水声换能器

合集下载

海洋论坛▏水声换能器研究进展

海洋论坛▏水声换能器研究进展

海洋论坛▏水声换能器研究进展一、引言声波是迄今为止人类所掌握的唯一能在海洋中远距离传递信息与传播能量的载体,水声技术也因此成为水下通讯导航、水产渔业、海洋资源、海洋地质地貌、军事武器等领域的重要手段。

水声换能器的使命即是在一定频带内按规定的信号形式激发产生声波和不失真地感知与接收水中声波信号,由此换能器也被人们形象地喻为声纳系统的“耳目”。

随着水声技术应用领域的不断拓展与延伸,在海洋资源探测开发的技术竞争、军事对抗及全面感知地球的迫切需求背景下,水声换能器技术的飞速发展成为声纳技术发展的重要前提,新材料技术、精细加工技术、基础工艺技术以及数值计算分析技术等为换能器技术的快速发展提供了物质基础和技术条件。

其中有关新材料、新机理、新结构换能器的发展情况曾在相关综述文章中分别描述过,本文就笔者所掌握的资料和有限的理解水平简要地综述几种典型结构类型换能器近些年的发展状况,主要包括:弯张换能器、圆柱面辐射型换能器、纵向换能器等等。

二、弯张换能器设计研究的新思想及技术动态弯张换能器分为许多类型,其中IV 型弯张换能器是由纵向振子驱动椭圆形外壳做弯曲振动的一类换能器结构形式,常被用于低频大功率发射声源或设计低频主动声纳,如美国海军的拖曳式低频主动声纳(SURTASS-LFA),采用18只大功率IV型弯张换能器组成垂直发射阵,工作频带100~500Hz,声源级220~235dB。

单只换能器用两台S11-48型功率放大器驱动,输出电压1600V,最大声源级215dB。

关于IV型弯张换能器设计改进主要体现在对驱动振子的优化和宽带设计上,有关文献设计了一种长轴加长型结构(图1),以新型弛豫铁电单晶铌镁酸铅—钛酸铅(PMNT)材料叠堆为驱动元件,这种结构思想使换能器在保持频率低、响应高等优点的同时,显著拓宽了工作带宽。

图1 长轴加长型宽带弯张换能器鱼唇式弯张换能器是我们近些年研究的一种新结构弯张换能器,采用变高度椭圆壳体,这样的壳体兼有振幅放大和高度加权放大的“双重放大”作用,采用T erfenol-D超磁致伸缩材料驱动和溢流腔结构,?3dB带通Q值小于3,采用了溢流腔填充顺性材料可获得较大的工作深度,该型换能器目前已经得到广泛应用,谐振频率可以从100Hz覆盖到1.8kHz,单只换能器谐振频率下声源级在190dB以上,图2给出其中两例换能器实物照片,系列换能器中几何尺寸最小的为长轴80mm,最大的长轴大于1m。

水声换能器及基阵 - 绪论

水声换能器及基阵 - 绪论

利用低声速、大应变功能材料:Terfenol-D
Material properties
Terfenol-D
Young's modulus(GPa)
30
Maximum strain(106 )
1500-2000
Energy Density( J / m3 )
14000-25000
Wave speed(m/s)
能量所携带的信息(频率、幅度、相位等)重现.
Input electric signal
Output acoustic signal
Vice versa! Transducer is reciprocal.
水声换能器
Projector/transducer/transmitter (Electric signal → Acoustic signal)
ka 1
High power
Broadband
如何解决这些矛盾?从增加振动位移、辐射阻上入手
利用弯张换能器的位移放大效应
Displacement amplification effect of flextensional transducer
lever
压电堆在长轴方向上的振动位移,通过杠杆效应,在椭圆壳短轴方向放大了数倍
Inverse piezoelectric effect
������ = ������������3
������������3 = ������
1 2
������������������
2
=
������������
Voltage→electric field→strain→displacement→vibration in water→sound radiation

(完整版)水声换能器的基础知识

(完整版)水声换能器的基础知识

水声换能器基础知识地球表面积的71%是海洋,海洋里蕴藏着丰富的生物和矿物质资源,是人类今后生存和发展的第二个空间。

而声纳这一水下探测设备则是人类开发海洋的重要帮手,更是海军和民用航海事业不可缺少的组成部分。

声纳设备的功能,就是收听水下有用信号并把它转变为电信号以供视听;或者自身产生一个电信号再转变为声信号在水介质中传播,遇到目标后反射回来再进行接收,转变为电信号供收听或观察,由此来判断被测物体的方位和距离。

在这个水下电声信号的转换过程中,关键设备就是水声换能器或是换能器阵。

1. 水声换能器的应用目前,水声换能器已经普遍地应用到工业、农业、国防、交通和医疗等许多领域。

这里仅介绍几种在水下探测方面的应用:(1)在测深方面的应用:为保证航行安全,无论是军舰或是民船都要安装测深声纳;专门的航道检测船只都配备精度高、功能齐全的测深仪。

根据测深深度的不同,测深换能器的频率和功率也相差甚远。

以频率范围在10kHz~200kHz的较多,功率从数瓦到数十千瓦不等,其中,高频小功率用于内河或浅海,低频大功率用于远洋、大深度。

对这类换能器的要求是波束稳定、主波束尖锐。

(2)在定位和测距方面的应用:测量航船对地的航行速度,大多采用多普勒声纳,利用四个性能相同的换能器分别排列与龙骨相垂直的左右舷方向上。

一般工作频率在100kHz~500kHz。

(3)在海洋考察和海底地层勘探方面的应用:海底地质调查主要采用低频大孔径声纳。

拖曳式声纳是当今装在活动载体上最大尺寸的声学基阵,作用距离也最远。

水中成像方面,通常采用高频旁视声纳,在船底左右舷对称地沿龙骨平行方向装两个直线基阵,各自向海底发射扇形指向性声束,然后接收来自海底的反射波,由于海底凹凸不平反射波强度有别,在显示图像上就会出现亮度不同的图像,因为工作频率较高,声信号衰减较快,作用距离不远,现在试验的频率范围为数十千赫到500千赫。

2. 水声换能器的分类换能器按照不同的机电能量转换原理可以分为电动式、电磁式、磁致伸缩式、静电式、压电式和电致伸缩式等。

水声换能器

水声换能器

一、1-3-2型复合材料矩形线列换能器阵(1) 矩形线列换能器阵结构利用1-3-2型复合材料阵元组成的矩形线列换能器阵结构见图1,该线列阵由四片矩形1-3-2复合材料阵元构成,阵元沿直线紧密排列。

四个1-3-2型复合材料阵元的外形尺寸、内部结构完全相同,均为25mm×25mm×5mm的矩形薄片,内部结构的每个周期中陶瓷柱截面为0.84mm×0.84mm,环氧树脂宽为0.43mm,陶瓷基底厚为0.5mm。

1-3-2型复合材料矩形线列换能器阵的其它辅助部件包括换能器外壳、背衬、解耦材料、聚氨酯、电极引线和电缆等。

其中外壳材料选用金属黄铜,形状为上部敞口的长方体空盒,外形尺寸为114mm×33mm×15mm,四面侧壁厚度为2mm,底座厚6mm,其中开有83mm×4mm×3mm 的走线槽。

另外,底座中心还有一直径3mm的通孔,用于同轴电缆穿过。

外壳的作用主要是定位阵元,承受压力和抗腐蚀等。

设计中采用硬质泡沫塑料作为换能器的背衬和边条,背衬和边条厚度均为2mm,复合材料阵元通过环氧粘接剂粘在背衬上,背衬具有反声、绝缘的作用;每个阵元四周由硬质泡沫边条将阵元之问、阵元与外壳之间隔离,目的是解耦和绝缘。

另外,背衬和边条还起到定位复合材料阵元的作用。

换能器阵元上表面,即换能器辐射面被覆有2mm厚的聚氨酯匹配层,用于防水、透声。

图1矩形线列换能器阵结构(2) 矩形平面阵结构图2矩形平面阵结构(a)整体结构(b) 剖面结构(c) 外壳结构(3) 圆柱形换能器(b)图3圆柱形换能器参考附件中李莉的毕业论文112-128页二、平面水听器及双激励加匹配层换能器(非压电复合材料)参考杭州应用声学所三、tonpliz型水声换能器(非压电复合材料)参考西北工业大学四、低旁瓣水声换能器参考中国海洋大学五、侧扫声纳系统结构图参考中科院声学所。

水声换能器的背景与发展现状

水声换能器的背景与发展现状

为什么需要宽带?
换能器的带宽对信号传输有着非常重要的影响。在频域, 影响传输声信号的频谱;在时域,影响信号的波形。
宽带的好处
1.换能器能够宽带发射,使发射信号不局限于单频脉冲, 还可以发射调频信号。
2.对于通讯声纳和水下机器人,宽带换能器可以提高信号 的传输速率、提高通讯的可靠性和保密性、降低误码率。
为什么需要大功率?
远程声呐必然要求声呐具有很大的声功率 ,根据文献,在100Hz若要得到210dB( 参考1μPa.m)声源级需要4×103W的辐 射声功率而在低频时辐射声阻抗中阻的分 量很小,导致辐射到水中的的声功率非常 小,即使机械换能效率很高,总效率也将 是低的,因而想要得到200dB以上的声源 级具有相当的难度。
多模耦合拓展带宽的原理
能够产生多模多谐振的方法主要是在一个振动系统中产生 两种以上模态的振动或者是调节一种模态的二次、三次倍 频与基频间隔。不同模态或阶次的组合频率响应不产生间 断和过深的凹谷以实现换能器宽带工作 。
各种Tonpilz换能器
带匹配层纵振振动换能器
混合激励换能器
双前盖板换能器
ቤተ መጻሕፍቲ ባይዱ
纵弯耦合换能器
6、弯曲圆盘换能器
该换能器中间是金属片,正反两面粘附着压电陶 瓷圆片,利用压电陶瓷的厚度振动带动金属片的 弯曲振动,从而实现低频发射。
与之类似的三叠片换能器广泛应用于石油测井行 业。
四、水声换能器的测量
大型消声水池
桁车测量系统
换能器实验测量系统
谢谢
(4)弯张换能器的不利方面是:不适合大深度工作,原 因是传统的弯张换能器直接对壳体施加预应力,在深水中, 巨大的静水压力作用在壳体上,减少了有源材料的预应力, 从而使有效功率降低。

水声换能器研究现状与发展

水声换能器研究现状与发展

Journal of Sensor Technology and Application 传感器技术与应用, 2023, 11(2), 194-201 Published Online March 2023 in Hans. https:///journal/jsta https:///10.12677/jsta.2023.112021水声换能器研究现状与发展吴锐锋,王一博,胡童颖,崔廷放广州海洋地质调查局,广东 广州收稿日期:2023年1月3日;录用日期:2023年3月22日;发布日期:2023年3月31日摘要水声换能器在现代海洋军事与海洋资源开发中有着举足轻重的地位。

本文通过阐述水声换能器功能性材料技术、换能器、水听器技术取得的国内外领先成果和应用现状,最后对我国水声换能器的发展动态谈些认识与展望。

关键词水声换能器,水听器技术,发展动态Progress and Development of Underwater Acoustic TransducerRuifeng Wu, Yibo Wang, Tongying Hu, Tingfang CuiGuangzhou Marine Geological Survey, Guangzhou GuangdongReceived: Jan. 3rd , 2023; accepted: Mar. 22nd , 2023; published: Mar. 31st , 2023AbstractUnderwater acoustic transducer plays a pivotal role in modern marine military and marine re-source development. This paper expounds the leading achievements and application status of un-derwater acoustic transducer functional material technology, transducer and hydrophone tech-nology at home and abroad, then give the development trends of underwater acoustic transducer.KeywordsUnderwater Acoustic Transducer, Hydrophone Technology, Development Trends吴锐锋等Copyright © 2023 by author(s) and Hans Publishers Inc.This work is licensed under the Creative Commons Attribution International License (CC BY 4.0)./licenses/by/4.0/1. 引言当今世界各国积极发展海洋军事的战略中不难发现,探测安静型、隐形化目标,发展海洋装备从而加强海上防御能力,都是不可或缺的一部分。

水声实验

水声实验

-20
-30
ቤተ መጻሕፍቲ ባይዱ
-40
-45
-15
2.4
1.6
0.9
0.7
2.8
TL
距离 20
30
34.2 40
45
50
55
60
65
Vp(V) 5
4
4
3
2.6
2.4
2.2
2
1.8
距离 70
Vp(V) 1.6
L=151.4cm B=121.7cm H=88.7cm D=34.2cm Q=15 τ≤min()
声源级和传播损失
p(r) SL 20 log
P0
A
r
20 log 20 log
P0r0
r0
式中 P0 1Pa , r0 1m 。由上式可见,右边第一项为常数,它表示声源 强度等于离源中心 1m 处得声压级。可见,在声压和距离的双对数坐
标系统中,上式为一直线,并且距离每增加一倍,声压级减少 6dB。
一、实验内容:
心,否则发射器和接收器间距必须比有效声中心和转轴间距大 100 倍。发射器和
接收器的间距要满足远场条件。
将频率为待测水听器相应工作频率 f 的电信号加到辅助发射器上,且保持发
射声场恒定不变。转动待测水听器,记下各个方向上水听器的输出电压。
信号源
示波器
功率放大器
测量放大器
发射换能器
实验水槽 水听器
图 1 测量系统连接示意图
根据声压随球面波衰减及 SL 的定义式可得到 SL 的测量式如下 SL(R) PL(R) 20lg(R)
20 lg(电压有效值 ) 203 - 20lg(测放) 20lg(R)

测量用水声换能器-精品文档

测量用水声换能器-精品文档

②标准水听器每年应经计量部门检定一次。
③检查水听器的绝缘电阻时,试验电压不小于100v。 ④注意存放环境,用完后妥善保管。 ⑤选用低分布电容电缆。
2.水声发射换能器
(1)分类
同水听器。
(2)发射器介绍
(3)参数:
① 发射换能器发送响应
② 发射换能器指向性 ③ 发射换能器电阻抗 ④ 输入电功率、发射声功率和电声效率
一、二级标准水听器声学性能指标
灵敏度
• 指在水听器输出电缆末端测得的声压灵敏 度或自由场低频灵敏度。 • 按照国家标准规定用于1Hz~100kHz频率 范围的压电型标准水听器(以下同): • 一级: 不低于-205dB(0dB re 1v /μ Pa) • 二级: 不低于-210dB(0dB re1v/μ Pa)
灵敏度校准及其准确度
• 低频段应用国标GB4130-84中规定的一级校准方法进 行校准,其校准准确度优于±0.5dB;高频段应用国标 GB3223-82中规定的互易法进行校准,其校准准确度 应优于±0.7dB。
• 低频段应用国标GB4130-84中规定的二级校准方法进 行校准,其校准准确度优于±1.0dB;高频段应用国标 GB3223-82中规定的比较法进行校准,其校准准确度 应优于±1.5dB。
在参考方向上(通常指声轴向)远场中某点的声强(或声
压有效值平方)与相同距离上各方向的声强平均值(或声压有
效值平方的平均值)之比为发射指向性因数,此比值的分贝数 称为发射指向性指数。
输入电功率、发射声功率和电声效率
指向性
一级:
水平指向性:在最高使用频率下的-3dB波束宽度应大于300,在 选定方向(或主轴)±50的范围内灵敏度变化应小于±0.2dB。 垂直指向性:在最高使用频率下的-3dB波束宽度应大于150,在

水声换能器测量规程

水声换能器测量规程

水声换能器测量规程全文共四篇示例,供读者参考第一篇示例:水声换能器是一种用于测量水下声音并将其转换为电信号的设备,常用于海洋科学研究、水声通信、海洋资源勘探等领域。

水声换能器的测量精度直接影响到数据的准确性和可靠性,在进行水声换能器的测量过程中需要严格遵守一定的规程,以确保测量结果的准确性。

本文将介绍一份关于水声换能器测量规程的具体内容,希望能够帮助读者了解水声换能器测量的主要步骤和注意事项。

一、测量前的准备1. 确定测量的目的和测量范围,明确需要测量的参数和技术要求。

2. 准备好水声换能器以及相关的测量设备和配件,确保设备能够正常工作。

3. 对测量地点进行认真的现场勘测,了解水声环境、水声传播特性等相关信息。

4. 对测量人员进行培训,确保他们熟悉水声换能器的使用方法和操作规程。

二、测量过程的实施2. 将水声换能器置于需要测量的位置,调节传感器的方向和角度,确保能够准确接收水下声音信号。

3. 开始进行测量,记录下测量开始时间和测量参数等相关信息。

4. 在测量过程中要及时调整水声换能器的位置和参数,确保测量数据的准确性。

5. 测量结束后,停止测量并记录下测量结束时间,保存测量数据并进行分析。

三、测量结果的处理和分析1. 对测量数据进行处理和分析,计算出所需的参数和结果。

2. 对测量结果进行比对和验证,确保结果与实际情况一致。

3. 将测量结果进行归档和备份,以备日后查看和参考。

四、注意事项和安全措施1. 在进行测量时要注意保护水声换能器和相关设备,避免碰撞和损坏。

2. 在测量地点要注意安全,避免发生意外和事故。

3. 在测量过程中要保持仪器的稳定性,避免数据误差。

4. 在遇到问题和困难时要及时与专业人员沟通,寻求帮助和解决方案。

水声换能器测量规程是保证测量准确性和可靠性的重要措施,只有严格遵守规程,才能够得到准确的测量结果。

希望本文能够对读者在进行水声换能器测量时有所帮助,提高测量工作的效率和质量。

【2007字】第二篇示例:水声换能器是一种将水中的声波信号转换为电信号的装置,广泛应用于海洋科学研究、海洋勘测、水声通信等领域。

水声换能器——绪论

水声换能器——绪论

优点:⑴ ⑵ ⑶ ⑷
分析任意结构的换能器 结果直观、准确 工作状态仿真 应用广泛
4.边界元法
根据积分定理,将区域内的微分方程变成边界上的 积分方程,将边界离散成有限个单元,把边界积分方
程离散成代数方程,最后变为计算关于节点未知量的
代数方程组问题。 优点:边界划分单元,问题降一维 缺点:不能模拟复杂结构换能器内部的精细结构
七、水声换能器课程的主要内容
• • • • • • 压电陶瓷的物理性能和压电方程 压电陶瓷换能器设计(等效电路法) 水听器的分析与设计 有限元方法 新型换能器 换能器与基阵的指向性

一、概念题

1.换能器 2.等效电路法 3.有限元法
二、简答题
1.声纳方程中有哪些参数与换能器有关? 2.等效电路法、有限元法、边界元法的优缺点 3.换能器的发展趋势? 4.换能器的研究包括哪几方面的技术? 5.瑞利法最早被用于分析那种类型的换能器? 6.请说出几种常用的换能器? 7.请说出几种常用的换能器基阵?
• 包括:线列阵、平面阵、圆柱阵、球形阵
参量阵、乘积阵、合成孔径阵、恒定束宽阵 舷侧阵、共形阵、 拖曳线列阵等等
• 水下声系统:换能器或基阵还要使用其它 的一些声学部件,如:导流罩、声障板等, 统称为声系统。用于水下的就称为水下声 系统。 湿端——水下声系统 干端——电子设备、信号处理部分
复合棒换能器
种换能器具有频率低、带宽。易与水匹配等特点。
• 超磁致伸缩稀土材料Terfenol-D:
铽、镝、铁三元稀土合金 Tb0.3Dy0.7Fe2,70年代由美国海军防卫 研究所(NOL)A.E.Clark博士研制 优点 :应变值比镍大40-50倍,比PZT大5-8倍 能量密度比镍大400-500倍,比PZT大10-14倍 声速低、尺寸小,居里点高 缺点 :材质脆、机械加工困难、高频涡流损耗大 价格贵(2万元/公斤)

《水声换能器》课程教学大纲

《水声换能器》课程教学大纲

水声换能器Underwater Acoustical Transducer一、课程基本情况课程类别:专业方向选修课课程学分:3学分课程总学时:48 学时,其中讲课:48学时。

课程性质:选修,需同时选修“水声测量技术”开课学期:第5学期先修课程:水声学基础适用专业:海洋技术专业本科生教材:水声换能器原理,路德明,青岛海洋大学出版社,第一版,2009o开课单位:海洋科学学院海洋技术专业二、课程性质、教学目标和任务(-)课程性质:专业方向选修课(-)教学目标水声换能器是水声设备的主要原器件之一,本课程主要讲授压电水声换能器及其组成的基阵的工作原理和基本性能。

通过本课程的学习,学生可以明确水声压电换能器在水声应用中的重要地位;理解压电材料以及磁致伸缩材料的物理性质;掌握描述换能器性能的儿个重要指标;掌握几种常用换能器的结构、分析设计方法和工作原理;明确换能器和基阵的方向特性及其改善方法。

通过该课程的学习,为本专业学生更好的从事水声技术研究奠定基础。

(三)教学任务本课程是针对海洋技术专业高年级本科生开设的一门选修课,要求具备一定的传感器、声学和海洋学方面的专业知识的学生选修。

教学内容密切结合其它专业课的学习,如声学基础、数学物理方法、水声学原理.、水声专业实验等,突出本课程的重点,保证本课程教学的流畅以及结构的完整,注重理论与实践相结合。

三、教学内容和要求(一)总论学时数:4,其中课时4,实验0。

1、主要内容:水声换能器的开展历史、研究意义、分类、分析设计方法和主要性能指标。

2、教学要求:掌握换能器的分析设计方法和主要性能指标,理解水声换能器的开展历史、及其开展趋势、换能器的分类等。

3、重点、难点:4、其它教学环节:讨论水声换能器在军事和民事上的应用及开展趋势。

(二)第一章:压电材料的物理性质学时数:6,其中课时4,实验4。

1、主要内容:压电材料的介电性、弹性性质和压电性质。

2、教学要求:掌握压电材料的介电性、弹性性质和压电性质。

水声换能器原理

水声换能器原理

水声换能器原理
水声换能器是一种将水中的声波信号转换为电信号的装置。

它是水下通信、声纳、测深等水下探测技术中不可或缺的一部分。

水声换能器的原理是利用压电效应将水中的声波信号转换为电信号。

压电效应是指某些晶体在受到机械应力时会产生电荷分布不均的现象。

这种晶体被称为压电晶体。

当压电晶体受到声波的作用时,晶体内部的电荷分布会发生变化,从而产生电信号。

这个过程被称为压电效应。

水声换能器通常由一个压电晶体和一个负载电路组成。

压电晶体通常是一块圆形的陶瓷片,它的两面分别涂有金属电极。

当水声换能器受到声波的作用时,压电晶体会产生电荷分布不均,从而产生电信号。

这个电信号会被传输到负载电路中,经过放大和处理后,就可以得到原始的声波信号。

水声换能器的性能取决于压电晶体的材料和结构。

目前常用的压电晶体材料有铅锆钛酸钠、铅镁铌酸钛、铅锆钛酸钙等。

这些材料具有良好的压电性能和稳定性,可以满足不同应用场合的需求。

水声换能器是一种将水中的声波信号转换为电信号的装置,它的原理是利用压电效应将水中的声波信号转换为电信号。

水声换能器的性能取决于压电晶体的材料和结构,不同的应用场合需要选择不同的压电晶体材料。

水声换能器与换能器阵技术研究

水声换能器与换能器阵技术研究

水声换能器与换能器阵技术研究水声换能器与换能器阵技术作为水下声波信号处理的关键技术,在海洋探测、水下通信、军事应用等领域具有广泛的应用价值。

本文将详细阐述水声换能器与换能器阵技术的研究现状、应用前景、技术原理及实验设计,以期为相关领域的研究提供参考与借鉴。

水声换能器与换能器阵技术研究涉及多个学科领域,包括声学、物理学、电子工程等。

目前,研究者们已经提出了多种水声换能器设计与实现的方法,如压电陶瓷换能器、磁致伸缩换能器、电致伸缩换能器等。

同时,为了提高声波信号的接收与发送效率,研究者们还研发了多种换能器阵列,如线性阵列、平面阵列、球面阵列等。

水声换能器与换能器阵技术的应用前景主要体现在以下几个方面:潜艇声呐系统:潜艇声呐系统是水下声波信号处理的重要应用之一,通过使用水声换能器和换能器阵技术,可提高潜艇的探测能力、定位精度和通信效率。

海洋探测:海洋探测是水声换能器与换能器阵技术的另一重要应用领域,如海底地形地貌探测、海洋资源开发等。

深海钻探:深海钻探过程中,水声换能器和换能器阵技术可用于传递控制信号和收集钻探数据,提高深海钻探的安全性和效率。

水声换能器与换能器阵技术的发展前景广阔,但仍面临诸多挑战。

未来研究方向可包括:高性能水声换能器的设计和制作,以提高声波信号的发送和接收效率。

低成本、大规模的换能器阵列制造技术的研究,以降低应用成本,促进普及化。

复杂水声环境下的信号处理算法研究,以提高水声信号的抗干扰能力和通信可靠性。

水声换能器与换能器阵列的优化配置与协同工作,以实现更高效的声波信号处理。

水声换能器与换能器阵技术的原理主要是基于声波的传播规律和换能器的物理特性。

声波作为一种机械波,传播时需要介质。

在水下环境中,声波主要通过水介质传播,其传播速度受到水温、盐度、压力等多种因素的影响。

水声换能器的主要功能是将电信号转换为声波信号进行传播,或者将声波信号转换为电信号进行接收。

其工作原理主要基于压电效应、磁致伸缩效应、电致伸缩效应等物理效应。

(完整版)第2章水声换能器

(完整版)第2章水声换能器

第2章水声换能器1.水听器2.水声发射换能器3.实验1 •水听器(1)分类根据其用途和校准的准确度根据其使用材料根据其用途和校准的准确度分为两级:A.—级标准水听器建立水声声压基准,并通过它传递声学量单位。

绝对法校准。

E.二级标准水听器(测量水听器)用作实验室中一般测试。

比较法校准。

根据其使用材料可分为:a、压电式:b、动圈式(或电动式)c、磁致伸缩式d、光纤式⑵参数①水听器接收灵敏度②水听器的指向性③水听器的电阻抗④动态范怜I①水听器接收灵敏度水听器自由场电压灵敏度:水听器在平面自由声场中输出端的开路电压与声场中放入水听器之前存在于水听器声中心位置处自由场声压的比值。

水听器声压灵敏度:水听器输出端的开路电压与作用于水听器接收面上的实际声压的比值。

②水听器的指向性•指向性响应图・指向性指数・指向性因数表示水听器在远场平面波作用卞,所产生的开路输出电压随入射方向变化的曲线图。

指向性指数DI和指向性因数对于水听器,其指向性因数代表定向接收器输出端的信噪比比无指向性接收器输出端的信噪比提高的倍数。

r>/ = ioi g^③水听器的电阻抗在某频率卞加于换能器电端的瞬时电压与所引起的瞬时电流的复数比。

换能器电阻抗的倒数称为换能器的电导纳。

④动态范围水听器主轴方向入射的正弦平面行波使水听器产生的开路电压等于水听器实际输出的带宽1Hz的开路噪声电压时,则该声波的声压级就是水听器的等效噪声声压级。

水听器的过载声压级与等效噪声声压级之差。

水听器的过载声压级引起水听器过载的作用声压级。

水听器的等效噪声压级(3) GB/T4128-1995一、二级标准水听器声学性能指标灵敏度指在水听器输出电缆末端测得的声压灵敏度或自由场低频灵敏度。

按照国家标准规定用于lHz~100kHz频率范怜I的压电型标准水听器(以下同):一级:不低于-205dB(0dB re lv / u Pa)二级:不低于-210dB (OdB relv/uPa)自由场灵敏度频率响应自由场灵敏度频响相对于声压灵敏度在整个使用频率范怜I内,至少有三个十倍频程范闱:一级:其灵敏度的不均匀性小于±1.5dE,在其他频率范围内灵敏度变化不超过-6dE或-lOdBo二级:其灵敏度的不均匀性小于±2dE,在其他频率范闱内灵敏度变化不超过+6dE或-lOdBo 灵敏度校准及其准确度低频段应用国标GB4130-84中规定的一级校准方法进行校准,其校准准确度优于土0.5dE;高频段应用国标GB3223-82中规定的互易法进行校准,其校准准确度应优于土0.7dE°低频段应用国标GB4130-84中规定的二级校准方法进行校准,其校准准确度优于±1.0dE;高频段应用国标GB3223-82中规定的比较法进行校准,其校准准确度应优于±1.5dE°指向性一级:水平指向性:在最高使用频率下的-3dE波束宽度应人于300,在选定方向(或主轴)土50的范围内灵敏度变化应小于土0.2dBo垂直指向性:在最高使用频率下的-3dE波束宽度应人于150,在选定方向(或主轴) ±20的范围内灵敏度变化应小于土0.2dBo二级:在使用的频率范I制内,其水平指向性图与理想的全指向性图的偏差应小于±2dE。

水声换能器的作用

水声换能器的作用

水声换能器的作用水声换能器是一种将水中的声波转化为电信号或将电信号转化为声波的设备。

它在海洋探测、水声通信、水下定位等领域起着重要作用。

水声换能器的作用主要体现在以下几个方面:1. 水声探测和测量:水声换能器可以将水中的声波转化为电信号,从而实现对水下目标的探测和测量。

在海洋科学研究中,科学家常常利用水声换能器来研究海洋生物、海底地质、海洋气象等问题。

此外,水声换能器也广泛应用于海洋资源勘探、海洋环境监测等领域。

2. 水声通信:水声换能器可以将电信号转化为声波,实现水下通信。

由于水的传导性能较好,水声通信在海洋工程、海底油气开发等领域具有广泛的应用前景。

通过水声换能器,人们可以在水下进行语音通话、数据传输等操作,实现水下设备的远程控制和监测。

3. 水下导航和定位:水声换能器可以利用声波在水中传播的特性,实现对水下目标的定位和导航。

通过测量声波的传播时间和方向,可以确定目标的位置。

水声换能器在水下导航、水下机器人、潜水器等设备中起着关键的作用。

同时,水声换能器也可以用于水下声纳系统,通过发射和接收声波,实现对水下目标的探测和识别。

4. 水下成像和探测:水声换能器可以实现对水下目标的成像和探测。

通过发射声波并接收回波,可以获取目标的形状、大小、距离等信息。

水声换能器在水下探测、水下摄像、海底地质勘探等领域有着广泛的应用。

在海洋资源勘探中,科学家常常利用水声换能器进行海底地形的测绘和海洋生物的观察。

水声换能器在海洋科学研究、海洋工程、海底资源勘探等领域起着重要作用。

它可以将声波和电信号相互转化,实现对水下目标的探测、通信、定位和成像。

随着科技的发展和应用需求的增加,水声换能器的性能和应用范围也在不断扩展,为人们深入了解海洋、开发利用海洋资源提供了重要的技术支持。

水声换能器功放与匹配电路的设计

水声换能器功放与匹配电路的设计

Electronic Technology •电子技术Electronic Technology & Software Engineering 电子技术与软件工程• 93【关键词】功放 匹配电路 阻抗 相位1 水声功放概述水声功放不论是在军事领域还是在民用领域,都发挥着极其重要的作用。

可广泛应用于水声系统测试、海洋资源探测、地形地貌扫描、渔业探测、航道规划以及码头垃圾清理等民用技术领域。

水声功放的最大作用就是可以将信号功率放大,驱动水声换能器将电信号转换为声信号,与此同时向水里面辐射出充足能量的声信号。

伴随科技的持续发展与进步,功放已经从一开始的电子管功放逐步发展到二代晶体管功放,接着发展到了场效应晶体管功放,最终发展到了数字功放,数字功放还被叫作D 类功率放大器。

在这之中,前面三个功放属于线性模拟功放,而后面一个功放属于数字开关功放。

2 D类功放的基本原理简单地说,所谓的D 类功放实际上还被称之为数字功率放大器,这种功放是由三个部分构成的,PWM 调制对比,输出滤波与功率放大。

好的D 类功率放大器效率能够达到百分之百,在现实运用过程中可达到90%的效率,而AB 类功放效率就相对比较低了。

(1)调制器,仅仅需采用一只运放组成比较器就能够做好。

(2)D 类功率放大器,是一个脉冲控制大电流开关放大器,将比较器输出的PWM 信号转换为大电流与高电压大功率PWM 信号。

(3)需将大功率PWM 波形里面的声音信息恢复,就需要采用低通滤波器。

可是,因为这个时候电流较大,RC 结构低通滤波器电阻会消耗能源,无法使用,需要运用LC 低通滤波器。

3 设计水声换能器匹配电路分析3.1 匹配方法通常而言,水声换能器谐振频率范畴以内,换能器等效模型可通过等效电路来展示:并联电路的构成是一个静态电容C2与串联支路。

其中串联支路就是通过一个动态电感L1、动态电阻RL 、动态电容C1所组和而成的。

倘若处在谐振频率的时候,动态电感与电容作用相互抵消,能够等效成一个动态电阻与静态水声换能器功放与匹配电路的设计文/王伟1 李锦华2电容并联构成。

水声换能器测量规程

水声换能器测量规程

水声换能器测量规程全文共四篇示例,供读者参考第一篇示例:水声换能器测量规程是海洋科学研究中非常重要的一部分,它能够帮助研究人员准确测量海洋中的声波信号,从而帮助我们更好地了解海洋环境及其中的生物和物理过程。

水声换能器测量规程一般包括测量前的准备工作、测量过程的操作要点以及数据处理和分析等内容。

下面我们就来详细介绍水声换能器测量规程的相关内容。

一、测量前的准备工作1. 确定测量目的:在进行水声换能器测量前,首先要明确测量的目的和范围。

确定测量目的有助于我们选择合适的测量参数和工作模式,确保测量结果的准确性和可靠性。

2. 确定测量设备:选择合适的水声换能器是非常重要的一步。

根据测量的具体要求和场地环境,选择合适的水声换能器类型和规格,确保测量设备能够满足实际测量需求。

3. 测量设备的校准:在进行水声换能器测量前,需要对测量设备进行校准。

通过校准可以确保测量设备的精度和准确性,提高测量结果的可靠性。

4. 确定测量位置:根据测量目的和要求,选择合适的测量位置。

在选择测量位置时,需要考虑水声传播特性、背景噪声水平以及其他环境因素,确保测量结果的准确性。

5. 测量环境的评估:在进行水声换能器测量前,需要对测量环境进行评估。

评估测量环境可以帮助我们了解环境的特点和影响因素,为测量过程中的数据处理和分析提供参考依据。

二、测量过程的操作要点1. 测量参数的设定:在进行水声换能器测量时,需要设定合适的测量参数。

测量参数包括频率范围、采样率、增益等,根据测量的具体要求和目的,选择合适的测量参数设置。

2. 测量设备的安装:在进行水声换能器测量前,需要将测量设备正确安装在测量位置上。

安装时需要确保水声换能器与水面或海床的接触良好,避免测量误差。

3. 测量数据的采集:在进行水声换能器测量时,需要正确采集测量数据。

采集数据时需要注意数据传输的稳定性和完整性,避免数据丢失或错误。

4. 测量过程的监控:在进行水声换能器测量时,需要及时监控测量过程中的运行状态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、1-3-2型复合材料矩形线列换能器阵
(1) 矩形线列换能器阵结构
利用1-3-2型复合材料阵元组成的矩形线列换能器阵结构见图1,该线列阵由四片矩形1-3-2复合材料阵元构成,阵元沿直线紧密排列。

四个1-3-2型复合材料阵元的外形尺寸、内部结构完全相同,均为25mm×25mm×5mm的矩形薄片,内部结构的每个周期中陶瓷柱截面为0.84mm×0.84mm,环氧树脂宽为0.43mm,陶瓷基底厚为0.5mm。

1-3-2型复合材料矩形线列换能器阵的其它辅助部件包括换能器外壳、背衬、解耦材料、聚氨酯、电极引线和电缆等。

其中外壳材料选用金属黄铜,形状为上部敞口的长方体空盒,外形尺寸为114mm×33mm×15mm,四面侧壁厚度为2mm,底座厚6mm,其中开有83mm×4mm×3mm 的走线槽。

另外,底座中心还有一直径3mm的通孔,用于同轴电缆穿过。

外壳的作用主要是定位阵元,承受压力和抗腐蚀等。

设计中采用硬质泡沫塑料作为换能器的背衬和边条,背衬和边条厚度均为2mm,复合材料阵元通过环氧粘接剂粘在背衬上,背衬具有反声、绝缘的作用;每个阵元四周由硬质泡沫边条将阵元之问、阵元与外壳之间隔离,目的是解耦和绝缘。

另外,背衬和边条还起到定位复合材料阵元的作用。

换能器阵元上表面,即换能器辐射面被覆有2mm厚的聚氨酯匹配层,用于防水、透声。

图1矩形线列换能器阵结构
(2) 矩形平面阵结构
图2矩形平面阵结构
(a)整体结构(b) 剖面结构(c) 外壳结构
(3) 圆柱形换能器
(b)
图3圆柱形换能器参考附件中李莉的毕业论文112-128页
二、平面水听器及双激励加匹配层换能器
(非压电复合材料)参考杭州应用声学所
三、tonpliz型水声换能器(非压电复合材料)
参考西北工业大学
四、低旁瓣水声换能器
参考中国海洋大学
五、侧扫声纳系统结构图
参考中科院声学所。

相关文档
最新文档