初中数学鲁教版六年级上册一元一次方程的应用题型归纳
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学鲁教版六年级上册
一元一次方程的应用题型归纳
列方程解应用题,是初中数学的重要内容之一。许多实际问题都归结为解一种方程或方程组,所以列出方程或方程组解应用题是数学联系实际,解决实际问题的一个重要方面;同时通过列方程解应用题,可以培养我们分析问题,解决问题的能力。因此我们要努力学好这部分知识。
一.列一元一次方程解应用题的一般步骤
(1)审题:认真审题,理解题意,弄清题目中的数量关系,找出其中的等量关系.
(2)找出等量关系:找出能够表示本题含义的相等关系.
(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.
(4)解方程:解所列的方程,求出未知数的值.
(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.
二.分类知能点与题目
知能点1:市场经济、打折销售问题
(1)商品利润=商品售价-商品成本价
(2)商品利润率=
商品利润
商品成本价
×100%
(3)商品销售额=商品销售价×商品销售量
(4)商品的销售利润=(销售价-成本价)×销售量
(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.
例1.某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?
[分析]通过列表分析已知条件,找到等量关系式
等量关系:商品利润率=商品利润/商品进价
解:设标价是X 元,
,100
406060%80=- 解之:x=105
优惠价为),(8410510080%80元=⨯=x 例2. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?
[分析]探究题目中隐含的条件是关键,可直接设出成本为X 元
等量关系:(利润=折扣后价格—进价)折扣后价格-进价=15
解:设进价为X 元,80%X (1+40%)—X=15,X=125
答:进价是125元。
1.一种商品进价为50元,为赚取20%的利润,该商品的标价为________元.
60 (点拨:设标价为x 元,则x-50=50×20%)
2.某商品的标价为220元,九折卖出后盈利10%,则该商品的进价为______元.
180 (点拨:设商品的进价为x 元,则220×90%-x=10%x )
3.某种商品若按标价的8折出售可获利20%,若按原标价出售,则可获利( ).
A .25%
B .40%
C .50%
D .1
C (点拨:设标价为x 元,进价为a 元,则80%x-a=20%a ,得x=32
a ∴按原标价出售可获利32a a a
-×100%=50%) 4.两件商品都卖84元,其中一件亏本20%,另一件赢利40%,则两件商品卖后( ).
A .赢利16.8元
B .亏本3元
C .赢利3元
D .不赢不亏
C(点拨:设进价分别为a元,b元,则a-84=20%a,得a=105
84-b=40%b,得b=60 ∴84×2-(a+b)=3,故赢利3元)
5.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为().
A.45%×(1+80%)x-x=50 B.80%×(1+45%)x - x = 50
C.x-80%×(1+45%)x = 50 D.80%×(1-45%)x - x = 50
6.某商品的进货价为每件x元,零售价为每件900元,为了适应市场竞争,商店按零售价的九折让利40元销售,仍可获利10%,则x为().A.700元B.约733元C.约736元D.约856元
7.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.
解:设至多打x折,根据题意有1200800
800
x
×100%=5% 解得x=0.7=70%
答:至多打7折出售.
8.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.
解:设每台彩电的原售价为x元,根据题意,有
10[x(1+40%)×80%-x]=2700,x=2250
答:每台彩电的原售价为2250元.
9.某商品进价是1000元,标价为1500元,商品要求以利润率不低于5%的售价打折
出售,售货员最低可以打几折出售此商品?
知能点2:方案选择问题
10.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,•经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行精加工,每天可加工16吨,如果进行精加工,每天可加工6吨,•但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将
这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:
方案一:将蔬菜全部进行粗加工.
方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,•在市场上直接销售.
方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多?为什么?
解:方案一:获利140×4500=630000(元)
方案二:获利15×6×7500+(140-15×6)×1000=725000(元)
方案三:设精加工x吨,则粗加工(140-x)吨.
依题意得
140
616
x x
-
+=15 解得x=60
获利60×7500+(140-60)×4500=810000(元)
因为第三种获利最多,所以应选择方案三.
11.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50•元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1•分钟需付话费0.4元(这里均指市内电话).若一个月内通话x分钟,两种通话方式的费用分别为y1元和y2元.
(1)写出y1,y2与x之间的函数关系式(即等式).
(2)一个月内通话多少分钟,两种通话方式的费用相同?
(3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?
解:(1)y1=0.2x+50,y2=0.4x.
(2)由y1=y2得0.2x+50=0.4x,解得x=250.
即当一个月内通话250分钟时,两种通话方式的费用相同.
(3)由0.2x+50=120,解得x=350
由0.4x+50=120,得x=300
因为350>300
故第一种通话方式比较合算.
12.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费.