心电放大电路设计资料报告材料
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
心电放大器设计
1 设计题目
设计一单导联心电放大器,心电信号的幅度围为0.5~5mV,要求放大器与后续计算机系统中的10位A/D转换器相连接,A/D转换器的输入电压围为0~5V。
1.1 主要技术指标
1)输入阻抗:≥5MΩ
2)偏置电流:<2nA
3)输入噪声:<10uV
4)共模抑制比:≥100dB
5)耐极化电压:±300mV
6)漏电流:<10uA
7)频带:0.05~250Hz
1.2 具体要求
1)设计放大器电路;
2)计算电路中个元器件的参数值;
3)对选择的关键元器件说明其选择理由。
2 引言
在当今社会中,心脏病等心血管已经成为了世界围常见的疾病,号称“头号杀手”。由于心脏病有突发性以及长久性,对心脏病人也需要长期的治疗和监护。
心脏是循环系统中重要的器官。由于心脏不断地进行有节奏的收缩和舒活动,血液才能在闭锁的循环系统中不停地流动。心脏在机械性收缩之前,首先产生电激动。心肌激动所产生的微小电流可经过身体组织传导到体表,使体表不同部位产生不同的电位。如果在体表放置两个电极,分别用导线联接到心电图机(即精密的电流计)的两端,它会按照心脏激动的时间顺序,将体表两点间的电位差记录下来,形成一条连续的曲线,这就是心电图。
图1 标准的心电图
心电图是检查心脏情况的一个重要方法,其应用围包括以下几个方面:(1) 分析与鉴别各种心律失常。
(2) 查明冠状动脉循环障碍。
(3) 指示左右房窜肥大的情况,协助判别心瓣膜病、高血压病、肺源性及先天性
心脏病的诊断。
(4) 了解洋地黄中毒、电解质紊乱等情况。
(5) 心电监护已广泛应用于手术、麻醉、用药观察、航天、体育等的心电监测以
及危重病人的抢救。
3系统设计
3.1设计思路
心电信号十分微弱,常见的心电频率一般在0—100Hz之间,能量主要集中在17Hz附近,幅度小于5mV,心电电极阻抗较大,一般在几十千欧以上。在检测生物电信号的同时存在强大的干扰,主要有电极极化电压引起基线漂移,电源工频干扰(50Hz),肌电干扰(几百Hz以上),临床上还存在高频电刀的干扰。电源工频干扰主要是以共模形式存在,幅值可达几V甚至几十V,所以心电放大器必须具有很高的共模抑制比。电极极化电压引起基线漂移是由于测量电极与生物体之间构成化学半电池而产生的直流电压,最大可达300mV,因此心电放大器的前级增益不能过大,而且要有去极化电压的RC常数电路。由于信号源阻可达几十KΩ、乃至几百KΩ,所以,心电放大器的输入阻抗必须在几MΩ以上,而且 CMRR 也要在60dB以上(目前的心电图机共模抑制比一般均在89dB)。同时要在无源、有源低通滤波器中有效地滤除与心电信号无关的高频信号,通过系统调试,最后得到放大、无噪声干扰的心电信号。
3.2结构框图
本电路设计主要是由五部分构成。
1、前置放大电路。其中前置放大器是硬件电路的关键所在,设计的好坏直
接影响信号的质量,从而影响到仪器的特性;
2、共模抑制电路。在设计中使用了右腿驱动电路、屏蔽驱动电路,它们可
以消除信号中的共模电压,提高共模抑制比,使信号输出的质量得到提
高;
3、低通滤波电路及时间常数电路。常见的心电频率一般在0.05--100Hz之
间,能量主要集中在17Hz附近,幅度微小,大概为5mV,临床监护有
用频率为0.5~30几HZ,因此设计保留40HZ以下的信号。时间常数电
路实现一阶无源高通,截止频率为0.05HZ,时间常数为3.6s。
4、工频50Hz的陷波电路。本设计采用了双T带阻滤波电路,它能够对某一
频段的信号进行滤除,用它能有效选择而对电源工频产生的50Hz的噪声
进行滤除;
5、主放大电路:心电信号需要放大上千倍才能观测到,前置放大增益只有
100~250左右,在这一级还需要放大4~10倍左右。
总体电路框图如图
前置放大
电路
右输入信号
后级放大电路
低通滤波电路50HZ 陷波左输入信号右腿驱动
电路
3.3电路设计
3.3.1 前置放大电路
由于人体心电信号的特点,加上背景噪声较强,采集信号时电极与皮肤间的阻抗大且变化围也较大,这就对前级(第一级)放大电路提出了较高的要求,即要求前级放大电路应满足以下要求:
高输入阻抗;高共模抑制比;低噪声、低漂移、非线性度小;合适的频带和动态围。
为此,选用Analog 公司的仪用放大器AD620作为前级放大(预放)。AD620的核心是三运放电路(相当于集成了三个OP07运放),其部结构如图1所示。
图1 AD620 放大器部结构图
该放大器有较高的共模抑制比(CMRR),温度稳定性好,放大频带宽,噪声系数小且具有调节方便的特点,是生物医学信号放大的理想选择。根据小信号放大器的设计原则,前级的增益不能设置太高,因为前级增益过高将不利于后续电路对噪声的处理。
参数选择:
由于AD620的增益与之间关系如下:G=1+(R1+R2)/R3,选取R21=R22=27K, R23=6.2K, C21=39pF, C22=200pF,C23=39Pf,
前置放大倍数:G1=1+(R1+R2)/R3=9.7。
3.3.2 右腿驱动电路
体表驱动电路是专门为克服50Hz共模干扰,提高CMRR而设计的,原理是采用人体为相加点的共模电压并联反馈,其方法是取出前置放大中的共模电压,经过驱动电路倒相放大后再加回体表上,一般的做法是将此反馈共模信号接到人体的右腿上,所以称为右腿驱动,通常,病人在做正常的心电检测时,空间电场在人体产生的干扰电压以及共模干扰时非常严重。而使用右腿驱动电路就能很好的解决上述问题,下图就是右腿驱动的电路图。其反馈共模电压可以消除人体共模电压产生的干扰,还可以抑制工频干扰。