2019清华大学自主招生试题(含答案)
2019清华大学自主招生试题(含答案)
一、选择题1. 设复数 z=cos 22 1 1 +isin ,则=( )3 (A)0 (B)1 (C) 12 3 (D) 321-z1 z 22. 设数列 { a n } 为等差数列, p,q,k, l 为正整数,则“ p+q>k+l ”是“ a pa q a k a l ” ( ) 条件(A) 充分不必要 (B) 必要不充分 (C) 充要 (D) 既不充分也不必要3. 设 A 、B 是抛物线 y= x 2上两点, O 是坐标原点,若 OA ⊥ OB,则( )(A)|OA| · |OB| ≥ 2(B)|OA|+|OB|≥ 2 2(C) 直线 AB 过抛物线 y= x 2焦点 (D)O 到直线 AB 的距离小于等于 14. 设函数 f ( x) 的定义域为 (-1,1) ,且满足:① f ( x) >0,x ∈ (-1,0) ;② f ( x) + f ( y) = f ( x y ), x 、 y ∈1 xy(-1,1) ,则 f (x) 为(A) 奇函数 (B) 偶函数 (C) 减函数 (D) 有界函数5. 如图,已知直线 y=kx+m 与曲线 y=f(x) 相切于两点,则 F(x)= f(x) - kx 有()(A)2 个极大值点 (B)3 个极大值点 (C)2 个极小值点 (D)3 个极小值点6. △ ABC 的三边分别为 a 、b 、c .若 c=2,∠ C= ,且 sinC+sin(B - A) - 2sin2A=0, 则有()3(A)b=2 a (B) △ ABC 的周长为 2+2 3 (C) △ ABC 的面积为 2 33 (D ) △ ABC 的外接圆半径为 2 3 37. 设函数 f ( x) ( x23)e x,则()(A) f ( x) 有极小值,但无最小值(B)f (x) 有极大值,但无最大值(C) 若方程 f (x) =b 恰有一个实根,则 b> 6 e 3 (D) 若方程 f (x) =b 恰有三个不同实根,则 0<b< 6e312 1 2 1 18. 已知 A={(x,y) ∣ x222 2yr } , B={(x,y) ∣ ( x a)2( y b)2r ,已知 A ∩ B={( x 1 , y 1 ),( x 2 , y 2 )} ,则()(A ) 0< a2b 2<2 r2(B )a(x x ) b(yy ) 012 12(C ) (C)x x = a , y y =b (D) a2b 2= 2ax 2by9. 已知非负实数 x,y,z 满足 4 x24 y2z 2+2z=3,则 5x+4y+3z 最小值为()(A)1 (B)2 (C)3 (D)410. 设数列 { a n } 前 n 项和为 S n ,若对任意正整数 n ,总存在正整数 m ,使得 S n =a m ,则()( A ) { a n } 可能为等差数列( B ) { a n } 可能为等比数列( C ) { a n } 的任意一项均可写成 { a n } 的两项之差 (D) 对任意正整数 n ,总存在正整数 m ,使得 a n = S m11. 运动会上,有 6 名选手参加 100 米比赛,观众甲猜测: 4 道或 5 道的选手得第一名;观众乙猜测: 3 道的选手不可能得第一名;观众丙猜测: 1,2,6 道选手中的一位获得第一名;观众丁猜测: 4,5,6 道的选手都不可能获得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁中只有1 人猜对比赛结果,此人是()(A) 甲 (B) 乙 (C)丙 (D)丁12. 长方体 ABCD - A 1B 1C 1 D 1 中, AB=2, AD=A A 1=1,则 A 到平面 A 1 BD 的距离为()(A) 1 3(B)2 3(C) 22 (D)6313. 设不等式组| x | | y | 2所表示的区域为 D ,其面积为 S ,则()y 2 k( x 1)(A) 若 S=4,则 k 的值唯一(B)若 S= 12,则 k 的值有 2 个(C) 若 D 为三角形,则 0<k ≤ 23(D) 若 D 为五边形,则 k>4u u u r u uu r u uu r uu u r uu u r u u u r14. △ ABC 的三边长是 2,3,4 ,其外心为 O ,则 OA AB OB BC OC CA =()21 (A)0 (B)- 15 (C) -229 (D) -215. 设随机事件 A 与 B 互相独立,且 P(B)=0.5 ,P(A- B )=0.2 , 则( )(A)P(A)=0.4 (B)P(B- A)=0.3 (C)P(AB)=0.2 (D)P(A+B)=0.916. 过△ ABC 的重心作直线将△ ABC 分成两部分,则这两部分的面积之比的( )(A) 最小值为3 (B) 最小值为44 4 (C) 最大值为535 (D 最大值为417. 从正 15 边形的顶点中选出 3 个构成钝角三角形,则不同的选法有( )(A)105 种 (B)225 种 (C)315 种 (D)420 种2019 清华大学自主招生18. 已知存在实数r ,使得圆周x2y2 r 2 上恰好有n 个整点,则n 可以等于()| (A)4 (B)6 (C)8 (D)1219. 设复数 z 满足 2|z| ≤ |z - 1| ,则()(A)|z| 的最大值为 1 (B)|z| 的最小值为 1 3 r (C) z 的虚部的最大值为 2 3 r(D) z 的实部的最大值为 1320. 设 m,n 是大于零的实数, a =(mcos α,msin α) , b =(ncos β,nsin β) ,其中 α, β∈ [0,2 π) α, β∈[0,2 π) .定义向量( )r 1a 2=( m cos , 2 m sin ), 2 r1 b 2=( n cos , 2n sin) ,记 θ=α- β,则 2r 1 r 1 r r 1 r 1 r 1 r 1 r 1 r 1 (A) a 2 · a 2 = a (B) a 2 b 2 = mn cos 2 (C) | a 2 b 2 2 24 mn sin 4(D) | a 2b 2| 24 mn cos421. 设数列 { a n } 满足: a 1 =6, a n 1n 3n ,则( )n(A) ? n ∈ N?, a n < (n 1)3(B) ? n ∈ N?, a n ≠ 2015(C) ? n ∈ N?, a n 为完全平方数(D)? n ∈ N?,a n 为完全立方数22. 在极坐标系中,下列方程表示的图形是椭圆的有()1( A )ρ=1( B )ρ=1( C )ρ=1( D )ρ=cossin 2 sin2 cos 1 2sin23. 设函数 f (x)sin x 2 x x ,则( )1( A ) f ( x) ≤ 4 3(B)| f (x) | ≤ 5|x| (C) 曲线 y= f ( x) 存在对称轴 (D) 曲线 y= f ( x) 存在对称中心24. △ ABC 的三边分别为 a ,b,c ,若△ ABC 为锐角三角形,则( )(A) s inA>cosB (B)tanA>cotB (C)a2b2c 2 (D) a3b3c325. 设函数 f (x) 的定义域是 ( - 1,1) ,若 f (0) = f (0) =1,则存在实数 δ∈ (0,1) ,使得()(A) f ( x) >0, x ∈ ( - δ, δ) (B)f (x) 在( - δ, δ) 上单调递增(C) f ( x) >1, x ∈(0, δ) (D)f (x) >1, x ∈ ( - δ,0)26. 在直角坐标系中,已知A( - 1,0) , B(1,0) .若对于 y 轴上的任意 n 个不同的点 P k (k=1,2,,n) ,总存在两个不同的点 P , P ,使得 |sin ∠A P B- sin ∠ A P B| ≤ 1,则 n 的最小值为( )ijij3(A)3 (B)4 (C)5 (D)627. 设非负实数 x,y 满足 2x+y=1,则 x+x2y 2的()(A) 最小值为 4 5 (B) 最小值为 25(C) 最大值为 1 (D) 最大值为 1 2 3 a 2128. 对于 50 个黑球和 49 个白球的任意排列(从左到右排成一行),则( )(A) 存在一个黑球,它右侧的白球和黑球一样多(B) 存在一个白球,它右侧的白球和黑球一样多(C) 存在一个黑球,它右侧的白球比黑球少一个(D) 存在一个白球,它右侧的白球比黑球少一个29. 从 1,2,3,4,5中挑出三个不同数字组成五位数,其中有两个数字各用两次,例如12231,则能得到的不同的五位数有( )(A)300 个 (B)450个 (C)900 个 (D)1800 个30. 设曲线 L 的方程为 y2(2 x22) y42( x2 x ) =0,则()(A) L 是轴对称图形 (B)L是中心对称图形(C)L ? {(x,y) ∣ x 2##Answer##y 2≤ 1} (D)L? {(x,y) ∣ - 1 2≤y ≤ 1} 2cos 2i sin 21. 【解析】1 1 = 1 zz = 1 z = 1 33 1-z 1 z 2 1-z zz z 2 1-z z z2 2 2 1-cosi sin2i sincos(2 ) i sin(2 )333=1-332sin 23 i 2sin cos 3 3 3(cos 2i sin )2 =cos0 i sin 0-1[cos( 7 ) i sin( 7)]2sin [cos( ) i sin( )]3 6 63 6 6=1(cos i sin3 1i )=1,选 B36 6 2 22. 【简解】 a p a q (a ka l ) =[(p+q)-(k+l)]d,与公差 d 的符号有关,选 D3. 【解析】设 A( x 1, x1 ),B(x 2 , x2 u u u r u uu r),OA OB = x 1x 2 (11 x 1 x2 ) =0x 2x 1答案 (A), | OA | | O B | =x 2 (1 x 2)1 (11 ) = 1 x 21 1 ≥2 2 | x | 1 =2,正确;答案11x2x2 1x2 | x |1111x 2 x 2 1(B) ,|OA|+|OB| ≥ 2| OA| | OB | ≥ 2 2 , 正确;答案 (C), 直线 AB 的斜率为 21= x x = x 方 x 2 x 1 2 1 1x 1程为 y- 2x 1 =( x 11 )(x- x 1x ), 焦 点 (0, 1) 不满足方程, 错误;答案 (D) ,原点到直线 AB :( x41 )x-y+1=0x 1的距离 d=(x 11 1 )2x 1≤ 1,正确。
清华大学自主招生考试精彩试题(语文+数学+化学+物理)
2010清华大学自主招生考试试题(语文+数学+化学+物理)分两天1月1日上午9:00-12:00 中英文综合 200分下午2:00-3:30 数学 100分下午4:00-5:30 物理 100分1月2日上午9:00-12:00 理科综合 300分,数学物理化学各100分中英文综合题型分值第一部分英语基础(40分)单选词汇(1分×10)单元语法与词汇(1分×10)完形填空(1分×20)第二部分英语阅读(2分×20=40分)共8篇左右,每篇后2至3个单选题。
内容基本为美国文化政治第三部分中文(94分)4篇文章,后面分5大题:每篇的阅读理解题,第五大题为新词解释与作文第四部分中英文综合应用(26分)给一段文言文,翻译成中文(6分),用英文概括大意并评论(20分)第一部分英语基础(略)第二部分英语阅读(略)第三部分中文(全)白居易的粉丝李国文中国文学,一直有大众化和小众化的分野。
唐代的白居易,则是最能代表中国文学大众化的典型诗人。
白居易,生于公元772年(唐代宗大历七年),终于公元846年(唐武宗会昌六年),活了74岁。
经历顺宗、宪宗、穆宗、敬宗、文宗、武宗六朝。
无论当时,无论后世,谈及这位诗人,离不开以下三点:一,他在诗坛领袖群伦,推动潮流的地位;二,他在朝野引起轰动,遐迩知名的程度;三,作为诗人,他在当时中国人之大多数心目中的无与伦比的尊崇,非同凡响的声望,他的粉丝,可以说是举国上下,遍地皆是,大江南北,无处不在,这也许是最值得大书而特书的中国文学的“白居易现象”。
他的朋友元稹为他的诗集《白氏长庆集》序中,这样写道:“二十年间,禁省、观寺、邮候、墙壁之上无不书,王公、妾妇、马走之口无不道。
缮写模勒,炫卖于市井中,或持之以交酒茗者,处处皆是。
”明人胡震享的《唐音癸签》一书中引《丰年录》:“开成中,物价至贱,村路卖鱼肉者,俗人买以胡绡半尺,士大夫买以乐天诗。
”白居易的一首诗,竟可以换来一条胖头鱼,一方五花肉,我估计当代诗人的作品,怕难以卖出这样的高价来。
清华、北大2018-2019学年自主招生面试真题汇总
清华、北大2018-2019学年自主招生面试真题汇总2016年自主招生即将来临,考生和家长需要着手准备了。
除了报名申请材料之外,自主招生最重要的环节就是笔试和面试部分。
下面中国自主招生网小编汇总了清华大学、北京大学2011-2015年部分面试题,供报考2016自主招生的考生们参考。
清华大学清华大学2015年自主招生面试部分真题1.假设给你一次穿越的机会,你最希望穿越到什么时候?做什么人?干什么?2.清华大学的校训是什么?你是如何理解的?如果你被清华大学录取,你如何去践行这一校训?3.如果你是班长,如何组织一次关于雷锋精神的班级活动?活动内容,请向班里同学发表一段两分钟的“学雷锋”活动动员演讲。
4.“是休学创业,还是毕业后创业。
”5.要不要休学当老板?清华大学2014年自主招生面试部分真题一、领军计划:1、怎么看待单独二孩政策?2、谈谈对节假日安排的看法,有什么建议?3、怎么看待社会公平?二、自强计划:1、请讲一个你的经历中体现你“自强”的故事。
2、你对自己的大学生活有何规划?将来想从事何种职业?3、你认为自己的家乡至今仍然贫困的原因有哪些?应该如何解决?4、你曾经遇到过的最大困难是什么?你是如何面对和解决的?5、谈谈“如何看待春运一票难求的现象,怎么解决这个问题?6、如何看待社会公平?7、结合考生的申请材料,提出一些与考生自身经历有关的问题,如问考生家乡的特产是什么。
清华大学2013年自主招生面试部分真题【综合面试】分上午与下午两场进行:每场考生都有三道相同的必答题目,面试时间为10分钟左右,三位考官对一位考生。
另根据面试时间的剩余情况,考官也会根据考生的特点增加其他题目。
据考生回忆,必答题有:1.“人类一思考,上帝就发笑。
请在90秒内作答?基于你的评价,你打算在当下、在未来做些什么?”2.请以“我和诺贝尔奖的距离”为题发表一段2 分钟的演讲,可准备1 分钟。
3.近期上海、南京、杭州等地接连出现H7N9型禽流感的感染病例,并且造成数名感染者死亡,世界卫生组织和中国政府都高度关注这一病情,并且采取了积极的救治措施,但是公众依然非常想要知道和这个事件相关的各种信息。
【考试必备】2018-2019年最新清华大学附属中学初升高自主招生语文模拟精品试卷【含解析】【4套试卷】
2018-2019年最新清华大学附属中学自主招生语文模拟精品试卷(第一套)(满分:100分考试时间:90分钟)一、语文基础知识(18分,每小题3分)1.下列词语中加点的字,读音全都正确的一组是()A.连累(lěi) 角(juã)色河间相(xiàng) 冠冕(miǎn)堂皇B专横(hâng) 忖(cǔn)度涮(shuàn) 羊肉妄加揣(chuāi)测C.笑靥(yâ) 顷(qīng)刻汗涔(cãn)涔休戚(qì)相关D慨叹(kǎi) 俨(yǎn)然刽子手(kuàì) 刎(wěn)颈之交2、下列各项中字形全对的是()A、橘子州偌大急躁光阴荏苒B、蒙敝犄角慰籍书生意气C、敷衍磕绊笔竿艰难跋涉D、翱翔斑斓屏蔽自怨自艾3、依次填入下列各句横线上的词语,最恰当..的一项是()⑴虽然他尽了最大的努力,还是没能住对方凌厉的攻势,痛失奖杯。
⑵那些见利忘义,损人利己的人,不仅为正人君子所,还很可能滑向犯罪的深渊。
⑶我认为,真正的阅读有灵魂的参与,它是一种个人化的精神行为。
A.遏制不耻必需B.遏止不耻必需C.遏制不齿必须D.遏止不齿必须4、下列句中加点的成语,使用恰当的一句是()A、故宫博物院的珍宝馆里,陈列着各种奇珍异宝、古玩文物,令人应接不暇。
B、任何研究工作都必须从积累资料做起,如果不掌握第一手资料,研究工作只能是空中楼阁....。
C、电影中几处看来是闲笔,实际上却是独树一帜之处。
D、这部精彩的电视剧播出时,几乎万人空巷,人们在家里守着荧屏,街上显得静悄悄的。
5、下列句子中,没有语病的一项是()A 大学毕业选择工作那年,我瞒着父母和姑姑毅然去了西藏支援边疆教育。
B北京奥运会火炬接力的主题是‚和谐之旅‛,它向世界表达了中国人民对内致力于构建和谐社会,对外努力建设和平繁荣的美好世界。
C他不仅是社会的一员,同时还是宇宙的一员。
他是社会组织的公民,同时还是孟子所说的‚天民‛。
清华大学2019年自主招生试题及答案
2019清华自主招生试题与答案(2018清华自主招生)1、如图的电路,闭合开关S ,当滑动变阻器滑片P 向右移动时,下列说法正确是 CA.电流表读数变小,电压表读数变大B.小电泡L 变暗C.电容器C 上电荷量减小D.电源的总功率变小(2018清华自主招生)2、如图,固定的倾斜光滑杆上套有一个质量为m的圆环,圆环与竖直放置的轻质弹簧一端相连,弹簧的另一端固定在地面上的A点,弹簧处于原长h。
让圆环沿杆滑下,滑到杆的底端时速度为零.则在圆环下滑过程中 CA.圆环机械能守恒B.弹簧的弹性势能先增大后减小C.弹簧的弹性势能变化了mgh D.弹簧的弹性势能最大时圆环的动能最大3、(2018清华自主招生)4、如图所示,有三个斜面a,b,c,底边的长分别为L、L 、2L高度分别为2h、h、h ,某物体与三个斜面间的动摩擦因数都相同,这个物体分别沿三个斜面从顶端由静止下滑到底端,忽略空气阻力,三种情况相比较,下列说法正确的是BDA.物体克服摩擦力做的功W c= 2W b= 4W aB.物体克服摩擦力做的功W c= 2W b= 2W aC.物体到达底端的动能E ka= 2E kb= 2E kcD .物体到达底端的动能E ka >2E kb >2E kc解:克服摩擦力做的功 cos W mg x mgx =μθ=μ斜底则有 ::W 2:1:1c b a W W =动能定理 k mgx mgx E -μ=高底则有 E ka >2E kb >2E kc(2018清华自主招生)10、2013 年 12 月 6 日,“嫦娥三号”携带月球车“玉兔号”运动到地月转移轨道的P 点时做近月制动后被月球俘获,成功进入环月圆形轨道Ⅰ上运行,如图所示。
在“嫦娥三号”沿轨道Ⅰ经过 P 点时,通过调整速度使其进入椭圆轨道Ⅱ,在沿轨道Ⅱ经过Q 点时,再次调整速度后又经过一系列辅助动作,成功实现了其在月球上的“软着陆”。
对于“嫦娥三号”沿轨道Ⅰ和轨道Ⅱ运动的过程,若以月球为参考系,且只考虑月球对它的引力作用,下列说法中正确的是 ACA .沿轨道Ⅱ经过 P 点时的速度小于经过Q 点时的速度B .沿轨道Ⅱ经过 P 点时的机械能小于经过Q 点时的机械能C .沿轨道Ⅰ经过 P 点时的速度大于沿轨道Ⅱ经过 P 点时的速度D .沿轨道Ⅰ经过 P 点时的加速度大于沿轨道Ⅱ经过 P 点时的加速度1发射m 1前后动量守恒 0111()m m m m υυυ=+-由角动量守恒定律和机械能守恒守恒定律11()()m m m R m m R υυ-=-′(2018清华自主招生)11.下列说法中正确是 BEA .一弹簧连接一物体沿水平方向做简谐运动,则该物体做的是匀变速直线运动B .若单摆的摆长不变,摆球的质量增加为原来的4倍,摆球经过平衡位置时速度减 为原来的1/2,则单摆振动的频率将不变,振幅变小C .做简谐运动的物体,当它每次经过同一位置时,速度一定相同D .单摆在周期性的外力作用下做简谐运动,则外力的频率越大,单摆的振幅越大E .机械波在介质中传播时,各质点将不会随波的传播而迁移,只在平衡位置附近振动(2018清华自主招生)15.两电荷量分别为q 1 和q 2 的点电荷放在 x 轴上的O 、M 两点,两电荷连线上各点电势φ 随x 变化的关系如图所示,其中A 、N 两点的电势为零, ND 段中C 点电势最高,则ADA . C 点的电场强度大小为零B . A 点的电场强度大小为零C . NC 间场强方向向 x 轴正方向D .将一负点电荷从 N 点移到 D 点,电场力先做正功后做负功拓展:(20届复赛)六、(23分)两个点电荷位于x轴上,在它们形成的电场中,若取无限远处的电势为零,则在正x 轴上各点的电势如图中曲线所示,当0x →时,电势U →∞:当x →∞时,电势0U →;电势为零的点的坐标0x , 电势为极小值0U -的点的坐标为 0ax (a >2)。
清华保送生2019年自主招生笔试语文试题(a卷)
清华保送生2019年自主招生笔试语文试题(a卷)考试时间:2018年12月17日本试卷总分值100分。
请将答案和必要的解答过程写在答题纸上。
另有5分奖励分,如个别题目表现特别出色,可酌情在总分值基础上额外加分。
【一】语言基础知识(10分)1、“筚路蓝缕,以山林,抚有蛮夷,以属华夏。
不鸣那么已,一鸣惊人。
”这是古楚先民的创业过程。
( )A.起B.乞C、启2、夕阳西下,暮色沉沉,的林海,发生了阵阵的松涛声。
A.苍茫B.苍莽C、沧茫3、工厂抓生产,既要注意,也要讲究质量,二者不可偏废。
A.功效B.工率C、工效4、他的心术,你们难道不知?自古道:“吉人自有天。
”任他如何做去,我只是不管。
( )A.相B.像C、象5、退居二线,摆脱了繁忙的事务,可没过几天日子,他又闲不住了。
( )A.安静B.清静C、清净6、这次抢购风潮来得迅猛,波及面广,其缘故当然特别多,比如媒体真相滞后,少数商家乘机利用等,但归根结底,是群众性的盲目跟从。
A.披露B.曝露C、透露7、诸葛亮舌战群儒,引古论今,。
A.侃侃而谈B.夸夸其谈C.滔滔不绝8、各级领导干部一定要时刻把人民群众的安危冷暖放在心上,勤政为民,扎实工作,为人民群众实实在在的利益。
( )A.牟取B.谋取C、缪取9、2007年12月29日,温家宝总理吟诵了自己创作的俳句“常忆融冰旅,梅花瑞雪兆新岁,明年春更好”送给到访的福田康夫首相,表达了中日领导人和中日人民对中日关系的美好期盼。
以下名句与该俳句蕴涵相同哲理的是( )A.千淘万漉虽辛苦,吹尽黄沙始到金B.两个黄鹂鸣翠柳,一行白鹭上青天C.竹外桃花三两枝,春江水暖鸭先知10、“徜徉于山林泉石之间,而尘心渐息:夷犹予诗书图画之内,而俗气潜消。
”这告诉我们( )A.要积极参加各种文化活动B.文化对人的妨碍是潜移默化的C.文化能够促进人的全面进展【二】语言文字运用(10分)11、“微博”差不多逐渐成为当今一种重要的文化现象,许多名人都纷纷选择通过“微博”这一方式和自己的粉丝互动,或者发表自己关于社会文化现象的看法或意见。
清华大学自主招生试题 数学 Word版含解析
一、选择题1.设复数z=cos 23π+isin 23π,则2111-1z z +-=( ) (A)0 (B)1 (C)12 (D)322.设数列{}n a 为等差数列,p,q,k,l 为正整数,则“p+q>k+l ”是“p q k l a a a a +>+”的( )条件(A)充分不必要 (B)必要不充分 (C)充要 (D)既不充分也不必要 3.设A 、B 是抛物线y=2x 上两点,O 是坐标原点,若OA ⊥OB,则( )(A)|OA|·|OB|≥2 (B)|OA|+|OB|≥22(C)直线AB 过抛物线y=2x 的焦点 (D)O 到直线AB 的距离小于等于14.设函数()f x 的定义域为(-1,1),且满足:①()f x >0,x ∈(-1,0);②()f x +()f y =()1x yf xy++,x 、y ∈(-1,1),则()f x 为 (A)奇函数 (B)偶函数 (C)减函数 (D)有界函数5.如图,已知直线y=kx+m 与曲线y=f (x)相切于两点,则F(x)=f (x)−kx 有( )(A)2个极大值点 (B)3个极大值点 (C)2个极小值点 (D)3个极小值点 6.△ABC 的三边分别为a 、b 、c .若c=2,∠C=3π,且sinC+sin(B −A)−2sin2A=0,则有( ) (A)b=2a (B)△ABC 的周长为3 (C)△ABC 的面积为33(D)△ABC 的外接圆半径为337.设函数2()(3)xf x x e =-,则( )(A)()f x 有极小值,但无最小值 (B) ()f x 有极大值,但无最大值 (C)若方程()f x =b 恰有一个实根,则b>36e(D)若方程()f x =b 恰有三个不同实根,则0<b<36e 8.已知A={(x,y)∣222x y r +=},B={(x,y)∣222()()x a y b r -+-=,已知A∩B={(11,x y ),(22,x y )},则( )(A)0<22a b +<22r (B)1212()(y )0a x x b y -+-= (C)12x x +=a ,12y y +=b (D)22a b +=1122ax by +9.已知非负实数x,y,z 满足22244x y z +++2z=3,则5x+4y+3z 的最小值为( ) (A)1 (B)2 (C)3 (D)410.设数列{n a }的前n 项和为n S ,若对任意正整数n ,总存在正整数m ,使得n S =m a ,则( )(A ){n a }可能为等差数列 (B ){n a }可能为等比数列(C ){n a }的任意一项均可写成{n a }的两项之差(D)对任意正整数n ,总存在正整数m ,使得n a =m S11.运动会上,有6名选手参加100米比赛,观众甲猜测:4道或5道的选手得第一名;观众乙猜测:3道的选手不可能得第一名;观众丙猜测:1,2,6道选手中的一位获得第一名;观众丁猜测:4,5,6道的选手都不可能获得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是( ) (A)甲 (B)乙 (C)丙 (D)丁12.长方体ABCD −1111A B C D 中,AB=2,AD=A 1A =1,则A 到平面1A BD 的距离为( )(A)13 (B)23(C)22 (D)6313.设不等式组||||22(1)x y y k x +≤⎧⎨+≤+⎩所表示的区域为D ,其面积为S ,则( )(A)若S=4,则k 的值唯一 (B)若S=12,则k 的值有2个(C)若D 为三角形,则0<k ≤23(D)若D 为五边形,则k>4 14.△ABC 的三边长是2,3,4,其外心为O ,则OA AB OB BC OC CA ⋅+⋅+⋅=( ) (A)0 (B)−15 (C)−212(D)−29215.设随机事件A 与B 互相独立,且P(B)=0.5,P(A −B)=0.2,则( )(A)P(A)=0.4 (B)P(B −A)=0.3 (C)P(AB)=0.2 (D)P(A+B)=0.916.过△ABC 的重心作直线将△ABC 分成两部分,则这两部分的面积之比的( ) (A)最小值为34 (B)最小值为45 (C)最大值为43 (D 最大值为5417.从正15边形的顶点中选出3个构成钝角三角形,则不同的选法有( )(A)105种 (B)225种 (C)315种 (D)420种18.已知存在实数r ,使得圆周222x y r +=上恰好有n 个整点,则n 可以等于( ) (A)4 (B)6 (C)8 (D)12 19.设复数z 满足2|z|≤|z −1|,则( ) (A)|z|的最大值为1 (B)|z|的最小值为13 (C)z 的虚部的最大值为23(D)z 的实部的最大值为1320.设m,n 是大于零的实数,a =(mcosα,msinα),b =(ncosβ,nsinβ),其中α,β∈[0,2π)α,β∈[0,2π).定义向量12a =(2m α2m α),12b =(2n β2n β),记θ=α−β,则( )(A)12a ·12a =a (B)1122a b ⋅=2mn θ(C)112222||44a b mn θ-≥(D)112222||44a b mn θ+≥21.设数列{n a }满足:1a =6,13n n n a a n++=,则( ) (A)∀n ∈N ∗,n a <3(1)n + (B)∀n ∈N ∗,n a ≠2015 (C)∃n ∈N ∗,n a 为完全平方数 (D)∃n ∈N ∗, n a 为完全立方数 22.在极坐标系中,下列方程表示的图形是椭圆的有( ) (A )ρ=1cos sin θθ+ (B )ρ=12sin θ+ (C )ρ=12cos θ- (D )ρ=112sin θ+23.设函数2sin ()1xf x x x π=-+,则( )(A )()f x ≤43(B)|()f x |≤5|x| (C)曲线y=()f x 存在对称轴 (D)曲线y=()f x 存在对称中心24.△ABC 的三边分别为a ,b,c ,若△ABC 为锐角三角形,则( ) (A)sinA>cosB (B)tanA>cotB (C)222a b c +> (D)333a b c +>25.设函数()f x 的定义域是(−1,1),若(0)f =(0)f '=1,则存在实数δ∈(0,1),使得( ) (A)()f x >0,x ∈(−δ,δ) (B)()f x 在(−δ,δ)上单调递增 (C)()f x >1,x ∈(0,δ) (D)()f x >1,x ∈(−δ,0)26.在直角坐标系中,已知A(−1,0),B(1,0).若对于y 轴上的任意n 个不同的点k P (k=1,2,…,n),总存在两个不同的点i P ,j P ,使得|sin ∠A i P B −sin ∠A j P B|≤13,则n 的最小值为( )(A)3 (B)4 (C)5 (D)627.设非负实数x,y 满足2x+y=1,则22x y + )(A)最小值为45 (B)最小值为25(C)最大值为1 (D)最大值为12328.对于50个黑球和49个白球的任意排列(从左到右排成一行),则( )(A)存在一个黑球,它右侧的白球和黑球一样多 (B)存在一个白球,它右侧的白球和黑球一样多(C)存在一个黑球,它右侧的白球比黑球少一个 (D)存在一个白球,它右侧的白球比黑球少一个29.从1,2,3,4,5中挑出三个不同数字组成五位数,其中有两个数字各用两次,例如12231,则能得到的不同的五位数有( ) (A)300个 (B)450个 (C)900个 (D)1800个30.设曲线L 的方程为42242(22)(2)y x y x x +++-=0,则( ) (A)L 是轴对称图形 (B)L 是中心对称图形 (C)L ⊂{(x,y)∣22x y +≤1} (D)L ⊂{(x,y)∣−12≤y ≤12} ##Answer## 1.【解析】2111-1z z +-=211-zz z zz z +-=11-z z z z +-=22cos sin 1332221-cos sin 2sin 333i i i πππππ-+--=212sin 2sincos333i πππ-⋅-22cos()sin()333(cossin )22i i ππππ-+-+ =cos 0sin 02sin [cos()sin()]366i i πππ+-+-77)sin()]663i ππ-+- 31sin )6623i i ππ+=1,选B2.【简解】 ()p q k l a a a a +-+=[(p+q)-(k+l)]d ,与公差d 的符号有关,选D3.【解析】设A(211,x x ),B(222,x x ),OA OB ⋅=1212(1)x x x x +=0⇒211x x =-答案(A),||||OA OB ⋅2211221111(1)(1)x x x x ++2121111x x +++11122||||x x +⋅=2,正确;答案(B),|OA|+|OB|≥2||||OA OB ⋅22,正确;答案(C),直线AB 的斜率为222121x x x x --=21x x +=111x x - 方程为y-21x =(111x x -)(x-1x ),焦点(0,14)不满足方程,错误;答案(D),原点到直线AB :(111x x -)x-y+1=0的距离2111()1x x -+1,正确。
2019年清华大学自主招生暨领军计划数学试题(解析版)
清华大学自主招生暨领军计划数学试题(解析版)1.已知函数x e a x x f )()(2+=有最小值,则函数a x x x g ++=2)(2的零点个数为( )A .0B .1C .2D .取决于a 的值 【答案】C【解析】注意)()(/x g e x f x =,答案C .2. 已知ABC ∆的三个内角C B A ,,所对的边为c b a ,,.下列条件中,能使得ABC ∆的形状唯一确定的有( )A .Z c b a ∈==,2,1B .B bC a C c A a A sin sin 2sin sin ,1500=+= C .060,0sin cos )cos(cos sin cos ==++C C B C B C B AD .060,1,3===A b a【答案】AD .3.已知函数x x g x x f ln )(,1)(2=-=,下列说法中正确的有( ) A .)(),(x g x f 在点)0,1(处有公切线B .存在)(x f 的某条切线与)(x g 的某条切线平行C .)(),(x g x f 有且只有一个交点D .)(),(x g x f 有且只有两个交点【答案】BD【解析】注意到1-=x y 为函数)(x g 在)0,1(处的切线,如图,因此答案BD .4.过抛物线x y 42=的焦点F 作直线交抛物线于B A ,两点,M 为线段AB 的中点.下列说法中正确的有( )A .以线段AB 为直径的圆与直线23-=x 一定相离B .||AB 的最小值为4C .||AB 的最小值为2D .以线段BM 为直径的圆与y 轴一定相切 【答案】AB【解析】对于选项A ,点M 到准线1-=x 的距离为||21|)||(|21AB BF AF =+,于是以线段AB 为直径的圆与直线1-=x 一定相切,进而与直线23-=x 一定相离;对于选项B ,C ,设)4,4(2a a A ,则)1,41(2a a B -,于是2414||22++=a a AB ,最小值为4.也可将||AB 转化为AB 中点到准线的距离的2倍去得到最小值;对于选项D ,显然BD 中点的横坐标与||21BM 不一定相等,因此命题错误.5.已知21,F F 是椭圆)0(1:2222>>=+b a b y a x C 的左、右焦点,P 是椭圆C 上一点.下列说法中正确的有( )A .b a 2=时,满足02190=∠PF F 的点P 有两个B .b a 2>时,满足02190=∠PF F 的点P 有四个C .21F PF ∆的周长小于a 4D .21F PF ∆的面积小于等于22a【答案】ABCD .【解析】对于选项A ,B ,椭圆中使得21PF F ∠最大的点P 位于短轴的两个端点;对于选项C ,21PF F ∆的周长为a c a 422<+;选项D ,21PF F ∆的面积为22212121212||||21sin ||||21a PF PF PF F PF PF =⎪⎭⎫ ⎝⎛+≤∠⋅.6.甲、乙、丙、丁四个人参加比赛,有两花获奖.比赛结果揭晓之前,四个人作了如下猜测:甲:两名获奖者在乙、丙、丁中; 乙:我没有获奖,丙获奖了; 丙:甲、丁中有且只有一个获奖; 丁:乙说得对.已知四个人中有且只有两个人的猜测是正确的,那么两个获奖者是( ) A .甲B .乙C .丙D .丁【答案】BD【解析】乙和丁同时正确或者同时错误,分类即可,答案:BD .7.已知AB 为圆O 的一条弦(非直径),AB OC ⊥于C ,P 为圆O 上任意一点,直线PA 与直线OC 相交于点M ,直线PB 与直线OC 相交于点N .以下说法正确的有( ) A .P B M O ,,,四点共圆 B .N B M A ,,,四点共圆 C .N P O A ,,,四点共圆D .以上三个说法均不对【答案】AC【解析】对于选项A ,OPM OAM OBM ∠=∠=∠即得;对于选项B ,若命题成立,则MN 为直径,必然有MAN ∠为直角,不符合题意;对于选项C ,MAN MOP MBN ∠=∠=∠即得.答案:AC .8.C B A C B A cos cos cos sin sin sin ++>++是ABC ∆为锐角三角形的( ) A .充分非必要条件 B .必要非充分条件 C .充分必要条件D .既不充分也不必要条件【答案】B【解析】必要性:由于1cos sin )2sin(sin sin sin >+=-+>+B B B B C B π, 类似地,有1sin sin ,1sin sin >+>+A B A C ,于是C B A C B A cos cos cos sin sin sin ++>++.不充分性:当4,2ππ===C B A 时,不等式成立,但ABC ∆不是锐角三角形.9.已知z y x ,,为正整数,且z y x ≤≤,那么方程21111=++z y x 的解的组数为( )A .8B .10C .11D .12【答案】B【解析】由于x z y x 311121≤++=,故63≤≤x .若3=x ,则36)6)(6(=--z y ,可得)12,12(),15,10(),18,9(),24,8(),42,7(),(=z y ; 若4=x ,则16)4)(4(=--z y ,可得)8,8(),12,6(),20,5(),(=z y ;若5=x ,则6,5,320,211103=≤≤+=y y y z y ,进而解得)10,5,5(),,(=z y x ;若6=x ,则9)3)(3(=--z y ,可得))6,6(),(=z y . 答案:B . 10.集合},,,{21n a a a A =,任取Aa a A a a A a a n k j i i k k j j i ∈+∈+∈+≤<<≤,,,1这三个式子中至少有一个成立,则n 的最大值为( ) A .6B .7C .8D .9【答案】B11.已知000121,61,1===γβα,则下列各式中成立的有( )A .3tan tan tan tan tan tan =++αγγββαB .3tan tan tan tan tan tan -=++αγγββαC . 3tan tan tan tan tan tan =++γβαγβα D . 3tan tan tan tan tan tan -=++γβαγβα【答案】BD【解析】令γβαtan ,tan ,tan ===z y x ,则3111=+-=+-=+-zx zx yz y z xy x y ,所以)1(3),1(3),1(3zx z x yz y z xy z y +=-+=-+=-,以上三式相加,即有3-=++zx yz xy .类似地,有)11(311),11(311),11(311+=-+=-+=-zx x z yz z y xy y x ,以上三式相加,即有3111-=++=++xyz zy x zx yz xy .答案BD .12.已知实数c b a ,,满足1=++c b a ,则141414+++++c b a 的最大值也最小值乘积属于区间( )A .)12,11(B .)13,12(C .)14,13(D .)15,14(【答案】B【解析】设函数14)(+=x x f ,则其导函数142)(/+=x x f ,作出)(x f 的图象,函数)(x f 的图象在31=x 处的切线321)31(7212+-=x y ,以及函数)(x f 的图象过点)0,41(-和)7,23(的割线7174+=x y ,如图,于是可得321)31(7212147174+-≤+≤+x x x ,左侧等号当41-=x 或23=x 时取得; 右侧等号当31=x 时取得.因此原式的最大值为21,当31===c b a 时取得;最小值为7,当23,41=-==c b a 时取得,从而原式的最大值与最小值的乘积为)169,144(37∈.答案B .13.已知1,1,,,222=++=++∈z y x z y x R z y x ,则下列结论正确的有( ) A .xyz 的最大值为0B .xyz 的最大值为274-C .z 的最大值为32D .z 的最小值为31-【答案】ABD14.数列}{n a 满足)(6,2,1*1221N n a a a a a n n n ∈-===++,对任意正整数n ,以下说法中正确的有( ) A .nn n a a a 221++-为定值 B .)9(mod 1≡n a 或)9(mod 2≡n aC .741-+n n a a 为完全平方数 D .781-+n n a a 为完全平方数【答案】ACD 【解析】因为2112221122213226)6(++++++++++++-=--=-n n n n n n n n n n n a a a a a a a a a a a nn n n n n n a a a a a a a 22121122)6(++++++-=+-=,选项A 正确;由于113=a ,故76)6(2121121221-=+-=--=-++++++n n n n n n n n n n n a a a a a a a a a a a ,又对任意正整数恒成立,所以211211)(78,)(74n n n n n n n n a a a a a a a a +=--=-++++,故选项C 、D 正确.计算前几个数可判断选项B 错误. 说明:若数列}{n a 满足nn n a pa a -=++12,则nn n a a a 221++-为定值.15.若复数z 满足11=+z z ,则z 可以取到的值有( )A .21B .21-C .215-D . 215+【答案】CD【解析】因为11||1||=+≤-z z z z ,故215||215+≤≤-z ,等号分别当i z 215+=和i z 215-=时取得.答案CD .16. 从正2016边形的顶点中任取若干个,顺次相连构成多边形,若正多边形的个数为( )A .6552B .4536C .3528D .2016 【答案】C【解析】从2016的约数中去掉1,2,其余的约数均可作为正多边形的边数.设从2016个顶点中选出k 个构成正多边形,这样的正多边形有k 2016个,因此所求的正多边形的个数就是2016的所有约数之和减去2016和1008.考虑到732201625⨯⨯=,因此所求正多边形的个数为352810082016)71)(931)(32168421(=--++++++++.答案C .17.已知椭圆)0(12222>>=+b a b y a x 与直线x y l x y l 21:,21:21-==,过椭圆上一点P 作21,l l 的平行线,分别交21,l l 于N M ,两点.若||MN 为定值,则=b a( )A .2B .3C .2D .5【答案】C【解析】设点),(00y x P ,可得)2141,21(),2141,21(00000000y x y x N y x y x M +--++,故意2020441||y x MN +=为定值,所以2,1641422===b ab a ,答案:C .说明:(1)若将两条直线的方程改为kx y ±=,则k b a 1=;(2)两条相交直线上各取一点N M ,,使得||MN 为定值,则线段MN 中点Q 的轨迹为圆或椭圆.18. 关于y x ,的不定方程yx 21652=+的正整数解的组数为( )A .0B .1C .2D .3【答案】B19.因为实数的乘法满足交换律与结合律,所以若干个实数相乘的时候,可以有不同的次序.例如,三个实数c b a ,,相乘的时候,可以有 ),(),(,)(,)(ca b ab c c ba c ab 等等不同的次序.记n 个实数相乘时不同的次序有nI 种,则( )A .22=IB .123=IC .964=ID .1205=I【答案】B【解析】根据卡特兰数的定义,可得1121221)!1(!1------=⋅==n n n n n n n n C n n C n A C I .答案:AB .关于卡特兰数的相关知识见《卡特兰数——计数映射方法的伟大胜利》.20.甲乙丙丁4个人进行网球淘汰赛,规定首先甲乙一组、丙丁一组进行比赛,两组的胜者争夺冠军.4个人相互比赛的胜率如表所示:表中的每个数字表示其所在的选手击败其所在列的选手的概率,例如甲击败乙的概率是0.3,乙击败丁的概率是0.4.那么甲刻冠军的概率是 . 【答案】0.165【解析】根据概率的乘法公式 ,所示概率为165.0)8.05.03.05.0(3.0=⨯+⨯. 21.在正三棱锥ABC P -中,ABC ∆的边长为1.设点P 到平面ABC 的距离为x ,异面直线CP AB ,的距离为y .则=∞→y x lim .【答案】23【解析】当∞→x 时,CP 趋于与平面ABC 垂直,所求极限为ABC ∆中AB 边上的高,为23.22.如图,正方体1111D C B A ABCD -的棱长为1,中心为A A E A BC BF O 1141,21,==,则四面体OEBF 的体积为 .【答案】196【解析】如图,EBF G EBF O OEBF V V V --==21961161212111=⋅==--B BCC E GBF E V V .23.=+-⎰-dx x x n n )sin 1()(22012ππ .【答案】0【解析】根据题意,有)sin 1()sin 1()(21222012=+=+-⎰⎰---dx x x dx x x n n n n ππππ.24.实数y x ,满足223224)(y x y x =+,则22y x +的最大值为 .【答案】1【解析】根据题意,有22222322)(4)(y x y x y x +≤=+,于是122≤+y x ,等号当2122==y x 时取得,因此所求最大值为1.25.z y x ,,均为非负实数,满足427)23()1()21(222=+++++z t x ,则z y x ++的最大值与最小值分别为 . 【答案】2322-【解析】由柯西不等式可知,当且仅当)0,21,1(),,(=z y x 时,z y x ++取到最大值23.根据题意,有41332222=+++++z y x z y x ,于是,)(3)(4132y z y x z y x +++++≤解得2322-≥++z y x .于是z y x ++的最小值当)2322,0,0(),(-=yz x 时取得,为2322-. 26.若O 为ABC ∆内一点,满足2:3:4::=∆∆∆COA BOC AOB S S S ,设AC AB AO μλ+=,则=+μλ . 【答案】23【解析】根据奔驰定理,有329492=+=+μλ.27.已知复数32sin 32cos ππi z +=,则=+++2223z z z z .【答案】12i - 【解析】根据题意,有i z z z z z z 35sin 35cos 122223+=-=+=+++ππ28.已知z 为非零复数,z z 40,10的实部与虚部均为不小于1的正数,则在复平面中,z 所对应的向量OP 的端点P 运动所形成的图形的面积为 .【答案】2003003π+-【解析】设),(R y x yi x z ∈+=,由于2||4040z z z =,于是⎪⎪⎩⎪⎪⎨⎧≥+≥+≥≥,140,140,110,1102222y x y y x x y x 如图,弓形面积为1003100)6sin 6(20212-=-⋅⋅πππ,四边形ABCD 的面积为100310010)10310(212-=⋅-⋅. 于是所示求面积为30031003200)1003100()1003100(2-+=-+-ππ.29.若334tan =x ,则=+++x x x x x x x x x x x cos sin cos 2cos sin 2cos 4cos 2sin 4cos 8cos 4sin .【解析】根据题意,有x x x x x x x x x x x cos sin cos 2cos sin 2cos 4cos 2sin 4cos 8cos 4sin +++38tan tan )tan 2(tan )2tan 4(tan )4tan 8(tan ==+-+-+-=x x x x x x x x .30.将16个数:4个1,4个2,4个3,4个4填入一个44⨯的数表中,要求每行、每列都恰好有两个偶数,共有 种填法.【答案】44100031.设A 是集合}14,,3,2,1{ 的子集,从A 中任取3个元素,由小到大排列之后都不能构成等差数列,则A 中元素个数的最大值为 .【答案】8【解析】一方面,设},,,{21k a a a A =,其中141,*≤≤∈k N k .不妨假设k a a a <<< 21.若9≥k ,由题意,7,33513≥-≥-a a a a ,且1335a a a a -≠-,故715≥-a a .同理759≥-a a .又因为1559a a a a -≠-,所以1519≥-a a ,矛盾!故8≤k .另一方面,取}14,13,11,10,5,4,2,1{=A ,满足题意.综上所述,A 中元素个数的最大值为8.。
清华大学2019年自主招生和领军计划笔试真题物理科目
清华大学2019年自主招生和领军计划笔试真题物理科目物理部分总计20题,均为选择题,物理部分总分60。
第1题:考察的是牛顿运动定律和刚体的动力学。
有的同学考虑使用动量定理,然后得到2个木块上升的高度相同;有的同学考虑的是能量守恒,所以左边的上升会更高一些,甚至很多物理专业工作者对此都产生了疑义。
我们在之前的一道模拟题中对这件事进行了定量分析,有意思的是,上述两种情况中,木块和子弹直接作用时间其实是有微小区别的,最终会导致结果的不同。
这道题对竞赛比较熟悉的同学,可以做一些定性和半定量的计算,从而得到结果。
第2题:考察的是磁矩的定义。
磁矩是竞赛里的一个专有概念,是指电流和面积的乘积得到的矢量。
这个问题可以通过直接计算得到,也可以通过一些技巧方法,把这个物体等效成均匀磁化的球来做。
第3题:看起来考察的是原子物理,实际上,它在建了一个模型之后,考察的是静电和简谐振动。
在这个问题中,我们可以把它视为一个两体的振动,就是电子和原子核形成一个两体问题,中间的相互作用可以使用高斯定理得到。
最终结果取有效质量来做会更方便一些。
第4题:考察的是非惯性系的运用和简谐振动。
我们取到小车向下滑动的加速参照系当中,就可以得到非常简单的等效加速度。
这题运用的是非常典型的一个竞赛基础处理手法。
第5题:考察的是平衡的稳定性。
注意当物体旋转的角速度足够大的时候,最低的那个点不一定再是稳定的平衡点,而变成一个向左或向右,偏离一定角度,使稳定的平衡。
平衡的稳定性的定量分析也是竞赛里面专有的考点。
第6题:考察的是静电屏蔽。
这是一个高考和竞赛当中都有的考点。
但是,在高考中因为缺乏对唯一性定理的了解,所以同学们经常对这个结论是一知半解的。
利用唯一性定理我们很容易得到,圈内和圈外之间的关联,是主要由它们的电量决定的。
把握好这一点,就可以很容易得到答案。
第7题:考察的也是非惯性系的问题。
这同样是竞赛里一个常规的处理手法。
它的做法是在非惯性系里面获得一个作用于车的质心惯性力,以及把握驱动轮在启动的时候摩擦力向前,另外一个轮子在启动的饿时候摩擦力向后,合外力是向车前进的方向。
清华大学2019年自主招生数学试题(含详细解析)
1清华大学自主招生数学试题2019.061.一个四面体棱长分别为6,6,6,6,6,9,求外接球的半径.2.求值:1221(1sin )x x dx --⎰.3.已知P 为单位圆上一动点,(0,2)A ,(0,1)B -,求2||||AP BP ⨯的最大值.4.AB 为圆O 的直径,CO AB ⊥,M 为AC 中点,CH MB ⊥,则下列选项正确的是()A.2AM OH =B.2AH OH =C.△BOH ∽△BMAD.忘记5.{1,2,3,,15}A =⋅⋅⋅,{1,2,3,4,5}B =,f 是A 到B 的映射,若满足()()f x f y =,则称有序对(,)x y 为“好对”,求“好对”的个数最小值.6.若对c ∀∈R ,,a b ∃,使得()()()f a f b f c a b -=-成立,则称函数()f x 满足性质T ,下列函数不满足性质T 的是()A.32()33f x x x x =-+ B.21()1f x x =+ C.1()x f x e += D.()sin(21)f x x =+7.已知||||1a b == ,12a b ⋅= ,()()0c a c b --= ,若||1d c -= ,求||d 的最大值.8.椭圆22162x y +=,过(2,0)F 的直线交椭圆于A 、B 两点,点C 在直线3x =上,若△ABC 为正三角形,求△ABC 的面积.9.圆224x y +=上一点00(,)x y 处的切线交抛物线28y x =于A 、B 两点,且满足90AOB ∠=︒,其中O 为坐标原点,求0x .10.设a 为44444444各位数字和,b 是a 的各位数字之和,c 为b 的各位数字之和,求c 的值.11.实数x 、y 满足22(2)1x y +-≤的最大值和最小值.初高中数学学习资料的店。
2019年中国高校自主招生、三位一体招生考试真题及参考答案
【导语】整理了2019年中国⾼校⾃主招⽣、三位⼀体招⽣考试真题及参考答案,希望对⼤家有帮助,⼀起看看吧。
清华⼤学2019年⾃主招⽣&领军计划考试时间为90分钟,采⽤的是机考的形式,总共35个不定项选择题。
根据报考专业不同,有的考2门即可,有的要考3门。
物理科⽬ 物理部分总计20题,均为选择题,物理部分总分60。
第1题:考察的是⽜顿运动定律和刚体的动⼒学。
有的同学考虑使⽤动量定理,然后得到2个⽊块上升的⾼度相同;有的同学考虑的是能量守恒,所以左边的上升会更⾼⼀些,甚⾄很多物理专业⼯作者对此都产⽣了疑义。
我们在之前的⼀道模拟题中对这件事进⾏了定量分析,有意思的是,上述两种情况中,⽊块和⼦弹直接作⽤时间其实是有微⼩区别的,最终会导致结果的不同。
这道题对竞赛⽐较熟悉的同学,可以做⼀些定性和半定量的计算,从⽽得到结果。
第2题:考察的是磁矩的定义。
磁矩是竞赛⾥的⼀个专有概念,是指电流和⾯积的乘积得到的⽮量。
这个问题可以通过直接计算得到,也可以通过⼀些技巧⽅法,把这个物体等效成均匀磁化的球来做。
第3题:看起来考察的是原⼦物理,实际上,它在建了⼀个模型之后,考察的是静电和简谐振动。
在这个问题中,我们可以把它视为⼀个两体的振动,就是电⼦和原⼦核形成⼀个两体问题,中间的相互作⽤可以使⽤⾼斯定理得到。
最终结果取有效质量来做会更⽅便⼀些。
第4题:考察的是⾮惯性系的运⽤和简谐振动。
我们取到⼩车向下滑动的加速参照系当中,就可以得到⾮常简单的等效加速度。
这题运⽤的是⾮常典型的⼀个竞赛基础处理⼿法。
第5题:考察的是平衡的稳定性。
注意当物体旋转的⾓速度⾜够⼤的时候,最低的那个点不⼀定再是稳定的平衡点,⽽变成⼀个向左或向右,偏离⼀定⾓度,使稳定的平衡。
平衡的稳定性的定量分析也是竞赛⾥⾯专有的考点。
第6题:考察的是静电屏蔽。
这是⼀个⾼考和竞赛当中都有的考点。
但是,在⾼考中因为缺乏对性定理的了解,所以同学们经常对这个结论是⼀知半解的。
2019年北京大学、清华大学、浙江大学、中国科技大学自主招生数学试题及参考答案
2019年北京大学自主招生数学试题2019年清华大学自主招生数学试题2019年中国科学技术大学自主招生数学试题4.记3cos(),4cos()36x t y t =+-=++,则22x y +的最大值为__________。
5.设点0(1,0)P ,i OP (i =1,2,3…)绕原点按顺时针旋转θ得到向量i OQ , i Q 关于y 轴对称点记为1 i P +,则2019P 的坐标为__________。
.,且.已知,且9.将△D 1D 2D 3的各中点连线,折成四面体ABCD ,已知12233112,10,8D D D D D D ===,求四面体ABCD 的体积。
10.求证:对于任意的在R 上有仅有一个解0x =11.已知(1)求证:存在多项式()p x ,满足cos (cos )n p θθ=;(2)将()p x 在R [x ]上完全分解。
2019年中国科学技术大学自主招生数学试题参考答案2.B红色曲线为y =sin 2x ,蓝色曲线为y =-cos 3x综上,知:00100110cos sin cos sin 01sin cos sin cos x x x y y y θθθθθθθθ---⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭那么222(,)P x y 满足:200020002cos sin 10sin cos 01x x x x y y y y θθθθ--⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭这也就说明了20,P P 重合。
故2019P 坐标为(cos ,sin )θθ--6.首先将递推公式两侧取倒数,则:112(1)11112(1)n n n n nn x n x x x x ++++=⇔-=+累加,即:21122(1)n n n k k x x n n =-=⇒=+∑裂项求和,则:2019112019*********k k x ==-=∑7.如图所示,我们定义a ~b 表示复数a 和b之间的边11z z -+是纯虚数,表明0~(z-1)与0~(z+1)垂直,进而说明|z~(z-1)|=|0~z|=|z~(z+1)|=1故||1z =,进一步,我们设cos sin z i θθ=+则222222222|3|(cos 2cos 3)(sin 2sin )cos 2cos 96cos 6cos 22cos cos 2sin 2sin 2sin 2sin 116cos 2812cos 8cos 53z z cos θθθθθθθθθθθθθθθθθθ++=++++=++++++++=++=++≥等号成立条件为1cos 3θ=-8.9.简解:由题意,易知四面体ABCD为等腰四面体,将其嵌入长方体后割补法即可图示蓝色边框为等腰四面体,黑色为被嵌入的长方体答案:410.首先,我们定义()()n f x 代表函数()f x 的n 阶导数令0()!kn x k x f x e k ==-∑注意到()()1n x f x e =-在R 上单调递增,故其在R 上仅有一根x =0,从而(1)()1n x f x e x -=--在R 上有最小值,即(1)(1)()(0)0n n f x f --≥=进而2(2)()12n x x f x e x -=---在R 上单调递增以此类推,可知:(2)()n k f x -在R 上单调递增,仅有一根x =0(21)()n k f x --在R 先减后增,且恒为非负实数,且仅有一根x =0综上,不论n 取何值,0()!knx k x f x e k ==-∑在R 上仅有一根x =011.本题考察内容十分清晰,旨在考察Chebyshev 多项式(1)采取归纳法证明,若对于不同的n ,存在满足题设的多项式,则记其为()n p x 首先,当1n =时,存在多项式1()p x x=其次,当2n =时,存在多项式22()21p x x =-我们假定命题在2,1n n --的情形下成立,下面考察n 的情形cos cos[(1)]cos(1)cos sin(1)sin 1cos(1)cos [cos cos(2)]2n n n n n n n θθθθθθθθθθθ=-+=-⋅--⋅=-⋅+--进而有cos 2cos cos(1)cos(2)n n n θθθθ=---即12()2()()n n n p x xp x p x --=-因为12(),()n n p x p x --都是多项式,所以()n p x 也是多项式。
清华大学自主招生试题含答案
、选择题2( )(A)充分不必要(B)必要不充分(C)充要(D)3.设A、B是抛物线y=x2上两点,0是坐标原点,若OAL 0B,则()(A)|OA| •|OB| > 2 (B)|OA|+|OB| (C)直线AB过抛物线y=x2的焦点(D)O至煩线AB的距离小于等于X yf (x) >0,x € (-1,0);② f (X) + f (y) = f ( ) , X、y €1 xy(-1,1),则f (x)为(A)奇函数(B)偶函数(C)减函数(D)有界函数5. 如图,已知直线y=kx+m与曲线y=f(x)相切于两点,则F(x)= f (x) - kx有(/ C=—,且sinC+sin(B - A) -2sin2A=0,则有(3(A)b=2 a (B) △ ABC的周长为2+2-. 3 (C) △ ABC的面积为一空(D) △ ABC的外接圆半径为37.设函数f(x) (x23)e x,则( )(A) f (x)有极小值,但无最小值(B) f (x)有极大值,但无最大值(C)若方程f (x) =b恰有一个实根,则b>-6| (D)若方程f (x) =b恰有三个不同实根,则0<b<£e e1.设复数z=cos -3+isin (A)0 (B)1 (C) 2 冲13 ,则仁(D)3211 z22.设数列{aj为等差数列, p,q,k, l为正整数,则p+q>k+l ”是“ a p aqa k a l ”的()条件既不充分也不必要4.设函数f(x)的定义域为(-1,1),且满足:①个极小值点(D)3个极小值点8.已知 A={(x,y) 1 x 22 2y r },B={(x,y)1 (x2 2 2a) (y b) r ,已知 A n B={(x 1,yJ ,( X 2,y 2)},则()(A)0< a 2 b 2 <2r 2(B)aXX 2) b(y1 y 2) 0(C)X 1 X 2 = a , y 1y 2=b (D)2a b 2 = 2ax 1 2by 19.已知非负实数x,y,z满足4x 24y 22z +2z=3, 则5x+4y+3z 的最小值为()(A)1 (B)2 (C)3 (D)410.设数列{ a n }的前n 项和为S n ,若对任意正整数n ,总存在正整数 m,使得S n =a m ,则( )(A ){ a n }可能为等差数列(B ){ a n }可能为等比数列(c ){a n }的任意一项均可写成{a n }的两项之差(D)对任意正整数n ,总存在正整数 m 使得a n = S m 11.运动会上,有6名选手参加100米比赛,观众甲猜测:4道或5道的选手得第一名;观众乙猜测: 3道的选手不可能得第一名;观众丙猜测:1,2,6道选手中的一位获得第一名;观众丁猜测:4,5,6道的选手都不可能获得第一名•比赛后发现没有并列名次,且甲、乙、丙、丁中只有 1人猜对比赛结果,此人是( )(A)甲(B)乙(C)丙(D) 丁1(A)若S=4,则k 的值唯一(B) 若S=^,贝U k 的值有2个22(C)若D 为三角形,则0<k <(D)若D 为五边形,则312.长方体 ABCDAEGD 中,AB=2, AD=A A 1=1,贝U A 到平面 A BD 的距离为((A) - (B)3(D)13.设不等式组|x| |y| 2 y 2 k(x 1)所表示的区域为 D,其面积为S,U(k>414. △ ABC 勺三边长是 2,3,4,其外心为 0,则 uuu uuu OA AB uuu uuu uuur uuu OB BC 0C CA =((A)0 (B)-15 (C) -21(D)229 215. 设随机事件 A 与B 互相独立,且 P(B)=0.5(A)P(A)=0.4 (B)P(B -A)=0.3 (C)P(AB)=0.2 (D)P(A+B)=0.916. 过厶ABC 的重心作直线将厶 3(A)最小值为一(B)最小值为417. 从正15边形的顶点中选出,P(A- B)=0.2,则(ABC 分成两部分,则这两部分的面积之比的(4 4(C)最大值为一533个构成钝角三角形,5(D 最大值为一4则不同的选法有((A)105 种(B)225 种(C)315 种(D)420 种18. 已知存在实数r,使得圆周x2y2 r2上恰好有n个整点,则n可以等于(22.在极坐标系中,下列方程表示的图形是椭圆的有(4 2 1 V2(A)最小值为一(B)最小值为一 (C)最大值为1 (D)最大值为--------------------5 5 3(A)4 (B)6 (C)8 (D)1219. 设复数z 满足2|z| w |z-1|,则(1(A)|z|的最大值为1 (B)|z| 的最小值为—(C)z321的虚部的最大值为2(D)z 的实部的最大值为13320.设 m,n 是大于零的实数, a =(mcos a ,msin a ),b =(ncos 3 ,nsin 3 ),其中 a , B€ [0,2 n ) a , B€r 1, _[0,2 n ) •定义向量 a 2 =( 、、. m cos — ,、. m sin 一 ), b 2=(、. n 2cos — 2 ,、齐 sin —),记 9 = a - 3,贝U2r [ r 1 r r 1 r 1 ___ (A) a 2 • a 2 = a (B) a 2 b 2=、.mn cos — (C) 2r] r] … |a 2 b 2|4、一 mn sin 2 —4r 1 r] 2 _ 2 (D) |a 2 b 2 |24, mncos 2 —421.设数列{ a n }满足:a 1=6, an 1,则((A) ? n € N?, a n <(n 1)3 (B) ? n € N?, a n 丰 2015 (C) ? n € N?, a n 为完全平方数(D)? n € N?, a n 为完全立方数1 (A )p=cos sin23. 设函数 f(x)s in x,则( x x 14(A ) f(x) w (B)| f (x) | w 5|x| (C)曲线 y= f (x)存在对称轴324. △ ABC 的三边分别为a ,b,c ,若△ ABC 为锐角三角形,则((B )p=—1(C ) 2 sin1p= —2 cos(D )(D) 1 1 2si n曲线y= f (x)存在对称中心(A)si nA>cosB (B)ta nA>cotB (C) a 2 b 2 c 2 (D) a 3 b 3 c 325.设函数f (x)的定义域是(-1,1), 若f(0) = f (0) =1,则存在实数 s€ (0,1),使得()(A) f (x) >0, x € (- S , S) (B)f (x)在(-S , S )上单调递增 (C) f (x) >1, x € (0, S) (D)f (x)>1 , x € (- S ,0)26.在直角坐标系中,已知A(-1,0),B(1,0) •若对于y 轴上的任意n 个不同的点 P k (k=1,2,…,n),总存在两个不同的点R ,P j ,1使得 |sin / A P j B-sin / A P j B| w —,贝V n 的最小值为( 3(A)3 (B)4(C)5 (D)627.设非负实数x,y 满足2x+y=1,则 x+ x 2 y 2 的()128.对于50个黑球和49个白球的任意排列(从左到右排成一行),则((A)存在一个黑球,它右侧的白球和黑球一样多(B)存在一个白球,它右侧的白球和黑球一样多(C)存在一个黑球,它右侧的白球比黑球少一个 (D)存在一个白球,它右侧的白球比黑球少一个 29.从1,2,3,4,5 中挑出三个不同数字组成五位数, 同的五位数有( (A)300 个(B)450其中有两个数字各用两次,例如 12231,则能得到的不 30.设曲线L 的方程为 (A)L 是轴对称图形 (C)L ? {(x,y) I ##A nswer##1.【解析】 丄1-z) 个(C)900 y 4 (2x 2(B)L 个(D)1800 个 2 4 2 2)y (x 2x ) =0,则(是中心对称图形 1 (D)L ? {(x,y)zz 1 zz_______ 1 - 2. 21-cos i sin332 cos 3..2 i sin ___ 3 2 2i sin32sin 2 i 2sin cos —3 3 3 cos0 isinO 2sin — [cos( —) i sin(-)i sin(3、、3(cos —2-洽 2os(cos( i sin ) 27) i sin(67)]丄(cos — isi n —.3 6 6△ )=1,选 B22.【简解】 a p (a k Q )=[(p+q)-(k+l)]d ,与公差 d 的符号有关,选 3.【解析】设A( 2X 1,X 1 ),B( 2 uuu uuu X 2,X 2 ), OA OB =X 1X 2(1 X 1X 2) =0 X 2 X1 答案(A), |0A| l OBI ^x^(1 好)4(1 —1^) = j1 X2 1 2 X 11 > /2 2|X 1 | 丄=2,正确; |X 1 | 答案(B),|OA|+|OB| > 2..|OA 「|OB| > 2 .2,正确;答案(C),直线 AB 的斜率为 2 22^=X 2 x 2 x 1X1程为 y- xj =( x 1 1)(x-x 1),焦点(0, 1)不满足方程,错误;答案(D),原点到直线AB :(4X11)x-y+ 仁X 1的距离d=w 1,正确。
【考试必备】2018-2019年最新清华大学附属中学初升高自主招生语文模拟精品试卷【含解析】【4套试卷】
2018-2019年最新清华大学附属中学自主招生语文模拟精品试卷(第一套)(满分:100分考试时间:90分钟)一、语文基础知识(18分,每小题3分)1.下列词语中加点的字,读音全都正确的一组是()A.连累(lěi) 角(jué)色河间相(xiàng) 冠冕(miǎn)堂皇B专横(hèng) 忖(cǔn)度涮(shuàn) 羊肉妄加揣(chuāi)测C.笑靥(yè) 顷(qīng)刻汗涔(cén)涔休戚(qì)相关D慨叹(kǎi) 俨(yǎn)然刽子手(kuàì) 刎(wěn)颈之交2、下列各项中字形全对的是()A、橘子州偌大急躁光阴荏苒B、蒙敝犄角慰籍书生意气C、敷衍磕绊笔竿艰难跋涉D、翱翔斑斓屏蔽自怨自艾3、依次填入下列各句横线上的词语,最恰当的一项是()⑴虽然他尽了最大的努力,还是没能住对方凌厉的攻势,痛失奖杯。
⑵那些见利忘义,损人利己的人,不仅为正人君子所,还很可能滑向犯罪的深渊。
⑶我认为,真正的阅读有灵魂的参与,它是一种个人化的精神行为。
A.遏制不耻必需B.遏止不耻必需C.遏制不齿必须D.遏止不齿必须4、下列句中加点的成语,使用恰当的一句是()A、故宫博物院的珍宝馆里,陈列着各种奇珍异宝、古玩文物,令人应接不暇。
B、任何研究工作都必须从积累资料做起,如果不掌握第一手资料,研究工作只能是空中楼阁。
C、电影中几处看来是闲笔,实际上却是独树一帜之处。
D、这部精彩的电视剧播出时,几乎万人空巷,人们在家里守着荧屏,街上显得静悄悄的。
5、下列句子中,没有语病的一项是()A 大学毕业选择工作那年,我瞒着父母和姑姑毅然去了西藏支援边疆教育。
B北京奥运会火炬接力的主题是“和谐之旅”,它向世界表达了中国人民对内致力于构建和谐社会,对外努力建设和平繁荣的美好世界。
C他不仅是社会的一员,同时还是宇宙的一员。
他是社会组织的公民,同时还是孟子所说的“天民”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题1.设复数z=cos 23π+isin 23π,则2111-1z z +-=( ) (A)0 (B)1 (C)12 (D)322.设数列{}n a 为等差数列,p,q,k,l 为正整数,则“p+q>k+l ”是“p q k l a a a a +>+”( )条件 (A)充分不必要 (B)必要不充分 (C)充要 (D)既不充分也不必要3.设A 、B 是抛物线y=2x 上两点,O 是坐标原点,若OA ⊥OB,则( )(A)|OA|·|OB|≥2 (B)|OA|+|OB|≥22(C)直线AB 过抛物线y=2x 焦点 (D)O 到直线AB 的距离小于等于14.设函数()f x 的定义域为(-1,1),且满足:①()f x >0,x ∈(-1,0);②()f x +()f y =()1x yf xy++,x 、y ∈(-1,1),则()f x 为(A)奇函数 (B)偶函数 (C)减函数 (D)有界函数5.如图,已知直线y=kx+m 与曲线y=f (x)相切于两点,则F(x)=f (x)−kx 有( )(A)2个极大值点 (B)3个极大值点 (C)2个极小值点 (D)3个极小值点 6.△ABC 的三边分别为a 、b 、c .若c=2,∠C=3π,且sinC+sin(B −A)−2sin2A=0,则有( ) (A)b=2a (B)△ABC 的周长为3△ABC 23(D)△ABC 237.设函数2()(3)xf x x e =-,则( )(A)()f x 有极小值,但无最小值 (B) ()f x 有极大值,但无最大值 (C)若方程()f x =b 恰有一个实根,则b>36e (D)若方程()f x =b 恰有三个不同实根,则0<b<36e8.已知A={(x,y)∣222x y r +=},B={(x,y)∣222()()x a y b r -+-=,已知A∩B={(11,x y ),(22,x y )},则( )(A)0<22a b +<22r (B)1212()(y )0a x x b y -+-=(C)12x x +=a ,12y y +=b (D)22a b +=1122ax by +9.已知非负实数x,y,z 满足22244x y z +++2z=3,则5x+4y+3z 最小值为( ) (A)1 (B)2 (C)3 (D)410.设数列{n a }前n 项和为n S ,若对任意正整数n ,总存在正整数m ,使得n S =m a ,则( ) (A ){n a }可能为等差数列 (B ){n a }可能为等比数列(C ){n a }的任意一项均可写成{n a }的两项之差(D)对任意正整数n ,总存在正整数m ,使得n a =m S 11.运动会上,有6名选手参加100米比赛,观众甲猜测:4道或5道的选手得第一名;观众乙猜测:3道的选手不可能得第一名;观众丙猜测:1,2,6道选手中的一位获得第一名;观众丁猜测:4,5,6道的选手都不可能获得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是( )(A)甲 (B)乙 (C)丙 (D)丁12.长方体ABCD −1111A B C D 中,AB=2,AD=A 1A =1,则A 到平面1A BD 的距离为( )(A)13 (B)23(C)2 (D)313.设不等式组||||22(1)x y y k x +≤⎧⎨+≤+⎩所表示的区域为D ,其面积为S ,则( )(A)若S=4,则k 的值唯一 (B)若S=12,则k 的值有2个 (C)若D 为三角形,则0<k ≤23(D)若D 为五边形,则k>4 14.△ABC 的三边长是2,3,4,其外心为O ,则OA AB OB BC OC CA ⋅+⋅+⋅=( ) (A)0 (B)−15 (C)−212(D)−29215.设随机事件A 与B 互相独立,且P(B)=0.5,P(A −B)=0.2,则( )(A)P(A)=0.4 (B)P(B −A)=0.3 (C)P(AB)=0.2 (D)P(A+B)=0.916.过△ABC 的重心作直线将△ABC 分成两部分,则这两部分的面积之比的( ) (A)最小值为34 (B)最小值为45 (C)最大值为43 (D 最大值为5417.从正15边形的顶点中选出3个构成钝角三角形,则不同的选法有( )(A)105种 (B)225种 (C)315种 (D)420种18.已知存在实数r ,使得圆周222x y r +=上恰好有n 个整点,则n 可以等于( )(A)4 (B)6 (C)8 (D)12 19.设复数z 满足2|z|≤|z −1|,则( ) (A)|z|的最大值为1 (B)|z|的最小值为13 (C)z 的虚部的最大值为23(D)z 的实部的最大值为13 20.设m,n 是大于零的实数,a =(mcosα,msinα),b =(ncosβ,nsinβ),其中α,β∈[0,2π)α,β∈[0,2π).定义向量12a =(2α2α),12b =(2β2β),记θ=α−β,则( )(A)12a ·12a =a (B)1122a b ⋅=2θ(C)112222||44a b mn θ-≥ (D)112222||44a b mn θ+≥21.设数列{n a }满足:1a =6,13n n n a a n++=,则( ) (A)∀n ∈N ∗,n a <3(1)n + (B)∀n ∈N ∗,n a ≠2015 (C)∃n ∈N ∗,n a 为完全平方数 (D)∃n ∈N ∗, n a 为完全立方数 22.在极坐标系中,下列方程表示的图形是椭圆的有( )(A )ρ=1cos sin θθ+ (B )ρ=12sin θ+ (C )ρ=12cos θ- (D )ρ=112sin θ+23.设函数2sin ()1xf x x x π=-+,则( )(A )()f x ≤43(B)|()f x |≤5|x| (C)曲线y=()f x 存在对称轴 (D)曲线y=()f x 存在对称中心24.△ABC 的三边分别为a ,b,c ,若△ABC 为锐角三角形,则( )(A)sinA>cosB (B)tanA>cotB (C)222a b c +> (D)333a b c +>25.设函数()f x 的定义域是(−1,1),若(0)f =(0)f '=1,则存在实数δ∈(0,1),使得( ) (A)()f x >0,x ∈(−δ,δ) (B)()f x 在(−δ,δ)上单调递增 (C)()f x >1,x ∈(0,δ) (D)()f x >1,x ∈(−δ,0)26.在直角坐标系中,已知A(−1,0),B(1,0).若对于y 轴上的任意n 个不同的点k P (k=1,2,…,n),总存在两个不同的点i P ,j P ,使得|sin ∠A i P B −sin ∠A j P B|≤13,则n 的最小值为( ) (A)3 (B)4 (C)5 (D)627.设非负实数x,y 满足2x+y=1,则的( )(A)最小值为45 (B)最小值为25(C)最大值为1 (D)28.对于50个黑球和49个白球的任意排列(从左到右排成一行),则( )(A)存在一个黑球,它右侧的白球和黑球一样多 (B)存在一个白球,它右侧的白球和黑球一样多 (C)存在一个黑球,它右侧的白球比黑球少一个 (D)存在一个白球,它右侧的白球比黑球少一个 29.从1,2,3,4,5中挑出三个不同数字组成五位数,其中有两个数字各用两次,例如12231,则能得到的不同的五位数有( )(A)300个 (B)450个 (C)900个 (D)1800个30.设曲线L 的方程为42242(22)(2)y x y x x +++-=0,则( ) (A)L 是轴对称图形 (B)L 是中心对称图形 (C)L ⊂{(x,y)∣22x y +≤1} (D)L ⊂{(x,y)∣−12≤y ≤12} ##Answer##1.【解析】 2111-1z z +-=211-zz z zz z +-=11-z z z z +-=22cos sin 1332221-cos sin 2sin 333i i i πππππ-+-- =212sin 2sincos333i πππ-⋅-22cos()sin()33sin )22i i ππππ-+-+ =cos0sin 02sin [cos()sin()]366i i πππ+-+-77)sin()]66i ππ-+-1sin )6622i i ππ++-=1,选B2.【简解】 ()p q k l a a a a +-+=[(p+q)-(k+l)]d ,与公差d 的符号有关,选D3.【解析】设A(211,x x ),B(222,x x ),OA OB ⋅=1212(1)x x x x +=0⇒211x x =-答案(A),||||OA OB ⋅=≥=2,正确;答案(B),|OA|+|OB|≥,正确;答案(C),直线AB 的斜率为222121x x x x --=21x x +=111x x - 方程为y-21x =(111x x -)(x-1x ),焦点(0,14)不满足方程,错误;答案(D),原点到直线AB :(111x x -)x-y+1=0的距离1,正确。
选ABD4.【解析】x=y=0⇒(0)f =0,y=-x ⇒()()f x f x -=-,()f x 为奇函数,(A)正确;()f x ≡0,(B)错误;12x x <,1()f x -2()f x =1()f x +2()f x -=12121x x f x x ⎛⎫- ⎪-⎝⎭>0⇒1()f x >2()f x ⇒()f x ↓,(C)正确;()f x =-tan2x π满足已知条件,但无界,(D)错误。
选A,C 5.【简解】将直线平移知:斜率为k 直线,与曲线y=()f x 至多有五个公共点,其中在此直线先下方后上方两个区间,先上方后下方三个区间,故()F x 有三个极大值点,两个极小值点。
选BC6.【解析】2R=sin c C =43⇒R=233,D 正确; 又sinC+sin(B-A)=sin(B+A)+sin(B-A)=2sinBcosA=2sin2A=4sinAcosA ⇒cosA=0或sinB=2sinA ⇒A=2π或b=2a ; A=2π时,b=233, a =433,周长为2+3,面积为233;b=2a 时,2c =222cos a b ab C +-⇒a =233,B=2π,同样有周长为2+3,面积为233。