仿生四足机器人的研究:回顾与展望(3)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
仿生四足机器人的研究:回顾与展望
摘要:本文侧重于仿生四足机器人。在这一领域的主要挑战是如何设计高动力性和高负载能力的仿生四足机器人。本文首先介绍了仿生四足机器人,尤其是具有里程碑意义的四足机器人的历史。然后回顾了仿生四足机器人驱动模式的现代技术。随后,描述了四足机器人的发展趋势。基于仿生四足机器人的技术现状,简要回顾了四足机器人的技术难点。又介绍了山东大学研制的液压四足机器人。最后是总结和展望未来的四足机器人。
一、导言
代替人类在复杂和危险的环境中工作的移动机器人的需求引起越来越多的关注,如煤矿井下,核电站,以及打击恐怖主义的战争。一般移动机器人可分为三种类型:空中机器人,水下机器人和地面机器人。地面机器人的开发主要是运用轨道或轮子。轮式和履带式机器人可以在平整地面工作,但大多数是无法在凹凸不平的地面上工作。换句话说,现有的地面机器人只能在部分地面工作。与轮式和履带式机器人相比,腿式机器人有可能适应更为广泛的地形,就像如同有腿的动物,几乎可以行走在所有的地形。例如,羚羊具有很强的运动能力,即便在高度复杂的环境中也一样。因此,近些年人们积极地投入腿式机器人的研究中。腿式机器人可以去动物能够到达的地方,应该要构建并运用于实际。尽管机器人技术领域取得了巨大成就,腿式机器人仍然远远落后于它们的仿生学 [1,2]。
基于机械结构,腿式机器人可分为步行机器人和爬行机器人。与爬行动物的机器人相比,步行机器人几乎与躯干垂直的腿被认为更适应载重。步行机器人可以有效地承受更大的载重。具有联合执行机构的步行机器人具有良好的行走速度和运输能力。因此,基于哺乳类动物的仿生机器人的研究已成为机器人领域的重要发展方向。
现已有一、二、三、四甚至更多条腿的腿式机器人。最普遍的是具有高效率步态和稳定性能的偶数条腿的腿式机器人[3]。在腿式机器人中,四足机器人具
有良好的机动性和运动稳定性,而典型的双足机器人,缺乏运动的稳定性。从系统和控制器的设计上来看,四足机器人也是一个不错的选择。另一方面,四足机器人在构建和维护上又比六足要简单。四足机器人比轮式或履带式机器人更加灵活,并比双足机器人稳定。因此,许多研究人员和组织在生物动态步态的启发下致力于四足机器人的研究,以使机器人具有高平衡能力和高负载能力。在一般情况下,为了提高运动稳定性,增加步行速度和运输能力,就需要具有大带宽和高输出功率的液压执行机构。机器人控制系统,即用来控制四足机器人动作,步态生成和转换,应在在未来得到研究和解决。
本文组织如下:在第二部分回顾了四足仿生机器人的历史和驱动模式的发展趋势。第三部分介绍了四足机器人的发展趋势。然后,在第四部分分析了四足机器人的技术难点。第五部分介绍了中国山东大学正在开发的液压四足机器人。最后一部分是总结和展望未来的四足机器人。
二、四足仿生机器人的历史
本节回顾具有联合执行机构的四足仿生机器人的历史。我们首先关注基于仿生学的四足机器人的发展现状。然后回顾了四足机器人的驱动模式的发展趋势,特别详细介绍了液压驱动,这样一个提高了动力性能和负载能力的新型驱动模式。
A.四足仿生机器人的历史
四足机器人的调查始于20 世纪60 年代,而四足机器人的动态运动性能的研究则是从 20 世纪 80 年代开始的。Marc Raibert 和他的同事们在一、二四条腿的机器人腿部运动方面取得了巨大的成功。
20 世纪 60 年代初,许多国外的科学家和研究人员致力于研究条腿式机器人。在 1960 年,Shigley 提出采用联动机构,包括四杆机构、凸轮机构、缩放机构,作为腿式机器人的运动机构。腿部的运动由一组双摇杆机构控制[4]。McGhee 和 Frank 于1966 年制作了被称为“Phoney Pony”的四足机器。这是第一辆腿式的运载工具,在全电脑控制下自主行走。每条腿有两个自由度(DOFs)系统,并能进行简单的爬行运动,以及取决于选定状态图的对角线小跑。Phoney Pony 具有十分重要的意义,因为
它激发了 McGhee 去建立新的在步行机器人的历史上也起到重要作用的机器:OSU hexapod 和 Adaptive Suspension Vehicle(ASV)[5]。
在80 年代初,美国麻省理工学院(MIT)的 Marc Raibert,H. Miura,我以及日本东京大学的Shimoyama 首次对步行机器人进行了系统的研究。Marc Raibert 建立平面以及立体的独腿跳跃机器人。在Raibert 关于跳跃机器人的三个控制原理的基础上,两足和四足可以跑可以跳的机器人随后也制造出来。这是四足机器人动态步态运动控制的一个里程碑[6]。在1984 至1987 年间,动态行走的四足机器人Collie-1 和Collie-2 已经研制成功,东京大学的Professor Miura 和Professor Shimoyama 对此进行了更深入的研究。这些机器人可以实现小跑和踱步以及小跑和踱步之间的过渡 [7]。
严格地说,TITAN 系列四足机器人并不属于仿哺乳动物的机器人,但它也是机器人发展史上的一个里程碑。TITAN III 是一种在 TITAN 系列中具有立体收缩结构腿的四足机器人。它安装了了姿态传感器和触须传感器,并装有智能步态控制系统,来根据传感器的信息作出决定,以实现静态地形自适应步行[8]。随着四足机器人的进一步发张,在德国一个名为“BISAM”的四足步行机器人由R. Dillmann 和他的研究小组制造出来。一种基于耦合振子的自适应控制方法被用来模拟 BISAM 周期运动,在 BISAM 的实验平台上,一种基于仿生的为实现动态稳定运动的自适应控制架构——鲁棒控制法被提了出来[9]。
在1999 年,基于中枢模式发生器(CPGs),Kimura 和他的在京都技术研究所的同事们研究了四足机器人动态步行的方式。四足机器人 Patrush 以及后来的Tekken 系列机器被开发出来。在Tekken 系列中,独立的四足机器人Tekken II 是由电机驱动,使用了机械弹簧和关节间的柔性连接,采用 CPGs 和反射,实现了动态行走[10]。在2009 年,Kimura 又开始研制四足机器人“Kotetsu”,采用基于腿部加载/卸载的相位调制的方法,挑战了一般使用自适应动态行走的四足运动控制方法。