济南市高中物理必修3物理 全册全单元精选试卷检测题
济南市高中物理必修3物理 全册全单元精选试卷检测题
![济南市高中物理必修3物理 全册全单元精选试卷检测题](https://img.taocdn.com/s3/m/ebfa2099b4daa58da1114a8a.png)
济南市高中物理必修3物理 全册全单元精选试卷检测题一、必修第3册 静电场及其应用解答题易错题培优(难)1.有三根长度皆为l =0.3 m 的不可伸长的绝缘轻线,其中两根的一端固定在天花板的O 点,另一端分别栓有质量皆为m =1.0×10﹣2kg 的带电小球A 和B ,它们的电荷量分别为﹣q 和+q ,q =1.0×10﹣6C .A 、B 之间用第三根线连接起来,空间中存在大小为E =2.0×105N/C 的匀强电场,电场强度的方向水平向右.平衡时A 、B 球的位置如图所示.已知静电力常量k =9×109N•m 2/C 2重力加速度g =10m/s 2.求:(1)A 、B 间的库仑力的大小 (2)连接A 、B 的轻线的拉力大小. 【答案】(1)F=0.1N (2)10.042T N = 【解析】试题分析:(1)以B 球为研究对象,B 球受到重力mg ,电场力Eq ,静电力F ,AB 间绳子的拉力1T 和OB 绳子的拉力2T ,共5个力的作用,处于平衡状态,A 、B 间的静电力22q F k l=,代入数据可得F=0.1N(2)在竖直方向上有:2sin 60T mg ︒=,在水平方向上有:12cos 60qE F T T =++︒ 代入数据可得10.042T N = 考点:考查了共点力平衡条件的应用【名师点睛】注意成立的条件,掌握力的平行四边形定则的应用,理解三角知识运用,注意平衡条件的方程的建立.2.如图所示,固定于同一条竖直线上的A 、B 是两个带等量异种电荷的点电荷,电荷量均为Q ,其中A 带正电荷,B 带负电荷,A 、B 相距为2d 。
MN 是竖直放置的光滑绝缘细杆,另有一个穿过细杆的带电小球P ,质量为m 、电荷量为+q (可视为点电荷),现将小球P 从与点电荷A 等高的C 处由静止开始释放,小球P 向下运动到距C 点距离为d 的D 点时,速度为v 。
高中物理必修3物理 全册全单元精选测试卷测试卷(解析版)
![高中物理必修3物理 全册全单元精选测试卷测试卷(解析版)](https://img.taocdn.com/s3/m/888ff29e3169a4517623a383.png)
高中物理必修3物理 全册全单元精选测试卷测试卷(解析版)一、必修第3册 静电场及其应用解答题易错题培优(难)1.如图所示的绝缘细杆轨道固定在竖直面内,半径为R 的1/6圆弧段杆与水平段杆和粗糙倾斜段杆分别在A 、B 两点相切,圆弧杆的圆心O 处固定着一个带正电的点电荷.现有一质量为m 可视为质点的带负电小球穿在水平杆上,以方向水平向右、大小等于83gR 的速度通过A 点,小球能够上滑的最高点为C ,到达C 后,小球将沿杆返回.若∠COB =30°,小球第一次过A 点后瞬间对圆弧细杆向下的弹力大小为83mg ,从A 至C 小球克服库仑力做的功为23mgR -,重力加速度为g .求:(1)小球第一次到达B 点时的动能; (2)小球在C 点受到的库仑力大小;(3)小球返回A 点前瞬间对圆弧杆的弹力.(结果用m 、g 、R 表示) 【答案】(1)56mgR (2)34mg (3)2(833)- 【解析】 【分析】(1)由动能定理求出小球第一次到达B 点时的动能.(2)小球第一次过A 点后瞬间,由牛顿第二定律和库仑定律列式.由几何关系得到OC 间的距离,再由库仑定律求小球在C 点受到的库仑力大小.(3)由动能定理求出小球返回A 点前瞬间的速度,由牛顿运动定律和向心力公式求解小球返回A 点前瞬间对圆弧杆的弹力. 【详解】(1)小球从A 运动到B ,AB 两点为等势点,所以电场力不做功,由动能定理得:()0211cos602KB A mgR E mv --=-代入数据解得:56KB E mgR =(2)小球第一次过A 时,由牛顿第二定律得:22A v QqN k mg m R R+-=由题可知:83N mg =联立并代入数据解得:2Qqkmg R= 由几何关系得,OC 间的距离为:cos303R r R ==︒小球在C 点受到的库仑力大小 :22Qq QqF kk r ==⎫⎪⎝⎭库联立解得3=4F mg 库 (3)从A 到C ,由动能定理得:2102f A W mgR W mv ---=-电从C 到A ,由动能定理得:212f A W mgR W mv +='-电由题可知:W =电 小球返回A 点时,设细杆对球的弹力方向向上,大小为N ′,由牛顿第二定律得:22Av Qq N k mg mR R'-'+= 联立以上解得:(283N mg -'=,根据牛顿第三定律得,小球返回A点时,对圆弧杆的弹力大小为(283mg -,方向向下.2.如图所示,两异种点电荷的电荷量均为Q ,绝缘竖直平面过两点电荷连线的中点O 且与连线垂直,平面上A 、O 、B 三点位于同一竖直线上,AO BO L ==,点电荷到O 点的距离也为L 。
高中物理必修3物理 全册全单元精选测试卷练习卷(Word版 含解析)
![高中物理必修3物理 全册全单元精选测试卷练习卷(Word版 含解析)](https://img.taocdn.com/s3/m/441b9db703d8ce2f0166234d.png)
高中物理必修3物理 全册全单元精选测试卷练习卷(Word 版 含解析)一、必修第3册 静电场及其应用解答题易错题培优(难)1.如图所示,在竖直平面内有一质量m =0.5 kg 、电荷量q =+2×10-3 C 的带电小球,有一根长L =0.1 m 且不可伸长的绝缘轻细线系在一方向水平向右、分布的区域足够大的匀强电场中的O 点.已知A 、O 、C 点等高,且OA =OC =L ,若将带电小球从A 点无初速度释放,小球到达最低点B 时速度恰好为零,g 取10 m/s 2.(1)求匀强电场的电场强度E 的大小;(2)求小球从A 点由静止释放运动到B 点的过程中速度最大时细线的拉力大小; (3)若将带电小球从C 点无初速度释放,求小球到达B 点时细线张力大小. 【答案】(1)2.5×103 N/C (2)2-10) N (3)15N 【解析】 【详解】(1)小球到达最低点B 时速度为零,则0=mgL -EqL . E =2.5×103 N/C(2) 小球到达最低点B 时速度为零,根据对称性可知,达到最大速度的位置为AB 弧的中点,即当沿轨迹上某一点切线方向的合力为零时,小球的速度有最大值,由动能定理有12mv 2-0=mgL sin 45°-Eq (L -L cos 45°). m 2v L=F -2mg cos 45°. F =2-10) N.(3)小球从C 运动到B 点过程,由动能定理得2102mgL qEL mV +=-. 解得:24V =在B 点02(cos 45)V T mg mL-= 以上各式联立解得T =15N.2.竖直放置的平行金属板A 、B 带等量异种电荷(如图),两板之间形成的电场是匀强电场.板间用绝缘细线悬挂着的小球质量m=4.0×10-5kg ,带电荷量q=3.0×10-7C ,平衡时细线与竖直方向之间的夹角α=37°.求:(1)A 、B 之间匀强电场的场强多大?(2)若剪断细线,计算小球运动的加速度,小球在A 、B 板间将如何运动? 【答案】(1)E =1×103N/C (2) 12.5m/s 2 【解析】 【详解】(1)小球受到重力mg 、电场力F 和绳的拉力T 的作用,由共点力平衡条件有:F =qE =mg tan α解得:537tan 410100.75 1.010N/C 310mg E q α--⨯⨯⨯===⨯⨯ 匀强电场的电场强度的方向与电场力的方向相同,即水平向右;(2)剪断细线后,小球做偏离竖直方向,夹角为37°匀加速直线运动,设其加速度为a 由牛顿第二定律有:cos mgma θ= 解得:212.5m/s cos ga θ== 【点睛】本题是带电体在电场中平衡问题,分析受力情况是解题的关键,并能根据受力情况判断此后小球的运动情况.3.如图所示,水平地面上方分布着水平向右的匀强电场,一“L ”形的光滑绝缘硬质管竖直固定在匀强电场中,管的水平部分长L 1=0.2m ,管的水平部分离水平地面的距离为h =5.0m ,竖直部分长为L 2=0.1m .一带正电的小球从管口A 由静止释放,小球与管间摩擦不计且小球通过管的弯曲部分(长度极短可不计)时没有能量损失,小球受到的电场力大小为重力的一半.(g =10m/s 2)求:(1)小球运动到管口B时的速度v B大小;(2)小球着地点与管口B的水平距离s.【答案】(1)2.0m/s;(2)4.5m.【解析】【分析】【详解】(1)在小球从A运动到B的过程中,对小球由动能定理得:12mv B2-0=mgL2+F电L1①由于小球在电场中受到的静电力大小为重力的一半,即F电=12mg②代入数据得:v B=2.0m/s;③小球运动到管口B时的速度大小为2.0m/s;(2)小球离开B点后,设水平方向的加速度为a,位移为s,在空中运动的时间为t,水平方向有:a=g/2 ④s=v0t+12at2⑤竖直方向有:h=12gt2⑥由③~⑥式,并代入数据可得:s=4.5m4.如图所示,质量为m的小球A穿在绝缘细杆上,杆的倾角为α,小球A带正电,电量为q。
高中物理必修3物理 全册全单元精选试卷同步检测(Word版 含答案)
![高中物理必修3物理 全册全单元精选试卷同步检测(Word版 含答案)](https://img.taocdn.com/s3/m/11bba7deaf1ffc4fff47ac3c.png)
高中物理必修3物理 全册全单元精选试卷同步检测(Word 版 含答案)一、必修第3册 静电场及其应用解答题易错题培优(难)1.(1)科学家发现,除了类似太阳系的恒星-行星系统,还存在许多双星系统,通过对它们的研究,使我们对宇宙有了较深刻的认识.双星系统是由两个星体构成,其中每个星体的线度(直径)都远小于两星体间的距离,一般双星系统距离其他星体很远,可以当做孤立系统处理.已知某双星系统中每个星体的质量都是M 0,两者相距L ,它们正围绕两者连线的中点做匀速圆周运动,引力常量为G . 求: ①该双星系统中星体的加速度大小a ; ②该双星系统的运动周期T .(2)微观世界与宏观世界往往存在奇妙的相似性.对于氢原子模型,因为原子核的质量远大于电子质量,可以忽略原子核的运动,形成类似天文学中的恒星-行星系统,记为模型Ⅰ.另一种模型认为氢原子的核外电子并非绕核旋转,而是类似天文学中的双星系统,核外电子和原子核依靠库仑力作用使它们同时绕彼此连线上某一点做匀速圆周运动,记为模型Ⅱ.已知核外电子的质量为m ,氢原子核的质量为M ,二者相距为r ,静电力常量为k ,电子和氢原子核的电荷量大小均为e .①模型Ⅰ、Ⅱ中系统的总动能分别用E k Ⅰ、 E k Ⅱ表示,请推理分析,比较E k Ⅰ、 E k Ⅱ的大小关系;②模型Ⅰ、Ⅱ中核外电子做匀速圆周运动的周期分别用T Ⅰ、T Ⅱ表示,通常情况下氢原子的研究采用模型Ⅰ的方案,请从周期的角度分析这样简化处理的合理性.【答案】(1) ①02GM a L = ②2T = (2) ①2k k II =2ke E E r =Ⅰ ②T T ⅠⅡ为M >>m ,可得T Ⅰ≈T Ⅱ,所以采用模型Ⅰ更简单方便. 【解析】 【详解】(1)①根据万有引力定律和牛顿第二定律有:2002GM M a L=解得02GM a L =②由运动学公式可知,224π2La T =⋅解得2T =(2)①模型Ⅰ中,设电子绕原子核的速度为v ,对于电子绕核的运动,根据库仑定律和牛顿第二定律有222ke mv r r=解得:22k 122ke E mv r==Ⅰ模型Ⅱ中,设电子和原子核的速度分别为v 1、v 2,电子的运动半径为r 1,原子核的运动半径为r2.根据库仑定律和牛顿第二定律对电子有:22121mvker r=,解得22k11121=22keE mv rr=对于原子核有:22222=Mvker r,解得22k22221=22keE Mv rr=系统的总动能:E kⅡ=E k1+ E k2=()2212222ke ker rr r+=即在这两种模型中,系统的总动能相等.②模型Ⅰ中,根据库仑定律和牛顿第二定律有22224πkem rr T=Ⅰ,解得23224πmrTke=Ⅰ模型Ⅱ中,电子和原子核的周期相同,均为TⅡ根据库仑定律和牛顿第二定律对电子有221224πkem rr T=⋅Ⅱ,解得221224πke Trr m=Ⅱ对原子核有222224πkeM rr T=⋅Ⅱ,解得222224πke Trr M=Ⅱ因r1+r2=r,可解得:()23224πmMrTke M m=+Ⅱ所以有T M mT M+=ⅠⅡ因为M>>m,可得TⅠ≈TⅡ,所以采用模型Ⅰ更简单方便.2.如图所示,在绝缘的水平面上,相隔2L的,A、B两点固定有两个电量均为Q的正点电荷,C、O、D是AB连线上的三个点,O为连线的中点,CO=OD=L/2。一质量为m、电量为q的带电物块以初速度v0从c点出发沿AB连线向B运动,运动过程中物块受到大小恒定的阻力作用。当物块运动到O点时,物块的动能为初动能的n倍,到达D点刚好速度为零,然后返回做往复运动,直至最后静止在O点。已知静电力恒量为k,求:(1)AB两处的点电荷在c点产生的电场强度的大小;(2)物块在运动中受到的阻力的大小;(3)带电物块在电场中运动的总路程。【答案】(1)(2)(3)【解析】 【分析】 【详解】(1)设两个正点电荷在电场中C 点的场强分别为E 1和E 2,在C 点的合场强为E C ;则12()2kQ E L =;223()2kQE L = 则E C =E 1-E 2 解得:E C =232 9kQL. (2)带电物块从C 点运动到D 点的过程中,先加速后减速.AB 连线上对称点φC =φD ,电场力对带电物块做功为零.设物块受到的阻力为f , 由动能定理有:−fL =0−12mv 02 解得:2012f mv L=(3)设带电物块从C 到O 点电场力做功为W 电,根据动能定理得:220011222L W f n mv mv 电=-⋅⋅-解得:()201214W n mv -电=设带电物块在电场中运动的总路程为S ,由动能定理有:W 电−fs =0−12mv 02 解得:s=(n+0.5)L 【点睛】本题考查了动能定理的应用,分析清楚电荷的运动过程,应用动能定理、点电荷的场强公式与场的叠加原理即可正确解题.3.一带正电的 A 点电荷在电场中某点的电场强度为 4.0×104N/C ,电荷量为+5.0×10-8 C 的 B 点电荷放在该点,求: (1)点电荷在该点受到的电场力?(2)若在该点放上一个电荷量为-2.0×10-8 C 的 C 点电荷,则该点的电场强度? 【答案】(1)3210N -⨯,方向由A 指向B (2)4410/N C ⨯,方向由A 指向B 【解析】 【分析】 【详解】 (1)方向:由A 指向B(2)若在该点放上一个电荷量为-2.0×10-8 C 的 C 点电荷,则该点的场强不变,仍为方向:由A 指向B4.A 、B 是两个电荷量都是Q 的点电荷,相距l ,AB 连线中点为O 。
山东省济南市实验中学必修3物理 全册全单元精选试卷检测题
![山东省济南市实验中学必修3物理 全册全单元精选试卷检测题](https://img.taocdn.com/s3/m/0b7fca87b90d6c85ed3ac620.png)
山东省济南市实验中学必修3物理 全册全单元精选试卷检测题一、必修第3册 静电场及其应用解答题易错题培优(难)1.如图所示,在沿水平方向的匀强电场中,有一长度l =0. 5m 的绝缘轻绳上端固定在O点,下端系一质量21010m .-=⨯kg 、带电量82.010q -=⨯C 的小球(小球的大小可以忽略)在位置B 点处于静止状态,此时轻绳与竖直方向的夹角α=37°,空气阻力不计,sin37°=0. 6,cos37°=0. 8,g =10m/s 2. (1)求该电场场强大小;(2)在始终垂直于轻绳的外力作用下将小球从B 位置缓慢拉动到细绳竖直位置的A 点,求外力对带电小球做的功;(3)过B 点做一等势面交电场线于C 点(C 点未画出),使轻绳与竖直方向的夹角增大少许(不超过5°),再由静止释放,求小球从C 点第一次运动到B 点的时间,并写出分析求解过程.【答案】(1) 63.7510E =⨯N/C (2)21.2510F W J -=⨯ (3)0.31t s =【解析】 【详解】(1)带电小球静止,受到合力等于零,电场力与重力的关系是:tan Eq mg α=,即tan mgE qα=代入数值计算得电场场强大小:63.7510/E N C =⨯(2)小球在外力作用下从B 位置缓慢移动到A 位置过程中,根据动能定理有:sin (cos )0F W Eql mg l l αα-+-=所以sin tan (cos )F mgW q mg l l qααα=-- 代入数值解得电场场强大小:21.2510F W J -=⨯(3)分析受力可知:小球在运动过程中,重力和电场力的合力为恒力,大小为5cos 4mg F mg α== 类比研究单摆的方法可知,小球的运动与单摆类似,回复力由上述合力沿圆周切向的分力提供。
因为从C 到B 的角度θ很小,进一步可知回复力与相对平衡位置的位移大小成正比、方向相反,故小球的运动为简谐运动。
高中物理必修3物理 全册全单元精选试卷测试卷(含答案解析)
![高中物理必修3物理 全册全单元精选试卷测试卷(含答案解析)](https://img.taocdn.com/s3/m/bf2ebfd5ddccda38376bafc6.png)
高中物理必修3物理 全册全单元精选试卷测试卷(含答案解析)一、必修第3册 静电场及其应用解答题易错题培优(难)1.我们可以借鉴研究静电场的方法来研究地球周围空间的引力场,如用“引力场强度”、“引力势”的概念描述引力场。
已知地球质量为M ,半径为R ,万有引力常量为G ,将地球视为均质球体,且忽略自转。
(1)类比电场强度的定义方法,写出地球引力场的“引力场强度E ”的定义式,并结合万有引力定律,推导距离地心为r (r >R )处的引力场强度的表达式2=GM E r 引; (2)设地面处和距离地面高为h 处的引力场强度分别为E 引和'E 引,如果它们满足'0.02E E E -≤引引引,则该空间就可以近似为匀强场,也就是我们常说的重力场。
请估算地球重力场可视为匀强场的高度h (取地球半径R =6400km );(3)某同学查阅资料知道:地球引力场的“引力势”的表达式为=-G Mrϕ引(以无穷远处引力势为0)。
请你设定物理情景,简要叙述推导该表达式的主要步骤。
【答案】(1)引力场强度定义式FE m=引,推导见解析;(2)h =64976m ;(3)推导见解析. 【解析】 【分析】 【详解】(1)引力场强度定义式F E m=引 2MmF Gr = 联立得2M E Gr =引 (2)根据题意2M E GR =引 '2M E G r=引 '0.02E E E -=引引引h r R R =-=解得h =64976m(3)定义式引力势=p E mϕ引,式中p E 为某位置的引力势能把某物体从无穷远移动到某点引力做的功=0-=-p p W E E 引即=-p E W 引则当质量为m 的物体自无穷远处移动到距离地球r 处时,引力做功为W 引 通过计算得0MmW Gr =引> 所以=-p MmE Gr =-M Grϕ引2.“顿牟掇芥”是两千多年前我国古人对摩擦起电现象的观察记录,经摩擦后带电的琥珀能吸起小物体,现用下述模型分析研究。
济南市高中物理必修3物理 全册全单元精选试卷检测题
![济南市高中物理必修3物理 全册全单元精选试卷检测题](https://img.taocdn.com/s3/m/903d3cba76c66137ef061986.png)
济南市高中物理必修3物理 全册全单元精选试卷检测题一、必修第3册 静电场及其应用解答题易错题培优(难)1.(1)科学家发现,除了类似太阳系的恒星-行星系统,还存在许多双星系统,通过对它们的研究,使我们对宇宙有了较深刻的认识.双星系统是由两个星体构成,其中每个星体的线度(直径)都远小于两星体间的距离,一般双星系统距离其它星体很远,可以当做孤立系统处理.已知某双星系统中每个星体的质量都是M 0,两者相距L ,它们正围绕两者连线的中点做匀速圆周运动,引力常量为G .①求该双星系统中每个星体的线速度大小v ;②如果质量分别为m 1和m 2的质点相距为r 时,它们之间的引力势能的表达式为12p m m E Gr=-,求该双星系统的机械能. (2)微观世界与宏观世界往往存在奇妙的相似性.对于氢原子模型,因为原子核的质量远大于电子质量,可以忽略原子核的运动,形成类似天文学中的恒星-行星系统,记为模型Ⅰ.另一种模型认为氢原子的核外电子并非绕核旋转,而是类似天文学中的双星系统,核外电子和原子核依靠库仑力作用使它们同时绕彼此连线上某一点做匀速圆周运动,记为模型Ⅱ.假设核外电子的质量为m ,氢原子核的质量为M ,二者相距为r ,静电力常量为k ,电子和氢原子核的电荷量均为e .已知电荷量分别为+q 1和-q 2的点电荷相距为r 时,它们之间的电势能的表达式为12p q q E kr=-. ①模型Ⅰ、Ⅱ中系统的能量分别用E Ⅰ、 E Ⅱ表示,请推理分析,比较E Ⅰ、 E Ⅱ的大小关系; ②模型Ⅰ、Ⅱ中电子做匀速圆周运动的线速度分别用v Ⅰ、v Ⅱ表示,通常情况下氢原子的研究采用模型Ⅰ的方案,请从线速度的角度分析这样做的合理性.【答案】(1)①v =②202M G L -(2)①2-2ke r②模型Ⅰ的简化是合理的【解析】(1)① 22002/2M M v G L L =,解得 v =②双星系统的动能2200k 0012222GM GM E M v M L L =⨯==,双星系统的引力势能20P GM E L =-,该双星系统的机械能E=E k +E p =202M G L - (2)①对于模型Ⅰ:22I 2mv ke r r =,此时电子的动能E k Ⅰ=22ke r又因电势能2pI e E k r =-,所以E Ⅰ= E k Ⅰ+E p Ⅰ=2-2ke r对于模型Ⅱ:对电子有:22121mvker r=,解得22112mv rrke=对于原子核有:22222Mvker r=,解得22222Mv rrke=因为r1+r2=r,所以有22221222+mv r Mv rr ke ke=解得E kⅡ=2 221211222ke mv Mvr+=又因电势能2peE kr=-Ⅱ,所以EⅡ= E kⅡ+E pⅡ=2-2ker即模型Ⅰ、Ⅱ中系统的能量相等,均为2 -2 ker②解法一:模型Ⅰ中:对于电子绕原子核的运动有22II2=mvkem vr rω=,解得2I2=kevm rω模型Ⅱ中:对电子有:22II1II21=mvkem vr rω=,解得2II21=kevm rω对于原子核有:22222=ke MvM vr rω=,因ω1=ω2,所以mvⅡ=Mv又因原子核的质量M远大于电子的质量m,所以vⅡ>>v,所以可视为M静止不动,因此ω1=ω2=ω,即可视为vⅠ=vⅡ.故从线速度的角度分析模型Ⅰ的简化是合理的.②解法二:模型Ⅰ中:对于电子绕原子核的运动有22I2mvker r=,解得Iv模型Ⅱ中:库仑力提供向心力:222122=kemr Mrrωω== (1)解得12=r Mr m;又因为r1+r2=r所以1=Mrm M+2=mrm M+带入(1)式:ω=所以:()21=?ke M v r r m M m ω=+Ⅱ ()22=?ke mv r r m M Mω=+又因原子核的质量M 远大于电子的质量m ,所以v Ⅱ>>v ,所以可视为M 静止不动;故从线速度的角度分析模型Ⅰ的简化是合理的.2.如图所示的绝缘细杆轨道固定在竖直面内,半径为R 的1/6圆弧段杆与水平段杆和粗糙倾斜段杆分别在A 、B 两点相切,圆弧杆的圆心O 处固定着一个带正电的点电荷.现有一质量为m 可视为质点的带负电小球穿在水平杆上,以方向水平向右、大小等于83gR 的速度通过A 点,小球能够上滑的最高点为C ,到达C 后,小球将沿杆返回.若∠COB =30°,小球第一次过A 点后瞬间对圆弧细杆向下的弹力大小为83mg ,从A 至C 小球克服库仑力做的功为23mgR -,重力加速度为g .求:(1)小球第一次到达B 点时的动能; (2)小球在C 点受到的库仑力大小;(3)小球返回A 点前瞬间对圆弧杆的弹力.(结果用m 、g 、R 表示) 【答案】(1)56mgR (2)34mg (3)2(833)- 【解析】 【分析】(1)由动能定理求出小球第一次到达B 点时的动能.(2)小球第一次过A 点后瞬间,由牛顿第二定律和库仑定律列式.由几何关系得到OC 间的距离,再由库仑定律求小球在C 点受到的库仑力大小.(3)由动能定理求出小球返回A 点前瞬间的速度,由牛顿运动定律和向心力公式求解小球返回A 点前瞬间对圆弧杆的弹力. 【详解】(1)小球从A 运动到B ,AB 两点为等势点,所以电场力不做功,由动能定理得:()0211cos602KB A mgR E mv --=-代入数据解得:56KB E mgR =(2)小球第一次过A 时,由牛顿第二定律得:22A v QqN k mg m R R+-=由题可知:83N mg =联立并代入数据解得:2Qqkmg R= 由几何关系得,OC 间的距离为:cos303R r R ==︒小球在C 点受到的库仑力大小 :22Qq QqF kk r ==⎫⎪⎝⎭库联立解得3=4F mg 库 (3)从A 到C ,由动能定理得:2102f A W mgR W mv ---=-电从C 到A ,由动能定理得:212f A W mgR W mv +='-电由题可知:W =电 小球返回A 点时,设细杆对球的弹力方向向上,大小为N ′,由牛顿第二定律得:22Av Qq N k mg mR R'-'+= 联立以上解得:(283N mg -'=,根据牛顿第三定律得,小球返回A点时,对圆弧杆的弹力大小为(283mg -,方向向下.3.如图所示,长l =1m 的轻质细绳上端固定,下端连接一个可视为质点的带电小球,小球静止在水平向右的匀强电场中,绳与竖直方向的夹角θ=37°.已知小球所带电荷量q =1.0×10-6C ,匀强电场的场强E =3.0×103N/C ,取重力加速度g =10m/s 2,sin 37°=0.6,cos 37°=0.8.求:(1)小球所受电场力F 的大小; (2)小球的质量m ;(3)将电场撤去,小球回到最低点时速度v 的大小. 【答案】(1)F =3.0×10-3N (2)m =4.0×10-4kg (3)v =2.0m/s 【解析】 【分析】 【详解】(1)根据电场力的计算公式可得电场力6331.010 3.010N 3.010N F qE --==⨯⨯⨯=⨯; (2)小球受力情况如图所示:根据几何关系可得tan qEmg θ=,所以34310kg 410kg tan 10tan 37qE m g θ--⨯===⨯⨯︒; (3)电场撤去后小球运动过程中机械能守恒,则21(1cos37)2mgl mv -︒=,解得v =2m/s .4.如图所示,一根长为l 的不可伸长的细丝线一端固定于O 点,另一端系住一个质量为m 的带电小球.将此装置放在水平向右的匀强电场E 中,待小球稳定后,细丝线与竖直方向夹角为α.求:(1)小球带什么电,电荷量为多少? (2)剪断绳子后小球做什么运动? 【答案】(1)正电,tan mg q Eα= (2)做初速度是零的匀加速直线运动 【解析】【详解】(1)对小球进行受力分析:由于小球所受电场力水平向右,E 的方向水平向右,所以小球带正电.小球受力如图所示,有:qE=mgtanα 即:tan mg q Eα=(2)剪断细绳后,小球受重力和电场力,其合力方向沿细绳方向斜向下,则小球将沿细绳的方向做初速度是零的匀加速直线运动.5.如图所示,充电后的平行板电容器水平放置,电容为C ,极板间距离为d ,上极板正中有一小孔。
高中物理必修3物理 全册全单元精选试卷测试卷(含答案解析)
![高中物理必修3物理 全册全单元精选试卷测试卷(含答案解析)](https://img.taocdn.com/s3/m/2a65a9aca8114431b80dd81a.png)
高中物理必修3物理 全册全单元精选试卷测试卷(含答案解析)一、必修第3册 静电场及其应用解答题易错题培优(难)1.如图所示,真空中有两个点电荷A 、B ,它们固定在一条直线上相距L =0.3m 的两点,它们的电荷量分别为Q A =16×10-12C ,Q B =4.0×10-12C ,现引入第三个同种点电荷C ,(1)若要使C 处于平衡状态,试求C 电荷的电量和放置的位置?(2)若点电荷A 、B 不固定,而使三个点电荷在库仑力作用下都能处于平衡状态,试求C 电荷的电量和放置的位置? 【答案】(1)见解析(2)1216109C -⨯ ,为负电荷 【解析】 【分析】 【详解】(1)由分析可知,由于A 和B 为同种电荷,要使C 处于平衡状态,C 必须放在A 、B 之间某位置,可为正电荷,也可为负电荷.设电荷C 放在距A 右侧x 处,电荷量为Q 3 ∵ AC BC F F = ∴ 132322()Q Q Q Q kk x L x =- ∴1222()Q Q x L x =- ∴ 4(L -x)2=x 2 ∴ x =0.2m即点电荷C 放在距A 右侧0.2m 处,可为正电荷,也可为负电荷.(2)首先分析点电荷C 可能放置的位置,三个点电荷都处于平衡,彼此之间作用力必须在一条直线上,C 只能在AB 决定的直线上,不能在直线之外.而可能的区域有3个, ① AB 连线上,A 与B 带同种电荷互相排斥,C 电荷必须与A 、B 均产生吸引力,C 为负电荷时可满足;② 在AB 连线的延长线A 的左侧,C 带正电时对A 产生排斥力与B 对A 作用力方向相反可能A 处于平衡;C 对B 的作用力为推斥力与A 对B 作用力方向相同,不可能使B 平衡;C 带负电时对A 产生吸引力与B 对A 作用力方向相同,不可能使A 处于平衡;C 对B 的作用力为吸引力与A 对B 作用力方向相反,可能使B 平衡,但离A 近,A 带电荷又多,不能同时使A 、B 处于平衡.③ 放B 的右侧,C 对B 的作用力为推斥力与A 对B 作用力方向相同,不可能使B 平衡; 由分析可知,由于A 和B 为同种电荷,要使三个电荷都处于平衡状态,C 必须放在A 、B 之间某位置,且为负电荷.设电荷C 放在距A 右侧x 处,电荷量为Q 3对C :132322(0.3)Q Q Q Q kk x x =- ∴ x =0.2m 对B :321222()Q Q Q Q k k L L x =- ∴ 12316109Q C -=⨯,为负电荷. 【点睛】此题是库仑定律与力学问题的结合题;要知道如果只是让电荷C 处于平衡,只需在这点的场强为零即可,电性不限;三个电荷的平衡问题,遵循:“两同加一异”、“两大加一小”的原则.2.有三根长度皆为l =0.3 m 的不可伸长的绝缘轻线,其中两根的一端固定在天花板的O 点,另一端分别栓有质量皆为m =1.0×10﹣2kg 的带电小球A 和B ,它们的电荷量分别为﹣q 和+q ,q =1.0×10﹣6C .A 、B 之间用第三根线连接起来,空间中存在大小为E =2.0×105N/C 的匀强电场,电场强度的方向水平向右.平衡时A 、B 球的位置如图所示.已知静电力常量k =9×109N•m 2/C 2重力加速度g =10m/s 2.求:(1)A 、B 间的库仑力的大小 (2)连接A 、B 的轻线的拉力大小. 【答案】(1)F=0.1N (2)10.042T N = 【解析】试题分析:(1)以B 球为研究对象,B 球受到重力mg ,电场力Eq ,静电力F ,AB 间绳子的拉力1T 和OB 绳子的拉力2T ,共5个力的作用,处于平衡状态,A 、B 间的静电力22q F k l=,代入数据可得F=0.1N(2)在竖直方向上有:2sin 60T mg ︒=,在水平方向上有:12cos 60qE F T T =++︒ 代入数据可得10.042T N = 考点:考查了共点力平衡条件的应用【名师点睛】注意成立的条件,掌握力的平行四边形定则的应用,理解三角知识运用,注意平衡条件的方程的建立.3.如图所示,单层光滑绝缘圆形轨道竖直放置,半径r=lm ,其圆心处有一电荷量Q =+l×l0-4C 的点电荷,轨道左侧是一个钢制“隧道”,一直延伸至圆形轨道最低点B ;在“隧道”底部辅设绝缘层。
高中物理必修3物理 全册全单元精选试卷测试卷(解析版)
![高中物理必修3物理 全册全单元精选试卷测试卷(解析版)](https://img.taocdn.com/s3/m/c2bb91bb52ea551811a6875e.png)
高中物理必修3物理 全册全单元精选试卷测试卷(解析版)一、必修第3册 静电场及其应用解答题易错题培优(难)1.如图所示,在光滑绝缘水平面上B 点的正上方O 处固定一个质点,在水平面上的A 点放另一个质点,两个质点的质量均为m ,带电量均为+Q 。
C 为AB 直线上的另一点(O 、A 、B 、C 位于同一竖直平面上),AO 间的距离为L ,AB 和BC 间的距离均为2L,在空间加一个水平方向的匀强电场后A 处的质点处于静止。
试问: (1)该匀强电场的场强多大?其方向如何?(2)给A 处的质点一个指向C 点的初速度,该质点到达B 点时所受的电场力多大? (3)若初速度大小为v 0,质点到达C 点时的加速度和速度分别多大?【答案】(1)22kQ L ,方向由A 指向C ;273kQ ;(3)22kQ mL 220kQ v mL+【解析】 【分析】(1)在空间加一个水平方向的匀强电场后A 处的质点处于静止,对A 进行受力分析,根据平衡条件求解。
(2)质点到达B 点时受竖直向下的O 点的库仑力和水平向右的电场力,根据力的合成求解 (3)根据牛顿第二定律求出加速度,根据动能定理求出C 点时速度。
【详解】(1)在空间加一个水平方向的匀强电场后A 处的质点处于静止,对A 进行受力分析,AO 间的库仑力为22Q F K L=;根据平衡条件得:sin F EQ θ= 2sin 2F KQE Q Lθ== 方向由A 指向C(2)该质点到达B 点时受竖直向下的O 点的库仑力和水平向右的电场力,库仑力为22'(sin60)Q F K L =;水平向右的电场力F EQ "=B点时所受的电场力2222]sin60)6F L== (3)质点到达C 点时进行受力分析,根据牛顿第二定律得2222sin Q K EQ F KQ L a m m mL θ+===合. 从A 点到C 点根据动能定理得221122o EQL mv mv =-; v =【点睛】本题的关键要耐心细致地分析物体的运动过程,对物体进行受力分析,运用动能定理、牛顿第二定律进行处理。
高中物理必修3物理 全册全单元精选试卷检测(提高,Word版 含解析)
![高中物理必修3物理 全册全单元精选试卷检测(提高,Word版 含解析)](https://img.taocdn.com/s3/m/736d0533ec3a87c24128c412.png)
高中物理必修3物理 全册全单元精选试卷检测(提高,Word 版 含解析)一、必修第3册 静电场及其应用解答题易错题培优(难)1.(1)科学家发现,除了类似太阳系的恒星-行星系统,还存在许多双星系统,通过对它们的研究,使我们对宇宙有了较深刻的认识.双星系统是由两个星体构成,其中每个星体的线度(直径)都远小于两星体间的距离,一般双星系统距离其他星体很远,可以当做孤立系统处理.已知某双星系统中每个星体的质量都是M 0,两者相距L ,它们正围绕两者连线的中点做匀速圆周运动,引力常量为G . 求: ①该双星系统中星体的加速度大小a ; ②该双星系统的运动周期T .(2)微观世界与宏观世界往往存在奇妙的相似性.对于氢原子模型,因为原子核的质量远大于电子质量,可以忽略原子核的运动,形成类似天文学中的恒星-行星系统,记为模型Ⅰ.另一种模型认为氢原子的核外电子并非绕核旋转,而是类似天文学中的双星系统,核外电子和原子核依靠库仑力作用使它们同时绕彼此连线上某一点做匀速圆周运动,记为模型Ⅱ.已知核外电子的质量为m ,氢原子核的质量为M ,二者相距为r ,静电力常量为k ,电子和氢原子核的电荷量大小均为e .①模型Ⅰ、Ⅱ中系统的总动能分别用E k Ⅰ、 E k Ⅱ表示,请推理分析,比较E k Ⅰ、 E k Ⅱ的大小关系;②模型Ⅰ、Ⅱ中核外电子做匀速圆周运动的周期分别用T Ⅰ、T Ⅱ表示,通常情况下氢原子的研究采用模型Ⅰ的方案,请从周期的角度分析这样简化处理的合理性.【答案】(1) ①02GM a L = ②2T = (2) ①2k k II =2ke E E r =Ⅰ ②T T ⅠⅡ为M >>m ,可得T Ⅰ≈T Ⅱ,所以采用模型Ⅰ更简单方便. 【解析】 【详解】(1)①根据万有引力定律和牛顿第二定律有:2002GM M a L=解得02GM a L =②由运动学公式可知,224π2La T =⋅解得2T =(2)①模型Ⅰ中,设电子绕原子核的速度为v ,对于电子绕核的运动,根据库仑定律和牛顿第二定律有222ke mv r r=解得:22k 122ke E mv r==Ⅰ模型Ⅱ中,设电子和原子核的速度分别为v 1、v 2,电子的运动半径为r 1,原子核的运动半径为r2.根据库仑定律和牛顿第二定律对电子有:2 21 21mv ker r=,解得22k11121=22keE mv rr=对于原子核有:22222=Mvker r,解得22k22221=22keE Mv rr=系统的总动能:E kⅡ=E k1+ E k2=()2212222ke ker rr r+=即在这两种模型中,系统的总动能相等.②模型Ⅰ中,根据库仑定律和牛顿第二定律有22224πkem rr T=Ⅰ,解得23224πmrTke=Ⅰ模型Ⅱ中,电子和原子核的周期相同,均为TⅡ根据库仑定律和牛顿第二定律对电子有221224πkem rr T=⋅Ⅱ,解得221224πke Trr m=Ⅱ对原子核有222224πkeM rr T=⋅Ⅱ,解得222224πke Trr M=Ⅱ因r1+r2=r,可解得:()23224πmMrTke M m=+Ⅱ所以有T M mT M+=ⅠⅡ因为M>>m,可得TⅠ≈TⅡ,所以采用模型Ⅰ更简单方便.2.有三根长度皆为l=0.3 m的不可伸长的绝缘轻线,其中两根的一端固定在天花板的O 点,另一端分别栓有质量皆为m=1.0×10﹣2kg的带电小球A和B,它们的电荷量分别为﹣q 和+q,q=1.0×10﹣6C.A、B之间用第三根线连接起来,空间中存在大小为E=2.0×105N/C的匀强电场,电场强度的方向水平向右.平衡时A、B球的位置如图所示.已知静电力常量k=9×109N•m2/C2重力加速度g=10m/s2.求:(1)A、B间的库仑力的大小(2)连接A、B的轻线的拉力大小.【答案】(1)F=0.1N(2)10.042T N=【解析】试题分析:(1)以B球为研究对象,B球受到重力mg,电场力Eq,静电力F,AB间绳子的拉力1T和OB绳子的拉力2T,共5个力的作用,处于平衡状态,A、B间的静电力22qF kl=,代入数据可得F=0.1N(2)在竖直方向上有:2sin60T mg︒=,在水平方向上有:12cos60qE F T T=++︒代入数据可得10.042T N=考点:考查了共点力平衡条件的应用【名师点睛】注意成立的条件,掌握力的平行四边形定则的应用,理解三角知识运用,注意平衡条件的方程的建立.3.“顿牟掇芥”是两千多年前我国古人对摩擦起电现象的观察记录,经摩擦后带电的琥珀能吸起小物体,现用下述模型分析研究。
济南市高中物理必修3物理 全册全单元精选试卷检测题
![济南市高中物理必修3物理 全册全单元精选试卷检测题](https://img.taocdn.com/s3/m/543945830b4c2e3f572763d9.png)
济南市高中物理必修3物理全册全单元精选试卷检测题一、必修第3册静电场及其应用解答题易错题培优(难)1.如图所示,在光滑绝缘水平面上,质量为m的均匀绝缘棒AB长为L、带有正电,电量为Q且均匀分布.在水平面上O点右侧有匀强电场,场强大小为E,其方向为水平向左,BO距离为x0,若棒在水平向右的大小为QE/4的恒力作用下由静止开始运动.求:(1)棒的B端进入电场L/8时的加速度大小和方向;(2)棒在运动过程中的最大动能.(3)棒的最大电势能.(设O点处电势为零)【答案】(1)/8qE m ,向右(2)()48qE Lx+(3)0(2)6qE x L+【解析】【分析】【详解】(1)根据牛顿第二定律,得48QE L QEmaL-⋅=解得8QEam=,方向向右.(2)设当棒进入电场x时,其动能达到最大,则此时棒受力平衡,有4QE QExL⋅=解得14x L=由动能定理得:()0044()()42442448 K oQE QELQE QE L QE LE W x x x x x====+⨯∑+-+-+⨯(3)棒减速到零时,棒可能全部进入电场,也可能不能全部进入电场,设恰能全部进入电场,则有:()42QE QEx L L+-=,得 x0=L;()42QE QELL Lε+==当x0<L,棒不能全部进入电场,设进入电场x根据动能定理得()0042xQEQE Lx x x++--=解之得:208L L Lx x ++=则2008 ()4F L L Lx QE W x ε+++==当x 0>L ,棒能全部进入电场,设进入电场x ()()0042QE QEx x L QE x L +---= 得:023x Lx += 则()()000242 4436QE x L x L QE QE x x ε+++⋅===2.竖直放置的平行金属板A 、B 带等量异种电荷(如图),两板之间形成的电场是匀强电场.板间用绝缘细线悬挂着的小球质量m=4.0×10-5kg ,带电荷量q=3.0×10-7C ,平衡时细线与竖直方向之间的夹角α=37°.求:(1)A 、B 之间匀强电场的场强多大?(2)若剪断细线,计算小球运动的加速度,小球在A 、B 板间将如何运动? 【答案】(1)E =1×103N/C (2) 12.5m/s 2 【解析】 【详解】(1)小球受到重力mg 、电场力F 和绳的拉力T 的作用,由共点力平衡条件有:F =qE =mg tan α解得:537tan 410100.75 1.010N/C 310mg E q α--⨯⨯⨯===⨯⨯ 匀强电场的电场强度的方向与电场力的方向相同,即水平向右;(2)剪断细线后,小球做偏离竖直方向,夹角为37°匀加速直线运动,设其加速度为a 由牛顿第二定律有:cos mgma θ= 解得:212.5m/s cos ga θ== 【点睛】本题是带电体在电场中平衡问题,分析受力情况是解题的关键,并能根据受力情况判断此后小球的运动情况.3.如图所示,在沿水平方向的匀强电场中,有一长度l =0. 5m 的绝缘轻绳上端固定在O点,下端系一质量21010m .-=⨯kg 、带电量82.010q -=⨯C 的小球(小球的大小可以忽略)在位置B 点处于静止状态,此时轻绳与竖直方向的夹角α=37°,空气阻力不计,sin37°=0. 6,cos37°=0. 8,g =10m/s 2. (1)求该电场场强大小;(2)在始终垂直于轻绳的外力作用下将小球从B 位置缓慢拉动到细绳竖直位置的A 点,求外力对带电小球做的功;(3)过B 点做一等势面交电场线于C 点(C 点未画出),使轻绳与竖直方向的夹角增大少许(不超过5°),再由静止释放,求小球从C 点第一次运动到B 点的时间,并写出分析求解过程.【答案】(1) 63.7510E =⨯N/C (2)21.2510F W J -=⨯ (3)0.31t s =【解析】 【详解】(1)带电小球静止,受到合力等于零,电场力与重力的关系是:tan Eq mg α=,即tan mgE qα=代入数值计算得电场场强大小:63.7510/E N C =⨯(2)小球在外力作用下从B 位置缓慢移动到A 位置过程中,根据动能定理有:sin (cos )0F W Eql mg l l αα-+-=所以sin tan (cos )F mgW q mg l l qααα=-- 代入数值解得电场场强大小:21.2510F W J -=⨯(3)分析受力可知:小球在运动过程中,重力和电场力的合力为恒力,大小为5cos 4mg F mg α== 类比研究单摆的方法可知,小球的运动与单摆类似,回复力由上述合力沿圆周切向的分力提供。
高中物理必修3物理 全册全单元精选试卷测试卷(含答案解析)
![高中物理必修3物理 全册全单元精选试卷测试卷(含答案解析)](https://img.taocdn.com/s3/m/4f0141a00b4e767f5bcfce06.png)
高中物理必修3物理 全册全单元精选试卷测试卷(含答案解析)一、必修第3册 静电场及其应用解答题易错题培优(难)1.万有引力和库仑力有类似的规律,有很多可以类比的地方。
已知引力常量为G ,静电力常量为k 。
(1)用定义静电场强度的方法来定义与质量为M 的质点相距r 处的引力场强度E G 的表达式;(2)质量为m 、电荷量为e 的电子在库仑力的作用下以速度v 绕位于圆心的原子核做匀速圆周运动,该模型与太阳系内行星绕太阳运转相似,被称为“行星模型”,如图甲。
已知在一段时间内,电子走过的弧长为s ,其速度方向改变的角度为θ(弧度)。
求出原子核的电荷量Q ;(3)如图乙,用一根蚕丝悬挂一个金属小球,质量为m ,电荷量为﹣q 。
悬点下方固定一个绝缘的电荷量为+Q 的金属大球,蚕丝长为L ,两金属球球心间距离为R 。
小球受到电荷间引力作用在竖直平面内做小幅振动。
不计两球间万有引力,求出小球在库仑力作用下的振动周期。
【答案】(1)质量为M 的质点相距r 处的引力场强度的表达式为2GMr ;(2)原子核的电荷量为2mv skeθ;(3)小球在库仑力作用下的振动周期为2Lm R kQq π【解析】 【详解】(1)根据电场强度的定义式方法,那么质量为M 的质点相距r 处的引力场强度E G 的表达式:2G F GME m r== (2)根据牛顿第二定律,依据库仑引力提供向心力,则有:22Qe v k m R R= 由几何关系,得sR θ=解得:2mv sQ keθ=(3)因库仑力:2Qq F R=等效重力加速度:2F kQq g m mR'== 小球在库仑力作用下的振动周期:22L Lm T R g kQqππ'==2.一带正电的 A 点电荷在电场中某点的电场强度为 4.0×104N/C ,电荷量为+5.0×10-8 C 的 B 点电荷放在该点,求: (1)点电荷在该点受到的电场力?(2)若在该点放上一个电荷量为-2.0×10-8 C 的 C 点电荷,则该点的电场强度? 【答案】(1)3210N -⨯,方向由A 指向B (2)4410/N C ⨯,方向由A 指向B 【解析】 【分析】 【详解】 (1)方向:由A 指向B(2)若在该点放上一个电荷量为-2.0×10-8 C 的 C 点电荷,则该点的场强不变,仍为方向:由A 指向B3.如图所示的绝缘细杆轨道固定在竖直面内,半径为R 的1/6圆弧段杆与水平段杆和粗糙倾斜段杆分别在A 、B 两点相切,圆弧杆的圆心O 处固定着一个带正电的点电荷.现有一质量为m 可视为质点的带负电小球穿在水平杆上,以方向水平向右、大小等于83gR 的速度通过A 点,小球能够上滑的最高点为C ,到达C 后,小球将沿杆返回.若∠COB =30°,小球第一次过A 点后瞬间对圆弧细杆向下的弹力大小为83mg ,从A 至C 小球克服库仑力做的功为23mgR -,重力加速度为g .求:(1)小球第一次到达B 点时的动能; (2)小球在C 点受到的库仑力大小;(3)小球返回A 点前瞬间对圆弧杆的弹力.(结果用m 、g 、R 表示) 【答案】(1)56mgR (2)34mg (3)【解析】 【分析】(1)由动能定理求出小球第一次到达B 点时的动能.(2)小球第一次过A 点后瞬间,由牛顿第二定律和库仑定律列式.由几何关系得到OC 间的距离,再由库仑定律求小球在C 点受到的库仑力大小.(3)由动能定理求出小球返回A 点前瞬间的速度,由牛顿运动定律和向心力公式求解小球返回A 点前瞬间对圆弧杆的弹力. 【详解】(1)小球从A 运动到B ,AB 两点为等势点,所以电场力不做功,由动能定理得:()0211cos602KB A mgR E mv --=-代入数据解得:56KB E mgR =(2)小球第一次过A 时,由牛顿第二定律得:22A v QqN k mg m R R+-=由题可知:83N mg =联立并代入数据解得:2Qqkmg R= 由几何关系得,OC 间的距离为:cos30R r R ==︒小球在C 点受到的库仑力大小 :22Qq QqF kk r ==⎫⎪⎝⎭库联立解得3=4F mg 库 (3)从A 到C ,由动能定理得:2102f A W mgR W mv ---=-电从C 到A ,由动能定理得:212f A W mgR W mv +='-电 由题可知:232W mgR -=电 小球返回A 点时,设细杆对球的弹力方向向上,大小为N ′,由牛顿第二定律得:22Av Qq N k mg mR R'-'+= 联立以上解得: ()28333N mg -'=,根据牛顿第三定律得,小球返回A 点时,对圆弧杆的弹力大小为()28333mg -,方向向下.4.—个带正电的微粒,从A 点射入水平方向的匀强电场中,微粒沿直线AB 运动,如图所示,AB 与电场线夹角θ=53°,已知带电微粒的质量m =1.0×10-7kg ,电荷量q =1.0×10-10C ,A 、B 相距L =20cm .(取g =10m/s 2).求:(1)电场强度的大小和方向;(2)要使微粒从A 点运动到B 点,微粒射入电场时的最小速度是多少. 【答案】(1)7.5×10 3 V/m,方向水平向左 (2)5m/s 【解析】 【详解】(1)带电微粒做直线运动,所受的合力与速度在同一直线上,则带电微粒受力如图所示;由图可知,合力与速度方向相反;故粒子一定做匀减速直线运动; 由力的合成可知:mg =qE •tan θ可得:37.510V/m tan mgE q θ==⨯,方向水平向左. (2)微粒从A 到B 做匀减速直线运动,则当v B =0时,粒子进入电场速度v A 最小.由动能定理:21sin cos 02A mgL qEL mv θθ--=-代入数据得:v A =5m/s5.如图所示,长=1m L 的轻质细绳上端固定,下端连接一个可视为质点的带电小球,小球静止在水平向右的匀强电场中,绳与竖直方向夹角θ=37°。
高中物理必修3物理 全册全单元精选测试卷检测题(WORD版含答案)
![高中物理必修3物理 全册全单元精选测试卷检测题(WORD版含答案)](https://img.taocdn.com/s3/m/93ecc880a32d7375a5178086.png)
高中物理必修3物理 全册全单元精选测试卷检测题(WORD 版含答案)一、必修第3册 静电场及其应用解答题易错题培优(难)1.(1)科学家发现,除了类似太阳系的恒星-行星系统,还存在许多双星系统,通过对它们的研究,使我们对宇宙有了较深刻的认识.双星系统是由两个星体构成,其中每个星体的线度(直径)都远小于两星体间的距离,一般双星系统距离其它星体很远,可以当做孤立系统处理.已知某双星系统中每个星体的质量都是M 0,两者相距L ,它们正围绕两者连线的中点做匀速圆周运动,引力常量为G .①求该双星系统中每个星体的线速度大小v ;②如果质量分别为m 1和m 2的质点相距为r 时,它们之间的引力势能的表达式为12p m m E Gr=-,求该双星系统的机械能. (2)微观世界与宏观世界往往存在奇妙的相似性.对于氢原子模型,因为原子核的质量远大于电子质量,可以忽略原子核的运动,形成类似天文学中的恒星-行星系统,记为模型Ⅰ.另一种模型认为氢原子的核外电子并非绕核旋转,而是类似天文学中的双星系统,核外电子和原子核依靠库仑力作用使它们同时绕彼此连线上某一点做匀速圆周运动,记为模型Ⅱ.假设核外电子的质量为m ,氢原子核的质量为M ,二者相距为r ,静电力常量为k ,电子和氢原子核的电荷量均为e .已知电荷量分别为+q 1和-q 2的点电荷相距为r 时,它们之间的电势能的表达式为12p q q E kr=-. ①模型Ⅰ、Ⅱ中系统的能量分别用E Ⅰ、 E Ⅱ表示,请推理分析,比较E Ⅰ、 E Ⅱ的大小关系; ②模型Ⅰ、Ⅱ中电子做匀速圆周运动的线速度分别用v Ⅰ、v Ⅱ表示,通常情况下氢原子的研究采用模型Ⅰ的方案,请从线速度的角度分析这样做的合理性.【答案】(1)①v =②202M G L -(2)①2-2ke r②模型Ⅰ的简化是合理的【解析】(1)① 22002/2M M v G L L =,解得 v =②双星系统的动能2200k 0012222GM GM E M v M L L =⨯==,双星系统的引力势能20P GM E L =-,该双星系统的机械能E=E k +E p =202M G L - (2)①对于模型Ⅰ:22I 2mv ke r r =,此时电子的动能E k Ⅰ=22ke r又因电势能2pI e E k r =-,所以E Ⅰ= E k Ⅰ+E p Ⅰ=2-2ke r对于模型Ⅱ:对电子有:22121mvker r=,解得22112mv rrke=对于原子核有:22222Mvker r=,解得22222Mv rrke=因为r1+r2=r,所以有22221222+mv r Mv rr ke ke=解得E kⅡ=2 221211222ke mv Mvr+=又因电势能2peE kr=-Ⅱ,所以EⅡ= E kⅡ+E pⅡ=2-2ker即模型Ⅰ、Ⅱ中系统的能量相等,均为2 -2 ker②解法一:模型Ⅰ中:对于电子绕原子核的运动有22II2=mvkem vr rω=,解得2I2=kevm rω模型Ⅱ中:对电子有:22II1II21=mvkem vr rω=,解得2II21=kevm rω对于原子核有:22222=ke MvM vr rω=,因ω1=ω2,所以mvⅡ=Mv又因原子核的质量M远大于电子的质量m,所以vⅡ>>v,所以可视为M静止不动,因此ω1=ω2=ω,即可视为vⅠ=vⅡ.故从线速度的角度分析模型Ⅰ的简化是合理的.②解法二:模型Ⅰ中:对于电子绕原子核的运动有22I2mvker r=,解得Iv模型Ⅱ中:库仑力提供向心力:222122=kemr Mrrωω== (1)解得12=r Mr m;又因为r1+r2=r所以1=Mrm M+2=mrm M+带入(1)式:ω=所以:1v r ω=Ⅱ2v r ω=又因原子核的质量M 远大于电子的质量m ,所以v Ⅱ>>v ,所以可视为M 静止不动;故从线速度的角度分析模型Ⅰ的简化是合理的.2.我们可以借鉴研究静电场的方法来研究地球周围空间的引力场,如用“引力场强度”、“引力势”的概念描述引力场。
高中物理必修3物理 全册全单元精选试卷测试卷附答案
![高中物理必修3物理 全册全单元精选试卷测试卷附答案](https://img.taocdn.com/s3/m/37d9feafff00bed5b9f31db2.png)
高中物理必修3物理 全册全单元精选试卷测试卷附答案一、必修第3册 静电场及其应用解答题易错题培优(难)1.(1)科学家发现,除了类似太阳系的恒星-行星系统,还存在许多双星系统,通过对它们的研究,使我们对宇宙有了较深刻的认识.双星系统是由两个星体构成,其中每个星体的线度(直径)都远小于两星体间的距离,一般双星系统距离其他星体很远,可以当做孤立系统处理.已知某双星系统中每个星体的质量都是M 0,两者相距L ,它们正围绕两者连线的中点做匀速圆周运动,引力常量为G . 求: ①该双星系统中星体的加速度大小a ; ②该双星系统的运动周期T .(2)微观世界与宏观世界往往存在奇妙的相似性.对于氢原子模型,因为原子核的质量远大于电子质量,可以忽略原子核的运动,形成类似天文学中的恒星-行星系统,记为模型Ⅰ.另一种模型认为氢原子的核外电子并非绕核旋转,而是类似天文学中的双星系统,核外电子和原子核依靠库仑力作用使它们同时绕彼此连线上某一点做匀速圆周运动,记为模型Ⅱ.已知核外电子的质量为m ,氢原子核的质量为M ,二者相距为r ,静电力常量为k ,电子和氢原子核的电荷量大小均为e .①模型Ⅰ、Ⅱ中系统的总动能分别用E k Ⅰ、 E k Ⅱ表示,请推理分析,比较E k Ⅰ、 E k Ⅱ的大小关系;②模型Ⅰ、Ⅱ中核外电子做匀速圆周运动的周期分别用T Ⅰ、T Ⅱ表示,通常情况下氢原子的研究采用模型Ⅰ的方案,请从周期的角度分析这样简化处理的合理性.【答案】(1) ①02GM a L = ②2T = (2) ①2k k II =2ke E E r =Ⅰ ②T T ⅠⅡ为M >>m ,可得T Ⅰ≈T Ⅱ,所以采用模型Ⅰ更简单方便. 【解析】 【详解】(1)①根据万有引力定律和牛顿第二定律有:2002GM M a L=解得02GM a L =②由运动学公式可知,224π2La T =⋅解得2T =(2)①模型Ⅰ中,设电子绕原子核的速度为v ,对于电子绕核的运动,根据库仑定律和牛顿第二定律有222ke mv r r=解得:22k 122ke E mv r==Ⅰ模型Ⅱ中,设电子和原子核的速度分别为v 1、v 2,电子的运动半径为r 1,原子核的运动半径为r2.根据库仑定律和牛顿第二定律对电子有:22121mvker r=,解得22k11121=22keE mv rr=对于原子核有:22222=Mvker r,解得22k22221=22keE Mv rr=系统的总动能:E kⅡ=E k1+ E k2=()2212222ke ker rr r+=即在这两种模型中,系统的总动能相等.②模型Ⅰ中,根据库仑定律和牛顿第二定律有22224πkem rr T=Ⅰ,解得23224πmrTke=Ⅰ模型Ⅱ中,电子和原子核的周期相同,均为TⅡ根据库仑定律和牛顿第二定律对电子有221224πkem rr T=⋅Ⅱ,解得221224πke Trr m=Ⅱ对原子核有222224πkeM rr T=⋅Ⅱ,解得222224πke Trr M=Ⅱ因r1+r2=r,可解得:()23224πmMrTke M m=+Ⅱ所以有T M mT M+=ⅠⅡ因为M>>m,可得TⅠ≈TⅡ,所以采用模型Ⅰ更简单方便.2.如图所示,在光滑绝缘水平面上,质量为m的均匀绝缘棒AB长为L、带有正电,电量为Q且均匀分布.在水平面上O点右侧有匀强电场,场强大小为E,其方向为水平向左,BO距离为x0,若棒在水平向右的大小为QE/4的恒力作用下由静止开始运动.求:(1)棒的B端进入电场L/8时的加速度大小和方向;(2)棒在运动过程中的最大动能.(3)棒的最大电势能.(设O点处电势为零)【答案】(1)/8qE m ,向右(2)()48qE Lx+(3)0(2)6qE x L+【解析】【分析】【详解】(1)根据牛顿第二定律,得48QE L QE ma L -⋅=解得 8QEa m=,方向向右. (2)设当棒进入电场x 时,其动能达到最大,则此时棒受力平衡,有4QE QE x L ⋅= 解得14x L = 由动能定理得:()00044()()42442448K o QE QELQEQE L QE L E W x x x x x ====+⨯∑+-+-+⨯(3)棒减速到零时,棒可能全部进入电场,也可能不能全部进入电场,设恰能全部进入电场, 则有:()0042QE QEx L L +-=, 得 x 0=L ;()42QE QELL L ε+== 当x 0<L ,棒不能全部进入电场,设进入电场x根据动能定理得()00 0042xQEQE L x x x ++--=解之得:x则0 (4F QE W x ε+==当x 0>L ,棒能全部进入电场,设进入电场x ()()0042QE QEx x L QE x L +---= 得:023x Lx += 则()()000242 4436QE x L x L QE QE x x ε+++⋅===3.如图所示,在竖直平面内有一质量m =0.5 kg 、电荷量q =+2×10-3 C 的带电小球,有一根长L =0.1 m 且不可伸长的绝缘轻细线系在一方向水平向右、分布的区域足够大的匀强电场中的O 点.已知A 、O 、C 点等高,且OA =OC =L ,若将带电小球从A 点无初速度释放,小球到达最低点B 时速度恰好为零,g 取10 m/s 2.(1)求匀强电场的电场强度E 的大小;(2)求小球从A 点由静止释放运动到B 点的过程中速度最大时细线的拉力大小; (3)若将带电小球从C 点无初速度释放,求小球到达B 点时细线张力大小. 【答案】(1)2.5×103 N/C (2)2-10) N (3)15N 【解析】 【详解】(1)小球到达最低点B 时速度为零,则0=mgL -EqL . E =2.5×103 N/C(2) 小球到达最低点B 时速度为零,根据对称性可知,达到最大速度的位置为AB 弧的中点,即当沿轨迹上某一点切线方向的合力为零时,小球的速度有最大值,由动能定理有12mv 2-0=mgL sin 45°-Eq (L -L cos 45°). m 2v L=F -2mg cos 45°. F =2-10) N.(3)小球从C 运动到B 点过程,由动能定理得2102mgL qEL mV +=-. 解得:24V =在B 点02(cos 45)V T mg mL-= 以上各式联立解得T =15N.4.如图所示,高为h 的光滑绝缘直杆AD 竖直放置,在D 处有一固定的正点荷,电荷量为Q 。
济南市高中物理必修3物理 全册全单元精选试卷检测题
![济南市高中物理必修3物理 全册全单元精选试卷检测题](https://img.taocdn.com/s3/m/7c2b49732cc58bd63186bdfc.png)
济南市高中物理必修3物理 全册全单元精选试卷检测题一、必修第3册 静电场及其应用解答题易错题培优(难)1.如图所示的绝缘细杆轨道固定在竖直面内,半径为R 的1/6圆弧段杆与水平段杆和粗糙倾斜段杆分别在A 、B 两点相切,圆弧杆的圆心O 处固定着一个带正电的点电荷.现有一质量为m 可视为质点的带负电小球穿在水平杆上,以方向水平向右、大小等于83gR 的速度通过A 点,小球能够上滑的最高点为C ,到达C 后,小球将沿杆返回.若∠COB =30°,小球第一次过A 点后瞬间对圆弧细杆向下的弹力大小为83mg ,从A 至C 小球克服库仑力做的功为23mgR -,重力加速度为g .求:(1)小球第一次到达B 点时的动能; (2)小球在C 点受到的库仑力大小;(3)小球返回A 点前瞬间对圆弧杆的弹力.(结果用m 、g 、R 表示) 【答案】(1)56mgR (2)34mg (3)2(833)- 【解析】 【分析】(1)由动能定理求出小球第一次到达B 点时的动能.(2)小球第一次过A 点后瞬间,由牛顿第二定律和库仑定律列式.由几何关系得到OC 间的距离,再由库仑定律求小球在C 点受到的库仑力大小.(3)由动能定理求出小球返回A 点前瞬间的速度,由牛顿运动定律和向心力公式求解小球返回A 点前瞬间对圆弧杆的弹力. 【详解】(1)小球从A 运动到B ,AB 两点为等势点,所以电场力不做功,由动能定理得:()0211cos602KB A mgR E mv --=-代入数据解得:56KB E mgR =(2)小球第一次过A 时,由牛顿第二定律得:22A v QqN k mg m R R+-=由题可知:83N mg =联立并代入数据解得:2Qqkmg R= 由几何关系得,OC 间的距离为:cos303R r R ==︒小球在C 点受到的库仑力大小 :22Qq QqF kk r ==⎫⎪⎝⎭库联立解得3=4F mg 库 (3)从A 到C ,由动能定理得:2102f A W mgR W mv ---=-电从C 到A ,由动能定理得:212f A W mgR W mv +='-电由题可知:W =电 小球返回A 点时,设细杆对球的弹力方向向上,大小为N ′,由牛顿第二定律得:22Av Qq N k mg mR R'-'+= 联立以上解得:(283N mg -'=,根据牛顿第三定律得,小球返回A点时,对圆弧杆的弹力大小为(283mg -,方向向下.2.如图所示,在竖直平面内有一质量m =0.5 kg 、电荷量q =+2×10-3 C 的带电小球,有一根长L =0.1 m 且不可伸长的绝缘轻细线系在一方向水平向右、分布的区域足够大的匀强电场中的O 点.已知A 、O 、C 点等高,且OA =OC =L ,若将带电小球从A 点无初速度释放,小球到达最低点B 时速度恰好为零,g 取10 m/s 2.(1)求匀强电场的电场强度E 的大小;(2)求小球从A 点由静止释放运动到B 点的过程中速度最大时细线的拉力大小; (3)若将带电小球从C 点无初速度释放,求小球到达B 点时细线张力大小. 【答案】(1)2.5×103 N/C (2)2-10) N (3)15N 【解析】 【详解】(1)小球到达最低点B 时速度为零,则0=mgL -EqL . E =2.5×103 N/C(2) 小球到达最低点B 时速度为零,根据对称性可知,达到最大速度的位置为AB 弧的中点,即当沿轨迹上某一点切线方向的合力为零时,小球的速度有最大值,由动能定理有12mv 2-0=mgL sin 45°-Eq (L -L cos 45°). m 2v L=F -2mg cos 45°. F =2-10) N.(3)小球从C 运动到B 点过程,由动能定理得2102mgL qEL mV +=-. 解得:24V =在B 点02(cos 45)V T mg mL-= 以上各式联立解得T =15N.3.如图所示,单层光滑绝缘圆形轨道竖直放置,半径r=lm ,其圆心处有一电荷量Q =+l×l0-4C 的点电荷,轨道左侧是一个钢制“隧道”,一直延伸至圆形轨道最低点B ;在“隧道”底部辅设绝缘层。
高中物理必修3物理 全册全单元精选试卷测试卷(含答案解析)
![高中物理必修3物理 全册全单元精选试卷测试卷(含答案解析)](https://img.taocdn.com/s3/m/822be59d4b73f242326c5f09.png)
高中物理必修3物理 全册全单元精选试卷测试卷(含答案解析)一、必修第3册 静电场及其应用解答题易错题培优(难)1.如图所示,两块竖直放置的平行金属板A 、B ,两板相距d ,两板间电压为U ,一质量为m 的带电小球从两板间的M 点开始以竖直向上的初速度v 0运动,当它到达电场中的N 点时速度变为水平方向,大小变为2v 0 求(1)M 、N 两点间的电势差(2)电场力对带电小球所做的功(不计带电小球对金属板上电荷均匀分布的影响,设重力加速度为g )【答案】20MN Uv U dg=;【解析】 【详解】竖直方向上小球受到重力作用而作匀减速直线运动,则竖直位移大小为h =202v g小球在水平方向上受到电场力作用而作匀加速直线运动,则 水平位移x =022v t ⋅ h =2v t ⋅ 联立得,x =2h =20v g故M 、N 间的电势差为U MN =-Ex =-20v U d g =-20Uv gd从M 运动到N 的过程,由动能定理得 W 电+W G =12m 20(2)v -2012mv 所以联立解得W 电=202mv答:M 、N 间电势差为-20Uv gd,电场力做功202mv .2.(1)科学家发现,除了类似太阳系的恒星-行星系统,还存在许多双星系统,通过对它们的研究,使我们对宇宙有了较深刻的认识.双星系统是由两个星体构成,其中每个星体的线度(直径)都远小于两星体间的距离,一般双星系统距离其它星体很远,可以当做孤立系统处理.已知某双星系统中每个星体的质量都是M 0,两者相距L ,它们正围绕两者连线的中点做匀速圆周运动,引力常量为G .①求该双星系统中每个星体的线速度大小v ;②如果质量分别为m 1和m 2的质点相距为r 时,它们之间的引力势能的表达式为12p m m E Gr=-,求该双星系统的机械能. (2)微观世界与宏观世界往往存在奇妙的相似性.对于氢原子模型,因为原子核的质量远大于电子质量,可以忽略原子核的运动,形成类似天文学中的恒星-行星系统,记为模型Ⅰ.另一种模型认为氢原子的核外电子并非绕核旋转,而是类似天文学中的双星系统,核外电子和原子核依靠库仑力作用使它们同时绕彼此连线上某一点做匀速圆周运动,记为模型Ⅱ.假设核外电子的质量为m ,氢原子核的质量为M ,二者相距为r ,静电力常量为k ,电子和氢原子核的电荷量均为e .已知电荷量分别为+q 1和-q 2的点电荷相距为r 时,它们之间的电势能的表达式为12p q q E kr=-. ①模型Ⅰ、Ⅱ中系统的能量分别用E Ⅰ、 E Ⅱ表示,请推理分析,比较E Ⅰ、 E Ⅱ的大小关系; ②模型Ⅰ、Ⅱ中电子做匀速圆周运动的线速度分别用v Ⅰ、v Ⅱ表示,通常情况下氢原子的研究采用模型Ⅰ的方案,请从线速度的角度分析这样做的合理性.【答案】(1)①v =②202M G L -(2)①2-2ke r②模型Ⅰ的简化是合理的【解析】(1)① 22002/2M M v G L L =,解得v =②双星系统的动能2200k 0012222GM GM E M v M L L =⨯==,双星系统的引力势能20P GM E L =-,该双星系统的机械能E=E k +E p =202M G L - (2)①对于模型Ⅰ:22I 2mv ke r r =,此时电子的动能E k Ⅰ=22ke r又因电势能2pI e E k r =-,所以E Ⅰ= E k Ⅰ+E p Ⅰ=2-2ke r对于模型Ⅱ:对电子有:22121mv ke r r =, 解得 22112mv r r ke= 对于原子核有:22222Mv ke r r =, 解得 22222Mv rr ke=因为r 1+r 2=r ,所以有22221222+mv r Mv rr ke ke= 解得E k Ⅱ=2221211222ke mv Mv r+=又因电势能2pe E k r =-Ⅱ,所以E Ⅱ= E k Ⅱ+E p Ⅱ=2-2ke r即模型Ⅰ、Ⅱ中系统的能量相等,均为2-2ke r②解法一:模型Ⅰ中:对于电子绕原子核的运动有22I I 2=mv ke m v r r ω=,解得2I 2=ke v m r ω 模型Ⅱ中:对电子有:22II 1II 21=mv ke m v r r ω=, 解得2II 21=ke v m r ω对于原子核有:22222=ke Mv M v r r ω=, 因ω1=ω2,所以mv Ⅱ=Mv又因原子核的质量M 远大于电子的质量m ,所以v Ⅱ>>v ,所以可视为M 静止不动,因此ω1=ω2=ω,即可视为v Ⅰ=v Ⅱ.故从线速度的角度分析模型Ⅰ的简化是合理的. ②解法二:模型Ⅰ中:对于电子绕原子核的运动有22I 2mv ke r r =,解得I v模型Ⅱ中:库仑力提供向心力:222122=ke mr Mr rωω== (1)解得12=r M r m; 又因为r 1+r 2=r 所以1=M r m M + 2=mr m M+带入(1)式:ω=所以:1v r ω=Ⅱ2v r ω=又因原子核的质量M 远大于电子的质量m ,所以v Ⅱ>>v ,所以可视为M 静止不动;故从线速度的角度分析模型Ⅰ的简化是合理的.3.如图所示,均可视为质点的三个物体A 、B 、C 在倾角为30°的光滑绝缘斜面上,A 绝缘,A 与B 紧靠在一起,C 紧靠在固定挡板上,质量分别为m A =0.43kg ,m B =0.20kg ,m C =0.50kg ,其中A 不带电,B 、C 的电荷量分别为q B =+2×10-5C 、q C =+7×10-5C 且保持不变,开始时三个物体均能保持静止。
山东省济南市第一中学必修3物理 全册全单元精选试卷检测题
![山东省济南市第一中学必修3物理 全册全单元精选试卷检测题](https://img.taocdn.com/s3/m/0e5714b40740be1e640e9a09.png)
山东省济南市第一中学必修3物理全册全单元精选试卷检测题一、必修第3册静电场及其应用解答题易错题培优(难)1.如图所示在粗糙绝缘的水平面,上有两个带同种正电荷小球M和N,N被绝缘座固定在水平面上,M在离N点r0处由静止释放,开始运动瞬间的加速度大小恰好为μg。
已知静电常量为k,M和地面间的动摩擦因数为μ,两电荷均可看成点电荷,且N的带电量为Q,M带电量为q,不计空气阻力。
则:(1)M运动速度最大时离N的距离;(2)已知M在上述运动过程中的最大位移为r0,如果M带电量改变为32q,仍从离N点r0处静止释放时,则运动的位移为r0时速度和加速度各为多大?【答案】(1)2l r=(2)v grμ=4gaμ=,方向水平向左【解析】【详解】(1)以小球为研究对象,分析小球的受力情况,小球受到重力、支持力、摩擦力和库仑力作用。
开始运动瞬间,两小球间的库仑力为:F库0 =2kQqr由牛顿第二定律可知,开始瞬间F库0-μmg=ma可得:2F ngμ=库因M做加速度减小的加速运动,所以当F ngμ'=库速度最大,即:0212kQqF Fl'==库库所以2l r=(2)小球q运动距离r0过程中由动能定理的得:00W mgrμ'-=-电场力金属球32q运动距离r0过程中由动能定理的得:212w mgr mvμ'-=-电场力其中W Uq=电场力,3()2W U q'=电场力(U为电荷移动过程中的电势差)联立以上两式解得:v grμ=由牛顿第二定律可知:()2322kQ qmg marμ⨯-=由02F mgμ=,解得:4gaμ=方向水平向左。
2.如图所示,空间存在方向水平向右的匀强电场,两个可视为点电荷的带电小球P和Q 用绝缘细绳悬挂在水平天花板下,两细绳都恰好与天花板垂直,已知匀强电场强度为E,两小球之间的距离为L,PQ连线与竖直方向之间的夹角为θ,静电常数为k(1)画出小球P、Q的受力示意图;(2)求出P、Q两小球分别所带的电量。
高中物理必修3物理 全册全单元精选试卷测试卷 (word版,含解析)
![高中物理必修3物理 全册全单元精选试卷测试卷 (word版,含解析)](https://img.taocdn.com/s3/m/c375be61b14e852459fb5759.png)
高中物理必修3物理 全册全单元精选试卷测试卷 (word 版,含解析)一、必修第3册 静电场及其应用解答题易错题培优(难)1.如图所示的绝缘细杆轨道固定在竖直面内,半径为R 的1/6圆弧段杆与水平段杆和粗糙倾斜段杆分别在A 、B 两点相切,圆弧杆的圆心O 处固定着一个带正电的点电荷.现有一质量为m 可视为质点的带负电小球穿在水平杆上,以方向水平向右、大小等于83gR 的速度通过A 点,小球能够上滑的最高点为C ,到达C 后,小球将沿杆返回.若∠COB =30°,小球第一次过A 点后瞬间对圆弧细杆向下的弹力大小为83mg ,从A 至C 小球克服库仑力做的功为23mgR -,重力加速度为g .求:(1)小球第一次到达B 点时的动能; (2)小球在C 点受到的库仑力大小;(3)小球返回A 点前瞬间对圆弧杆的弹力.(结果用m 、g 、R 表示) 【答案】(1)56mgR (2)34mg (3)2(833)- 【解析】 【分析】(1)由动能定理求出小球第一次到达B 点时的动能.(2)小球第一次过A 点后瞬间,由牛顿第二定律和库仑定律列式.由几何关系得到OC 间的距离,再由库仑定律求小球在C 点受到的库仑力大小.(3)由动能定理求出小球返回A 点前瞬间的速度,由牛顿运动定律和向心力公式求解小球返回A 点前瞬间对圆弧杆的弹力. 【详解】(1)小球从A 运动到B ,AB 两点为等势点,所以电场力不做功,由动能定理得:()0211cos602KB A mgR E mv --=-代入数据解得:56KB E mgR =(2)小球第一次过A 时,由牛顿第二定律得:22A v QqN k mg m R R+-=由题可知:83N mg =联立并代入数据解得:2Qqkmg R= 由几何关系得,OC 间的距离为:cos303R r R ==︒小球在C 点受到的库仑力大小 :22Qq QqF kk r ==⎫⎪⎝⎭库联立解得3=4F mg 库 (3)从A 到C ,由动能定理得:2102f A W mgR W mv ---=-电从C 到A ,由动能定理得:212f A W mgR W mv +='-电由题可知:W =电 小球返回A 点时,设细杆对球的弹力方向向上,大小为N ′,由牛顿第二定律得:22Av Qq N k mg mR R'-'+= 联立以上解得:(283N mg -'=,根据牛顿第三定律得,小球返回A点时,对圆弧杆的弹力大小为(283mg -,方向向下.2.如图所示,水平地面上方分布着水平向右的匀强电场,一“L ”形的光滑绝缘硬质管竖直固定在匀强电场中,管的水平部分长L 1=0.2m ,管的水平部分离水平地面的距离为h =5.0m ,竖直部分长为L 2=0.1m .一带正电的小球从管口A 由静止释放,小球与管间摩擦不计且小球通过管的弯曲部分(长度极短可不计)时没有能量损失,小球受到的电场力大小为重力的一半.(g =10m/s 2)求:(1)小球运动到管口B时的速度v B大小;(2)小球着地点与管口B的水平距离s.【答案】(1)2.0m/s;(2)4.5m.【解析】【分析】【详解】(1)在小球从A运动到B的过程中,对小球由动能定理得:12mv B2-0=mgL2+F电L1①由于小球在电场中受到的静电力大小为重力的一半,即F电=12mg②代入数据得:v B=2.0m/s;③小球运动到管口B时的速度大小为2.0m/s;(2)小球离开B点后,设水平方向的加速度为a,位移为s,在空中运动的时间为t,水平方向有:a=g/2 ④s=v0t+12at2⑤竖直方向有:h=12gt2⑥由③~⑥式,并代入数据可得:s=4.5m3.如图所示,长l=1 m的轻质细绳上端固定,下端连接一个可视为质点的带电小球,小球静止在水平向右的匀强电场中,绳与竖直方向的夹角θ=37°.已知小球所带电荷量q=1.0×10–6 C,匀强电场的场强E=3.0×103 N/C,取重力加速度g=10 m/s2,sin 37°=0.6,cos 37°=0.8.求:(1)小球所受电场力F 的大小和小球的质量m ;(2)将小球拉至最低点由静止释放,小球回到绳与竖直方向的夹角θ=37°时速度v 的大小;(3)在(2)所述情况下小球通过绳与竖直方向的夹角θ=37°时绳中张力T 的大小. 【答案】(1)F = 3.0×10-3 N m=4.0×10–4 kg (2)5m/s v = (3)T =7.0×10-3 N【解析】 【分析】 【详解】(1)小球受到的电场力的大小为:F =qE =1.0×10–6×3.0×103N =3.0×10-3 N小球受力如图所示:根据平衡可知:tan F mg θ=解得:m=4.0×10–4 kg(2)将小球拉至最低点由静止释放,小球回到绳与竖直方向的夹角θ=37°时根据动能定理有21sin (1cos )2Fl mgl mv θθ--=解得:12(1)5m/s cos v gl θ=-= (3)沿绳方向根据牛顿第二定律可知2sin cos mv T F mg lθθ--= 解得:T =7.0×10-3 N4.—个带正电的微粒,从A 点射入水平方向的匀强电场中,微粒沿直线AB 运动,如图所示,AB 与电场线夹角θ=53°,已知带电微粒的质量m =1.0×10-7kg ,电荷量q =1.0×10-10C ,A 、B 相距L =20cm .(取g =10m/s 2).求:(1)电场强度的大小和方向;(2)要使微粒从A 点运动到B 点,微粒射入电场时的最小速度是多少. 【答案】(1)7.5×10 3 V/m,方向水平向左 (2)5m/s 【解析】 【详解】(1)带电微粒做直线运动,所受的合力与速度在同一直线上,则带电微粒受力如图所示;由图可知,合力与速度方向相反;故粒子一定做匀减速直线运动; 由力的合成可知:mg =qE •tan θ可得:37.510V/m tan mgE q θ==⨯,方向水平向左. (2)微粒从A 到B 做匀减速直线运动,则当v B =0时,粒子进入电场速度v A 最小.由动能定理:21sin cos 02A mgL qEL mv θθ--=-代入数据得:v A 5m/s5.如图所示,长=1m L 的轻质细绳上端固定,下端连接一个可视为质点的带电小球,小球静止在水平向右的匀强电场中,绳与竖直方向夹角θ=37°。
高中物理必修3物理 全册全单元精选测试卷测试卷(含答案解析)
![高中物理必修3物理 全册全单元精选测试卷测试卷(含答案解析)](https://img.taocdn.com/s3/m/462db95f81c758f5f71f67ab.png)
高中物理必修3物理 全册全单元精选测试卷测试卷(含答案解析)一、必修第3册 静电场及其应用解答题易错题培优(难)1.如图所示,两块竖直放置的平行金属板A 、B ,两板相距d ,两板间电压为U ,一质量为m 的带电小球从两板间的M 点开始以竖直向上的初速度v 0运动,当它到达电场中的N 点时速度变为水平方向,大小变为2v 0 求(1)M 、N 两点间的电势差(2)电场力对带电小球所做的功(不计带电小球对金属板上电荷均匀分布的影响,设重力加速度为g )【答案】20MN Uv U dg=;【解析】 【详解】竖直方向上小球受到重力作用而作匀减速直线运动,则竖直位移大小为h =202v g小球在水平方向上受到电场力作用而作匀加速直线运动,则 水平位移x =022v t ⋅ h =2v t ⋅ 联立得,x =2h =20v g故M 、N 间的电势差为U MN =-Ex =-20v U d g =-20Uv gd从M 运动到N 的过程,由动能定理得 W 电+W G =12m 20(2)v -2012mv 所以联立解得W 电=202mv答:M 、N 间电势差为-20Uv gd,电场力做功202mv .2.如图所示,在竖直平面内有一固定的光滑绝缘轨道,圆心为O ,半径为r ,A 、B 、C 、D 分别是圆周上的点,其中A 、C 分别是最高点和最低点,BD 连线与水平方向夹角为37︒。
该区间存在与轨道平面平行的水平向左的匀强电场。
一质量为m 、带正电的小球在轨道内侧做完整的圆周运动(电荷量不变),经过D 点时速度最大,重力加速度为g (已知sin370.6︒=,cos370.8︒=),求:(1)小球所受的电场力大小;(2)小球经过A 点时对轨道的最小压力。
【答案】(1)43mg ;(2)2mg ,方向竖直向上. 【解析】 【详解】(1)由题意可知 :tan 37mgF︒= 所以:43F mg =(2)由题意分析可知,小球恰好能做完整的圆周运动时经过A 点对轨道的压力最小. 小球恰好做完整的圆周运动时,在B 点根据牛顿第二定律有:2sin 37B v mgm r︒= 小球由B 运动到A 的过程根据动能定理有:()22111sin 37cos3722B A mgr Fr mv mv ︒︒--+=-小球在A 点时根据牛顿第二定律有:2AN v F mg m r+=联立以上各式得:2N F mg =由牛顿第三定律可知,小球经过A 点时对轨道的最小压力大小为2mg ,方向竖直向上.3.如图,在足够大的平行金属板间的水平匀强电场中,有一长为L 的轻质绝缘棒OA ,一端可绕O 点在竖直平面内自由转动,另一端A 处有一带负电、电量为q 、质量为m 的小球,当变阻器滑片在P 点处时,棒静止在与竖直方向成30°角的位置,如图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
济南市高中物理必修3物理 全册全单元精选试卷检测题一、必修第3册 静电场及其应用解答题易错题培优(难)1.我们可以借鉴研究静电场的方法来研究地球周围空间的引力场,如用“引力场强度”、“引力势”的概念描述引力场。
已知地球质量为M ,半径为R ,万有引力常量为G ,将地球视为均质球体,且忽略自转。
(1)类比电场强度的定义方法,写出地球引力场的“引力场强度E ”的定义式,并结合万有引力定律,推导距离地心为r (r >R )处的引力场强度的表达式2=GM E r 引; (2)设地面处和距离地面高为h 处的引力场强度分别为E 引和'E 引,如果它们满足'0.02E E E -≤引引引,则该空间就可以近似为匀强场,也就是我们常说的重力场。
请估算地球重力场可视为匀强场的高度h (取地球半径R =6400km );(3)某同学查阅资料知道:地球引力场的“引力势”的表达式为=-G Mrϕ引(以无穷远处引力势为0)。
请你设定物理情景,简要叙述推导该表达式的主要步骤。
【答案】(1)引力场强度定义式FE m=引,推导见解析;(2)h =64976m ;(3)推导见解析. 【解析】 【分析】 【详解】(1)引力场强度定义式F E m=引 2MmF Gr = 联立得2M E Gr =引 (2)根据题意2M E GR =引 '2M E G r=引 '0.02E E E -=引引引h r R R =-=解得h =64976m(3)定义式引力势=p E mϕ引,式中p E 为某位置的引力势能把某物体从无穷远移动到某点引力做的功=0-=-p p W E E 引即=-p E W 引则当质量为m 的物体自无穷远处移动到距离地球r 处时,引力做功为W 引 通过计算得0MmW Gr =引> 所以=-p MmE Gr =-M Grϕ引2.如图所示,固定于同一条竖直线上的A 、B 是两个带等量异种电荷的点电荷,电荷量分别为+Q 和-Q ,A 、B 相距为2d 。
MN 是竖直放置的光滑绝缘细杆,另有一个穿过细杆的带电小球p ,质量为m 、电荷量为+q (可视为点电荷,不影响电场的分布。
),现将小球p 从与点电荷A 等高的C 处由静止开始释放,小球p 向下运动到距C 点距离为d 的O 点时,速度为v 。
已知MN 与AB 之间的距离为d ,静电力常量为k ,重力加速度为g 。
求: (1)C 、O 间的电势差U CO ;(2)O 点处的电场强度E 的大小及小球p 经过O 点时的加速度;【答案】(1) 222mv mgd q - (22kQ ; 2kQqg + 【解析】 【详解】(1)小球p 由C 运动到O 的过程,由动能定理得2102CO mgd qU mv +=- 所以222COm mgd U qv -=(2)小球p 经过O 点时受力如图由库仑定律得122(2)F F d ==它们的合力为F =F 1cos 45°+F 2cos 45°=Eq所以O 点处的电场强度2k QE 由牛顿第二定律得:mg+qE =ma所以222k Qqa g md=+3.“顿牟掇芥”是两千多年前我国古人对摩擦起电现象的观察记录,经摩擦后带电的琥珀能吸起小物体,现用下述模型分析研究。
在某处固定一个电荷量为Q 的点电荷,在其正下方h 处有一个原子。
在点电荷产生的电场(场强为E )作用下,原子的负电荷中心与正电荷中心会分开很小的距离l ,形成电偶极子。
描述电偶极子特征的物理量称为电偶极矩p ,q =p l ,这里q 为原子核的电荷量。
实验显示,p E α=,α为原子的极化系数,反映其极化的难易程度。
被极化的原子与点电荷之间产生作用力F 。
在一定条件下,原子会被点电荷“掇”上去。
(1)F 是吸引力还是排斥力?简要说明理由;(2)若将固定点电荷的电荷量增加一倍,力F 如何变化,即求(2)()F Q F Q 的值;(3)若原子与点电荷间的距离减小一半,力F如何变化,即求()2()hFF h的值。
【答案】(1)吸引力,(2)4,(3)32。
【解析】【详解】(1)F为吸引力。
理由:当原子极化时,与Q异种的电荷移向Q,而与Q同种的电荷被排斥而远离Q,这样异种电荷之间的吸引力大于同种电荷的排斥力,总的效果是吸引;(2)设电荷Q带正电(如图所示):电荷Q与分离开距离l的一对异性电荷间的总作用力为:2332222()222()()22(4)kQ q kQq hl kQql kQpF kQql l l h hh h h--=+=≈-=--+-式中:q=p l为原子极化形成的电偶极矩,负号表示吸引力,由于l h,故:2224lh h-≈又已知:p Eα=而电荷Q在离它h处的原子所在位置产生的电场场强大小为:2kQEh=于是,电荷Q与极化原子之间的作用力为:5222k QFhα=-它正比于固定电荷的平方,反比于距离的五次方,因此不管电荷Q的符号如何,它均产生吸引力。
当固定点电荷的电荷量增加一倍时,力F变为原来的4倍,即:(2)4()F QF Q=;(3)当原子与点电荷间的距离减小一半时,力F变为原来的32倍,即:()232()hFF h=。
4.如图所示,空间存在方向水平向右的匀强电场,两个可视为点电荷的带电小球P和Q 用绝缘细绳悬挂在水平天花板下,两细绳都恰好与天花板垂直,已知匀强电场强度为E,两小球之间的距离为L,PQ连线与竖直方向之间的夹角为θ,静电常数为k(1)画出小球P、Q的受力示意图;(2)求出P、Q两小球分别所带的电量。
【答案】(1)P带负电,Q带正电;(2)2sinELkθ【解析】【详解】(1)依题意得,小球P、Q受力示意图如图根据平衡条件,P带负电,Q带正电①(2)设P带电量为-q1,Q带电量为q2根据库仑定律:122Cq qF kL=②根据牛顿第三定律:F C=F C/③对于P球:根据平衡条件:1sinCq E Fθ=④解得:21sin EL q k θ=⑤ 对于Q 球: 根据平衡条件:'2sin c q E F θ= ⑥解得:22sin EL q k θ=⑦5.如图所示,长l =1m 的轻质细绳上端固定,下端连接一个可视为质点的带电小球,小球静止在水平向右的匀强电场中,绳与竖直方向的夹角θ=37°.已知小球所带电荷量q =1.0×10-6C ,匀强电场的场强E =3.0×103N/C ,取重力加速度g =10m/s 2,sin 37°=0.6,cos 37°=0.8.求:(1)小球所受电场力F 的大小; (2)小球的质量m ;(3)将电场撤去,小球回到最低点时速度v 的大小. 【答案】(1)F =3.0×10-3N (2)m =4.0×10-4kg (3)v =2.0m/s 【解析】 【分析】 【详解】(1)根据电场力的计算公式可得电场力6331.010 3.010N 3.010N F qE --==⨯⨯⨯=⨯; (2)小球受力情况如图所示:根据几何关系可得tan qEmg θ=,所以34310kg 410kg tan 10tan 37qE m g θ--⨯===⨯⨯︒;(3)电场撤去后小球运动过程中机械能守恒,则21(1cos37)2mgl mv -︒=,解得v =2m/s .6.如图所示,将带正电的中心穿孔小球A 套在倾角为θ的固定光滑绝缘杆上某处,在小球A 的正下方固定着另外一只带电小球B ,此时小球A 恰好静止,且与绝缘杆无挤压.若A 的电荷量为q ,质量为m ;A 与B 的距离为h ;重力加速度为g ,静电力常量为k ;A 与B 均可视为质点.(1)试确定小球B 的带电性质; (2)求小球B 的电荷量;(3)若出于某种原因,小球B 在某时刻突然不带电,求小球A 下滑到与小球B 在同一水平线的杆上某处时,重力对小球做功的功率.【答案】(1)带正电 (2)2B mgh q kq= (3)sin 2P mg gh =【解析】 【分析】(1)由题意A 静止且与杆无摩擦,说明A 只受重力和库仑力,故AB 之相互排斥,A 的受力才能平衡,可知B 的电性(2)由库仑定律可得AB 间的库仑力,在对A 列平衡方程可得B 的电量(3)B 不带电后A 只受重力,故由机械能守恒,可得A 的速度,进而得到重力功率 【详解】(1)根据题意:小球A 受到B 的库仑力必与A 受到的重力平衡,即A 、B 之间相互排斥,所以B 带正电.(2)由库仑定律,B 对A 的库仑力为F =2Bkqq h , 由平衡条件有mg =2Bkqq h 解得q B =2mgh kq. (3)B 不带电后,小球A 受到重力、支持力作用沿杆向下做匀加速直线运动,设到达题中所述位置时速度为v ,由机械能守恒定律有mgh =12mv 2, 解得v 2gh所以重力的瞬时功率为P =mgv sin θ=mg sin θ2gh .二、必修第3册 静电场中的能量解答题易错题培优(难)7.如图所示,M 、N 为竖直放置的平行金属板,两板间所加电压为0U ,1S 、2S 为板上正对的小孔. 金属板P 和Q 水平放置在N 板右侧,关于小孔1S 、2S 所在直线对称,两板的长度和两板间的距离均为l ; 距金属板P 和Q 右边缘l 处有一荧光屏,荧光屏垂直于金属板P 和Q ;取屏上与S 1、2S 共线的O 点为原点,向上为正方向建立x 轴,M 板左侧电子枪发射出的电子经小孔1S 进入M 、N 两板间. 电子的质量为m ,电荷量为e ,初速度可以忽略. 不计电子重力和电子之间的相互作用. 为简单计,忽略电容器的边缘效应. (1)求电子到达小孔2S 时的速度大小v ;(2)金属板P 和Q 间电压u 随时间t 的变化关系如图所示,单位时间内从小孔1S 进入的电子都相同. 电子打在荧光屏上形成一条亮线,忽略电场变化产生的磁场;可以认为每个电子在板P 和Q 间运动过程中,两板间的电压恒定.a. 试分析、猜测题干中“可以认为每个电子在板P 和Q 间运动过程中,两板间的电压恒定”这句话的根据?b. 当某个电子在金属板P 、Q 两板间电压0u U =时进入P 、Q 间,求其打到荧光屏上的位置.c. 求打到荧光屏上的电子最大动能.d. 试分析在一个周期(即02t 时间)内荧光屏单位长度亮线上的电子个数是否相同?【答案】(1)02eU v m= (2) a.见解析 b. 34l x = c.02km E eU = d.电子个数相同【解析】 【详解】(1)根据动能定理有:2012eU mv = 解得:02eU v m=(2)a. 由(1)中电子速度表达式猜测,由于电子比荷q/m 极大,电子很容易加速到很大的速度,电子在板P 和Q 间运动的时间远小于交变电压变化的周期,故“可以认为每个电子在板P 和Q 间运动过程中,两板间的电压恒定”。