(2)依(1)的认知,先证x1+x2>2√a,采用极值点偏移法,构造函数g(x)=f(√a+x)−f(√a−x) (0⩽x⩽√a)即可证明.然后放缩即可得出结论.10.【答案】(1)解:因为f(x)=e x−ax,所以f′(x)=e x−a所以f(1)=e−a,f′(1)=e−a,所以f(x)的图象在x=1处的切线方程为y−(e−a)=(e−a)(x−1),即y=(e−a)x,与g(x)=ax2−e联立得,ax2−(e−a)x−e=0,因为直线y=(e−a)x与g(x)的图象相切,所以a≠0且(e−a)2+4ea=0,解得a=−e.(2)证明:F(x)=f(x)−g(x)=e x−ax2−ax+e,F′(x)=e x−2ax−a,若a≤0,F′(x)是增函数,F′(x)=0最多有一个实根,F(x)最多有一个极值点,不满足题意,所以a>0,此时设x1,x2(x1<x2)是F′(x)=e x−2ax−a的两个变号零点,由题意知e x1−2ax1−a=0,e x2−2ax2−a=0,两式相减得2a=e x1−e x2x1−x2,由e x1e x2<4a2⟺e x1+x22<2a⟺e x1+x22<e x1−e x2x1−x2⟺e x1−x22<e x1−x2−1x1−x2,设x1−x22=t,则t<0,要证e x1e x2<4a2,即证t<0时,e t<e2t−12t恒成立,即1<e t−e−t2t恒成立,即e t−e−t−2t<0恒成立,设ℎ(t)=e t−e−t−2t,则ℎ′(t)=e t+e−t−2>0,所以ℎ(t)在(−∞,0)上是增函数,所以ℎ(t)<ℎ(0)=0,所以t<0时,e t−e−t−2t<0恒成立,即e x1e x2<4a2.【解析】本题考查了导数的几何意义、函数的恒成立问题,极值点偏移问题的处理技巧,属于中档题.(1)利用f(1)=e−a,f′(1)=e−a,求得f(x)的图象在x=1处的切线方程y=(e−a)x,与g(x)=ax2−e联立得,ax2−(e−a)x−e=0,结合Δ=(e−a)2+4ea= 0,解得a.(2)F(x)=f(x)−g(x)=e x−ax2−ax+e,F′(x)=e x−2ax−a,可得a>0,此时设x1,x2(x1<x2)是F′(x)=e x−2ax−a的两个变号零点,由题意知e x1−2ax1−a=0,e x2−2ax2−a=0,两式相减得2a=e x1−e x2x1−x2,由e x1e x2<4a2⟺e x1+x22<2a⟺e x1+x22<e x1−e x2x1−x2⟺e x1−x22<e x1−x2−1x1−x2,设x1−x22=t,则t<0,即证t<0时,e t<e2t−12t恒成立,设ℎ(t)=e t−e−t−2t,利用导数即可证明.11.【答案】解:(1)因为f(x)=xe−x,所以f′(x)=(1−x)e−x,.可得函数f(x)=xe−x在(−∞,1)上单调递增,在(1,+∞)上单调递减.函数f(x)=xe−x在x=1处取得最大值,f(x)max=f(1)=1e,所以函数f(x)的图象大致如下:易知函数f(x)=xe−x的值域为(−∞,1e].因为方程f(x)+2a2−3a+1=0有两个不同的根,所以−2a2+3a−1∈(0,1e),即−2a2+3a−1>0,−2a2+3a−1<1e .解得12<a<1.即实数a的取值范围为(12,1).(2)证明:由f(x1)=f(x2),x1≠x2,不妨设x1<x2,构造函数F(x)=f(1+x)−f(1−x),x∈(0,1],则F′(x)=f′(1+x)+f′(1−x)=xe x+1(e2x−1)>0,所以F(x)在x∈(0,1]上单调递增,F(x)>F(0)=0,也即f(1+x)>f(1−x)对x∈(0,1]恒成立.由0<x1<1<x2,则1−x1∈(0,1],所以f(1+(1−x1))=f(2−x1)>f(1−(1−x1))=f(x1)=f(x2),即f(2−x1)>f(x2),又因为2−x1,x2∈(1,+∞),且f(x)在(1,+∞)上单调递减,所以2−x1<x2,即x1+x2>2.【解析】本题考查了函数的单调性和导数的恒成立问题和导数的不等式问题,属于中档题题.(1)求解方程的实根问题可以转化为函数的零点或图象的交点问题.(2)本小题属极值点偏移问题,构造函数F(x)=f(1+x)−f(1−x),x∈(0,1],根据F(x)的单调性证明f(2−x1)>f(x2)即可完成本题证明.12.【答案】解:(1)由已知得f′(x)=e x−ax,因为函数f(x)有两个极值点x1,x2,所以方程f′(x)=e x−ax=0有两个不相等的根x1,x2设g(x)=f′(x)=e x−ax,则g′(x)=e x−a①当a≤0时,g′(x)=e x−a>0,所以g(x)在R上单调递增,至多有一个零点,不符合题意②当a>0时,由g′(x)=e x−a=0得x=lna.当x∈(−∞,lna)时,g′(x)<0,函数g(x)单调递减;当x∈(lna,+∞)时,g′(x)>0,函数g(x)单调递增.所以g(x)min=g(lna)=a−alna<0,即a>e,令φ(a)=a−2lna(a>0),则φ′(a)=1−2a =a−2a,当a∈(0,2)时,φ′(a)<0,φ(a)为减函数;当a∈(2,+∞)时,φ′(a)>0,φ(a)为增函数;所以φ(a)min=φ(2)=2−2ln2=2(1−ln2)>0所以φ(a)>0,即a>2lna,<a,e a>a2所以g(a)=e a−a2>0,从而lna<a2又因为g(0)=1>0,所以g(x)在区间(0,lna)和(lna,a)上各有一个零点,符合题意,综上,实数a的取值范围为(e,+∞).(2)不妨设x1<x2,则x1∈(−∞,lna),x2∈(lna,+∞),所以x1<lna<x2设p(x)=g(x)−g(2lna−x)=e x−ax−[e2lna−x−a(2lna−x)]=e x−a2e−x−2ax+2alna,则p′(x)=e x+a2e−x−2a≥2√e x×a2e−x−2a=2a−2a=0,当且仅当e x=a2e−x,即x=lna时,等号成立.所以函数p(x)在R上单调递增.由x2>lna,可得p(x2)>p(lna)=0,即g(x2)−g(2lna−x2)>0,又因为x1,x2为函数g(x)的两个零点,所以g(x1)=g(x2),所以g(x1)>g(2lna−x2),又x2>lna,所以2lna−x2<lna,又函数g(x)在(−∞,lna)上单调递减,所以x1<2lna−x2,即x1+x2<2lna.【解析】本题考查利用导数研究函数的极值和极值点偏移的相关知识点,属于比较难的知识点.(1)由已知得f′(x)=e x−ax,因为函数f(x)有两个极值点x1,x2,所以方程f′(x)=e x−ax=0有两个不相等的根x1,x2,设g(x)=f′(x)=e x−ax,则g′(x)=e x−a,对a进行分类讨论,从而算出答案.(2)设x1<x2,则x1∈(−∞,lna),x2∈(lna,+∞),所以x1<lna<x2,设p(x)=g(x)−g(2ln a−x),则p′(x)=e x+a2e−x−2a⩾0,当且仅当e x=a2e−x,即x=lna时,等号成立.函数p(x)在R上单调递增,由x2>lna,可得g(x2)−g(2lna−x2)>0,g(x1)>g(2lna−x2),从而得证.−a (x>0),13.【答案】(Ⅰ)解:因为f′(x)=1x所以切线的斜率k =f ′(1)=1−a ,又因为f(1)=−a ,所以切线方程为y +a =(1−a)(x −1) , 将(−1,0)代入,得a =−2(1−a),解得a =2; (Ⅱ)①解f′(x)=1x−a =0,得x =1a当0<x <1a 时,f ′(x)>0;当x >1a 时,f′(x)<0.所以f(x)在x =1a 处取得最大值f(1a )=−lna −1 , 因为f(1)=−a <0,因为0<a <1e ,所以f(1a )=−lna −1>0,f(x)在区间(1,1a )有零点 , 因为f(x)在区间(0,1a )单调递增,所以,f(x)在区间(0,1a )有唯一零点 , 由幂函数与对数函数单调性比较及f(x)的单调性知, f(x)在区间(1a ,+∞)有唯一零点,从而函数f(x)有两个零点;②证明:不妨设0<x 1<1a <x 2,作函数F(x)=f(x)−f(2a −x), 0<x <2a , 则F(1a )=0,F′(x)=2(1−ax)2x(2−ax)⩾0,所以函数F(x)在区间(0,2a)上单调递增,所以F(x 1)<F(1a )=0,即f(x 1)−f(2a −x 1)<0, f(2a−x 1)>f(x 1),又f(x 1)=f(x 2),所以f(2a−x 1)>f(x 2)因为0<x 1<1a <x 2,所以2a −x 1, x 2∈(1a ,+∞),因为f(x)在区间(1a ,+∞)单调递减, 所以2a −x 1<x 2, x 1+x 2>2a ,又0<a <1e , 1a >e , 所以x 1+x 2>2e .【解析】本道试题主要是考查了导数在函数的单调性,极值中的应用,还考查了函数零点的应用.(Ⅰ)导数求出切线的斜率,进而求出切线方程,再将点(−1,0)代入切线方程,就可以求出a 的值;(Ⅱ)①由函数零点存在性定理可知f(x)在区间(0,1a )有唯一零点 ,由幂函数与对数函数单调性比较及f(x)的单调性知,f(x)在区间(1a ,+∞)有唯一零点,从而函数f(x)有两个零点 ;②应用函数的单调性即可证明.14.【答案】(Ⅰ)解:因为f′(x)=1x −a (x >0),所以切线的斜率k =f ′(1)=1−a ,又因为f(1)=−a ,所以切线方程为y +a =(1−a)(x −1) , 将(−1,0)代入,得a =−2(1−a),解得a =2; (Ⅱ)①解f′(x)=1x−a =0,得x =1a当0<x <1a 时,f ′(x)>0;当x >1a 时,f′(x)<0.所以f(x)在x =1a 处取得最大值f(1a )=−lna −1 , 因为f(1)=−a <0,因为0<a <1e ,所以f(1a )=−lna −1>0,f(x)在区间(1,1a )有零点 , 因为f(x)在区间(0,1a )单调递增,所以,f(x)在区间(0,1a )有唯一零点 , 由幂函数与对数函数单调性比较及f(x)的单调性知, f(x)在区间(1a ,+∞)有唯一零点,从而函数f(x)有两个零点;②证明:不妨设0<x 1<1a <x 2,作函数F(x)=f(x)−f(2a −x), 0<x <2a , 则F(1a )=0,F′(x)=2(1−ax)2x(2−ax)⩾0,所以函数F(x)在区间(0,2a )上单调递增,所以F(x 1)<F(1a )=0,即f(x 1)−f(2a −x 1)<0, f(2a −x 1)>f(x 1),又f(x 1)=f(x 2),所以f(2a −x 1)>f(x 2)因为0<x 1<1a <x 2,所以2a −x 1, x 2∈(1a ,+∞),因为f(x)在区间(1a ,+∞)单调递减, 所以2a −x 1<x 2, x 1+x 2>2a ,又0<a <1e , 1a >e , 所以x 1+x 2>2e .【解析】本道试题主要是考查了导数在函数的单调性,极值中的应用,还考查了函数零点的应用.(Ⅰ)导数求出切线的斜率,进而求出切线方程,再将点(−1,0)代入切线方程,就可以求出a的值;(Ⅱ)①由函数零点存在性定理可知f(x)在区间(0,1a)有唯一零点,由幂函数与对数函数单调性比较及f(x)的单调性知,f(x)在区间(1a,+∞)有唯一零点,从而函数f(x)有两个零点;②应用函数的单调性即可证明.15.【答案】解:(1)由f(x)<kx对任意x∈(0,+∞)恒成立,得k>lnxx2对任意x∈(0,+∞)恒成立,令ℎ(x)=lnxx2,则ℎ′(x)=1−2lnxx3,令ℎ′(x)=0,则x=√e,在(0,√e)上,ℎ′(x)>0,ℎ(x)单调递增;在(√e,+∞)上,ℎ′(x)<0,ℎ(x)单调递减;故ℎ(x)max=ℎ(√e)=12e,则k>12e ,即k的取值范围为(12e,+∞);(2)证明:设x1<x2,g(x)=lnx+1x−m,则g′(x)=−lnxx2,在(0,1)上,g′(x)>0,g(x)单调递增;在(1,+∞)上,g′(x)<0,g(x)单调递减;∵g(1)=1−m,g(1e)=−m,当x→+∞时,g(x)>−m,且g(x)→−m,∴0<m<1,1e<x1<1<x2,要证x1+x2>2,即证x2>2−x1,∵x2>1,2−x1>1,g(x)在(1,+∞)上单调递减,∴只需证明g(x2)<g(2−x1),由g(x1)=g(x2),只需证明g(x1)<g(2−x1),令m(x)=g(x)−g(2−x),x∈(1e,1),m′(x)=−lnxx2−ln(2−x)(2−x)2,∵x∈(1e,1),∴−lnx>0,x2<(2−x)2,∴m′(x)>−lnx−ln(2−x)2−x =−ln[x(2−x)]2−x>0,∴m(x)在(1e,1)上单调递增,∴m(x)<m(1)=0,即m(x)<0,∴x1+x2>2.【解析】本题考查了利用导数研究函数的单调性,函数零点存在性定理,利用导数研究函数的极值,运用分析法证明,导数中的恒成立与存在性问题和导数中的函数不等式.(1)利用导数中的恒成立问题处理策略,结合利用导数研究函数的极值,计算得结论;(2)利用导数研究函数的单调性,结合函数零点存在性定理得1e<x1<1<x2,再利用分析法证明得只需证明g(x1)<g(2−x1),构建函数m(x),利用导数研究函数的单调性,计算得结论.16.【答案】解:(1)由题意得f(x)的定义域是(0,+∞),f(x)=2xlnx−ax2−2x+a2(a>0),则f′(x)=2lnx+2−2ax−2,令f′(x)=0,得lnx−ax=0,问题转化为方程lnx−ax=0在(0,+∞)上有2个异根,令g(x)=lnx−ax,问题转化为函数g(x)有2个不同的零点,而g′(x)=1x −a=1−axx(x>0),∵a>0,当0<x<1a 时,g′(x)>0,当x>1a时,g′(x)<0,故g(x)在(0,1a )单调递增,在(1a,+∞)单调递减,故g(x)极大值=g(1a )=ln1a−1,又∵当x→0时,g(x)→−∞,当x→+∞时,g(x)→−∞,于是只需g(x)极大值>0,即ln 1a −1>0,故0<a <1e ,即a 的取值范围是(0,1e );(2)证明:由(1)可知x 1,x 2分别是方程lnx −ax =0的两个根, 即lnx 1=ax 1,lnx 2=ax 2, 不妨设x 1>x 2>0,作差得ln x 1x 2=a(x 1−x 2),即a =lnx 1x 2x 1−x 2,原不等式√x 1⋅x 2>e 等价于x 1·x 2>e 2,即lnx 1+lnx 2>2⇔a(x 1+x 2)>2⇔ln x1x 2>2(x 1−x 2)x 1+x 2,令t =x 1x 2,则t >1,ln x1x 2>2(x 1−x 2)x 1+x 2⇔lnt >2(t−1)t+1,设h(t)=lnt −2(t−1)t+1(t >1),则h′(t)=(t−1)2t(t+1)2>0,∴函数h(t)在(1,+∞)上单调递增, ∴h(t)>h(1)=0,即不等式lnt >2(t−1)t+1成立,故所证不等式成立,即√x 1x 2>e .【解析】本题考查导数研究函数的单调性与极值,考查导数中的函数不等式,考查方程与函数思想,计算能力,属于较难题.(1)问题转化为方程lnx −ax =0在(0,+∞)上有2个异根,令g(x)=lnx −ax ,问题转化为函数g(x)有2个不同的零点,求导,利用导数求极值即可求解;(2)原不等式√x 1⋅x 2>e 等价于ln x1x 2>2(x 1−x 2)x 1+x 2,令t =x 1x 2,则t >1,ln x1x 2>2(x 1−x 2)x 1+x 2⇔lnt >2(t−1)t+1,设h(t)=lnt −2(t−1)t+1(t >1),根据函数的单调性证出结论即可.17.【答案】(1)解:函数f(x)=xlnx +x 2−ax +2(a ∈R)有两个不同的零点x 1,x 2.考虑f(x)与x 轴有切点,设为(m,0),f′(x)=lnx +1+2x −a ,则lnm +1+2m −a =0, 又mlnm +m 2−am +2=0,消去a ,可得m 2+m −2=0,解得m =1(−2舍去), 则a =3,由于f(x)的图象开口向上, 由f′(1)=3−a <0,解得a >3,可得f(x)在(0,+∞)不单调,有两个不同的零点x 1,x 2.故a 的范围是(3,+∞);(2)证明:由题意可得x 1lnx 1+x 12−ax 1+2=0,x 2lnx 2+x 22−ax 2+2=0,即为lnx 1+x 1−a +2x 1=0,lnx 2+x 2−a +2x 2=0,两式相减可得,lnx 1−lnx 2+x 1−x 2+2(x 2−x 1)x 1x 2=0,即有1+lnx 1−lnx 2x 1−x 2=2x 1x 2, 要证x 1⋅x 2>1,即证2x 1x 2<2,即有1+lnx 1−lnx 2x 1−x 2<2,即lnx 1−lnx 2x 1−x 2<1,即有(lnx 1−x 1)−(lnx 2−x 2)x 1−x 2<0,(∗)令g(x)=lnx −x ,g′(x)=1x −1,当x >1时,g′(x)<0,g(x)递减;当0<x <1时,g′(x)>0,g(x)递增. 则g(x)在x =1处取得极大值,且为最大值−1, 即有lnx −x <0,不妨设0<x 1<1,x 2>1,则x 1−x 2<0,lnx 1−x 1−(lnx 2−x 2)>0, 故(∗)成立, 即有x 1⋅x 2>1.。

极值点偏移专题(一)

极值点偏移专题(一)

极值点偏移专题(一)1、极值点偏移以函数函数为例,极值点为0,如果直线与它的图像相交,2x y =1=y 交点的横坐标为和,我们简单计算:.也就是说极值点刚好位1-10211=+-于两个交点的中点处,此时我们称极值点相对中点不偏移.当然,更多的情况是极值点相对中点偏移,下面的图形能形象地解释这一点.那么,如何判断一道题是否属于“极值点偏移”问题呢?其具体特征就是:2、主元法破解极值点偏移问题2016年全国I 卷的第21题是一道导数应用问题,呈现的形式非常简洁,考查了函数的双零点的问题,也是典型的极值点偏移的问题, 是考生实力与潜力的综合演练场.所谓主元法就是在一个多元数学问题中以其中一个为“主元”,将问题化归为该主元的函数、方程或不等式等问题,其本质是函数与方程思想的应用.例1.(2016全国1-21)已知函数有两个零点.()()()221xf x x e a x =-+- (I)求a 的取值范围;(II)设x 1,x 2是的两个零点,证明:. ()f x 122x x +<(1)解析:详细解答⑴方法一:由已知得:()()()()()'12112x x f x x e a x x e a =-+-=-+①若,那么,只有唯一的零点,不合题意; 0a =()()0202x f x x e x =⇔-=⇔=()f x 2x =②若,那么,所以当时,,单调递增0a >20x x e a e +>>1x >()'0f x >()f x 当时,,单调递减,即:1x <()'0f x <()f xx(),1-∞1()1,+∞ ()'f x-+()f x ↓ 极小值 ↑故在上至多一个零点,在上至多一个零点()f x ()1,+∞(),1-∞由于,,则,()20f a =>()10f e =-<()()210f f <根据零点存在性定理,在上有且仅有一个零点. ()f x ()1,2而当时,,,1x <x e e <210x -<-<故()()()()()()()222212111x f x x e a x e x a x a x e x e =-+->-+-=-+--则的两根,, ,因为()0f x =11t =+21t =12t t <,故当或时,0a >1x t <2x t >()()2110a x e x e -+-->因此,当且时,1x <1x t <()0f x >又,根据零点存在性定理,在有且只有一个零点.()10f e =-<()f x (),1-∞此时,在上有且只有两个零点,满足题意.()f x R ③ 若,则,02ea -<<()ln 2ln 1a e -<=当时,,,()ln 2x a <-()1ln 210x a -<--<()ln 2220a x e a e a -+<+=即,单调递增;()()()'120x f x x e a =-+>()f x 当时,,,即()ln 21a x -<<10x -<()ln 2220a x e a e a -+>+=,单调递减;()()()'120x f x x e a =-+<()f x 当时,,,即,单调递增.1x >10x ->()ln 2220a x e a e a -+>+=()'0f x >()f x 即:x()(),ln 2a -∞- ()ln 2a -()()ln 2,1a -1()1,+∞ ()'f x +0 -+()f x ↑ 极大值 ↓ 极小值 ↑而极大值()()()(){}22ln 22ln 22ln 21ln 2210f a a a a a a a -=---+--=--+<⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦故当时,在处取到最大值,那么1x ≤()f x ()ln 2x a =-()ln 2f a -⎡⎤⎣⎦恒成立,即无解()()ln 20f x f a -<⎡⎤⎣⎦≤()0f x =而当时,单调递增,至多一个零点,此时在上至多一个零点,1x >()f x ()f x R 不合题意.④ 若,那么2ea =-()ln 21a -=当时,,,即,单()1ln 2x a <=-10x -<()ln 2220a x e a e a -+<+=()'0f x >()f x 调递增当时,,,即,单()1ln 2x a >=-10x ->()ln 2220a x e a e a -+>+=()'0f x >()f x 调递增又在处有意义,故在上单调递增,此时至多一个零点,不合题()f x 1x =()f x R 意.⑤ 若,则2ea <-()ln 21a ->当时,,,即,单1x <10x -<()ln 212220a x e a e a e a -+<+<+=()'0f x >()f x 调递增当时,,,即,单()1ln 2x a <<-10x ->()ln 2220a x e a e a -+<+=()'0f x <()f x 调递减当时,,,即,()ln 2x a >-()1ln 210x a ->-->()ln 2220a x e a ea -+>+=()'0f x >单调递增,即:()f xx(),1-∞1()()1,ln 2a - ()ln 2a -()()ln 2,a -+∞ ()'f x +0 -+()f x ↑ 极大值 ↓ 极小值 ↑故当时,在处取到最大值,那么()ln 2x a -≤()f x 1x =()1f e =-()0f x e -<≤恒成立,即无解()0f x =当时,单调递增,至多一个零点,此时在上至多一个零()ln 2x a >-()f x ()f x R 点,不合题意.综上所述,当且仅当时符合题意,即的取值范围为.0a >a ()0,+∞简要解析(Ⅰ)方法二:.'()(1)2(1)(1)(2)x xf x x e a x x e a =-+-=-+(i )设,则,只有一个零点.0a =()(2)xf x x e =-()f x (ii )设,则当时,;当时,.所以在0a >(,1)x ∈-∞'()0f x <(1,)x ∈+∞'()0f x >()f x 上单调递减,在上单调递增.(,1)-∞(1,)+∞又,,取满足且,则 (1)f e =-(2)f a =b 0b <ln2a b <, 223()(2)(1)()022a fb b a b a b b >-+-=->故存在两个零点.()f x (iii )设,由得或.0a <'()0f x =1x =ln(2)x a =-若,则,故当时,,因此在上单调递2ea ≥-ln(2)1a -≤(1,)x ∈+∞'()0f x >()f x (1,)+∞增.又当时,,所以不存在两个零点.1x ≤()0f x <()f x 若,则,故当时,;当时,2ea <-ln(2)1a ->(1,ln(2))x a ∈-'()0f x <(ln(2),)x a ∈-+∞.因此在单调递减,在单调递增.又当时,'()0f x >()f x (1,ln(2))a -(ln(2),)a -+∞1x ≤,所以不存在两个零点.综上,的取值范围为.()0f x <()f x a (0,)+∞⑵ 方法一:由已知得:,不难发现,,()()120f x f x ==11x ≠21x ≠故可整理得:()()()()121222122211xx x e x e a x x ---==--设,则,那么, ()()()221x x e g x x -=-()()12g x g x =()()()2321'1x x g x e x -+=-当时,,单调递减;当时,,单调递增. 1x <()'0g x <()g x 1x >()'0g x >()g x 设,构造代数式:0m > ()()111222*********m m m m m m m m g m g m e e e e m m m m +-----+-⎛⎫+--=-=+ ⎪+⎝⎭设, ()2111mm h m e m -=++0m >则,故单调递增,有.()()2222'01m m h m e m =>+()h m ()()00h m h >=因此,对于任意的,.0m >()()11g m g m +>-由可知、不可能在的同一个单调区间上,不妨设,则()()12g x g x =1x 2x ()g x 12x x <必有121x x <<令,则有110m x =->()()()()()1111211112g x g x g x g x g x +->--⇔->=⎡⎤⎡⎤⎣⎦⎣⎦而,,在上单调递增,因此:121x ->21x >()g x ()1,+∞()()121222g x g x x x ->⇔->整理得:.122x x +<(2)方法二:不妨设,由(1)知,12x x <,在上单调递减,()()()122,1,1,,2,1x x x ∈-∞∈+∞-∈-∞()f x (),1-∞所以等价于,即. 122x x +<()()122f x f x >-()()222f x f x >-由于,而,()()22222221x f x x ea x --=-+-()()()2222221x f x x e a x =-+-所以.()()()222222222x x f x f x x e x e ---=---令,则,()()22xx g x xex e -=---()()()21x x g x x e e -'=--所以当时,,而,1x >()0g x '<()10g =故当时,.从而,故. 1x >()()10g x g <=()()2220g x f x =-<122x x +<(二)对解析的分析本问待证是两个变量的不等式,官方解析的变形是,借助于函数的特性及其122x x <-单调性,构造以为主元的函数.由于两个变量的地位相同,当然也可调整主元变形为2x ,同理构造以为主元的函数来处理.此法与官方解析正是极值点偏移问题的处212x x <-1x 理的通法.不妨设,由(1)知,,在12x x <()()()121,1,1,,21,x x x ∈-∞∈+∞-∈+∞()f x 上单调递增,所以等价于,即. ()1,+∞122x x +<()()212f x f x <-()()1120f x f x --<令,则()()()()()2221xx u x f x f x xex e x -=--=--<,()()()210x x u x x e e -'=-->所以,即, ()()10u x u <=()()()21f x f x x <-<所以; ()()()1212f x f x f x =<-所以,即.212x x <-122x x +<变式、(2010年天津理科21题)已知函数()()xf x xe x R -=∈(Ⅰ)求函数的单调区间和极值;()f x (Ⅱ)已知函数的图象与函数的图象关于直线对称,证明当()y g x =()y f x =1x =时,1x >()()f x g x > (Ⅲ)如果,且,证明.12x x ≠12()()f x f x =122x x +>解:(21)本小题主要考查导数的应用,利用导数研究函数的单调性与极值等基础知识,考查运算能力及用函数思想分析解决问题的能力,满分14分 (Ⅰ)解:f ′,令f ′(x )=0,解得x =1()(1)xx x e-=-当x 变化时,f ′(x ),f (x )的变化情况如下表 X(),1-∞ 1()1,+∞f ’(x ) + 0 -f (x )极大值所以f (x )在()内是增函数,在()内是减函数。

新高考数学二轮复习极值点偏移问题培优课件

新高考数学二轮复习极值点偏移问题培优课件

(2)若a>1,b>1,a≠b,f(a)+f(b)=4,证明:a+b<4.
由(1)可知,f(x)在(1,+∞)上单调递减,f(2)=2, 且a>1,b>1,a≠b,f(a)+f(b)=4, 不妨设1<a<2<b,要证a+b<4,只需证b<4-a, 而b>2,2<4-a<3,且f(x)在(1,+∞)单调递减, 所以只需证f(b)>f(4-a), 即证4-f(a)>f(4-a), 即证f(a)+f(4-a)<4. 即证当1<x<2时,f(x)+f(4-x)<4,
t -3ln =
tt+-21t-2 1t -1,
设 φ(t)=-3ln t+2t-1t -1,t>2. 则 φ′(t)=-3t+2+t12=2t2-t32t+1=2t-1t2t-1>0 在(2,+∞)上恒成立,
于是φ(t)在(2,+∞)上单调递增,
从而 φ(t)>φ(2)=-3ln 2+4-12-1=52-3ln 2>0. 所以g′(t)>0,即函数g(t)在(2,+∞)上单调递增,于是g(t)>g(2)=5ln 2. 因此 x1x22>3e23 ,即原不等式成立.

1
g′(x)=ex+1- e x
1
xe x
1 ·x2
1
=ex+1+e x
1x-1(x>0),
所以当x∈(0,1)时,g′(x)>0,
所以当x∈(0,1)时,g(x)<g(1)=0,
所以当x∈(0,1)时,F′(x)>0,
所以F(x)在(0,1)上单调递增,所以F(x)<F(1),

极值点偏移问题1

极值点偏移问题1

作者的话(可作为编者按):极值点偏移,在近几年的数学圈里可谓是一个时髦的名词.特别地,它作为2016年高考新课标Ⅰ卷导数压轴题第(2)问出现,更是引起了人们的广泛关注和讨论.一时间,全国上下竞相效仿,各地的模拟题都呈现出大偏移状态.说起极值点偏移,必然要提到对称化构造的处理策略,这可一直追溯到7年前,2010年高考天津卷理数第21题,之后在高考中时有出现,如2011年辽宁卷理数第21题,2013年湖南卷文数第21题等.笔者决定发布极值点偏移问题的系列短文,一期一个解题方法或操作细节,敬请关注.希望对此已有所了解的朋友能认识得更加深入,还不甚了解的朋友能由此入门.极值点偏移问题(1)——对称化构造(解题方法)杨春波(高新区枫杨街 郑州外国语学校,河南 郑州 450001)三张图教你直观认识极值点偏移:xx 0=2(左右对称,无偏移,如二次函数;若()()12f x f x =,则1202x x x +=)x2(左陡右缓,极值点向左偏移;若()()12f x f x =,则1202x x x +>)2x(左缓右陡,极值点向右偏移;若()()12f x f x =,则1202x x x +<) 例1 (2010天津)已知函数()x f x xe -=. (1)求函数()f x 的单调区间和极值;(2)已知函数()g x 的图象与()f x 的图象关于直线1x =对称,证明:当1x >时,()()f x g x >;(3)如果12x x ≠,且()()12f x f x =,证明:122x x +>. 解:(1)()()1xf x e x -'=-,得()f x 在(),1-∞上递增,在()1,+∞上递减,()f x 有极大值()11f e=,无极小值; (2)由()g x 的图象与()f x 的图象关于直线1x =对称,得()g x 的解析式为()2y f x =-,构造辅助函数()()()()()2F x f x g x f x f x =-=--,()1,x ∈+∞,求导得()()()()()()()222111x x x x F x f x f x e x e x x e e ----'''=+-=-+-=--,当1x >时,10x ->,20x x ee --->,则()0F x '>,得()F x 在()1,+∞上单增,有()()10F x F >=,即()()f x g x >.(3)由()()12f x f x =,结合()f x 的单调性可设121x x <<,将2x 代入(2)中不等式得()()222f x f x >-,又()()12f x f x =,故()()122f x f x >-,又11x <,221x -<,()f x 在(),1-∞上单增,故122x x >-,122x x +>.点评:该题的三问由易到难,层层递进,完整展现了处理极值点偏移问题的一般方法——对称化构造的全过程,直观展示如下:x例1是这样一个极值点偏移问题:对于函数x f x xe -=,已知()12f x f x =,且21x x ≠,证明122x x +>.再次审视解题过程,发现以下三个关键点:(1)1x ,2x 的范围()1201x x <<<; (2)不等式()()()21f x f x x >->;(3)将2x 代入(2)中不等式,结合()f x 的单调性获证结论. 把握以上三个关键点,就可以轻松解决一些极值点偏移问题.例2 (2016新课标1卷)已知函数()()()221xf x x e a x =-+-有两个零点.(1)求a 的取值范围;(2)设1x ,2x 是()f x 的两个零点,证明:122x x +<.解:(1)()0,+∞,过程略;(2)由(1)知()f x 在(),1-∞上递减,在()1,+∞上递增,由()()120f x f x ==,可设121x x <<.构造辅助函数()()()2F x f x f x =--,求导得()()()()()()()2221(2)1(2)1x x x x F x f x f x x e a x e a x e e --'''=+-=-++-+=--,当1x <时,10x -<,20xxe e --<,则()0F x '>,得()F x 在(),1-∞上单增,又()10F =,故()()01F x x <<,即()()()21f x f x x <-<.将1x 代入上述不等式中,得()()()1212f x f x f x =<-,又21x >,121x ->,()f x 在()1,+∞递增,故212x x <-,122x x +<.通过以上两例,相信读者对极值点偏移问题以及对称化构造的一般步骤已有所了解.但极值点偏移问题的结论不一定总是()1202x x x +><,也可能是()2120x x x ><,借鉴前面的解题经验,我们就可以给出类似的过程.例 3 已知函数()ln f x x x =的图象与直线y m =交于不同的两点()11,A x y ,()22,B x y ,求证:1221x x e<. 证明:()ln 1f x x '=+,得()f x 在10,e ⎛⎫ ⎪⎝⎭上递减,在1,e⎛⎫+∞ ⎪⎝⎭上递增;当01x <<时,()0f x <;()10f =;当1x >时,()0f x >;当0x +→时,()0f x →(洛必达法则);当x →+∞时,()f x →+∞.于是()f x 的图象如下,得12101x x e<<<<. x构造函数()()21F x f x f e x ⎛⎫=-⎪⎝⎭,求导得 ()()()22222222111111ln 1ln 1ln 1F x f x f x x e x e x e x e x e x ⎛⎫⎛⎫⎛⎫'''=+=+++=+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 当10x e <<时,1ln 0x +<,22110e x -<,则()0F x '>,得()F x 在10,e ⎛⎫⎪⎝⎭上递增,有()10F x F e ⎛⎫<= ⎪⎝⎭,即()2110f x f x e x e ⎛⎫⎛⎫<<< ⎪⎪⎝⎭⎝⎭.将1x 代入(2)中不等式得()1211f x f e x ⎛⎫<⎪⎝⎭,又()()12f x f x =,故()2211fx f e x ⎛⎫<⎪⎝⎭,又21x e >,2111e x e >,()f x 在1,e ⎛⎫+∞ ⎪⎝⎭上递增,故2211x e x <,1221x x e<. 小结:用对称化构造的方法解决极值点偏移问题大致分为以下三步:Step 1. 求导,获得()f x 的单调性,极值情况,作出()f x 的图象,由()()12f x f x =得1x ,2x 的取值范围(数形结合);Step 2. 构造辅助函数(对结论()1202x x x ><,构造()()()02F x f x f x x =--;对结论()2120x x x ><,构造()()20x F x f x f x ⎛⎫=- ⎪⎝⎭),求导,限定范围(1x 或2x 的范围),判定符号,获得不等式;Step 3. 代入1x (或2x ),利用()()12f x f x =及()f x 的单调性证明最终结论. 练习1 已知函数()ln f x x =和()g x ax =,若存在两个实数1x ,2x 且12x x ≠,满足()()11f x g x =,()()22f x g x =,求证:(1)122x x e +>;(2)212x x e >.。

新人教版高考数学一轮复习极值点偏移问题

新人教版高考数学一轮复习极值点偏移问题
,求证:f'(x0)>0.
2
5
【解法突破】
技法一
构造对称函数法
[典例1](2021新高考Ⅰ卷22题节选)已知函数f(x)=x(1-ln x).设a,b为两个不相等的
正数,且bln a-aln
1 1
b=a-b,证明:2< + <e.

8
【方法提炼】
结论为x1+x2>(<)2x0型,构造对称函数的解题策略
2
, 内向左偏移.(如图1,2)
3
1 +2
(2)右偏移:当
<x0时,极值点x0在
2
, 内向右偏移.(如图3,4)
1 +2
(3)无偏移:当
=x0时,极值点x0在
2
, 内无偏移.(如图5)
4
二、极值点偏移问题的一般题设形式
(1)若函数f(x)存在两个零点x1,x2且x1≠x2,求证:x1+x2>2x0(x0为函数f(x)的极值点);
16
【迁移应用】
1.已知函数f(x)=xe-x(x∈R).
(1)求函数f(x)的单调区间和极值;
(2)若x1≠x2,且f(x1)=f(x2),求证:x1+x2>2.
21
2.已知函数f(x)=ln x-ax2+(2-a)x.
(1)讨论f(x)的单调性;
(2)设f(x)的两个零点是x1,x2,
1 +2
2
(3)用导求解:利用导数求解函数h(t)的最小值,从而可证得结论.
14
技法三
差值不等式法
[典例3]已知函数f(x)=x-aex+1(a∈R)有两个零点x1,x2,且x1<x2,证明:e1 +e2 >2.

极值点偏移终极套路专题

极值点偏移终极套路专题

专题08:极值点偏移第六招一一极值点偏移终极套路值点偏移问题在高考中很常见,此类问题以导数为背景考察学生运用 函数与方程、数形结合、转换的思想解决函数问题的能力,层次性强, 能力要求较高.F 面给出引例,通过探究,归纳总结出解决此类问题的一般性方*1 … ,★已知f (x ) = xl nx-^mx 2-X , m 壬R .若f (x )有两个极值点X , , x ?,且X i <X 2,求证:X i X^e 2 ( e 为自然对数的底数).解法一:齐次构造通解偏移套路证法欲证西:叼A 亡2,需证In jq H-Jn .若/(X )有两个极值点珂,乃J 即函数于心)有两个雾点.又所乩 补 花是方程r (x )=o 的两个不同实根.另一方面,由{::;]策社』得2-】吓=町7, 从而可亀11 +甩 于是 I"+Inx 2」InX2T nX i"2+xi)£ X i丿又 0 € X| <X2,设 t =互,贝J t >1 .因此,In X, +1n X2 = ——OnL, t >1 .Xit T于是,有1吓-吧=0 X i——X 2 —Xi要证 In X, +1 n X 2 >2,即证: (t +1 )1 nt tT >2 , t 〉1.即:当 t 〉1 时'有由于厂(刘=丄_胡=12竺,故在仏丄XXV /K设巧,令 乂 =码,贝 \]f\x^y =) < f{— - jq/MV ffl解法三构造函数现实力 证法3:由X1,X2是方程f'(x )=0的两个不同实根得m=^,令x心警)设函数叽心心得,5,则2— 1 ^^n-2G-n C-1)“ h (t ------------ 2 = -------- 二 2(t +1)所以,h (t )为(1.代)上的增函数.注意到,h (1)=0,因此,h (t )3h (1)= 0 . 于是,当t >1时,有山上‘嚮.所以,有1nx""成立,」.解法二变换函数能妙解证法2:欲证x 1x 2 >e 2,需证In 为+ In x 2 >2 .若f (x )有两个极值点x 1,,即函数「(x )有两个零点.又f Y x )=l nx-mx ,所以, X 1,沁是方程 「(x ) = 0的两个不同实根.显然m 〉0,否则,函数r (x )为单调函数, 不符合题意.由 H n x imx 1 -0 = in x i +|n X 2 =m (x i +x 2 ),[In X 2 -mx 2 =0即只需证明m 佃+可)>2即可•即只需证明码+ X2>— • 列T ),如=茶諾>0,故如在设马(力(力一”2-丸5/2 ' -X 5 T ,EP^(x)<= 故二5丿5 T / ,+Qoji .g (xi )=g (x2),由于 g '(x )=匕響,因此,g (x )在(l,e ),X2设1<x ,<e <X 2,需证明x ,X 2 >e 2,只需证明X i > —^ (0,e ),只需证明X 2【;二寫-t =尸,设k “1 7 <0 ,则t 「舟,厂# .欲证X lX ^e ,需证I D 画+In 花A 2 .即只需证明专+石A 2 ,即^(A:)=Jt{l + e*)-2{e*-l)(it<0) = -e*+1 ■畧'(在)=辰止 <0 ,故^^Jt)在(TO ®,故疋仏)>E '(O )=O ,au 仗)在(,因此 1仗)<£(0)=0 ’命题得In X g(x 戶——X (e,p )J .g f f ”2丿,即 f"F 〕 ,即 f (X2)_f已 >0 . KS5U 微信公众号中学数学研讨部落即 h(x )= f (X )-f\ — 2 2(1-1 nx K e — X ) 丄「 亠(X 迂(1,e )), h '(x )= --------- >0,故 h (x )在 (1,e ),故 h (x )<h (e ) = 0,即 f (x )<f —V X丿.令X = X i ,则 / 2、 f (X 2 )= f K f I —,因为 2X 2,邑亡(e,址),f (X 牡(e,址 N ,所以X 2》一, X i即 x 1x^e 2 .解法四巧引变量(一)证法4:设1=1门石亡(0,1), t 2rx 2 巳心),则由 Pnx ;:mx ;:00 得即只需证明t ,卄 2 >2,即(k+rnk 〉?二卄/化一1^ Ink^k —1'。

极值点偏移

极值点偏移

极值点偏移在高考导数题中,不断出现极值点偏移问题. 极值点偏移问题的表述是:已知函数()y f x =是连续函数,在区间12(,)x x 内有且只有一个极值点0x ,且12()().f x f x =若极值点左右的“增减速度”相同,常常有极值点1202x x x +=,我们称这种状态为极值点不偏移;若极值点左右的“增减速度”不同,函数的图象不具有对称性,常常有极值点1202x x x +≠的情况,我们称这种状态为“极值点偏移”.极值点偏移问题常用两种方法证明:一是利用函数的单调性证明; 二是利用“对数均值不等式”证明. 例1 (2016年高考数学全国Ⅰ理科第21题)已知函数2)1()2()(-+-=x a e x x f x 有两个零点. (Ⅰ)求a 的取值范围;(Ⅱ)设21,x x 是)(x f 的两个零点,证明:221<+x x .解:(Ⅰ)'()(1)2(1)(1)(2)xxf x x e a x x e a =-+-=-+.①当0a =,则()(2)x f x x e =-,()f x 只有一个零点.②当0a >,则当(,1)x ∈-∞时,'()0f x <;当(1,)x ∈+∞时,'()0f x >.所以()f x 在(,1)-∞上单调递减,在(1,)+∞上单调递增.又(1)f e =-,(2)f a =,取b 满足0b <且ln 2ab <, 则223()(2)(1)()022a fb b a b a b b >-+-=->,故()f x 存在两个零点. ③当0a <,由'()0f x =得1x =或ln(2)x a =-.若2ea ≥-,则ln(2)1a -≤,故当(1,)x ∈+∞时,'()0f x >,因此()f x 在(1,)+∞上单调递增. 又当1x ≤时,()0f x <,所以()f x 不存在两个零点. 若2ea <-,则ln(2)1a ->,故当(1,ln(2))x a ∈-时,'()0f x <;当(ln(2),)x a ∈-+∞时,'()0f x >. 因此()f x 在(1,ln(2))a -单调递减,在(ln(2),)a -+∞单调递增.又当1x ≤时,()0f x <,所以()f x 不 存在两个零点.综上,a 的取值范围为(0,)+∞.(Ⅱ)不妨设12x x <,由(Ⅰ)知12(,1),(1,)x x ∈-∞∈+∞,22(,1)x -∈-∞,()f x 在(,1)-∞上单调递减, 所以122x x +<等价于12()(2)f x f x >-,即2(2)0f x -<.由于222222(2)(1)x f x x ea x --=-+-,而22222()(2)(1)0xf x x e a x =-+-=,所以222222(2)(2)x x f x x ex e --=---.设2()(2)x x g xxe x e -=---,则2'()(1)()xx g x x ee -=--.所以当1x >时,'()0g x <,而(1)0g =,故当1x >时,()0g x <.从而22()(2)0g x f x =-<,故122x x +<.例2 (2011年高考数学辽宁卷理科第21题)已知函数2()ln (2)f x x ax a x =-+- (Ⅰ)讨论函数()f x 的单调性;(Ⅱ)若曲线()y f x =与x 轴交于A B 、两点,A B 、中点的横坐标为0x ,证明:0()0.f x '< 解:(Ⅰ)函数()f x 的定义域是(0,)+∞,1(12)(1)()2(2)x ax f x ax a x x+-'=-+-=当0a ≤时,()0f x '>在区间(0,)+∞内恒成立,即()f x 在区间(0,)+∞内单调递增;当0a >时,由()f x '>0,得函数()f x 的递增区间1(0,)a,由()f x '<0,得函数()f x 的递减区间1(,)a+∞ (Ⅱ)解法一、根据函数的单调性 设点A B 、的横坐标分别为12x x 、,则1202x x x +=,且1210x x a<<<由(Ⅰ)知,当0a >时,max 111[()]=[()]()ln 1f x f x f a a a ==+-极大值因为函数()f x 有两个不同的零点,所以max [()]0f x >,所以01a << 要证0000(12)(1)()0x ax f x x +-'=<,只须证01ax >,即证122x x a+>令2()()()h x f x f x a =--=21ln ln()22,0x x ax x a a ---+<<则212(1)()202(2)a ax h x a x ax x ax -'=+-=>--,所以()h x 在1(0,)a内单调递增 所以1()()0h x h a<=,即2()()f x f x a <-因为1210x x a <<<,所以112()()f x f x a<-,所以212()()f x f x a <- 又21121,x x a a a >->,且()f x 在区间1(,)a +∞内单调递减所以212x x a >-,即122x x a+>,故0()0f x '<解法二、利用对数均值不等式 设点A B 、的坐标分别为12(,0)(,0)A x B x 、,则1202x x x +=由(Ⅰ)知,当0a >时,max 111[()]=[()]()ln 1f x f x f a a a==+-极大值因为函数()f x 有两个不同的零点,所以max [()]0f x >,所以01a <<因为21112222ln (2)0ln (2)0x ax a x x ax a x ⎧-+-=⎪⎨-+-=⎪⎩,所以212121ln ln [()(2)]()x x a x x a x x -=+--- 所以211212211()(2)ln ln 2x x x x a x x a x x -+=<+---,即12121()(2)2x x a x x a +<+--所以21212()(2)()20a x x a x x ++-+-> ,所以1212[()2][()1]0a x x x x +-++>所以12102x x a+-<,所以121212012(1)(1)2()()0.22x x x x ax xf x f x x +++-+''==<+。

高中数学课件-导数中的综合问题-第4课时 极值点偏移问题

高中数学课件-导数中的综合问题-第4课时 极值点偏移问题

高考重难突破一导数中的综合问题第4课时极值点偏移问题已知函数 图象顶点的横坐标就是极值点 0.(1)若 = 的两根的中点满足1+22=0 ,即极值点在两根的正中间,也就是说极值点没有偏移.此时函数 在 =0两侧的函数值变化快慢相同,如图①.(2)若 = 的两根的中点1+22≠0 ,则极值点偏移,此时函数在 =0 两侧的函数值变化快慢不同,如图②、图③.技法一构造对称和(或差)法例1(2023·湖南郴州质量检测)已知函数=ln −122+1,若设函数的两个零点为1,2,证明:1+2>2.【证明】′=1−=1+1−>0,令′=0,解得=1.当0<<1时,′>0,在0,1上单调递增;当>1时,′<0,在1,+∞上单调递减,所以max=1=12>0,且当→0+时,→−∞,2=ln 2−1<0,则的两个零点1,2满足0<1<1<2<2.令=−2−,0<<1,则′=y+y2−=2K122−.当0<<1时,′>0,单调递增,所以<1=0,即<2−.因为0<1<1<2<2,所以0<2−2<1,所以2−2<2=1.又函数在0,1上单调递增,所以1>2−2,即1+2>2.对称变换求极值点偏移的步骤第一步:求导,获得的单调性,极值情况,求出的极值点0,再由1=2得出1,2的取值范围;第二步:构造辅助函数(对结论1+2><20,构造=−20−;对结论12><02,构造=−02,)求导,限定1或2的范围,判定符号,获得不等式;第三步:代入1(或2),利用1=2及的单调性证明结论.【对点训练】已知函数=−1e−,∈.设1,2是函数的两个零点,证明:1+2<0.证明:令=−1e−=0,则=−1e.设=−1e,则′=⋅e,当<0时,′<0,在−∞,0上单调递减,当>0时,′>0,在0,+∞上单调递增.所以min=0=−1,且→−∞时,→0,当>1时,>0.所以,当−1<<0时,有两个零点1,2,且12<0,1=2=0,不妨设1<0,2>0,则−2<0.令=−−=−1e+1+e−,则′=e−e−,当<0时,′=e−e−>0,此时在−∞,0上为增函数,所以<0,即=−−<0,即<−.因为−2<0,所以−2<2,因为1=2=0,所以−2<1,因为在−∞,0上为减函数,所以−2>1,即1+2<0.技法二消参减元法例2已知函数=−2e+−12有两个零点.(1)求的取值范围;【解】′=−1e+2−1=−1e+2.①设=0,则=−2e,只有一个零点.②设>0,则当∈−∞,1时,′<0;当∈1,+∞时,′>0.所以在−∞,1上单调递减,在1,+∞上单调递增.又1=−e<0,2=>0,取满足<0且<ln2,则>2−2+−12=2−32g>0,故存在两个零点.③设<0,由′=0得=1或=ln−2.若≥−e2,则l n−2≤1,故当∈1,+∞时,′>0,因此在1,+∞上单调递增.又当≤1时,<0,所以不存在两个零点.若<−e2,则l n−2>1,故当∈ 1,ln−2时,′<0;当∈ln−2,+∞时,′>0.因此在1,ln−2上单调递减,在ln−2,+∞上单调递增.又当≤1时,<0,所以不存在两个零点.综上,的取值范围为0,+∞.(2)设1,2是的两个零点,证明:1+2<2.证明:不妨设1<2,由(1)知1∈−∞,1,2∈1,+∞,2−2∈−∞,1,又在−∞,1上单调递减,所以1+2<2等价于1>2−2,即2−2<0.由于2−2=−2e2−2+2−12,而2=2−2e2+2−12=0,所以2−2=−2e2−2−2−2e2.设=−x2−−−2e,则′=−1e2−−e.所以当>1时,′<0,而1=0,故当>1时,<0.从而2=2−2<0,故1+2<2.消参减元,主要是利用导数把函数的极值点转化为导函数的零点,进而建立参数与极值点之间的关系,消参或减元,从而简化目标函数.其基本解题步骤如下:(1)建立方程:利用函数的导函数,建立极值点所满足的方程,抓住导函数中的关键——导函数解析式中使导函数变号的因式部分;(2)确定关系:根据极值点所满足的方程,建立极值点与方程系数之间的关系;(3)构建函数:根据消参、减元后式子的结构特征,构造相应的函数;(4)求解问题:利用导数研究所构造的函数的单调性、极值、最值等,解决相应的问题.【对点训练】已知函数=122−+En .若函数有两个极值点1,2,证明:1+2>−ln 22−34.证明:由题意得,′=−1+=2−r>0.因为函数有两个极值点1,2,所以方程2−+=0在0,+∞上有两个不同的实数根1,2,则&1+2=1>0,&12=>0,且=1−4>0,所以0<<14.由题意得1+2=1212−1+En 1+1222−2+En 2 =1212+22−1+2+En12=121+22−12−1+2+En12=12−−1+En =En −−12.令ℎ=En −−12 0<<14,则ℎ′=ln <0,所以ℎ在0,14上单调递减,所以ℎ>ℎ14=−ln 22−34,所以1+2>−ln 22−34.技法三比(差)值换元法例3已知函数=Bln +(,为实数)的图象在点1,1处的切线方程为=−1.(1)求实数,的值及函数的单调区间;【解】′=1+ln >0,由题意得&′1==1,&1==0,解得&=1,&=0.令′=1+ln =0,解得=1e.当>1e时,′>0,在1e,+∞ 上单调递增;当0<<1e时,′<0,在0,1e上单调递减.所以的单调递减区间为0,1e,单调递增区间为1e,+∞ .(2)设函数=+1,证明:1=21<2时,1+2>2.证明:由(1)得=En >0,故=+1=ln +1>0,由1=21<2,得l n 1+11=ln 2+12,即2−112=ln21>0.要证1+2>2,即证1+2⋅2−112>2ln21,即证21−12>2ln21.设21=>1,则需证−1>2ln >1.令ℎ=−1−2ln >1,则ℎ′=1+12−2= 1−12>0.所以ℎ在1,+∞上单调递增,则ℎ>ℎ1=0,即−1>2ln .故1+2>2得证.比(差)值换元的目的也是消参,就是先根据已知条件建立极值点之间的关系,然后利用两个极值点之比(或差)作为变量,实现消参、减元的目的.设法用两个极值点的比值或差值表示所求解的不等式,进而转化为相应的函数问题求解,多用来研究含对数(或指数)式的函数的极值点偏移问题.其基本解题步骤如下:(1)建等式:利用极值点所满足的条件建立两个关于极值点1,2的方程;(2)设比差:根据两个数值之间的大小关系,选取两数之商或差作为变量,建立两个极值点之间的关系;(3)定关系:用一个极值点与比值或差值表示另一个极值点,代入方程.通过两个方程之差或商构造极值点与比值或差值之间的关系,进而通过解方程用比值或差值表示两个极值点;(4)构函数:将关于极值点的目标代数式用比值或差值表示出来,构造相应的函数;(5)解问题:利用导数研究所构造的函数的单调性、极值、最值等,解决相应的问题.【对点训练】已知函数=e−B有两个零点1,21<2.证明:2−1<21−2.证明:由题意得&e1=B1,&e2=B2,令=2−1>0,两式相除得e=e2−1=21=1+1,即1=e−1>0,欲证2−1<21−2,即证<2 e−1 −2,即证2+2r2e<2.记ℎ=2+2r2e>0,ℎ′=2r2e− 2+2r2 ee2=−2e<0,故ℎ在0,+∞上单调递减,所以ℎ<ℎ0=2,即2+2r2e<2,所以2−1<21−2得证.。

极值点偏移四种题型的解法

极值点偏移四种题型的解法

两招极值点偏移问题一、极值点偏移的含义众所周知,函数)(x f 满足定义域内任意自变量x 都有)2()(x m f x f -=,则函数)(x f 关于直线m x =对称;可以理解为函数)(x f 在对称轴两侧,函数值变化快慢相同,且若)(x f 为单峰函数,则m x =必为)(x f 的极值点. 如二次函数)(x f 的顶点就是极值点0x ,若c x f =)(的两根的中点为221x x +,则刚好有0212x x x =+,即极值点在两根的正中间,也就是极值点没有偏移.若相等变为不等,则为极值点偏移:若单峰函数)(x f 的极值点为m ,且函数)(x f 满足定义域内m x =左侧的任意自变量x 都有)2()(x m f x f ->或)2()(x m f x f -<,则函数)(x f 极值点m 左右侧变化快慢不同. 故单峰函数)(x f 定义域内任意不同的实数21,x x 满足)()(21x f x f =,则221x x +与极值点m 必有确定的大小关系: 若221x x m +<,则称为极值点左偏;若221x x m +>,则称为极值点右偏.如函数x e x x g =)(的极值点10=x 刚好在方程c x g =)(的两根中点221x x +的左边,我们称之为极值点左偏.二、极值点偏移问题的一般题设形式:1. 若函数)(x f 存在两个零点21,x x 且21x x ≠,求证:0212x x x >+(0x 为函数)(x f 的极值点);2. 若函数)(x f 中存在21,x x 且21x x ≠满足)()(21x f x f =,求证:0212x x x >+(0x 为函数)(x f 的极值点);3. 若函数)(x f 存在两个零点21,x x 且21x x ≠,令2210x x x +=,求证:0)('0>x f ; 4. 若函数)(x f 中存在21,x x 且21x x ≠满足)()(21x f x f =,令2210x x x +=,求证:0)('0>x f .二、运用判定定理判定极值点偏移的方法 1、方法概述:(1)求出函数)(x f 的极值点0x ;(2)构造一元差函数)()()(00x x f x x f x F --+=; (3)确定函数)(x F 的单调性;(4)结合0)0(=F ,判断)(x F 的符号,从而确定)(0x x f +、)(0x x f -的大小关系. 口诀:极值偏离对称轴,构造函数觅行踪;四个步骤环相扣,两次单调紧跟随. 2、抽化模型答题模板:若已知函数)(x f 满足)()(21x f x f =,0x 为函数)(x f 的极值点,求证:0212x x x <+.(1)讨论函数)(x f 的单调性并求出)(x f 的极值点0x ;假设此处)(x f 在),(0x -∞上单调递减,在),(0+∞x 上单调递增. (2)构造)()()(00x x f x x f x F --+=;注:此处根据题意需要还可以构造成)2()()(0x x f x f x F --=的形式.(3)通过求导)('x F 讨论)(x F 的单调性,判断出)(x F 在某段区间上的正负,并得出)(0x x f +与)(0x x f -的大小关系;假设此处)(x F 在),0(+∞上单调递增,那么我们便可得出0)()()()(000=-=>x f x f x F x F ,从而得到:0x x >时,)()(00x x f x x f ->+.(4)不妨设201x x x <<,通过)(x f 的单调性,)()(21x f x f =,)(0x x f +与)(0x x f -的大小关系得出结论;接上述情况,由于0x x >时,)()(00x x f x x f ->+且201x x x <<,)()(21x f x f =,故)2()]([)]([)()(2002002021x x f x x x f x x x f x f x f -=-->-+==,又因为01x x <,0202x x x <-且)(x f 在),(0x -∞上单调递减,从而得到2012x x x -<,从而0212x x x <+得证.(5)若要证明0)2('21<+x x f ,还需进一步讨论221x x +与0x 的大小,得出221x x +所在的单调区间,从而得出该处函数导数值的正负,从而结论得证.此处只需继续证明:因为0212x x x <+,故0212x x x <+,由于)(x f 在),(0x -∞上单调递减,故0)2('21<+x x f . 【说明】(1)此类试题由于思路固定,所以通常情况下求导比较复杂,计算时须细心;(2)此类题目若试题难度较低,会分解为三问,前两问分别求)(x f 的单调性、极值点,证明)(0x x f +与)(0x x f -(或)(x f 与)2(0x x f -)的大小关系;若试题难度较大,则直接给出形如0212x x x <+或0)2('21<+x x f 的结论,让你给予证明,此时自己应主动把该小问分解为三问逐步解题.【例题讲解】【例1】已知函数)()(R x xe x f x∈=-. (1)求函数)(x f 的单调区间和极值;(2)若21x x ≠,且)()(21x f x f =,证明:221>+x x .【解析】容易求得第(1)问:()f x 在(),1-∞上单调递增,在()1,+∞上单调递减,()f x 的极值是1(1)f e=。

高中数学复习:极值点偏移问题

高中数学复习:极值点偏移问题

高中数学复习:极值点偏移问题1、极值点偏移的定义对于函数)(x f y =在区间),(b a 内只有一个极值点0x ,方程0)(=x f 的解分别为21x x 、,且b x x a <<<21,(1)若0212x x x ≠+,则称函数)(x f y =在区间),(21x x 上极值点0x 偏移; (2) 若0212x xx >+,则函数)(x f y =在区间),(21x x 上极值点0x 左偏,简称极值点0x 左偏;(3)若0212x x x <+,则函数)(x f y =在区间),(21x x 上极值点0x 右偏,简称极值点0x 右偏。

2、极值点偏移的判定定理证明:(1)由于可导函数)(x f y =,在区间),(b a 上只有一个极大(小)值点0x ,则函数)(x f y =的单调递增(减)区间为),(0x a ,单调递减(增)区间为),(0b x ,又b x x a <<<21,有),(221b a x x ∈+由于0)2('21>+xx f ,故),(2021x a x x ∈+,所以021)(2x xx ><+,即函数极大(小)值点0x 右(左)偏。

证明:(1)由于对于可导函数)(x f y =,在区间),(b a 上只有一个极大(小)值点0x ,则函数)(x f y =的单调递增(减)区间为),(0x a ,单调递减(增)区间为),(0b x ,又b x x a <<<21,有01x x <,且0202x x x <-,又)2()(201x x f x f -<,故2012)(x x x -><,所以021)(2x x x ><+,即函数极大(小)值点0x 右(左)偏.结论(2)证明略。

一、 运用判定定理判定极值点偏移的方法1.方法概述:(1)求出函数()f x 的极值点;(2)构造一元差函数00()()()F x f x x f x x =+-- (3)确定函数()F x 的单调性;(4)结合(0)0F =,判断()F x 的符号,从而确定00(),()f x x f x x -+的大小关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档