心电放大电路设计资料报告材料
心电放大器设计报告

心电放大器(直流供电) 设计报告及测试报告姓名:刘文中学号:3004202321班级:生物医学工程1班指导老师:李刚教授心电放大器前置通路设计报告——直流供电3004202321-1-刘文中指导老师:李刚教授一:关于心电⏹心脏作为生物体新陈代谢和能量传递的动力中心,其对人体的重要性是不言而喻的。
各种心脏疾病,几乎都和心脏的生物电活动相关联。
在当前的社会中,心脏病等心血管已经成为了世界死亡人数最多,号称“头号杀手”。
由于心脏病有突发性以及长久性,对心脏病人也需要长期的治疗和监护。
然而,要针对心脏病情,首先要做的就是了解心电信号的特点。
其特点为:1)信号十分微弱,幅度小于5mV。
2)常见的心电频率一般在0—100Hz之间,能量主要集中在17Hz附近。
3)测量时心电电极阻抗较大,一般在几百千欧以上。
4)极易受到工频干扰。
⏹心电图的作用1、对心律失常和传导障碍具有重要的诊断价值。
2、对心肌梗塞的诊断有很高的准确性,它不仅能确定有无心肌梗塞,而且还可确定梗塞的病变期部位范围以及演变过程。
3、对房室肌大、心肌炎、心肌病、冠状动脉供血不足和心包炎的诊断有较大的帮助。
4、能够帮助了解某些药物(如洋地黄、奎尼丁)和电解质紊乱对心肌的作用。
因此检测出人体的心电图,对于帮助诊断与治疗相关疾病有重要作用。
我所设计的便携式心电放大器主要是方便,低功耗,主要适用于野外或运动场所对于心电的检测。
二:心电放大器的总体设差模电压增益:A VC=500;差模输入阻抗:大于10M共模拟制比:大于80DB频带宽度: 0.05~100HZ;陷波:50HZ工频输入保护电路:能耐5000v的高压说明:由于我设计的是直流心电放大器;所以放大起必须具有两个特性第一:要能准确的提取与放大心电信号(放大倍数不能太小,以便能够较方便的观测,由于是直流供电,直流是由电池提供,提供的电压较小,所以放大倍数也不能太大。
第二:要使整个电路的功耗尽量小,这在某种程度上要求该设计中所含的运放器要相对较少;三:整个电路的整体框架如下;四:各节电路的设计:1:保护电路与前置放大电路前置放大倍数为50,高通的截至频率为0.05HZ,其中,A1,A2并联级的放大倍数为5,AD623的放大倍数为10倍.(1)由于前置放大器起着提取信号并初次放大信号的作用,所以要求所用的运放有高共模拟制比,高输入阻抗,较高的差模增益,低的失调电压,低功耗。
心电设计报告

直流心电放大仪设计报告心电信号作为心脏电活动在人体体表的表现,信号比较微弱,其频谱范围是0.05~200Hz,电压幅值为0~5mV,信号源的阻抗为数千欧到数百千欧,并且存在着大量的噪声,测量时,除了受包括肌电信号,脑电信号,呼吸波信号等体内干扰信号的干扰,还受到基线漂移,电极接触等体外干扰。
心电的这些特点,要求设计在强噪声下能有效抑制各种干扰的便携式心电采集放大仪,来得到正确的心电信号。
本直流心电放大仪设计思路是:由携带在人体上的电极采集心电信号,经过前置放大器的初步放大,并且在前置放大器电路部分设计滤波和右腿驱动电路,对各种信号进行一定的抑制后送入仪用放大器,输出后送入低通滤波器,以滤除心电频率范围以外的干扰信号,最后经过主放大器,得到能观察范围内的心电信号。
在进行实验元件参数选取时,既要考虑满足设计要求,同时又要保证所用的元件必须能找到,而且考虑到元件精度要求。
心电放大仪总体结构图:人体电极拾取前置放大器(共模抑制电路)低通滤波器后级放大电路示波器显示本设计的电路主要由五部分组成:电源变换电路;前置放大器和抑制共模电路;低通滤波电路;后级放大电路(主放大电路)。
由携带在人体上的电极拾取的心电信号首先经过前置放大器的初步放大,并对各种干扰信号进行一定的抑制后进入低通滤波器以滤除心电频率以外的干扰信号,然后经过后级主放大器进一步放大后,输入示波器,进行观察。
设计没有采用50HZ工频滤波电路,是因为本设计由电池供电,共模工频干扰很小(外界电场影响),可以通过右腿驱动电路很好的滤除。
一、电源变换电路:由于电池最多只能用四节,也就是6V,而实验采用的芯片是LM324,因此采用具有升压能力的电路,它能将Ec转换为±Ec。
其原理是NE555,时基电路接成无稳态电路,555和R21、C13接成无稳态多谐振荡器,振荡频率约在20kHz左右,由于充、放电时间常数皆为R21C13,故占空比为50%。
输出的20kHz脉冲波经D1、C14和D2、C15分别整流滤波后,输出±EDD双电源。
交流心电放大器设计报告心电

交流心电放大器设计报告一、设计心电放大器,要求如下:1、输入阻抗≥10MΩ。
2、共模抑制比≥80dB。
3、放大倍数为1000倍。
4、频带宽度为0.05Hz~100Hz。
5、放大器的要求轨到轨,低功耗,低噪声。
二、整体组成模块:三、具体各模块设计:1、电源:由于采用220V交流供电,必须设计电压转换部分以保证稳定的为放大器以及各个芯片供电,220V电压接变压器变压后,经桥式整流电路整流,再经电容C1、C2滤波、电路滤波,最后用三端稳压电路稳压,即可得到所需电压。
电路中接入C3用来实现频率补偿,防治自激振荡,减小高频噪声和改善负载的瞬态响应,C4用来较小有输入电压引入的低频干扰。
2、DC/DC电路:主要的目的是进行电压的变换及隔离因为直流不能直接通过变压器升、降压,所以先将直流通过开关电路变成交流,频率一般是几百K,这时的交流波形没有交流电正弦波那样好。
变成交流后通过变压器进行变压,输出的交流通过整流、滤波、稳压等电路变回直流。
这里采用TI公司的DCP010505DBP芯片电路图如下:输出之后的电压还需要经过7805和7905进行稳压。
这里的电容皆采用0.47uF。
3、前置放大电路:分为四部分:(1)差动放大:如果将保护电阻直接接入后面的时间常数电路,其输入阻抗将大为减小,减低了心电图机的性能,若加入差动发大器,其差模输入阻抗为2Ri+,共模输入阻抗为Ri+/2,增加了输入电阻,进一步抑制了电极噪声与50Hz干扰,提高了共模抑制比。
考虑到前级存在极化电压,最大为300mV ,此极放大增益不宜过高,大约定在6倍左右,选取R2=R3=24K Ω,R1=10K Ω,其增益为=5.8。
(2) 时间常数电路:由于电极和电介质或体液接触,在金属界面上总会产生极化电压,其最大值可能为300mV ,这部分电路的主要功能就是滤出极化电压以及其余低频干扰,这部分选取高通滤波器,截至频率为0.05Hz ,根据f =RC 21,取R6=R7=4.3M Ω,得C1=C2=1uF ,从前极电阻中间引入驱动,避免了因电器元件不匹配使共模信号转化为差模信号而不易滤除的影响。
心电放大器(交流供电)设计报告

心电放大器(交流供电)设计报告
3004202336-1-张路遥
技术指标:
输入阻抗>1MΩ
输入端短路噪声电压峰-峰值(P-P)<=10uV
CMRR>=60db
电压增益:>=1000倍
50HZ干扰抑制滤波器:>=20dB
带宽:0.05HZ~40HZ(以10HZ为基准,+0.4dB,-3.0dB)
前言:
在当今社会中,心脏病等心血管已经成为了世界范围内常见的疾病,号称“头号杀手”。
由于心脏病有突发性以及长久性,对心脏病人也需要长期的治疗和监护。
心脏是循环系统中重要的器官。
由于心脏不断地进行有节奏的收缩和舒张活动,血液才能在闭锁的循环系统中不停地流动。
心脏在机械性收缩之前,首先产生电激动。
心肌激动所产生的微小电流可经过身体组织传导到体表,使体表不同部位产生不同的电位。
如果在体表放置两个电极,分别用导线联接到心电图机(即精密的电流计)的两端,它会按照心脏激动的时间顺序,将体表两点间的电位差记录下来,形成一条连续的曲线,这就是心电图。
电池供电心电放大器设计报告

心电放大器(电池供电)设计报告一、设计意义心血管疾病是影响人们生活质量,造成死亡的重要原因,而反应心脏生理情况的重要科学依据就是心电信号。
心电信号的检测不同于普通的信号测量。
其信号比较微弱,干扰强,个体差异大,所以希望设计一种抗干扰能力强,功耗低的直流心电放大器。
而相比于交流放大器,直流心电放大器因为其功耗小,所以可以用电池供电,进而可以向着小型化,便携化发展,有较高的应用价值。
二、心电总述1、心肌细胞的跨膜电位心肌细胞的跨膜电位是指心肌细胞内外两侧的电位差,包括在静息状态下的静息电位和兴奋时的动作电位。
人的心室肌细胞的静息电位约为-90mv。
当心肌细胞由静息状态进入兴奋时,即产生动作电位。
当心室肌兴奋时,膜内电位从安静状态的-90mv很快上升到30mv,需时1~2ms,电位上升的最高速度达到800V/s。
当心肌细胞除极后,立即开始复极。
下图为跨膜电位变化曲线。
跨膜电位变化曲线2、心电的传播心脏周围的组织及液体都可以导电,被称为容积导体,而且是三度空间的导体。
心脏又是一个形态不规则的空腔肌肉器官,它的肌纤维行走方向不一致。
兴奋在心肌内向各个方向传播的过程中,每一瞬间在心脏内形成很多双极体,且其大小、方向都不一样。
心脏按窦房结—结间束—房室结—左、右束支—蒲氏纤维—心室肌这一顺序进行的兴奋传播,是在一个空间进行的。
3、心电波形图上图是正常人的心电波形图图中:P波:代表左、右兴奋时所产生的电变化,因心房电向量方向不同而相互抵消了一部分,故其幅度不大。
P-R间期:代表心房兴奋到心室开始兴奋经过的时间,一般成年人为0.12~0.20s。
QRS波群:代表心室兴奋传播过程的电位变化,一般在0.06~0.10s之间。
T波:反映心室复极过程的电变化。
QT间期:指由QRS波群起点到T波终点,由心室开始除极到完成所需时间,在心率为75次/s,Q-T间期小于0.4s。
U波:在T波出现后经0.02~0.04s可能出现的波,大都在0.05ms以下。
设计心电信号放大电路

设计心电信号放大电路
要求:电路总增益60~80dB可调,输入阻抗≥1MΩ,共模抑制比K CMR≥80dB,带宽:0.1Hz~100Hz;电路具有50Hz陷波功能,陷波器中心衰减大于15dB。
1、输入级
三运放仪表放大器,保证输入阻抗和共模抑制比足够高
如图,经过3运放放大得到较高增益。
2、陷波器
采用带通滤波器和相加器组成的带阻滤波器。
滤除50Hz。
由陷波中心角频率50HZ计算出电容C的值,模拟用两个交流源实现,其中一个频率为50HZ ,用示波器和波特仪分别观察波形和幅频特性,模拟如下:
对50Hz进行滤波,避免噪声干扰。
3、心电信号放大电路
由1、2电路组合的心电信号放大电路
由仿真结果得电路对心电信号实现了60dB~70dB~80dB的放大,且满足带宽0.01HZ ~100HZ,并实现了对50HZ信号的陷波,总体上达到要求。
传感器将采集到的心电信号输入放大器进行放大,因为通常直接采集到得心电信号很是微弱,不利于后续电路对其进行处理,而放大器主要可以使用仪用放大器,因为仪用放大器具有输入电阻大,共模抑制比高,增益调节方便等许多优点,很适合于放大生物信号,再次是滤波,因为在电路工作时总会在有用信号里加入工频信号,而工频信号的频率以50HZ为
主,因此应该滤除工频频率波减少实验误差,。
低成本心电放大器设计报告剖析

低成本心电放大器(交流供电)设计与测试报告作者姓名:凌伟学号:3013202225学院:精密仪器与光电子工程学院班级:生物医学工程一班指导教师:李刚天津大学2015年1月1. 题目要求交流供电低成本心电放大器: 要求与主要技术指标: A. 输入电阻>5M B. 共模抑制比>80dBC. 输出摆幅>2.5V (采用单片机采集时动态范围≧28)D. 频带:0.05~75HzE. 具有光电隔离F. 制作相应的稳压电源 2. 总体设计方案整体电路设计框图如下:其中前置放大电路中包含有高通滤波部分。
220V 交流电经稳压电源整流滤波稳压后输出±Vcc ,为光电隔离后的电路供电;DC/DC 隔离电路将稳压后的±Vcc 隔离并输出±Vee 为前级电路供电。
总体电路实物图:心电信号220V 交流3.单元电路设计1.稳压电源稳压电源包括变压器、整流电路、滤波电路、稳压电路。
选用桥式整流电路,这儿选取元器件要注意二极管的极限电流和变压器的功率选择。
流经每个二极管的电流,变压器功率P=UI,由于电路中电流很小,变压器功率选择成本最低的3W,整流二极管选用1N4007,该二极管主要参数:最大正向平均整流电流1.0A、最高反向耐压1000V、正向压降1.0V。
稳压电路选用三端集成稳压器7812和7912,用以稳定输出±12V,C1 C2是滤波电容,容值大小由充放电时间和输出波纹系数决定,一般取容值较大的电容,此处耐压为15V,因此选取1000μF/25V的电容。
C3C4作用是缓解负载突变、改善瞬态响应,这儿取220μF/25V。
C5C6用来实现频率补偿、防止自激振荡、减少高频噪声,选取参数0.1μF/25V。
实物图:测试结果:如图,稳压电源能稳定输出﹢11.7V 、﹣11.8V ,此电压下运放能正常工作。
2. DC/DC 隔离电路由于在电路中加入了光电耦合放大器,则前后级之间不能有任何电的连接,因此需要DC/DC 隔离电路为前级供电,而后级用稳压电源供电。
心电信号检测放大器实验报告

心电信号检测放大器实验报告直流供电天津大学精密仪器与光电子工程学院2004级生物医学工程1班贾乾14第一章前言心脏是人体血液循环系统中的重要器官,依靠它的节律性搏动,血液才能在闭锁的循环系统中不停地流动,使生命得以维持。
它的活动正常与否直接关系到人的生命安全。
人们不能凭着直观判断心脏健康与否,而是需要精确的仪器加以测量,通过对测得的心电波进行分析比较,最后做出诊断。
心电图典型波形如下图所示:心脏的生理功能与心电图存在着密切的有机联系,心脏生理功能失常许多可以从心电图中反映出来,这就是心电图为什么能得到广泛应用的原因,主要应用有:1.分析与鉴别各种心率失常。
2.一部分冠状循环功能障碍或急性所引起的心肌病变。
3.判断心脏药物治疗或其他疾病的药物治疗对心脏功能的影响。
4.指示心脏房室肥大情况,从而协助各种心脏疾病的诊断。
等等。
在国内外,关于心电图机的发展都经过了一段相当长的时间,目前对于心电图机的发展都经过了一段相当长的时间,目前对于心电图机的研制已经达到了一个相当高的水平。
尽管这样,在心电信号处理的方法和自动分析手段都存在着很多缺点,心电特征波形分析定位结果并不尽如人意,从理论上还有创新的余地。
第二章总体设计一.心电信号的基本特征:心电信号是一种较微弱的体表电信号,成年人的幅值约为~4mV,频率在~250Hz范围内,属于低频率,低幅值信号。
为了获得清晰而良好的心电波信号,中华人民共和国医药行业标准YY1139―2000对心电图机提出各种技术要求,主要有:1.输入阻抗单端输入阻抗不小于Ω。
2.输入回路电流各输入回路电流不大于μA。
3.定标电压有1mV±5%的标准电压,用于对心电图机增益进行校准。
4.噪声水平所有折算到输入端的噪声应小于35μV。
5.频率特性幅度频率特性:以10Hz为基准,1Hz~75Hz(~+);6.抗干扰能力共模抑制比:KCMR>60dB以上。
8.50Hz干扰抑制滤波器:≥20dB9.其他医学仪器除了与其他仪器一样能满足环境实验的要求外,还要严格的安全性要求,这些由国际GB10793专门规定。
心电信号检测放大器实验报告

心电信号检测放大器实验报告直流供电天津大学精密仪器与光电子工程学院2004级生物医学工程1班贾乾3004202314第一章前言心脏是人体血液循环系统中的重要器官,依靠它的节律性搏动,血液才能在闭锁的循环系统中不停地流动,使生命得以维持。
它的活动正常与否直接关系到人的生命安全。
人们不能凭着直观判断心脏健康与否,而是需要精确的仪器加以测量,通过对测得的心电波进行分析比较,最后做出诊断。
心电图典型波形如下图所示:心脏的生理功能与心电图存在着密切的有机联系,心脏生理功能失常许多可以从心电图中反映出来,这就是心电图为什么能得到广泛应用的原因,主要应用有:1.分析与鉴别各种心率失常。
2.一部分冠状循环功能障碍或急性所引起的心肌病变。
3.判断心脏药物治疗或其他疾病的药物治疗对心脏功能的影响。
4.指示心脏房室肥大情况,从而协助各种心脏疾病的诊断。
等等。
在国内外,关于心电图机的发展都经过了一段相当长的时间,目前对于心电图机的发展都经过了一段相当长的时间,目前对于心电图机的研制已经达到了一个相当高的水平。
尽管这样,在心电信号处理的方法和自动分析手段都存在着很多缺点,心电特征波形分析定位结果并不尽如人意,从理论上还有创新的余地。
第二章总体设计一.心电信号的基本特征:心电信号是一种较微弱的体表电信号,成年人的幅值约为0.5~4mV,频率在0.01~250Hz范围内,属于低频率,低幅值信号。
为了获得清晰而良好的心电波信号,中华人民共和国医药行业标准YY1139―2000对心电图机提出各种技术要求,主要有:1.输入阻抗单端输入阻抗不小于2.5MΩ。
2.输入回路电流各输入回路电流不大于0.1μA。
3.定标电压有1mV±5%的标准电压,用于对心电图机增益进行校准。
4.噪声水平所有折算到输入端的噪声应小于35μV。
5.频率特性幅度频率特性:以10Hz为基准,1Hz~75Hz(-3.0dB~+4.0dB);6.抗干扰能力共模抑制比:KCMR>60dB以上。
1心电前置放大电路设计

心电前置放大器设计报告姓名班级学号目录1、心电介绍2、心电干扰2.1 肌电干扰2.2 交流干扰3、心电采集电路设计思路3.1 第一级差动放大3.2 第二级低通滤波3.3 第三级功率放大4、心电采集电路及其仿真结果心电信号采集电路设计摘要:通过三导联采集人体的心电信号,然后三级放大,得到可以在示波器上较清楚显示的心电图。
其中三级放大为:第一级是CMRR很大的差动放大器,此处采用仪用放大器AD620;第二级是二阶有源低通滤波器,所设计的截止频率为120Hz;第三级是二级放大电路,前一级是放大倍数固定为10的电路,后一级是放大倍数可调的放大电路。
一、心电介绍心电信号是人类最早研究并应用于临床医学的生物电信号之一,与其他生物电信号相比,该信号也比较容易检测同时具有直观的规律性。
一般人体心电信号的幅值约20μV~5mV,频带宽度为0.05Hz~100Hz,由于心电信号取自于活体,所以信号源内阻较高,且存在着较强的背景噪声和干扰。
在检测人体生物电信号时,需要采用所谓的生物电测量电极,又称引导电极来实现的,通过引导电极将生物电信号引入到放大器的输入端。
对于心电信号的检测,临床上为了统一和便于比较所获得心电信号波形,对测定心电信号(ECG)的电极和引线与放大器的联接方式有严格的统一规定,称之为心电图的导联系统。
此处我们采用三导联。
二、心电干扰心电干扰分为两种,一种是肌电干扰,一种是交流干扰。
肌电干扰一般是35HZ,交流干扰一般是50HZ。
而心电信号的频率范围是在0.05-100HZ之间。
所以肌电干扰和交流干扰极易混入心电信号,并被放大,需要对它们进行抑制处理,以保证心电图记录的质量。
2.1肌电干扰肌电干扰是指由于人体肌肉颤动所引起的噪声信号。
这种噪声信号是不规则的。
肌电干扰信号的频率在10-3000Hz之间,电压从几十微伏到几毫伏之间。
在做心电图检查时,一般常见35Hz肌电干扰信号。
它产生的原因主要有以下几个方面:1.病人精神过于紧张,引起肌电干扰;2.环境温度过低,病人发冷寒颤,引起肌电干扰;3.病人活动或病床不舒适,引起肌电干扰;4.心电图机电极绑带或电极夹过紧,引起肌电干扰。
心电检测电路的设计报告和测试报告

心电检测电路的设计报告和测试报告一、设计报告(一)、设计目的及其意义心肌是由无数个心肌细胞组成,由窦房结发出的兴奋,按一定的途径和时程,依次向心房和心室扩布,引起整个心脏的循环兴奋。
心脏各部分兴奋过程中出现的电位变化的方向、途径、次序、和时间均有一定的规律。
由于人体为一个容积导体,这种电变化也必须扩布到身体表面。
鉴于心脏在同一时间内产生大量的电信号,因此,可以通过安放在身体表面的胸电极或四肢电极,将心脏产生的电位变化以时间为函数记录下来,这种记录曲线称为心电图,如下图所示。
心电图反映心脏兴奋的产生、传导和恢复过程中的生物电变化。
心肌细胞的生物电变化时心电图的来源,但是心电图曲线与单个心肌细胞的膜电位曲线有明显的区别。
ECG波形是由不同的英文字母统一命名的。
正常心电图由一个P波、一个QRS波群和一个T波等组成。
P波起因于心房收缩之前的心房极时的电位变化;QRS波群起因于心室收缩之前的心室除极时的收位变化;T波为心室复极时的电位变化,其幅度不应低于同一导联R波的1/10,T波异常表示心肌缺血或损伤。
ECG的持续时间由:P-R间期(或P-Q间期)为P波开始至QRS波群开始的持续时间,也就是心房除极开始至心室除极开始的间隔时间,正常值为0.12~0.20s,若P-R期延长,则表示房室传导阻滞;Q-T间期为QRS波群的开始至T波的末尾的持续时间,意为心室除极和心室复极的持续时间,正常值为0.32~0.44s;S-T 段为从QRS波群终末导T波开始之间的线段,此时心室全部处于除极状态,无电位差存在,所以正常时与基线平齐,称为等电位线,若S-T段偏离等电位线一定范围,则提示心肌损伤或缺血等病变;QRS波群持续时间正常值约为0.06~0.11s。
因此,实时的检测心电信号,可以从所得出的心电图上观察心脏的变化,医生就可以从所测的心电图上判断心脏各个部位的功能是否正常,所以心电图是医生治疗心脏方面的疾病所不可或缺的依据。
燕山大学心电信号检测放大电路-课程设计报告

燕山大学课程设计说明书题目:心电放大电路课程设计学院(系):燕山大学里仁学院年级专业: 09生物医学工程学号: 0912******** 学生姓名: ***指导教师: ***教师职称: ***摘要心脏是人体循环系统的核心,心脏的活动是由生物电信号引发的机械收缩。
在人体这个三维空间导体当中,这种生物电信号可以波及人体各个部分,在人体体表产生规律性的电位变化。
在人体体表的一定位置安放电极,按时间顺序放大并记录这种电信号,可以得到连续有序的曲线,这就是心电图。
本文分析了体表心电信号的特征。
心电信号的各种生理参数都是复杂生命体(人体)发出的强噪声条件下的弱信号(除体温等直接测量的参数外),心电信号的幅度在l0µV~4mV之问,频率范围为O.05 ~ 100Hz,淹没在50Hz的工频干扰和人体其他信号之中,检测过程及方法较复杂。
去除信号检测过程的干扰和噪声、进行心电信号的分析是心电仪器的重要功能之一,心电信号的放大质量直接影响着分析仪器的性能和对人体心脏疾病的诊断。
本文设计了一个心电信号检测放大电路,充分考虑了人体心电信号的特点,·采用前置差动放大+带通滤波器+50Hz陷波器(带阻滤波器)组成的模式,并且利用软件对相应的电路进行仿真,仿真结果表明电路的放大滤波性能很好,硬件电路搭建后的实验结果也表明,电路能够很好地完成人体心电信号的检测放大。
关键字:放大器心电信号第一章绪论 (1)第二章设计基础2.1 心电信号特征分析 (2)2.1.1 心电信号时域特征分析 (2)2.1.2 心电信号的电特征分析 (3)2.2 心电信号的噪声来源 (5)第三章电路设计3.1 前置放大电路设计 (7)3.2 一阶高通滤波器电路设计 (8)3.3 一阶低通滤波器电路设计 (9)3.4 50Hz干扰信号陷波器设计 (9)3.5电压放大器设计 (13)第四章Multisim仿真 (14)总结 (16)参考文献 (17)答辩记录及评分表 (18)附录 (19)第一章绪论1人体生物信息的基本特点人体的生物信号测量的条件是很复杂的。
模电低功耗心电放大器设计报告

模拟电了电路设计低功耗心电放大器设计报告学院:_____ 电气工程学院_______班级:_________________________姓名:_________________________学号:______ 1412021061 ______日期: ______ 2016 .7.1 ________1. 概述心脏是循环系统中重要的器官。
由于心脏不断地进行有节奏的收缩和舒张活动,血液才能在闭锁的循环系统中不停地流动。
心脏在机械性收缩之前,首先产生电激动。
心肌激动所产生的微小电流可经过身体组织传导到体表,使体表不同部位产生不同的电位。
如果在体表放置两个电极,分别用导线联接到心电图机(即精密的电流计)的两端,它会按照心脏激动的时间顺序,将体表两点间的电位差记录下来,形成一条连续的曲线,这就是心电图。
Morpholep of a PQRST-campkx of MI ECG recorded from a nomial基本心电图如上所示,包含如下几个波段:P波一一两心房除极时间P-R间期一一心房开始除极至心室开始除极时间QRSfe群——全心室除极的电位变化ST段一一心室除极刚结束尚处以缓慢复极时间T波一一快速心室复极时间2. 设计背景心电放大器是一种常见的生物电放大仪器,在如今已经得到了广泛的应用,并已经研发出了便携家用的医疗仪器。
心电放大器可以实时观测被测者的心电信号,有助于病征的观测,并能辅助诊断。
心电放大器作为精密医疗仪器,在现代的应用越来越广泛,低成本是它的一个重要趋势。
心电信号有几个显著的特点1)心电信号很微弱,其幅值为10卩V (胎儿)-4mV (成人),放大倍数约为500~1000倍;2)频率很低,约为0.05Hz-75Hz,能量主要集中在17Hz附近;3)有很强的随机性,并不稳定。
4)人体作为信号源,本身内阻很大。
5)干扰多。
如肌电等人体噪声,以及在心电放大器中不可避免的工频等设备噪声。
心电放大电路设计报告

心电放大电路设计报告心电放大器设计1 设计题目设计一单导联心电放大器,心电信号的幅度范围为0.5~5mV,要求放大器与后续计算机系统中的10位A/D转换器相连接,A/D转换器的输入电压范围为0~5V。
1.1 主要技术指标1)输入阻抗:≥5MΩ2)偏置电流:<2nA3)输入噪声:<10uV4)共模抑制比:≥100dB5)耐极化电压:±300mV6)漏电流:<10uA7)频带:0.05~250Hz1.2 具体要求1)设计放大器电路;2)计算电路中个元器件的参数值;3)对选择的关键元器件说明其选择理由。
2 引言在当今社会中,心脏病等心血管已经成为了世界范围内常见的疾病,号称“头号杀手”。
由于心脏病有突发性以及长久性,对心脏病人也需要长期的治疗和监护。
心脏是循环系统中重要的器官。
由于心脏不断地进行有节奏的收缩和舒张活动,血液才能在闭锁的循环系统中不停地流动。
心脏在机械性收缩之前,首先产生电激动。
心肌激动所产生的微小电流可经过身体组织传导到体表,使体表不同部位产生不同的电位。
如果在体表放置两个电极,分别用导线联接到心电图机(即精密的电流计)的两端,它会按照心脏激动的时间顺序,将体表两点间的电位差记录下来,形成一条连续的曲线,这就是心电图。
图1 标准的心电图心电图是检查心脏情况的一个重要方法,其应用范围包括以下几个方面:(1) 分析与鉴别各种心律失常。
(2) 查明冠状动脉循环障碍。
(3) 指示左右房窜肥大的情况,协助判别心瓣膜病、高血压病、肺源性及先天性心脏病的诊断。
(4) 了解洋地黄中毒、电解质紊乱等情况。
(5) 心电监护已广泛应用于手术、麻醉、用药观察、航天、体育等的心电监测以及危重病人的抢救。
3系统设计3.1设计思路心电信号十分微弱,常见的心电频率一般在0—100Hz之间,能量主要集中在17Hz附近,幅度小于5mV,心电电极阻抗较大,一般在几十千欧以上。
在检测生物电信号的同时存在强大的干扰,主要有电极极化电压引起基线漂移,电源工频干扰(50Hz),肌电干扰(几百Hz以上),临床上还存在高频电刀的干扰。
心电放大器(电池供电)电路测试报告 (2)

心电放大器(电池供电)电路测试报告心电放大器(电池供电)电路测试报告一、实验概述从心电放大器(电池供电)电路的最初设计、到答辩时按照李刚教授的指导所进行的修改,以及后续的焊接、检测,整个心电检测装置调试为期一个多月。
在这一个多月中,自己从最初仅仅对电路的大致理解,到对电路的分模块分析,明白其原理,最到到用实验验证理论,从实践中检验自己的所学。
由于自己单片机的知识相对薄弱,没能采用单片机进行信号的精确处理。
因此在整个心电放大器设计中,以硬件电路为主,尽可能的采用一些方法减小噪声,以生成比较完美的心电图。
二、实验电路实验伊始,先按照最初的设计来进行电路的连接。
连接完测试时,发现一个比较重要的问题——噪声过大。
基于整体电路的设计没有问题,对部分电路进行了改动,以减少噪声的干扰,尤其是工频干扰的影响。
所采取改良的措施:1、将前置放大电路中的四个OP07改用为OPA4251。
OPA4251相比于OP07有如下的优点:1)集成性好2)低功耗(Iq=25μA)3)轨到轨rail-to-rail能够增加动态范围、抑制非线性失真、支持低电压4)高共模抑制比(124dB)2、尽量减少至于电路上方的电路线,防止其产生电场干扰。
并且通过焊接线将各个芯片的正负地等等引脚相连、3、将芯片的正负电源同地之间分别加电容,起到耦合作用。
加入耦合电容之后,能够有效地抑制电磁干扰信号的传入,对容易受干扰的器件或电路加以屏蔽。
4、更换前置电路的相关参数,改变放大倍数。
第一级的放大倍数由原先的4倍改变到7倍。
增大此倍数的原因是能够在第一级就可以将提取的的信号放大,不至于因为放大太小而导致在随后的电路中信号衰减过多。
第二级放大倍数由原先的26倍改变到15倍左右,使得整个前置的放大倍数能够在110倍左右。
5、将低通改在后级放大之后,进而能够有效的滤除高频噪声的干扰。
经过实际检测相比于低通在陷波、低通之前,产生的波形的噪声更小。
6、将能够使电源取反的芯片由TI7660换成ltc660,使整个负端的电压输出电流的能力增强。
心电信号放大电路

浅谈滤波器在心电信号放大电路中的应用1 实验目的与意义心电信号十分微弱,一般在0.05-100Hz之间,幅度小于5mv。
在检测心电信号的同时存在着极大的干扰。
心电波仪器通过传感系统把心脏跳动信号转化为电压信号波形,一般为微伏到毫伏数量级。
这是需经过信号放大才能驱动测量仪表把波形绘制出来。
本实验通过应用运算放大器设计心电放大电路,目的是可以实现有效滤除与心电信号无关的高频信号,通过系统,可以得到放大,无干扰的心电信号。
本实验将就心电放大电路中的滤波器部分进行重点研究,采用multisim10.1进行仿真,分析其实现的功能以及所起的作用。
心电信号放大电路的其余部分将做简要介绍。
2 心电放大电路工作原理心电信号放大电路原理流程图2.1前置放大电路放大微弱的心电信号。
具有高输入阻抗、高共模抑制比、低噪声、低漂移、具有一定的电压放大能力的特点。
2.2高通滤波电路通过频率大于0.05Hz的信号,排除低频信号干扰。
2.3低通滤波电路通过频率低于100Hz的信号,排除高频信号干扰。
2.4带阻滤波电路有效阻断工频为50Hz的信号干扰。
2.5电压放大电路对处理过的心电信号进行放大,以便能够观察出微弱的心电信号。
3 技术指标信号放大倍数:1000倍输入阻抗:≥10MΩ共模抑制比:K cmr≥60dB频率响应:0.05-100Hz信噪比:≥40dB4心电放大电路介绍与分析4.1前置放大电路可应用AD620来设计放大电路,设计图如下根据心电信号特点,前置放大电路具有以下特点:1)高输入阻抗:被提取的心电信号是不稳定的高内阻源的微弱信号,为了减少信号源内阻的影响,应提高放大电路的输入阻抗。
2)高共模抑制比:人体所携带的工频干扰以及所测量的参数以外的生理作用的干扰,一般为共模干扰,前置级须采用共模抑制比高的差动放大电路,以减少共模干扰。
3)低噪声,低漂移:使其对信号源影响小,输出稳定。
此放大电路可实现增益1-1000倍的调节。
心电放大器(电池供电)电路设计报告

心电放大器(电池供电)电路设计报告心电放大器(电池供电)电路设计报告一、心电检测背景1、人体生物信号的基本特点生命的本质在于电,因此生物电是最重要的生物医学信号,携带着丰富的生理和病理信息。
该信号基本的特点是:低频、低幅值、高内阻且可变,并且各生物电之间有干扰,同时,在对这些信号进行测量时,要注意被测对象——人体的特殊性。
2、心电图心电图指的是心脏在每个心动周期中,由起搏点、心房、心室相继兴奋,伴随着心电图生物电的变化,通过心电描记器从体表引出多种形式的电位变化的图形(简称ECG)。
心电图是心脏兴奋的发生、传播及恢复过程的客观指标。
正常情况下,人体的心电图如下:正常心电图各波段的正常值及意义如下:(1)P波:呈钝圆形,可有轻微切迹。
P波宽度不超过0.11秒,振幅不超过0.25毫伏。
(2)PR间期:即由P波起点到QRS波群起点间的时间。
一般成人P-R间期为0.12~0.20秒。
P-R间期随心率与年龄而变化,年龄越大或心率越慢,其PR间期越长。
(3)QRS波群:代表两心室除极和最早期复极过程的电位和时间变化。
正常成人为0.06~0.10秒。
此波群振幅,当加压单极肢体导联aVL导联R波不超过1.2毫伏,aVF导联R波不超过2.0毫伏。
aVR导联R波不应超过0 .5毫伏,超过此值,可能为右室肥大。
(4)Q波:时间不超过0.04秒。
(5)S-T段:正常任一导联S-T偏移都不应超过0.05 毫伏。
(6)T波:心前导联的T波可高达1.2~1.5毫伏。
(7)Q-T间期:Q-T间期同心率有密切关系。
心率越快,Q-T间期越短;反之,则越长。
一般心率70次/分左右时,Q-T间期约为0.40秒。
(8)U波:振幅很小,约为0.2~0.3毫伏。
心电图目前已经广泛应用于诊断疾病、用药观察等医疗卫生事业以及科研事业。
3、心电信号的特点人体的心电信号属于生物医学信号,在测量某一种生理参数的同时,存在着其他生理信号的噪声背景,并且对外界(包括人体)的干扰十分敏感。
心电放大器(交流供电) 设计报告

心电放大器(交流供电)设计报告一心电简介1 心电的产生及心电检测心脏周围的组织和体液都能导电,因此可将人体看成为一个具有长、宽、厚三度空间的容积导体。
心脏好比电源,无数心肌细胞动作电位变化的总和可以传导并反映到体表。
在体表很多点之间存在着电位差,也有很多点彼此之间无电位差是等电位的。
心脏在每个心动周期中,由起搏点、心房、心室相继兴奋,伴随着生物电的变化,这些生物电的变化称为心电。
2 典型心电图P波――左右心房兴奋时所产生的电位变化P-R间期――心房兴奋到心室兴奋所经历的时间QRS波群――心室兴奋传播过程中的电位变化T波――心室复极化过程的电位变化QT期间――心室去极化所用时间3 心电检测及其意义在体表放置两个电极(在心脏异侧),分别用导线联接到心电图机的两端,则按照心脏激动的时间顺序,将体表两点间的电位差记录下来,形成一条连续的曲线,这就是心电图。
对心电波形的分析在临床上有着重要意义,患心律不齐,心肌梗塞,冠状动脉功能异常,心肌障碍及心室肥大症的人,其心电波形较正常人均有较大变化。
心电监护在手术麻醉及恢复,心肺复苏以及电解质代谢紊乱的检测中也有重要意义。
二心电放大器的系统要求(1)人体心电信号幅度一般在0.5 mV—5mV,属于微弱信号,放大器输出信号一般在+5V—-5 V,因此要求放大器的差模电压增益为1000左右;(2)信号的频率范围一般为0.05—100Hz;(3)高输入阻抗。
人体内阻,检测电极与皮肤的接触电阻为信号的内阻,阻值一般为几十千欧,通过电极提前的心电信号是不稳定的高内阻源的微弱信号,为了减轻微弱心电信号的负载,要求放大器的差模输入阻抗大于10兆欧;(4)高共模抑制比CMRR。
人体相当于一个导体,将接收空间电磁场的各种干扰信号,它们对放大器来说相当于共模信号,因此,前置级必须采用CMRR 高的差动放大形式,能减少共模干扰向差模干扰的转化,一般放大器的共模抑制比为60dB以上。
;(5)要求具有低噪声和低漂移特性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
心电放大器设计1 设计题目设计一单导联心电放大器,心电信号的幅度围为0.5~5mV,要求放大器与后续计算机系统中的10位A/D转换器相连接,A/D转换器的输入电压围为0~5V。
1.1 主要技术指标1)输入阻抗:≥5MΩ2)偏置电流:<2nA3)输入噪声:<10uV4)共模抑制比:≥100dB5)耐极化电压:±300mV6)漏电流:<10uA7)频带:0.05~250Hz1.2 具体要求1)设计放大器电路;2)计算电路中个元器件的参数值;3)对选择的关键元器件说明其选择理由。
2 引言在当今社会中,心脏病等心血管已经成为了世界围常见的疾病,号称“头号杀手”。
由于心脏病有突发性以及长久性,对心脏病人也需要长期的治疗和监护。
心脏是循环系统中重要的器官。
由于心脏不断地进行有节奏的收缩和舒活动,血液才能在闭锁的循环系统中不停地流动。
心脏在机械性收缩之前,首先产生电激动。
心肌激动所产生的微小电流可经过身体组织传导到体表,使体表不同部位产生不同的电位。
如果在体表放置两个电极,分别用导线联接到心电图机(即精密的电流计)的两端,它会按照心脏激动的时间顺序,将体表两点间的电位差记录下来,形成一条连续的曲线,这就是心电图。
图1 标准的心电图心电图是检查心脏情况的一个重要方法,其应用围包括以下几个方面:(1) 分析与鉴别各种心律失常。
(2) 查明冠状动脉循环障碍。
(3) 指示左右房窜肥大的情况,协助判别心瓣膜病、高血压病、肺源性及先天性心脏病的诊断。
(4) 了解洋地黄中毒、电解质紊乱等情况。
(5) 心电监护已广泛应用于手术、麻醉、用药观察、航天、体育等的心电监测以及危重病人的抢救。
3系统设计3.1设计思路心电信号十分微弱,常见的心电频率一般在0—100Hz之间,能量主要集中在17Hz附近,幅度小于5mV,心电电极阻抗较大,一般在几十千欧以上。
在检测生物电信号的同时存在强大的干扰,主要有电极极化电压引起基线漂移,电源工频干扰(50Hz),肌电干扰(几百Hz以上),临床上还存在高频电刀的干扰。
电源工频干扰主要是以共模形式存在,幅值可达几V甚至几十V,所以心电放大器必须具有很高的共模抑制比。
电极极化电压引起基线漂移是由于测量电极与生物体之间构成化学半电池而产生的直流电压,最大可达300mV,因此心电放大器的前级增益不能过大,而且要有去极化电压的RC常数电路。
由于信号源阻可达几十KΩ、乃至几百KΩ,所以,心电放大器的输入阻抗必须在几MΩ以上,而且 CMRR 也要在60dB以上(目前的心电图机共模抑制比一般均在89dB)。
同时要在无源、有源低通滤波器中有效地滤除与心电信号无关的高频信号,通过系统调试,最后得到放大、无噪声干扰的心电信号。
3.2结构框图本电路设计主要是由五部分构成。
1、前置放大电路。
其中前置放大器是硬件电路的关键所在,设计的好坏直接影响信号的质量,从而影响到仪器的特性;2、共模抑制电路。
在设计中使用了右腿驱动电路、屏蔽驱动电路,它们可以消除信号中的共模电压,提高共模抑制比,使信号输出的质量得到提高;3、低通滤波电路及时间常数电路。
常见的心电频率一般在0.05--100Hz之间,能量主要集中在17Hz附近,幅度微小,大概为5mV,临床监护有用频率为0.5~30几HZ,因此设计保留40HZ以下的信号。
时间常数电路实现一阶无源高通,截止频率为0.05HZ,时间常数为3.6s。
4、工频50Hz的陷波电路。
本设计采用了双T带阻滤波电路,它能够对某一频段的信号进行滤除,用它能有效选择而对电源工频产生的50Hz的噪声进行滤除;5、主放大电路:心电信号需要放大上千倍才能观测到,前置放大增益只有100~250左右,在这一级还需要放大4~10倍左右。
总体电路框图如图前置放大电路右输入信号后级放大电路低通滤波电路50HZ 陷波左输入信号右腿驱动电路3.3电路设计3.3.1 前置放大电路由于人体心电信号的特点,加上背景噪声较强,采集信号时电极与皮肤间的阻抗大且变化围也较大,这就对前级(第一级)放大电路提出了较高的要求,即要求前级放大电路应满足以下要求:高输入阻抗;高共模抑制比;低噪声、低漂移、非线性度小;合适的频带和动态围。
为此,选用Analog 公司的仪用放大器AD620作为前级放大(预放)。
AD620的核心是三运放电路(相当于集成了三个OP07运放),其部结构如图1所示。
图1 AD620 放大器部结构图该放大器有较高的共模抑制比(CMRR),温度稳定性好,放大频带宽,噪声系数小且具有调节方便的特点,是生物医学信号放大的理想选择。
根据小信号放大器的设计原则,前级的增益不能设置太高,因为前级增益过高将不利于后续电路对噪声的处理。
参数选择:由于AD620的增益与之间关系如下:G=1+(R1+R2)/R3,选取R21=R22=27K, R23=6.2K, C21=39pF, C22=200pF,C23=39Pf,前置放大倍数:G1=1+(R1+R2)/R3=9.7。
3.3.2 右腿驱动电路体表驱动电路是专门为克服50Hz共模干扰,提高CMRR而设计的,原理是采用人体为相加点的共模电压并联反馈,其方法是取出前置放大中的共模电压,经过驱动电路倒相放大后再加回体表上,一般的做法是将此反馈共模信号接到人体的右腿上,所以称为右腿驱动,通常,病人在做正常的心电检测时,空间电场在人体产生的干扰电压以及共模干扰时非常严重。
而使用右腿驱动电路就能很好的解决上述问题,下图就是右腿驱动的电路图。
其反馈共模电压可以消除人体共模电压产生的干扰,还可以抑制工频干扰。
参数选择:如上图上标示,C41=0.01Uf,R41=10K,C42=1M.3.3.3 低通滤波放大电路由RC元件与运算放大器组成的滤波器称为RC有源滤波器,其功能是让一定的频率围的信号通过,抑制或急剧衰减此频率围以外的信号。
具有理想幅频特性的滤波器是很难实现的(如图10虚线)。
只能用实际的滤波器的幅频特性去逼近理想的特性。
常用的方法是巴特沃斯(Butterworth)逼近和切比雪夫(Chebysher)逼近,为保证心电信号原形,采用较平坦的巴特沃思有源滤波。
如图所示,滤波器的阶数N越高,幅频特性衰减的速度越快,就越接近于理想幅频特性。
图10 巴特沃斯幅频特性图11 实用二阶低通巴特沃思滤波器参数选择:要滤除250Hz的频率,经过Mulisim仿真选择阻值,如图上图中各元件的标注,R41=R42=R=6.8k,C41=C42=0.1uf,f=1/(2πRC)=258Hz,基本上根据二阶低通巴特沃思滤波器公式:截止频率为H符合设计要求。
3.3.4 0.05Hz高通滤波器电路此次设计用的是反相的二阶巴特沃兹高通滤波器,其中放大倍数设置为1,截止频率为0.05Hz。
如图5所示,各个电阻以及电容的参数值在电路中已标明。
图5 巴特沃兹二阶反相高通滤波电路3.3.4 50Hz陷波电路工频干扰时心电信号的主要干扰,虽然前置放大电路对共模干扰具有一定的抑制作用,但是有部分工频干扰是以差模方式进入电路的,且频率处于心电信号的频带之,加上电极和输入回路不稳定的因素,前级电路输出的心电信号仍存在较强的工频干扰,所以必须专门滤波。
采用如下图所示的有源双T带阻滤波器,该电路的Q值随着反馈系数β(0<β<1)的增高而增高,Q值与β关系如下Q=1/(1-β),调节下图中的R64和R64可以改变Q值。
图13 50HZ双T陷波电路参数选择:实验中选用陷波效果很好的经验参数。
即R61=R62=R=33 KΩ,R64=2KΩ,R4=148KΩ,R63=1/2 R=15KΩ。
C61=C62=C=0.1uF,C63取0.2uF。
根据公式:中心截止频率f0=1/(2∏RC)= 50Hz上图中,滤波电路增益G2=R65/(R65+R64)=0.9。
阻带宽度:BW= f0/Q= 其中:Q=1/2 (2-A uv)3.3.5 次级放大电路第二级放大电路主要以提高增益为目的,选用普通的OPA2335放大芯片即可。
电路图如下:参数选择:R31=9.1k,R32=1M,C31=680pFC31能起到一定的低通滤波作用第二级放大倍数:G3=R32/R31=110整个电路放大倍数G=G1*G2*G3=9.7*0.9*100=873倍4 电路性能的实验验证按照上图搭建电路图,通过ORCAD6.1仿真,结果基本上能符合设计的要求。
5仿真5.1前置放大电路仿真仿真电路图:仿真结果:从仿真结果看出,实际前置放大倍数为K1=46.8mA/4.7mA=9.9,与预期放大结果相同。
5.2低通滤波电路仿真电路:仿真结果:1、输入f=60hz时,输出波形图如下:输出和输入基本上一致,信号没有被衰减。
2、输入f=250hz时,输出波形图如下:输出结果衰减为:323uV/4.9Mv=6.5%250Hz频率的输入杂波滤除了93.5%。
3、输入f=1KHz时,输出波形图如下:结果:1kHz频率的输入杂波基本上被滤除5.3 50Hz陷波电路仿真电路:仿真结果:有图可知,当输入信号为50Hz的工频干扰信号时,杂波基本上被滤除。
5.4次级放大电路仿真电路连接图:仿真结果:从图中可以发现,放大倍数G2=2.65V/27.6mV=96,与预期的设计相符合。
6 结束语采用以AD620及OP2335为核心的信号放大器来实现心电信号的放大,电路功耗小,灵敏度高,最低只需3 V的电源,可由外接电池提供,容易实现基于移动式设备(如笔记本电脑)为核心的心电信号采集及处理,是一种实用的心电信号前端采集放大电路(信号的进一步优化可在采集后由软件进行调理)。
通过本次设计,让我对心电生理信号的采集电路有了比较充分的了解。
对以后的研究设计有较大的帮助。