材料力学能量方法
材料力学能量法
限制条件:不适 用于求解动力学 问题如振动、冲 击等
适用范围:适用 于求解线性问题 如弹性、塑性等
限制条件:不适 用于求解非线性 问题如塑性、蠕 变等
材料力学能量法的发展趋势和未来 展望
材料力学能量法的发展趋势
计算方法:发展高效、准确 的数值计算方法
应用领域:拓展应用领域如 航空航天、生物医学等
柱的压缩问题
问题描述:柱在轴向 压力作用下的压缩问 题
应用实例:桥梁、建 筑等结构中的柱在受 压时的变形和破坏
能量法分析:利用能 量法分析柱的受压变 形和破坏过程
结论:能量法在柱的 压缩问题中的应用可 以有效地预测柱的变 形和破坏情况为工程 设计提供依据。
弹性体的振动问题
添加 标题
弹性体振动问题的背景:在工程中弹性体的振动问题非常常见如桥梁、建筑物、机械设备等。
定义和原理
材料力学能量法: 一种研究材料力学 问题的方法通过分 析能量变化来求解 问题。
基本概念:能量、 应力、应变、位移 等。
原理:根据能量守 恒定律材料的变形 和破坏过程中能量 会发生变化通过分 析这些变化可以求 解问题。
应用:广泛应用于 结构分析、优化设 计等领域。
能量法的应用范围
结构力学:分析结构受力、变形和稳定性 材料力学:分析材料应力、应变和断裂 流体力学:分析流体流动、压力和速度 热力学:分析热传导、对流和辐射 电磁学:分析电磁场、电磁波和电磁感应 声学:分析声波传播、反射和吸收
能量法的基本假设
材料是连续、均匀、各向同性的
材料是线弹性的应力与应变成正 比
添加标题
添加标题
材料是弹性的满足胡克定律
添加标题
添加标题
材料是各向同性的应力与应变的 关系与方向无关
材料力学 能量法
3
13 Pa 12 EI
3
M
能量法
例:图示梁,抗弯刚度为EI,承受均布载荷q及
集中力X作用。用图乘法求: (1)集中力作用端挠度为零时的X值; (2)集中力作用端转角为零时的X值。
能量法
解:(1)
ql / 8
2
1 wC EI
Xal 2a Xa 2 2a ql 3 a 2 3 2 3 12 2
l P 2 得:P wC1 m 2E I 2 ml 由此得: C wC1 8E I
2
能量法
例:长为 l 、直径为 d 的圆杆受一对横向压力 P 作用,
求此杆长度的伸长量。已知E和m。
能量法
解:由位移互等定理知,①杆的伸长量等于 ②杆直径的减小量
l
①
d
②
e d e d
4 P P d d E AE
能量法
例:已知简支梁在均布载荷 q 作用下,梁的中点挠
度
5ql w 384E I
4
。求梁在中点集中力P作用下(见
图),梁的挠曲线与梁变形前的轴线所围成的面积A。
A
能量法
A
5ql q A P 384E I
能量法
4
可用于线弹性材料,也可用于非线弹性材料。
能量法
§12-7 单位载荷法 莫尔积分
P1
P2
C
用虚功原理可以导出计算结构一点位移的单位载荷法
能量法
P1
P2
C
Fs ( x)
C
M ( x)
1 M ( x)d
M ( x) d dx EI
P0 1 Fs ( x)
材料力学:能量法
P
P1
l
P
Δ1
o
d
1
外力作功为
W 0 P dΔ
Ve W Δ1
0
P dΔ
p
l
p
P
从拉杆中取出一个各边为 单位长 的单元体, 作用在单元体上,下两表面的力为 P= 1 1 =
其伸长量
l=1=
p
1
p
d
1
该单元体上外力作功为
0 d
§3-2
一、应变能
应变能 • 余能
1. 线弹性条件下,通过外力功求应变能 常力作功:常力 P 沿其方向线位移 上所作的功
W P
变力作功:在线弹性范围内,外力 P 与位移 间呈线性
关系。 (静荷载为变力)
P
P
l
P
o
轴向拉(压)杆外力作功
Pl F N l EA EA
FN
P P P l 2 sin a 2tga 2d
P
2 FN d l
l
d
a1
l
a1
FN
FN
d
A P1
P
2 FN d P l
FN l EA
d2 l l l 2 l 2 2l l
2
l
(
FNl ) EA
2
2l (
FN l ) EA
0
1 1 2 d E1 2 2E
2
扭转杆
G
ve
1
0
1 1 2 d G 1 2 2G
2
例 题: 在线弹性 范围内工作的杆, 已知: m、G、l、d 。 求:在加载过程中所积蓄的应变能 Ve。
材料力学13能量法
功的互等定理:
F1 12 F2 21
即:F1 力在由F2力引起的位移上所作的功,等于F2 力在由F1力引起的位移上所作的功。
若F1 = F2 ,则得
位移互等定理:
12 21
即: F2引起的F1 作用点沿 F1方向的位移,等于同 样大小的力F1 引起的F2作用点沿 F2方向的位移。
( F1 F2 ) L F1 L F2 L F1F2 L V 2 EA 2 EA 2 EA EA
2
2
2
L
2) F1 单独作用下:
F1 F2
F1 L V 1 2 EA
3)F2 单独作用下:
F22 L V 2 2 EA
2
L F1 F2
L
V1 V 2 V
证毕。
b Px1 l ( 0 ≤x1 ≤ a) a CB段: M(x2 ) = RB x2 = Px2 l ( 0 ≤x2≤ b) 2
AC段:M(x1 ) = RA x1 =
13-3 应变能的普遍表达式
基础知识
广义
线弹性结构上受一个外力作用,任一点的位移与该力成正比。
线弹性结构上任意一点的广义位移与各广义力成线性 齐次关系。 比例加载时,线弹性结构上任一外力作用点沿外力方 向的位移与该点的广义力成正比。
P12 l1 P1作功为 V 3 2 EA
(5)应变能是可逆的。(跳板跳水)
总功仍为上述表达式。
直接利用功能原理求位移的实例
利用能量法求解时,所列 例 求简支梁外力P作用点C的挠度。 弯矩方程应便于求解。
解:
A x1 RA l a
P
材料力学-第十三章能量方法
fc
U P
M (x) M (x) dx
l EI P
1
EI
l 2 0
[(
P 2
Me l
) x1
M
e
]
x1 2
dx1
1 EI
l 2
(
P
02
Me l
) x2
x2 2
dx2
M el 2 Pl3 16EI 48EI
(
)
31
• 例13-6 求刚架B的水平位移和C点的转角。
解:
AB段: M (x1) (Pa Pf x1)
P
2
29
A截面的转角:
A
U M e
M (x) M (x) dx l EI M e
1
EI
l
2 [(
0
P 2
Me l
) x1
M e ](1
x1 l
)dx1
1
EI
l 2 0
(P 2
Me l
) x2
x2 l
dx2
M el 3EI
Pl 2 16EI
(
)
30
Me
p
A
C
X1
L/2 L/2
B
X2
C截面的挠度为:
A ②将内力对MA求偏导后,令M A=0
L xO
③求变形( 注意:M A=0)
M (x)
1
M A M 0
A
A
L
M (x) M (x) dx EI M A
L Px dx 0 EI
PL2
2 EI
A
PL2 ( 2 EI
)
“负号”说明 A与所加广义力MA反向。
材料力学能量法
B
2m C
F
30° A
能量法/克拉贝隆原理
•解: 由节点A的平衡条件求得AB杆的内力:
F N1
FN2
A
F
F N 12F115.2kN
AC杆的内力为:
F N 2F N 1c o s3 0 o 9 9 .8k N
杆系的应变能: UFN21LAB FN22LAC 172J 2EA1 2EA2
设节点A的竖直位移 A为
mF
代入应变能的内力表达式:
L
UM 2(x)dxL(F xm )2dx L 2E I 0 2E I
F2L3 FmL2 m2L 6EI 2EI 2EI
能量法/克拉贝隆原理
UF2L3FmL2 m2L 6EI 2EI 2EI
mF L
•从结果中可以看到:第一、三项分别为F和m单独作用时 的 应变能,故F、m同时作用在杆内所引起的应变能不等于各 载荷单独作用时所引起的应变能之和。其原因是这两个载 荷都使梁产生了同一种弯曲变形,彼此都在对方引起的位 移上做了功(结果中的第二项即代表F和m共同作用时在相 互影响下所做的功)。
2、能量法
利用应变能的概念,解决与弹性体系变形有关的问题的 方法。
在求解组合变形、曲杆或杆系以及超静定问题时,能量 法是一种非常有效的方法,是结构分析的基础。
能量法/基本概念
能量法有关的几个基本概念 1、外力功:线弹性体系在外力的作用下产生变形,每个外力
在与它相对应的位移上所作的功 W。
2、应变能:弹性体受外力作用下产生变形而储存了能量,这个
Ub 125 30
US 3(1)
能量法/克拉贝隆原理
二、应变能的普遍表达式(克拉贝隆原理)
基本变形下应变能的一般表达式:
材料力学第8章-能量法
能量原理的应用
能量原理可以应用于弯曲、拉伸、压缩等各种不同的力学问题。通过计算系统的势能和应变能,可以分 析材料的应力分布、变形情况和稳定性。
弹性势能和弹性材料的能量原 理
弹性势能是指弹性材料在外力作用下产生的能量。通过应变能和弹性势能之 间的关系,可以推导出弹性材料的力学性质和变形方程。
弹塑性材料的能量原理
材料力学第8章-能量法
材料力学的能量法是研究材料变形和力学行为的重要方法,它具有广泛的应 用。本章将介绍能量法的基本概念和应用,以及弹性和弹塑性材料的能量原 理。
能量法的基本概念
能量法是一种力学分析方法,通过考虑系统的能量变化,推导出材料的力学 性质和变形行为。能量法的基本概念包括势能和应变能的概念,以及能量守 恒定律。
通过能量法,我们可以分析臂梁在外力作用下的弯曲行为。通过计算和优化梁的几何参数和材料性质, 可以设计出更加稳定和高效的悬臂梁结构。
总结和要点
能量法是一种重要的材料力学分析方法,它通过考虑材料的能量变化,分析 材料的力学性质和变形行为。
对于弹塑性材料,除了考虑弹性势能外,还需要考虑应变能和塑性势能的贡献。能量原理可以用来分析 弹塑性材料的强度和变形行为。
能量法在材料力学中的重要性
能量法是材料力学中的一种基本方法,它可以用来分析各种不同类型的力学问题,包括材料的变形、破 坏和失稳行为。掌握能量法对于研究和设计材料结构至关重要。
应用实例:悬臂梁弯曲问题的分析
材料力学第12篇能量方法
(
2 x
2 xy
2 xz
)dV
V 2E 2G 2G
M T(x) M (x)
FN (x)
MT(x) M (x) F N (x)
dx 图12.9
组合变形时的应变能
M T(x) M (x)
FN (x)
MT(x) M (x) FN (x)
dx
图12.9
dV
dW
1 2
FN (x)d(l)
1 2
M T (x)d
dF1l EA
F 2l 2EA
1 2
Fl
V
1 2
F l
FN2l 2EA
F
(a)
如果杆件的轴力 FN 分段为常量时
V
n FN2i li i 1 2Ei Ai
△l
l
F
F1
dF1
F A
B △l
O
△ l1 d(△ l1)
△l
(b)
图12.1
杆件轴线的轴力为变量 FN (x) 时
V
l
FN2 (x) 2 EA( x)
V
V
v
dV
l
A
1 2G
FbSISzz*图122.d6 A
dx
(d)
γdx
dx
(c) 图12.6
FS( x)
梁的应变能
V
V v dV
{
l
A
[
M 2(x)y
2EI
2 z
2
FS
2
(
x)
S
*2 z
2GI z2b 2
]dA}dx
令
k
A
I
2 z
A
材料力学能量法
材料力学能量法材料力学能量法是材料力学中的一种重要分析方法,它通过能量原理来研究材料的力学性能和行为。
能量法在工程应用中具有广泛的意义,可以用于解决各种复杂的材料力学问题。
本文将对材料力学能量法进行详细介绍,包括其基本原理、应用范围和计算方法等内容。
首先,我们来看一下材料力学能量法的基本原理。
能量法是以能量守恒原理为基础的一种力学分析方法,它认为在任何力学系统中,系统的总能量始终保持不变。
在材料力学中,通过能量方法可以方便地求解结构的变形、应力分布和稳定性等问题。
能量法的基本原理为系统的总能量等于外力对系统做功的总和,即系统的内能和外力对系统做功的总和保持恒定。
其次,材料力学能量法的应用范围非常广泛。
它可以用于分析材料的弹性、塑性、断裂等力学性能,也可以用于研究材料的疲劳、蠕变、冷却等行为。
在工程实践中,能量法可以应用于各种材料的设计、优化和性能评估,如金属材料、复合材料、土木工程材料等。
通过能量法分析,可以更好地理解材料的力学行为,为工程设计和材料选型提供科学依据。
最后,我们来介绍一下材料力学能量法的计算方法。
能量法的计算方法主要包括弹性能量法、弹塑性能量法和断裂能量法等。
在应用中,需要根据具体问题选择合适的能量方法,并结合数值计算和实验验证进行分析。
在计算过程中,需要考虑材料的本构关系、加载条件和边界约束等因素,以确保计算结果的准确性和可靠性。
综上所述,材料力学能量法是一种重要的力学分析方法,具有广泛的应用前景和深远的理论意义。
通过能量法分析,可以更好地理解材料的力学性能和行为,为工程实践提供科学依据。
在今后的研究和应用中,我们需要进一步深入理解能量法的基本原理和计算方法,推动其在材料力学领域的发展和应用。
材料力学 能量法
能量法一、变形能(应变能):变形固体在外力作用下由变形而储存的能量“”。
弹性变形能:变形固体在外力作用下产生的弹性变形而储存的能量1、性变形能具有可逆性。
2、塑性变形能不具有可逆性。
二、变形能的计算:利用能量守恒原理能量守恒原理:变形固体在外力作用下产生的变形而储存的能量,在数值上等于外力所作的外力功。
三、能量法:利用功能原理和功、能的概念进行计算的方法。
常见的能量法——功能原理、单位力(莫尔积分)、卡氏定理等。
在卡氏第二定理中应该注意的问题①、Vε——整体结构在外载作用下的线弹性变形能。
②、F i视为变量,结构反力和变形能等都必须表示为F i的函数②、Δi为F i作用点的、沿F i方向的变形③、Δi处要有相应的荷载,当无与Δi对应的F i时,可采用附加力法进行计算。
既先加一沿Δi方向的F i(在所求位移处沿所求位移的方向加上相对应的附加力),求偏导后,在令其为零,结果即为实际荷载作用的位移⑤、结果为正时,说明Δi与F i的方向相同;结果为负时,说明Δi与的F i方向相反。
单位力载荷法注意问题1、此种方法存在两个力系:一个为实际的力系;另一个为单位力系。
2、单位力必须与所求位移相对应:若求线位移——则单位力必须作用在所求点沿所求位移方向加单位的集中力;若求角位移——则单位力必须作用在所求点沿所求位移方向加单位的集中力偶。
2、内力的坐标系必须一致,每段杆的坐标系可自由建立。
莫尔积分必须遍及整个结构。
4、结果为“+”只说明所加的单位力的方向与实际的位移方向相同;“-”只说明所加的单位力的方向与实际的位移方向相反。
材料力学(能量法)
弹性变形阶段
01
外力作用下,材料发生弹性变形,此时外力所做的功全部转化
为应变能储存于材料内部。
塑性变形阶段
02
当外力继续增加,材料进入塑性变形阶段,部分应变能转化为
热能散失到环境中。
断裂破坏阶段
03
当材料达到强度极限时发生断裂破坏,此时储存的应变能迅速
释放并转化为断裂表面的新表面能和其他形式的能量。
非圆截面扭转时的能量可以通过实验或数值模拟等方法进 行计算,以获得准确的能量值。
扭转变形过程中能量转化
弹性变形能
在扭转变形过程中,部分能量以弹性变形能的形式储存在材料中。 当外力去除后,这部分能量可以释放并使材料恢复原状。
塑性变形能
当扭转变形超过材料的弹性极限时,部分能量会以塑性变形能的形 式消耗在材料中。这部分能量不可逆转,导致材料产生永久变形。
压缩过程中能量变化
外力做功
在压缩过程中,外力对杆件做 功,使其产生压缩变形和位移 。外力做功的大小与外力的大 小和杆件的位移成正比。
内力耗能
杆件在压缩过程中,材料内部 会产生应力和应变,从而消耗 能量。内力耗能的大小与材料 的应力-应变关系有关。
弹性势能
杆件在压缩过程中,由于材料 的弹性变形,会储存一定的弹 性势能。弹性势能的大小与材 料的弹性模量和变形量有关。
结构稳定性分析方法
能量准则
通过比较结构失稳前后的能量变 化,判断结构的稳定性。若失稳 后能量降低,则结构不稳定。
平衡路径跟踪法
通过逐步增加荷载或位移,跟踪 结构的平衡路径,观察结构从稳 定到不稳定的转变过程。
特征值分析法
基于结构刚度矩阵和质量矩阵, 求解特征值和特征向量,分析结 构的振动特性和稳定性。
材料力学2--能量法
因仅与第i个荷载相应的位移有一微小增量, 而与其余各荷载相应 的位移保持不变,因此,对于位移的微小增量d i ,仅Fi 作了外 力功,外力功的变化为:
d W Fi di
注意到上式与下式在数值上相等
V d V d i i
从而有:
V Fi i
(卡氏第一定理 )22l l 2 l l 2 FN EA
F F F Fl FN 2 sin 2 tan 2 l 2
F 代入前一式得: l EA
3
F F= ( /l )3 EA
或: F EA
l
3
(几何非线性弹性问题)
O
其F-间的非线性关系曲线为: 应变能为:
所以有
V vV v Al
应变能的特征:
(1)应变能恒为正的标量,与坐标系的选取无关; (2)由能量守恒原理可以证明:应变能仅与荷载的 最终值有关,而与加载的顺序无关; (3)在线弹性范围之内,应变能为内力(或位移) 的二次函数,因此力的叠加原理不再适用;
例1:弯曲刚度为 EI 的简支梁受均布荷载 q 作用,如图所 示。 试求梁内的应变能 。
由于外力余功在数值上等于余能,得
d V c d Wc
V c 解得: i Fi
(称为“余能定理”)
特别:对线弹性体,由于力与位移成正比,应变能 V 在数值上等于余能V c , 此时上式变为:
V i Fi
(称为“卡氏第二定理”)
式中的Fi 和i分别为广义力和广义位移。
应用卡氏第一定理得
V EA 4 2 2 ( 1 2) 0 1 2l 2 2 V EA 2 ( 1 2) F 2 2l 2
材料力学--能量法
F
R
A
FA
R
M n
T
t
弯 矩:M () FR sin
扭矩:T () FR(1 cos) 12
2、变形能:
弯 矩:M () FR sin
扭矩:T () FR(1 cos)
U T 2 (x) dx M 2 (x) dx
l 2GI P
l 2EI
U1 U2
U U1 U2 F1 l2 U1 U2 F2 l1
结论:应变能与加载次序无关。
10
[例11-1-1] 用能量法求C点的挠度。梁为等截面直梁。
F
解:外力功等于应变能
A
C
B
W
1 2
FwC
a
a
U
L
M 2(x) 2EI
dx
利用对称性,得:
M (x)
L 2EA
L 2GIP
L 2EI
注意:应变能是力的二次函数,因此,引起同一 基本变形的一组外力在杆内所产生的应变能,并不等 于各力分别作用时产生的应变能的简单相加。
6
例如: 求图示简支梁的应变能。 解:设F和M同时由零按比 A 例加至终值。
(1)求支反力,列弯矩方程:
x
F
C
l 2
M1(x)
1 2
MFl2 16
M 2l 6
7
U
1 EI
F 2l3 96
MFl2 16
M 2l 6
(a)
A
FM
C
B
变形(a)式得
l
l
《材料力学》11-1能量法
F1 dF
0
与外力功
W
1 0
Fd之和等于矩形面积
F1 1
线弹性范围内外力功等
F
F
于余功,能等于余能。
F1
F1
o
1
o
1
例题
试计算图示结构在荷载 F1 作用下的余能,结构中两杆的 长度均为 l,横截面面积均为A材料在单轴拉伸时的应力
—应变曲线如图所示。
B
D
K1nn1 1
C
F1
解:由结点C的平衡方程,可得两杆的轴力为
例题
xy平面内,由k根杆组成的杆系,在结点A处用铰链结 在一起,受到水平荷载和铅垂荷载作用,截面分别 为 A1,A2,Ai,Ak ,试用卡氏第一定理求各杆的轴力。
1
2
i
k
F1 A
F2
这种以位移为基本未知量,把它的求解当作关键性问题的方法称为位移法
本章作业
(II)3-2,
(II)3-4,
(II)3-10,
例题
图示在线弹性范围内工作的一端固定、另一端自由的圆轴,在自由端截面
上承受扭转力偶矩M1。材料的切变模量G和轴的长度 l 以及直径 d 均已知。 试计算轴两端的相对扭转角。
M1
d
A
B
l
四 余功、余能及卡氏第二定理
Wc
F1 dF
0
与余功相应的能称为余能
Vc V vcdV
vc
1 d
0
Vc
Wc
V cvc2Al2A nK lnn1 cF 1 o sn1
卡氏第二定理
F1
F2
F3
Fn
A
B
1
2
3
n
材料力学第十三章 能量法
1 W F wC 2
由Vε=W 得
Fa 2b 2 wC 3 EIl
例题
试求图示四分之一圆曲杆的变形能,并利用功能原理求B截
B
面的垂直位移. 已知EI为常量.
解: M ( ) FRsin
F
R
θ
M ( ) Vε Rd l 2 EI π ( FRsin )2 πF 2 R 3 2 Rd A 0 2 EI 8 EI 1 W F y 2 πFR 3 由Vε=W 得 y 4 EI
1 1 1 1 W P1 1 P2 2 P3 3 Pn n 2 2 2 2
All forces are applied slowly from zero to the final value. All deformations are within the proportional limit. Conclusion: (1) U is not related to the order in which the forces are applied. (2) U = W
q
A B
F=qa
C x A x B x 2a a
C
1
x
FRA
2a
a
1/2a
(2)求C 截面的转角(在C处加一单位力偶)
qa qx 2 x AB: M ( x) x M ( x) 2 2 2a BC: M ( x ) qa x M ( x) 1 2 2 a qa a 1 qx x C [ ( x )( )dx ( qax )(1)dx ] 0 EI 0 2 2 2a 5qa 3 6 EI ( )
例题 图示外伸梁,其抗弯刚度为 EI. 用单位载荷法求C点的挠 度和转角.
材料力学能量法
材料力学能量法
材料力学是研究材料在外力作用下的变形、破坏和稳定性等问题的学科。
能量法是材料力学中的一种重要分析方法,它通过能量的守恒原理来分析材料的力学性能,为工程实践提供了重要的理论支撑。
本文将对材料力学能量法进行介绍,包括能量原理、应用范围、解题方法等内容,希望能为相关领域的研究人员和工程师提供一些参考。
在材料力学中,能量原理是指系统在外力作用下,能量的总变化等于外力所做的功。
根据这一原理,可以利用能量方法来分析材料的力学性能。
能量方法的应用范围非常广泛,可以用于分析材料的弹性、塑性、断裂等问题,也可以用于分析结构的稳定性和动力响应。
在工程实践中,能量方法被广泛应用于材料设计、结构优化和故障分析等领域。
在使用能量方法进行分析时,首先需要建立系统的能量平衡方程,然后根据系统的力学性能和外力条件,确定系统的势能和动能表达式。
接下来,可以利用能量平衡方程来推导系统的力学性能参数,比如应力、应变、位移等。
最后,通过求解能量平衡方程,可以得到系统的稳定性、破坏条件等重要信息。
除了上述基本方法外,能量方法还可以结合其他分析方法,比如有限元方法、变分原理等,来进行更复杂的问题分析。
在工程实践中,能量方法通常与实验测试和数值模拟相结合,可以为工程设计和材料选择提供重要的参考依据。
总之,材料力学能量法是一种重要的分析方法,它通过能量的守恒原理来分析材料的力学性能,为工程实践提供了重要的理论支撑。
希望本文的介绍能够对相关领域的研究人员和工程师有所帮助,也希望能够引起更多人对材料力学能量法的关注和研究。
材料力学能量法范文
材料力学能量法范文材料力学能量法是一种分析和计算物体的力学行为的方法,它基于能量守恒定律。
在这种方法中,物体或结构的变形和应力被视为能量的转化和传递过程。
通过确定系统的动能和势能,并将其与外部力和内部能力作为输入参数,可以计算系统的平衡状态和力学性能。
材料力学能量法的应用十分广泛,特别在工程领域中,例如结构分析、疲劳分析、材料强度计算和复杂系统的模拟等。
这种方法的基本原理是通过对物体的动能和势能之间的转化过程的考虑,来得到物体的平衡状态和力学性能。
在材料力学能量法中,物体的动能是由其质量和速度决定的,而势能是由物体的形变和应力分布决定的。
物体的动能包括其线性运动的动能和旋转运动的动能。
线性运动的动能可以通过物体的质量和速度平方的乘积来计算,而旋转运动的动能可以通过物体的惯性矩和角速度平方的乘积来计算。
物体的势能包括其弹性势能和塑性势能。
弹性势能是由物体的形变和应力分布引起的,而塑性势能是由物体在塑性变形时的能量损失引起的。
弹性势能可以通过弹性模量和物体的形变量的乘积来计算,而塑性势能可以通过材料的塑性应变和应力的乘积来计算。
在材料力学能量法中,系统的总能量是系统动能和势能的总和。
根据能量守恒定律,系统的总能量在无外部能量输入的情况下保持不变。
通过计算系统各个部分的动能和势能,可以确定系统的能量平衡状态和力学性能。
材料力学能量法的优点是可以考虑到物体的整体行为,并对动能和势能之间的转化过程进行分析。
它可以用来解决复杂的力学问题,并提供物体的应力和变形的直观理解。
此外,它还可以与其他力学方法相结合,例如有限元分析和基于能量的优化方法。
然而,材料力学能量法也有一些限制。
它通常只适用于小变形和较简单的物体形状,而对于大变形、非线性材料和复杂几何形状的物体,其精确性可能会降低。
此外,对于一些实际工程问题,由于存在其他影响因素,如温度和湿度等,材料力学能量法可能需要进一步修正和扩展。
总之,材料力学能量法是一种重要的力学分析方法,它基于能量守恒定律,通过对系统动能和势能之间的转化过程进行分析,来确定物体的平衡状态和力学性能。
材料力学 第10章 能量法
材料力学第10章能量法在材料力学这门学科中,能量法是一种重要的分析方法。
它可以帮助我们计算杆件受力、弯曲、扭转等方面的机械能量,以及计算受力杆件的变形和应力分布等方面的物理能量。
本文将对材料力学第10章中的能量法做一简要介绍和讲解。
第一节:能量法的基本概念能量法的基本概念是物理学中的能量守恒定律。
根据能量守恒定律,能量可以被转化为其他形式,但总能量守恒不变。
在材料力学中,能量法通过分析杆件的受力变形过程,计算机械能、变形能和应变能等不同形式的能量,来求解某些物理量,如杆件的应力、变形等。
第二节:能量法的应用能量法可以应用在杆件的弯曲、扭转、受力等方面。
其中,弯曲问题是最为常见的。
在弯曲分析中,我们需要计算杆件上各点的剪力和弯矩,使用能量法时,我们可以采用双曲线弧长法和曲率半径法来计算。
在扭转分析中,我们需要计算杆件上各点的切向力和扭矩,使用能量法时,我们可采用扭转角度法和扭转能的变化法来计算。
在受力分析中,我们需要计算杆件上各点的应力和应变,使用能量法时,我们可以用弹性能和破裂能来计算杆件的应力和应变等物理量。
第三节:能量法的计算过程在应用能量法进行分析时,需要进行以下步骤:1. 建立受力变形模型:根据杆件的几何形状和受力情况建立受力变形模型,确定受力分布和变形情况。
2. 确定杆件的位移和应变能量:计算杆件受力变形后的弹性能、变形能等物理能量。
3. 利用能量守恒定律:将机械能、弹性能、变形能和应变能等能量之和等于零,根据能量守恒定律和受力变形模型,求解杆件的位移、应力和应变等物理量。
4. 对解得的结果进行有效检验:通过检查应力、应变等物理量的分布情况,对解得的结果进行有效检验。
总而言之,能量法是材料力学分析领域中非常重要的分析方法。
它广泛应用于工程设计、科研和生产实践等领域。
通过掌握能量法的理论基础和实际应用方法,可以有效地分析和解决杆件受力、弯曲、扭转等方面的技术问题,推动材料力学学科的发展进步。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§13–7 单位载荷法 莫尔积分
q(x) A
求任意点A的位移f A 。
fA 图a
P0 =1 A
图b
q(x) A P0 =1
图c
f
A
W Vε
L
M 2 (x)dx 2EI
在A点加单位力:
W
Vε
L
M 2 (x) dx 2EI
先加单位力,再加原载荷:
W1 W W 1 f A
V1 L
W
1 2
Pl
P2l 2EA
即:Vε
FN2l 2EA
B
1
C
30° A
2
P
Vε
n
i1
FN2i li 2Ei Ai
1
4P 2
P
a
a
2.扭转杆的变形能计算: m
l
W 1 m
2
T l ml G Ip G Ip
W 1 m m2 l T 2 l
2
2G Ip 2G Ip
第十三章 能量方法
§13–1 概述 §13–2 杆件应变能的计算 §13–3 应变能的普遍表达式 §13–4 互等定理 §13–7 单位载荷法 莫尔积分 §13–8 计算莫尔积分的图乘法
§13–1 概述
应变能 杆件发生弹性变形,外力功转变为变形能贮存在杆内,这
种能称为应变能(Strain Energy),用“V”表示。
C
B
P
A
②变形能:
T 2 (x)
M 2 (x)
Vε L 2GI P dxL 2EI dx
(dx Rd)
P2R2(1 cos )2 Rd P2R2(sin )2 Rd
0
2GIP
0
2EI
3P2R3 P2R3
4GIP
4NE2I( x)
T 2 (x)
M 2 (x)
③外力功V等ε 于应L 变2能EA dxL 2GI P dxL 2EI dx
W
1 2
P
fA
Vε
fA
PR3
2EI
3PR3
2GI P
§13–3 互等定理
P1
A
δ11
BA
ቤተ መጻሕፍቲ ባይዱ
d 21
P1
P2
A
B
d11 d12
d 22 d 21
P2
B δ22
d12
P1
P2
P1
Vε
W
T 2l 2GI P
m
dx l
T 2 (x)dx dVε 2GI P
Vε
T
2 (x) dx 2G Ip
T(x) T(x)+dT(x) O
dx
3.弯曲杆的变形能计算:
W 1 m
2
A
ml
EI
W 1 m
2
m2 l 2E I
M2 l 2E I
Vε
W
P2
A
BA
B
d11 d12
d 22 d 21
d12 d11 d 22
Vε
1
1 2
P1(d
11
d12
)
1 2
P2
(d 22
d21)
Vε
2
1 2
P1d
11
1 2
P2
d
22
P1 d12
Vε 1 Vε 2
P1 d12 P2 d 21
功的互等定理
当 P1=P2 时 d12 d 21
dxL
M 2 (x) dx 2EI
[例13.1](P31) 图示半圆形等截面曲杆位于水平面内,在A点 受铅垂力P的作用,求A点的垂直位移。
解:用能量法(外力功等于应变能)
P
①求内力
R
R
A
弯矩 : M ( ) P AC P R sin 扭矩 :T () P BC PR(1 cos)
[M
( x)M 2EI
当 P1=P2 时
d12 d21
位移互等定理
P1
P2
A δ11
BA
B δ22
d 21
d12
在1力作用下2力方向上的位移等于在2力作用下1力方向上的位移
P1 P2
A
A
P1 = P2
图1
图2
已知:图1中A点的水平位移为3mm,
(d 21)
求:图2中A点的铅垂直位移?
(d12)
在1力作用下2力方向上的位移等于在2力作用下1力方向上的位移
M (x1)
P 2
x1
; (0 x1 a)
P M (x2 ) 2 x2 ; (0 x2 a)
Vε
a 0
2
1 EI
(
P 2
x1
)
2
dx1
a 0
1 2EI
(
P 2
x2 )2 dx2
2
a 0
1 2EI
(P 2
x1)2 dx1
P2a3 12 EI
W Vε
fC
M 2l 2 EI
m
l
d Vε
M 2 (x)dx
2EI
Vε
M
2 (x)dx 2EI
q
A
B
dx
l
M(x) (+)
M(x)+dM(x)
[例1] 用能量法求C点的挠度。梁的EI为已知。
解:外力功等于应变能
A
x1 a
P
C
B
fC
a x2
W
1 2
P
f
C
M 2 (x)
Vε L
dx 2EI
Pa 3 6EI
§ 13–3 变形能的普遍表达式
1. 物体受外力P1、 P2、•••、 Pn ,n个力
P1
P2
2. 物体无刚性位移,外力作用点沿作用线方
向的位移为:δ 1、 δ 2、 •••、 δ n
δ1
3. 物体的材料是线弹性的。
δ2
变形能与加载次序无关,只与外力
和位移的最终值有关。
采用等比例加载,
M(x)
P
N(x)
T(x) T(x)
N(x)
A
dx
dVε
FN2 ( x)dx T 2 ( x)dx M
2EA
2GI P
2 ( x)dx 2EI
Vε
L
N 2 (x) 2EA
dx
L
T 2 (x) 2GI P
dxL
M 2 (x) dx
2EI
Vε
FN2l 2EA
L
T 2 (x) 2GI P
dn Pn P1 : P2 :: Pn c1 : c2 :: cn
则P1和δ 1成正比,P2和δ 2成正比, •••
W
1 2
P1 d1
1 2
P2
d2
1 2
P3
d3
P1 P2
式中P可以是力偶,则
δ1
对应的δ 应为角位移
δ2
dn Pn
应变能是否可以应用叠加法?
P1
P2
A
B
P1 A
能量原理:
弹性体内部所贮存的变形能,在数值上等于外力所作的功, 即
Vε W
利用这种功能关系分析计算变形固体的位移、变形和 内力的方法称为能量方法。
§13–2 杆件应变能的计算
1.轴向拉压杆的变形能计算:
已知:P、A、l、E
l
Δl
PP
l Pl
EA
l
W 1 Pl,
2
l
Pl EA
Vε
B
A
P2 B
应变能是否可以应用叠加法?
P m
l P
m
l
l
W 1 m
2
W
1 2
P
f
C
如果各作用力产生的变形是相互独立的,则引起的
变形能可以相互叠加。
[例1] 图示半圆形等截面曲杆位于水平面内,在A点受铅垂力P的 作用,求A点的垂直位移。
P
R A
R
P
杆件组合变形时如何计算应变能?
M(x)