二次函数和图形变换ppt课件

合集下载

人教版九年级数学上册《二次函数y=ax2的图象与性质》二次函数PPT精品课件

人教版九年级数学上册《二次函数y=ax2的图象与性质》二次函数PPT精品课件

课堂检测
巩固练习
对应训练
第二十二章 二次函数
《超越训练》 P34:例2+达标训练
课堂检测
基础巩固题
第二十二章 二次函数
1.函数y=2x2的图象的开口向上 , 对称轴y轴
是 (0,0) ; 在对称轴的左侧,y随x的增大而 减小 ,
,顶点 y
在对称轴的右侧, y随x的增大而 增大 .
O
x
2.函数y=-3x2的图象的开口 向下 ,对称 y轴
2
口大小与a的大小有什么关系?
的图象开
当a<0时,a越小(即a的绝对 值越大),开口越小.
-4 -2 -2
24
-4
-6
y 1 x2 2
-8
y x2
y 2x2
对于抛物线 y = ax 2 ,|a|越大,抛物线的开口越小.
知识探究 归纳
y=ax2 图象
位置开 口方向
对称性 顶点最值
增减性
第二十二章 二次函数
1.y=x2的图象是一条抛物线; 2.图象开口向上; 3.图象关于y轴对称; 4.顶点( 0 ,0 ); 5.图象有最低点.
y y=x2
o
x
知识探究
第二十二章 二次函数
说说二次函数y=-x2的图象有哪些性质,并与同伴交
流.
1.y=-x2的图象是一条 抛物线;
y
o
x
2.图象开口向下;
3.图象关于y轴对称;
画出函数y=-x2的图象.
x … -3 -2 -1 0 1 2 3 …
y=-x2 … -9 -4 -1 0 -1 -4 -9 …
y -4 -2 0 2 4 x
-3
-6 -9

26.2二次函数的图象与性质(第2课时)课件(共12张PPT)

26.2二次函数的图象与性质(第2课时)课件(共12张PPT)

为0 。
3.函数y=3x2+5与y=3x2的图象的不同之处是( C
)
A.对称轴
B.开口方向
C.顶点
D.形状
4.已知抛物线y=2x2-<1上有两点(x1,y1 ) ,(x1,y1 ) 且x1<x2<0,则y1 y2(填“<”或“>”)
5.已知一个二次函数图像的顶点在y轴上,并 且离原点1个单位,图像经过点(–1,0),求该 二次函数解析式。
1.5
1
0.5
y3x2 1
1
2
-0.5
-1
在同一直角坐标系中
画出函数 y 1 x2 y 1x2 2 3
5 4
y
3 y 1 x2 2
3
3 2
的图像
1
x
–5 –4 –3 –2 –1O –1
–2
y 1x2 2
–3
3
–4
–5
12345
y 1 x2 2 3
y 1 x2 3
试说出函数y=ax2+k(a、k是常数,a≠0)的图 象的开口方向、对称轴和顶点坐标,并填写下 表.
1
-6 -4 -2
2
4
6
x y=3x2 y=3x2–1
… –1 –0.6
…3
1.08
…2
0.08
(2)二次函数 y=3x²-1 的图 象与二次函数
y=3x²的图象有 什么关系?
-2
-1
–0.3
0
0.3
0.27
0
0.27
–0.73 – 1 –0.73
y 3x2
2
0.6 1 … 1.08 3 … 0.08 2 …
谢谢观赏
You made my day!

二次函数图象的变换-人教新课标版PPT课件

二次函数图象的变换-人教新课标版PPT课件
x
2021/7/24
16
考点y研究3: 旋转
9
8 7
6
zxxkw
5 4 3
2
2.将抛物线y 1 (x 4)2 4 2
绕原点旋转180度,
会得到哪条抛物线?
(4,4)
y 1 (x 4)2 4 2
1
3 2 1 0 1 2 3 4 5
x
1
2
(-4,-4)
2021/7/24
17
三、方法小结
的图象是抛
物线,若抛物线不动,把x轴、y轴分别向上、向右平
移2个单位,那么在新坐标系下抛物线的解析式是
zxxkw
_y_=_2_(_x_+_2__)2_-_2_.
2021/7/24
(-2,-2)
22
4、(2007.德阳市)如图 已知 与x轴交于点
A(1,0)和B(5,0)的抛物线 l1 的顶点为 C(3,4),抛物线 l2 与 l1 关于x轴对称,顶
zxxkw
学.科.网
2021/7/24
1
课前检测:
1、抛物线y=-(x-1)2+3的开口方向是向下 ; 顶点坐标是(1,3) ,对称轴为直线x=1 。
2、 抛物线 是
y

1 x2 2x 1 (2 -2,-3)
的开口方向 向上
直线x=-2
顶点坐标是


,对称轴
2021/7/24
2
二:考点研究1: 平移
y 3(x 1)2 1
x (-1,-1)
(草图)
2021/7/24
19
四、巩固知识:
y 2(x 1)2 3
二:轴对称、旋转 已知抛物线C1:y=2x2+4x+5 (1).抛物线C2与C1关于x轴对称,求抛物线C2的解析式. (2).抛物线C3与C1关于y轴对称,求抛物线C3的解析式. (3)将抛物线C1 绕原点在平面内旋转180度得抛物线C4, 求抛物线C4的解析式 (4)将抛物线 C1绕其顶点在平面内旋转180度,得到抛物

二次函数的图像和性质ppt课件

二次函数的图像和性质ppt课件
二次函数的图像和性质ppt课件
contents
目录
• 引言 • 二次函数的定义和公式 • 二次函数的图像 • 二次函数的性质 • 二次函数的实际应用 • 总结与回顾 • 课后作业与思考题
01 引言
课程背景介绍
01
二次函数是数学中基础知识之一 ,掌握好二次函数的图像和性质 对于后续学习代数、几何等数学 领域都有重要的意义。
二次函数的定义
01
02
03
定义
一般地,形如$y = ax^2 + bx + c$($a$、$b$、 $c$是常数,$a \neq 0$ )的函数叫做二次函数。
解释
二次函数是包含未知数的 二次多项式的函数,其未 知数的最高次数为2。
示例
$y = 2x^2 + 3x - 4$是 一个二次函数。
二次函数的公式
01
02
03
04
当x增大时,如果a>0,y值会 随之增大;如果a<0,y值会
随之减小。
当x增大时,如果a>1,y值会 快速增大;如果0<a<1,y值
会缓慢增大。
当x减小时,如果a>0,y值会 随之减小;如果a<0,y值会
随之增大。
当x减小时,如果a>1,y值会 快速减小;如果0<a<1,y值
会缓慢减小。
减。
当$\Delta = 0$时,函
数有一个实根;当
$\Delta < 0$时,函数
没有实根。
极值:当$a > 0$时,二 次函数在区间$(-\infty, -b/2a)$上单调递增,在 区间$(-b/2a,+\infty)$ 上单调递减,此时$b/2a$为极小值点;当 $a < 0$时,二次函数在 区间$(-\infty, -b/2a)$ 上单调递减,在区间$(b/2a,+\infty)$上单调递 增,此时$-b/2a$为极 大值点。

《二次函数图象》PPT课件

《二次函数图象》PPT课件

-2
-3 -4
-5
-6 -7
y=-x2
-8 -9
-10
5
从图像可以看出,二次函数y=x2和y=-x2的图像都
是一条曲线,它的形状类似于投篮球或投掷铅球时球在
空中所经过的路线. 这样的曲线叫做抛物线.
y=x2的图像叫做抛物线y=x2.
y y=x2
y
o
x
y=-x2的图像叫做抛物线y=-
x2. 实际上,二次函数的图像 o
(2)当a>0时,抛物线的开口向上,顶点是 抛物线的最低点;
y
a>0
当a<0时,抛物线的开口向下,顶点是
抛物线的最高点;
o
x
|a|越大,抛物线的开口越小;
.
a<0
16
请同学们把所学的二次函数图象的知识归纳小结。
(0,0) 最低点 y轴 向上
(0,0) 最高点 y轴 向下
.
增 减增增 大 小大大
增 增增减 大 大大小
17
8
y=x2
7
6
5
4
3
2
接各点,就得到y=x2的
1 -5 -4 -3 -2 -1 o 1 2 3 4 5
x
图像.
.
4
请画函数y=-x2的图像 解:(1) 列表
(2) 描点
(3) 连线
y 1
根据表中x,y的数值在 坐标平面中描点(x,y),
再用平滑曲线顺次连接 各点,就得到y=-x2的图 像.
.
-5 -4 -3 -2 -1-1 o 1 2 3 4 5 x
x
都是抛物线.
它们的开口向上或者向下.
一般地,二次函数y=ax2+bx+c

《二次函数》优质PPT课件(共65页ppt)

《二次函数》优质PPT课件(共65页ppt)

抛物线
y 2x 32 1
2
y 1 x 12 5
3
y 2x 32 5
y 0.5x 12
y 3 x2 1 4
y 2x 22 5
y 0.5x 42 2 y 3 x 32
4
开口方向
向上 向下 向上 向下 向下 向上 向上 向下
对称轴
直线x=-3 直线x=-1 直线x=3 直线x=-1 直线x=0 直线x=2 直线x=-4 直线x=3
__10_0___x棵橙子树,这时平均每棵树结_______个橙6子00。 5x
(3)如果果园橙子的总产量为y个,那么y与x
之间的关系式为_____y____6_0_0__5_x_。100 x
y 5x2 100 x 60000
y 5x2 100 x 60000 在上述问题中,种多少棵橙子树,可以使果园橙子的总产量最多?
-2
-1
2
4
6
-2
y x2
-3
-4
-5
1.二次函数所描述的关系 2.结识抛物线 3.刹车距离与二次函数 4.二次函数的图象 5.用三种方式表示二次函数 6.何时获得最大利润 7.最大面积是多少 8.二次函数与一元二次方程
影响刹车距离的最主要因素是汽车行驶的速度及路面的摩擦系 数。
有研究表明,晴天在某段公路上行驶时,速度为v(km/h)的 汽车的刹车距离s(m)可以由公
x
1 2 3 4 5 6 7 8 9 10 11 12 13 14

y 个
60095
60180
60255
60320
60375
60420
60455
60480
60495
60500

二次函数(复习课)课件

二次函数(复习课)课件
详细描述
伸缩变换包括横向伸缩和纵向伸缩。横向伸缩是指将图像在x轴方向上进行放大或缩小,纵向伸缩是指将图像在y轴方向上进行放大或缩小。具体来说,对于函数y=ax^2+bx+c,若图像在x轴方向上放大k倍,则新的函数为y=a(kx)^2+b(kx)+c;若图像在y轴方向上放大k倍,则新的函数为y=a(x)+b(x)/k+ck。通过这两种伸缩变换,我们可以得到原函数的放缩版函数。
02
二次函数的解析式
总结词
二次函数的一般形式是 $y = ax^2 + bx + c$,其中 $a neq 0$。
详细描述
一般式是二次函数的基本形式,它包含了二次函数的最高次项、一次项和常数项。通过一般式可以明确地看出函数的开口方向和开口大小,由系数 $a$ 决定。
VS
二次函数的顶点形式是 $y = a(x - h)^2 + k$,其中 $(h, k)$ 是函数的顶点坐标。
总结词
实际应用问题
总结词
与其他函数的综合
总结词
与几何图形的结合
01
02
03
04
05
06
总结词
详细描述
总结词与图像关系
这类问题需要探讨二次函数的系数与图像之间的关系,如开口大小、对称轴位置等。
一题多解法
这类问题通常有多种解法,需要灵活运用二次函数的性质和图像,寻找最简便的解法。
详细描述
二次函数具有对称性,其对称轴为直线$x = -frac{b}{2a}$。此外,二次函数的开口方向由系数$a$决定,当$a > 0$时,开口向上;当$a < 0$时,开口向下。顶点坐标为$left(-frac{b}{2a}, fleft(-frac{b}{2a}right)right)$。

第1讲二次函数的图象和性质复习课件(共39张PPT)

第1讲二次函数的图象和性质复习课件(共39张PPT)
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
第二种是在瑞典本国流行的说法.在诺贝尔立遗嘱期 间,瑞典最有名望的数学家就是米塔格·勒弗列尔,诺贝尔 很明白,如果设立数学奖,这项奖金在当时必然会授予这位 数学家,而诺贝尔很不喜欢他.所以诺贝尔不设立数学奖.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
从函数图象中获取信息 a的作用:决定开口的方向和大小. (1)a>0开口向上,a<0开口向下; (2)a越大,抛物线的开口越小. b的作用:决定顶点的位置. 左(对称轴在y轴左边) 同(a,b同号) 右(对称轴在y轴右边) 异(a,b异号) c的作用:决定抛物线与y轴交点的位置. 上(抛物线与y轴的交点在y轴正半轴)
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
【解析】 ①∵图象与x轴的交点A,B的横坐标分别为-1,3, ∴AB=4, ∴对称轴 x=-2ba=1, 即2a+b=0, 故①错误; ②根据图示可知,当x=1时,y<0,即a+b+c<0, 故②错误; ③∵点A的坐标为(-1,0), ∴a-b+c=0,且b=-2a, ∴a+2a+c=0,即c=-3a, 故③正确;
大师导航 归类探究 自主招生交流平台 思维训练
第一章 二次函数
第1讲 二次函数的图象和性质
全效优等生
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
诺贝尔为什么没有设数学奖 诺贝尔奖在全世界有很高的地位,许多科学家梦想着能 获得诺贝尔奖.数学被誉为“科学女皇的骑士”却得不到每年由 瑞典科学院颁发的诺贝尔奖,过去没有,将来也不会有.因为 瑞典著名化学家诺贝尔留下的遗嘱中没有提出设立数学奖.对 此,外界流传着两种说法. 第一种是在法国和美国流行的说法.与诺贝尔同时期的 瑞典著名数学家米塔格·勒弗列尔曾是俄国彼得堡科学院的外 籍院士,后来又是前苏联科学院的外籍院士.米塔格·勒弗列 尔曾侵犯过诺贝尔的夫人,诺贝尔对他非常厌恶.为了对他所 从事的数学研究进行报复,所以诺贝尔不设立数学奖.

二次函数图像与性质(共44张PPT)

二次函数图像与性质(共44张PPT)
与y=3x2的图象形状
相同,可以看作是抛
物线y=3x2整体沿x轴 向右平移了1 个单位
图象是轴对称图形
对称轴是平行于
y轴的直线:x=1.
二次项系数相同
a>0,开口都向上.
顶点坐标
是点(1,0).
想一想,在同一坐标系中作二次函数
y=3(x+1)2的图象,会在什么位置?
(4)x取哪些值时,函数y=3(x1)2的值随x值的增大而增大 ?x取哪些值时,函数y=3(x-1)2 的值随x的增大而减少?
2 (4)当x<0时,随着x的值增大,y 的1 值如何变化?当x>0呢?
(5)当x取-4什么-值3时,-y2的值最-1小?最0 小值1是什么2?你是3如何4知道的x ? -2
y x2
二次函数y=x2的 图象形如物体抛射 时所经过的路线,我
们把它叫做抛物线.
这条抛物线关于
y轴对称,y轴就
是它的对称轴.
二次函数的图象有什么关系?
你能用配方的方法把y=3x2-6x+5变形成y=3(x-1)2+2的形 式吗?
由于y=3x2-6x+5=3(x-1)2+2,因此我们先作二次函数 y=3(x-1)2的图象.
在同一坐标系中作出二次函数y=3x2和y=3(x-1)2的图象.
想一想
比较函数y 3x2与y 3x1的2 图象
右侧, y随着x的增大而减小.
当x=0时,最小值为0.
当x=0时,最大值为0.
做一做
函数y=ax2(a≠0)的图象和性质:
y
在同一坐标系中作出函数 y=x2和y=-x2的图象
y=x2
y=x2和y=-x2是y=ax2当a=±1

《二次函数》ppt课件

《二次函数》ppt课件

判别式意义
当 $Delta > 0$ 时,方程有两个不相等 的实根,抛物线与 $x$ 轴有两个交点。
02
二次函数与一元二次方程 关系
一元二次方程求解方法
01
02
03
公式法
对于一般形式的一元二次 方程,可以使用求根公式 进行求解。
配方法
通过配方将一元二次方程 转化为完全平方形式,从 而求解。
因式分解法
首先,通过配方将二次函数转 化为顶点式f(x) = a(x - h)^2 + k,其中(h, k)为顶点坐标。然后, 根据二次函数的性质,对称轴 为x = h,顶点坐标为(h, k)。最 后,代入具体的a、b、c值求解。
已知二次函数f(x) = x^2 - 2x, 求在区间[-1, 3]上的最值。
首先,将二次函数配方为f(x) = (x - 1)^2 - 1,确定对称轴为x = 1。然后,根据二次函数的单 调性,在区间[-1, 1]上单调递减, 在[1, 3]上单调递增。因此,在x = 1处取得最小值f(1) = -1,在 x = 3处取得最大值f(3) = 3。
04
根的判别式Δ=b²-4ac可 以用于判断二次函数与x 轴交点的个数。
当Δ>0时,二次函数与x 轴有两个不同的交点。
当Δ=0时,二次函数与x 轴有一个重根,即一个 交点。
当Δ<0时,二次函数与x 轴无交点。
03
二次函数图像变换与性质 分析
平移变换对图像影响
平移方向
二次函数图像在平面直角坐标系中可 沿x轴或y轴方向进行平移。
04
二次函数在实际问题中应 用举例
利润最大化问题建模与求解
1 2 3
问题描述
某公司生产一种产品,其成本和销售价格与产量 之间存在一定的关系。公司希望通过调整产量来 实现利润最大化。

《二次函数》PPT优秀课件

《二次函数》PPT优秀课件
说一说以上二次函数解析式的各项系数.
链接中考
1.下列函数解析式中,一定为二次函数的是( C )
A.y=3x-1 C.s=2t2-2t+1
B.y=ax2+bx+c
D.y=x2+
1
2
x
链接中考
2.已知函数 y=(m²﹣m)x²+(m﹣1)x+m+1. (1)若这个函数是一次函数,求m的值; (2)若这个函数是二次函数,则m的值应怎样? 解:(1)根据一次函数的定义,得m2﹣m=0,
探究新知
素养考点 1 二次函数的识别
例1 下列函数中是二次函数的有 ①⑤⑥ .
①√ y= 2x2 2
×③y x2(1 x2 ) 1
最高次数是4
⑤√ y=x( x 1)
×②y 2x2 x(1 2x) a=0
×④y
1 x2
x2
√⑥y
x4 x2 x2 1
=x2
二次函数:y=ax²+bx+c(a,b,c为常数,a≠0)
素养目标
2. 能根据实际问题中的数量关系列出二次函数 解析式,并能指出二次函数的项及各项系数.
1.掌握二次函数的定义,并能判断所给函数 是否是二次函数.
探究新知
知识点 1 二次函数的概念
问题1 正方体的六个面是全等的正方形(如下图),设正方
形的棱长为x,表面积为y,显然对于x的每一个值, y都 有一个对应值,即y是x的函数,它们的具体关系可以表 示为 y=6x2①.
探究新知
方法点拨
运用定义法判断一个函数是否为二次函数的 步骤: (1)将函数解析式右边整理为含自变量的代 数式,左边是函数(因变量)的形式; (2)判断右边含自变量的代数式是否是整式; (3)判断自变量的最高次数是否是2; (4)判断二次项系数是否不等于0.

22.1.1 二次函数 课件(共26张PPT)

22.1.1 二次函数 课件(共26张PPT)
22.1.1 二次函数
二次函数
22.1.1 二次函数
学习目标
1. 理解掌握二次函数的概念和一般形式;(重点) 2. 会利用二次函数的概念解决问题; 3. 能根据实际问题列二次函数关系式.(难点)
22.1.1 二次函数
知识回顾
1. 什么是函数? 一般地,在一个变化的过程中,如果有两个变量 x 与 y,并且
22.1.1 二次函数
想一想 问题 1~3 中函数关系式有什么共同点?
y = 6x2 m 1 n2 1 n
22
y = 20x2 + 40x + 20
函数都是用 自变量的二次整
式表示的
22.1.1 二次函数
归纳总结 二次函数的定义:
一般地,形如 y = ax²+ bx + c (a,b,c 是常数,a≠0) 的 函数叫做二次函数.其中 x 是自变量,a,b,c 分别是函数解析式 的二次项系数、一次项系数和常数项.
(7) 次y=数x是²+1x³+25(否)
自变量的最高次数是3
(8) y =2²+2x (否) 自变量的最
高次数是1
22.1.1 二次函数
例2 y m 3 xm27.
(1)m取什么值时,此函数是正比例函数?
(2) m取什么值时,此函数是二次函数?
m2 7 1,
解:(1)由题可知,
m
3
0,
解得
温馨提示:
(1) a,b,c 为常数,且 a≠0; (2) 等号左边是变量 y,右边是关于自变量 x 的整式; (3) 等式的右边自变量的最高次数为 2,可以没有一次项和常数项, 但不能没有二次项.
22.1.1 二次函数
典例精析
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、轴对称:此图形变换包括x轴对称 和关于y轴对称两种方式
二次函数图像关于x轴对称的图像,其形状 不变,但开口方向相反,因此a值为原来的 相反数。顶点位置改变,只要根据关于x轴 对称的点的坐标特征求出新的顶点坐标, 即可确定其解析式。
二次函数图像关于y轴对称的图像,其形 状和开口方向都不变,因此a值不变。但 是顶点位置会改变,只要根据关于y轴对 称的点的坐标特征求出新的顶点坐标,即 可确定其解析式。
1、平移:二次函数图像经过平移变换不会 改变图形的形状和开口方向,因此a值不变。 顶点位置将会随着整个图像的平移而变化, 因此只要按照点的移动规律,求出新的顶 点坐标即可确定其解析式。
Ma例1.将二次函数的图像向上平移2个单位,再向右平移1个单位,得到的新的图像解析式 ke Presentation much more fun
二次函数和图形 变换
二次函数是初中数学中最精彩的内容之一, 也是历年中考的热点和难点。其中,关于函 数解析式的确定是非常重要的题型。
图形变换包含平移、轴对称、旋转、位似四种 变换,那么二次函数的图像在其图形变化(平 移、轴对称、旋转)的过程中,如何完成解析 式的确定呢?解决此类问题的方法很多,关键 在于解决问题的着眼点。我认为最好的方法是 用顶点式的方法。因此解题时,先将二次函数 解析式化为顶点式,确定其顶点坐标,再根据 具体图形变换的特点,确定变化后新的顶点坐 标及a值。
例2.求抛物线 关于x轴以及y轴对称的抛物线的解 析式。 分析: , a值为1,其顶点坐标为(1,-4),若关于x 轴对称,a值为-1,新的顶点坐标为(1,4),故解 析式为 ; 若关于y轴对称,a值仍为1,新的顶点坐 标为(-1,-4),因此解析式为
2
y x 1 4
3、旋转:主要是指以二次函数图像的顶点 为旋转中心,旋转角为180°的图像变换, 此类旋转,不会改变二次函数的图像形状, 开口方向相反,因此a值会为原来的相反数, 但顶点坐标不变,故很容易求其解析式。
例1.将二次函数的图像向上 平移2个单位,再向右平移1个 单位,得到的新的图像解析式 为_____Office
@WPS官方微博 @kingsoftwps
分析:将化为顶点式 ,a值为1,顶点坐标为 (1,-4),将其图像向上平移2个单位,再 向右平移1个单位,那么顶点也会相应移动, 其坐标为(2,-2),由于平移不改变二次函 数的图像的形状和开口方向,因此a值不变, 2 故平移后的解析式 y x 2 2
例3.将抛物线绕其顶点旋转180°,则所得的抛物 线的函数解析式为________ 分析:中,a值为1,顶点坐标为(1,-4),抛物线 绕其顶点旋转180°后,a值为-1,顶点坐标不变,故 解析
相关文档
最新文档