第九章 排队论 (1)..
排队论
排队长度:等待服务的顾 客数量
平均等待时间:顾客在系统 中等待服务的平均时间
平均排队长度:系统中平均 排队的顾客数量
服务台数量:系统中的服 务台数量
利用率:服务台被利用的 程度
排队系统的稳定性:系统是 否处于稳定状态,即平均等 待时间和平均排队长度是否
收敛
排队系统的分析方法
01
排队论的基本概 念:顾客到达、 服务时间、等待
服务台:提供服务的地方
队列:等待服务的顾客队列
顾客到达时间:顾客到达服 务台的时间 服务台容量:服务台可以同 时服务的顾客数量 排队系统状态:当前系统中 顾客和服务员的状态
排队系统的参数
顾客到达率:单位时间内到 达系统的顾客数量
服务速率:单位时间内服务 台能够服务的顾客数量
排队规则:先进先出(FIFO) 或后进先出(LIFO)
谢谢
排队论
演讲人
排队论的基本概念 排队论的基本原理Biblioteka 目录CONTENTS
排队论的应用实例
排队论的基本概念
排队系统的定义
1
排队系统:由顾 客和服务台组成 的系统,顾客需 要等待服务台的
服务。
2
服务台:提供某 种服务的设施, 如收银台、售票
窗口等。
3
顾客:需要接受 服务台的服务的 人,如顾客、乘
客等。
4
时间均服从指数分布
M/G/1模型:单服务台、单 队列、顾客到达服从泊松分 布、服务时间服从指数分布
M/G/c模型:单服务台、多 队列、顾客到达服从泊松分 布、服务时间服从指数分布
M/G/∞模型:单服务台、 无限队列、顾客到达服从泊 松分布、服务时间服从指数
分布
G/M/1模型:多服务台、单 队列、顾客到达服从泊松分 布、服务时间服从指数分布
排队论
G:一般分布。表示到达间隔时间或服务时间服从一般分布。G是General的第 一个字母。
EkE:rlkan-爱g 尔朗的分第布一。个表字示母到。达间隔时间或服务时间服从k-爱尔朗分布。E是 D: 定长分布 (常数时间)
H:超几何分布。
L:H项式分布。
Z代表的服务规程典型的有:
FCFS:先来先服务;LCFS:后来先服务;RSS:随机选择服务;
PR:优先权服务。 Ba:集体(批量)服务。 GD:一般规约服务,即通用规约服务。
排队论课件 23
3 基本排队关系
在对排队进行分析时,为了便于分析,经常做一些简化假设。对一个排队系 统,若满足以下三个条件:
(1)排队系统能够进入统计平衡状态;
(2)服务员的忙期与闲期交替出现,即系统不是总处于忙的状态;
泊松分布(Poisson): P{X = k} = λk e-λ/ k! k=0,1,2,…, μx = σx = λ 泊松分布是最重要的离散型概率分布之一,也是表述随机
现象的一种重要形式。在实际系统模型中,一般都要假定任务 (或顾客)的到来是泊松分布的。实践也证明:这种假设有效。
如果顾客到达的人数是符合泊松分布,即在时间T内到达 有k个顾客到达的概率为:
♂
※
排队论课件
11
基本的排队模型
基本组成 概念与记号 指数分布和生灭过程
♂
排队论课件 12
典型排队系统模型
顾客到达: 在队列中排队 服务台服务 顾客离开
输入源
。。。
输入源的 特性?
到达规律 队列大小?
到达方式?
服务规律?
服务协议?
在本单元中,我们主要介绍排队系统的组成和特征,排队系统 的到达和服务,经典排队模型等内容。顾客到达规律和服务规 律都是通过概率来描述的,所以概率论是排队论的基础。
排队论课件
③服务方式(输出)指同一时刻有多少服务台可接纳顾客, 每一顾客服务了多少时间。每次服务可以接待单个顾客, 也可以成批接待,例如公共汽车一次就装载大批乘客。 服务时间的分布主要有如下几种: • 负指数分布:即各顾客的服务时间相互独立,服从相 同的负指数分布(看病); • 爱尔朗分布:即各顾客的服务时间相互独立,具有相 同的爱尔朗分布。
• 定长分布:每一顾客的服务时间都相等(发放物品);
为叙述方便,引用下列符号,令
• M代表泊松分布输入或负指数分布服务;
• D代表定长分布输入或定长分布服务; • Ek代表爱尔朗分布的输入或服务。 于是泊松输入、负指数分布服务,N个服务台的排队系 统可以写成M/M/N; • 泊松输入、定长服务、单个服务台的系统可以写成M/D/1。 • 同样可以理解M/ Ek /N,D/M/N…等符号的含义。 • 如果不附其它说明,则这种符号一般都指先到先服务, 单个服务通道的等待制系统。
多通道服务方式
(1)系统中没有车辆的概率 为: 1 P (0) N 1 k N N !(1 / N ) k 0 k! ( 2)系统中有 k个车辆的概率: k .P (0), k! P(k) k P (0), kN N! N k N k N
1
5 5 10s / 辆
两种系统比较
4个M/M/1
平均车辆数 平均排队长 平均耗时 平均等候时间 20 16.68 30 25
M/M/4
6.6 3.3 10 5
设顾客平均到达率为,则到达的平均时距为1/ 。排队从单通道通过接受 服务的平均服务率为,则平均服务时间为1/ 。比率 / 叫做服务强度 或交通强度,可以确定系统的状态。所谓状态,指的是排队系统的顾客数。 1)在系统中没有顾客的概率为P(0) 1 2)在系统中有n个顾客的概率为P (n) n (1 ) 3)系统中的平均车辆数n 4)系统中的平均方差 2 5)平均排队长度q n 6)非零平均排队长度q w 1 1 n
排队论(脱产)PPT课件
等待制与损失制
等待制
顾客等待时间有限,超过一定时 间仍无法接受服务则离开;或者 顾客可以无限等待,直到获得服 务。
损失制
顾客到达时若无法立即接受服务 ,则离开系统。
稳态与瞬态
稳态
排队系统在长时间后达到平衡状态,顾客到达和服务的时间间隔均服从某一概 率分布。
瞬态
排队系统未达到平衡状态,顾客到达和服务的时间间隔不服从概率分布。
WENKU DESIGN
WENKU DESIGN
2023-2026
ONE
KEEP VIEW
排队论(脱产)ppt课件
WENKU DESIGN
WENKU DESIGN
WENKU
REPORTING
https://
CATALOGUE
目 录
• 引言 • 排队论的基本概念 • 常见的排队模型 • 排队论中的性能指标 • 排队论的应用实例 • 总结与展望
PART 04
排队论中的性能指标
队长与等待队长
队长
指在任意时刻队列中的顾客数。它通常用来衡量系统的负载状况。队长是描述系 统状态的重要参数,其分布情况决定了系统的性质。
等待队长
指在队列中等候的顾客数。等待队长是衡量系统性能的重要指标,特别是在处理 能力有限的情况下。等待队长的大小直接影响到顾客的等待时间和系统的效率。
交通系统
地铁调度
地铁调度中心需要确保列车按时到达车 站并保持适当的间隔。排队论可用于分 析列车的到达时间和等待时间,优化列 车的调度和运行计划,提高地铁系统的 运输效率和安全性。
VS
机场安检
机场安检是保证乘客安全的重要环节,但 安检队伍过长或等待时间过长会影响乘客 的满意度和机场的运行效率。排队论可用 于分析安检队伍的长度和等待时间,优化 安检流程和资源配置,提高机场的运行效 率和乘客满意度。
排队论知识点(一)
排队论知识点(一)排队论知识点详解什么是排队论排队论是应用概率论、随机过程和数学统计方法来研究队列系统的数学理论。
队列系统是指一些处理实体以确定的方式到达某个系统,被系统以某种方式处理,然后离开系统的系统模型。
排队论研究的目标是为了通过合理的设计和优化队列系统(如银行服务台、电话交换机等)的结构和参数,提高系统的效率和性能。
排队论的主要概念1. 到达过程到达过程是指实体到达队列系统的时间间隔的随机过程。
根据到达的规律性和随机性不同,到达过程可以分为不可预测的泊松到达过程和可预测的非泊松到达过程。
2. 服务过程服务过程是指队列中的实体被处理的时间间隔的随机过程。
根据服务的规律性和随机性不同,服务过程可以分为不可预测的指数服务过程和可预测的非指数服务过程。
3. 队列长度队列长度是指队列中正在等待服务的实体的个数,也可以看作是在系统中等待服务的实体的数学期望。
4. 平均等待时间平均等待时间是指实体在队列系统中等待服务的平均时间。
5. 利用率利用率是指队列系统中服务设备的利用情况,通常用平均到达率与平均服务率的比值来表示。
排队论的基本模型1. M/M/1模型M/M/1模型是排队论中最简单的模型之一,代表了一个单一服务台和一个队列的排队系统。
M/M/1模型的到达过程和服务过程都是泊松过程,服务设备能力为1。
2. M/M/C模型M/M/C模型是M/M/1模型的扩展,代表了含有C个服务台和一个队列的排队系统。
到达过程和服务过程仍然是泊松过程,但是服务设备能力为C。
3. M/G/1模型M/G/1模型是M/M/1模型的变体,代表了一个单一服务台和一个队列的排队系统,但是服务过程是一般分布。
到达过程仍然是泊松过程。
4. G/G/1模型G/G/1模型代表了一个单一服务台和一个队列的排队系统,到达过程和服务过程都是一般分布。
排队论的应用1. 交通拥堵排队论可以用来研究交通拥堵的原因和解决方案,进一步优化交通网络资源的利用和流量的分配。
运筹学-排队论
定长分布(D):每个顾客接受的 服务时间是一个确定的常数。
负指数分布(M):每个顾客接受
的服务时间相互独立,具有相同
的负指数分布:
b(t)=
e- t
t0
0
t<0
其中>0为一常数。
K阶爱尔朗分布(En):
b(t)=
k(kt)k-1
(K-1)!
e- kt
当k=1时即为负指数分布;k 30,近似
M/M/1 等待制排队模型
单服务台问题,又表示为M/M/1/ : 顾客相继到达时间服从参数为的负 指数分布;服务台数为1;服务时间 服从参数为的负指数分布;系统的 空间为无限,允许永远排队。
队长的分布
记 Pn=p{N=n} , n=0,1,2….为系统达到平衡状态后队 长的概率分布,
则 n=;n= ,= /<1, 有Pn= (1-)n n=0,1,2….
排队系统类型:
顾客到达
服务台串联排队系统
排队系统类型:
聚
散
服务机构
(输入)
(输出)
随机聚散服务系统
随机性——顾客到达情况与顾客 接受服务的时间是随机的。
一般来说,排队论所研究的排队 系统中,顾客相继到达时间间隔 和服务时间这两个量中至少有一 个是随机的,因此,排队论又称 随机服务理论。
顾客(单个或成批)相继到达的时
间间隔分布:这是刻划输入过程的
最重要内容。令T0=0,Tn表示第n顾
客到达的时刻,则有T0T1 T2…..
Tn ……
记Xn= Tn –Tn-1
n=1,2,…,则Xn是第n顾客与第n-1顾
客到达的时间间隔。
一般假定{Xn}是独立同分布,并 记分布函数为A(t)。
第九章 排队论 (1)
其中Ls、Lq、ws和wq通常称之为重要的运行指标 。它们取值越小,说明系统队长越短,顾客等候时 间越少,因此系统的性能就越好。
我们在稳态下,讨论单服务台排队系统和多服务台 排队系统。
9.2单服务台排队系统分析
本节讨论输入过程为泊松流,服务时间 服从负指数分布的单服务台的排队系统。 其中有:
9.1排队论的基本概念
排队论是通过对服务对象到来及服务时 间的统计研究,得出这些数量指标(等 待时间、排队长度、忙期长短等)的统 计规律,然后根据这些规律来改进服务 系统的结构或重新组织被服务对象,使 得服务系统既能满足服务对象的需要, 又能使服务机构的费用最经济或某些指 标最优。
9.1.1排队过程的一般表示
第9章 排队论
南京航空航天大学
排队是我们在日常生活中经常遇到的现象,例如 病人到医院看病、客户到银行汇款、城市拥堵 路段的汽车排队、电话占线等。排队现象产生 的原因之一是要求服务的数量超过了服务机构 的容量,也就是有部分的服务对象不能立即得 到服务;原因之二是系统服务对象到达和服务 时间均存在随机性。前者可以通过增加服务机 构的容量来解决排队现象,但无休止地增加服 务机构的容量会导致追加投资并可能发生系统 资源长时间闲置。后者,也就是系统服务对象 到达和服务时间均存在随机性,致使无法准确 预测估算排队拥堵的具体情况。所以,在服务 系统中的排队现象几乎不可避免。
标准的M/M/1/∞/∞系统; 有限等待空间系统M/M/1/N/∞; 顾客为有限源系统M/M/1/∞/m。
9.2.1 标准的M/M/1/∞/∞系统
M/M/1系统状态转移图:
系统状态从0转移到l的转移率为λP0, 而系统状态从1转移到0的转移率为μP1。
系统工程---第九章 排队论
9.1.1 排队论发展简述
最早有关排队论著作一般人共认的是1909年丹麦数学家爱尔朗(A.K. Erlang)所发表的论文,爱尔朗服务于丹麦哥本哈根电话公司,该论文研 究的主题是电话交换机的使用状况,爱尔朗主要的著作成于1909至1920年 间,有关他的生平与作品可参阅布鲁可迈尔(E.Brockmeyer)等人的文章。 爱尔朗之后从事排队论研究的先驱人物有法国数学家勃拉彻(F.Pollaczek) 和前苏联数学家金勤(A.Y.Khintechine),他们在这方面的研究课题都在30年 代完成并载于他们后来撰写的著作里。 第二次世界大战之后,应用概率论,运筹学得到了广泛而深入的发展, 排队论的论述已十分普及了。50年代初期英国人堪道(E.G.Kendall)又系统 地阐述了排队问题,并且利用嵌入马尔柯夫链的方法推动了排队论的进一步 发展。
第一个子服务台系统 输出
输入 第 k 个子服务台系统 输出
第 n 个子服务台系统 输出
图 9-5 多队——多服务台系统
山东理工大学管理学院
9.2 排队系统的组成及数量指标
9.2.2 排队问题的分类
按照排队系统的三个主要特征,即 (1)相继顾客到达间隔时间的分布; (2)服务时间的分布; (3)服务台个数。 D.G.Kendall 在 1953 年提出一个目前广泛采用的排队系统的分类方法,其标记 如下
山东理工大学管理学院
9.1 排队论概述
6.生产线问题 在工厂生产线上,机器、工人甚至物料运输设备如何安排以保证生产率 的水平,降低生产过程中原料和半成品的存量往往也可通过排队问题的研究 获得解决。在这类问题里,产品为顾客,机器、工人或者有关生产、运输设 备为服务台。
7.计算机问题
运筹学 Ch9排队论
9.1 排队论的基本概念 Basic Concepts of Queuing theory
Ch9 排队论 Queuing theory
2014年8月23日星期六
Page 8
2.排队规则 (1)等待制 指顾客到达系统后,所有服务台都不空,顾客加入排队行列 等待服务,一直等到服务完毕以后才离去 ; (1)先到先服务(FCFS,First Come First Serve); (2)后到先服务(LCFS,Last Come First Serve); (3)有优先权的服务(PR,Priority) (4)随机服务(SIRO,Service in Random Order) (2)损失制 指当顾客到达系统时,所有服务台都已被占用,顾客不愿等 待而离开系统。
顾客到达 服务台 服务台 服务台
… …
…
顾客离去
图9-4 多服务台多队系统
(4)多服务台串联服务
顾客到达
…
服务台
…
服务台
…
顾客离去
图9-5 多服务台串联系统
9.1 排队论的基本概念 Basic Concepts of Queuing theory
Ch9 排队论 Queuing theory
2014年8月23日星期六
图9-2单服务台单队系统 (2)多服务台单队
服务台 顾客到达
…
服务台 服务台
…
顾客离去
图9-3 多服务台单队系统
9.1 排队论的基本概念 Basic Concepts of Queuing theory
Ch9 排队论 Queuing theory
2014年8月23日星期六
Page 6
(3)多队多服务台 …
Ch9 排队论 Queuing theory
第九章 运筹学排队论
λ
, D(T ) =
1
λ2
三.服务时间v的概率分布 一般总是假定顾客接受服务的时间v也服从负 指数分布 f v (t ) = µe − µt , µ是单位时间能服务完的顾客数,
E (v ) = 1
µ
, D (v ) =
1
µ
2
注意 : E (v) =
1
µ
是一个顾客的平均服务时间.
λ ρ= 是刻划服务效率和服务机构利用程度的 µ
重要标志.当 ρ < 1 时,ρ 越小,表示单位时间 内到达顾客的平均数比服务完的顾客平均数 小得多,顾客到达后可及时得到服务,等待时 ρ 间少,服务员空闲,服务设施利用率低;反之 > 1 ρ 越大,反映的事实与上述相反.
注意:同时满足下面三个条件的流为泊松流 ⒈无后效性:前面到达的顾客数并不影响后面 到达的顾客数; ⒉平稳性:顾客到达的多少只与时间间隔有 关,而与统计时的时刻无关; ⒊普通性:在很短的时间间隔内,到达两个或 两个以上顾客的概率极小,可以忽略不计.
先考虑n=0的状态,状态0的稳定状态概率为0 p 而从状态0进入状态1的平均转换率为 ,因 λ λ 此从状态0进入状态1的输出率为 p0 ,同理,状 态1进入状态0的输入率为 p1 .根据输出率等 µ 于输入率的原则,在系统平衡条件下,对状态0 有以下的状态平衡方程λp0 = µp1 .
λ λ n = 0, p1 = p0 , 又ρ = , 所以p1 = ρp0 . µ µ
一.生灭过程 在排队理论中,通常采用一种名为”生灭过程” 的方法来描述.首先画出生灭图,它的特点是系 统的所有状态看作一系列的点,用0,1,2, …表 示,并用正,反两方向的箭头线将左右状态连接 , , 起来,如下图
排队论详解及案例
cmLiu@shufe
Operations Research
9.2 几个常用的概率分布
9.2.1 经验分布 9.2.2 泊松分布 9.2.3 负指数分布 9.2.4 爱尔朗分布
cmLiu@shufe
Operations Research
9.2.1 经验分布
主要指标
平均间隔时间 = 总时间 到达顾客总数
Operations Research
9.1.3 排队论研究的基本问题
(3)系统优化问题的研究 研究排队系统的目的就是通过对该系统概率规律的研究, 实现系统的优化。系统的优化包括最优设计和最优运营问 题。前者属于静态问题,它是在输入和服务参数给定的情 况下,确定系统的设计参数,以使服务设施达到最大效益 或者服务机构实现最为经济。后者属于动态问题,它是指 对于一个给定的系统,在系统运行的参数可以随着时间或 状态变化的情况下,考虑如何运营使某个目标函数达到最 优。
cmLiu@shufe
Operations Research
9.1.1 排队系统的描述和组成
一般的排队过程可以这样描述:顾客由顾客源出发,到达 服务机构(服务台、服务员)前,按排队规则排队等待接 受服务,服务机构按服务规则给顾客服务,顾客接受完服 务后就离开。
cmLiu@shufe
Operations Research
9.1.1 排队系统的描述和组成
尽管排队系统是多种多样的,但所有的排队系统都是由输入过程、排 队规则、服务机构及服务规则三个基本部分组成的。 (1)输入过程 描述顾客来源以及顾客到达排队系统的规律。 一般从以下几个方面对输入过程进行描述:顾客源中顾客的数量是 有限还是无限;顾客到达的方式是单个到达还是成批到达;顾客的到 达是否相互独立(以前到达的顾客对以后达到的顾客没有影响,则称 顾客的达到是相互独立的,否则就是有关联的);顾客相继到达的间 隔时间分布是确定型的还是随机型的(如果是随机分布,需要知道单 位时间内的顾客到达数或者顾客相继到达时间间隔的概率分布);输 入的过程是平稳的还是非平稳的(若相继到达的间隔时间分布参数 (如期望值、方差等)都是与时间无关的,则称输入过程是平稳的, 否则称为非平稳)。 本章主要讨论顾客的到达是相互独立的、输入过程是平稳的情形。
运筹学课件:排队论总结
Operation Research
模型二:不允许缺货,生产需一定时间(1)
第八讲
该模型最早用于确定生产批量,因此也称为生产批量模型 (Production lot size)
模型假设条件
缺货费用无穷大,C2→∞
存储量随时间的变化情况
-R
Operation Research
第八讲
模型一:不允许缺货,备货时间很短(2)
问题分析
决策的要素: 确定合适的订货时间间隔;确定合适的订货量;
矛盾所在
1. 订货间隔时间短,可以减少每次的订货量,降低存储费用;但在一 个固定时间段内,必然会增加订购次数,使订购费用增加;
第八讲
模型四:允许缺货(需补足缺货),生产需一定时间(2)
存储量随时间的变化情况
Operation Research
解释
第八讲
Operation Research
第八讲
模型四:允许缺货(需补足缺货),生产需一定时间(3)
公式推导
Operation Research 求最小值
第八讲
Operation Research
单位时间内单位缺货的损失,C2为常数
当存货降至零时,允许拖一段时间,然后订货就逐步均匀到货, 到货(生产)速率为P为常数
需求是连续的、均匀的,设需求的速率R(单位时间的需求量)为 常数,并且P>R,则t时间的需求量为Rt
每次订货量不变,订购费不变,C3为常数 单位存储费不变,C1为常数
Operation Research
Operation Research
第八讲
排队论
泊松输入中的顾客到达间隔时间 T 相互独立且服从同参数 λ 的负指数分 布,其密度函数为
其平均到达间隔时间为
λ 称为到达率。
三. 排队系统的主要特征
1. 输入过程 ⑴ 定长输入( D, Deterministic ) ⑵泊松输入 (最简单流, M ) ⑶ 一般独立输入( G,General Independent ) —— 指顾客到达间隔时间 T 为相互独立且同分布的随机变量。最简单 流是它的一个特例。 此外,在本章所讨论的排队系统中,总假定输入过程是平稳的,或 称对时间是齐次的。 平稳的输入过程 —— 指顾客到达间隔时间的分布与时间无关。否则就称 为非平稳的。
服务台m
服务台 1
⑸
服务台 2
服务台 1 服务台 2
···
···
服务台 m
服务台 m
三. 排队系统的主要特征
1. 输入过程 2. 服务时间 τ 的分布 3. 服务机构(服务台) 4. 服务规则
⑴ 先到先服务(FCFS) ⑵ 后到先服务(LCFS)
如信息处理、仓库中堆积的货物等。 ⑶ 随机服务(SIRO) ⑷ 优先权服务(PR) ⑸ 一般服务规则(GD)
1909年,由丹麦工程师爱尔朗(A.K.Erlang)在研究电话系统时初创的。
§l 排队论的基本概念及研究的问题
一.排队论中有两个基本概念:
顾客:把提出需求的对象称为顾客(或需求); 服务:把实现服务的设施称为服务机构(或服务台)。
顾客和服务机构组成一个排队系统,称为随机服务系统。 因此也称排队论为随机服务系统理论
⑴ 定长输入( D, Deterministic ) —— 每隔一定时间 α 到达一个顾客,顾客到达间隔时间 T 的分布函数为
三. 排队系统的主要特征
运筹学 排队论(1)
运筹学排队论1. 简介排队论是运筹学中重要的一个分支,它研究了在人员、物品或信息流动过程中产生的排队现象,并通过建立数学模型和分析这些模型来探讨和优化系统中的排队行为。
排队论在各个领域都有广泛的应用,如交通运输、电信网络、生产制造等。
2. 排队模型排队论中常用的模型包括M/M/1模型、M/M/s模型、M/G/1模型等。
其中,M表示到达过程的分布,而G表示服务时间的分布。
而数字1或s则表示系统中的服务通道数。
2.1 M/M/1模型M/M/1模型是排队论中最简单的一个模型,它假设到达过程和服务时间都服从指数分布。
该模型中只有一个服务通道。
2.2 M/M/s模型M/M/s模型是M/M/1模型的扩展,它假设到达过程和服务时间仍然服从指数分布,但有s个服务通道。
M/M/s模型适用于有多个并行服务通道的排队系统。
2.3 M/G/1模型M/G/1模型假设到达过程服从泊松分布,而服务时间服从一般分布。
该模型在实际应用中更为常见,因为服务时间往往不服从指数分布。
3. 排队论的性能度量排队论的性能度量是对排队模型进行定量分析和评估的重要手段,常见的性能度量指标包括平均等待时间、平均逗留时间、系统繁忙率等。
3.1 平均等待时间平均等待时间是指在排队系统中,每个顾客平均等待的时间长度。
通过对排队模型的分析和计算,可以得到平均等待时间的具体数值。
3.2 平均逗留时间平均逗留时间是指每个顾客在排队系统中逗留的平均时间长度。
它等于平均等待时间加上服务时间。
3.3 系统繁忙率系统繁忙率是指服务通道在单位时间内处于工作状态的比例。
它可以用来评估系统是否能够满足顾客的需求。
4. 排队论的应用4.1 交通运输排队论在交通运输领域的应用非常广泛。
例如,交通信号灯的控制就可以通过排队论进行优化,以减少车辆的等待时间和交通拥堵。
4.2 电信网络在电信网络中,排队论被用于研究数据包的传输和路由机制。
通过对排队论模型的分析,可以提高网络的传输效率和质量。
排队论主要公式 运筹学 课件
排队论主要公式一、状态平衡方程()()()()⎪⎩⎪⎨⎧=-=-<≤=++---++--12.10,011.10,010.10,1,01111001111k k k k n n n n n n n p p p p k n p p p μλμλμμλλ当系统状态为可数状态时,将上述第一个式子的k 换成∞,而将第三式去掉。
二、的关系为和q s q s W W L L ,,()()()()00;001;10.20210.2113;10.224.10.23s q q s q s q L W L W W W L L Littie λλμλμ===+=+上述四个式子称为公式。
三、标准的M/M/1模型(1)系统在稳定状态下处于状态n 的概率()()13.10,1,1,1,10<≥-=-=ρρρρn p p n n其中μλρ/=,它是系统的平均到达率与平均服务率之比,称为服务强度或称为话务强度。
(2)系统的运行指标10系统中的平均顾客数L S 为()14.10;10,10<<-=-==∑∞=ρλμλρρN n S np L02系统中等待的平均顾客数q L 为()()15.10;1121λμρλρρ-=-=-=∑∞=n n q p n L03 顾客在系统中的逗留时间W 的分布及平均逗留时间S W 为()()()[]()1,0,10.161;10.17s F e W E μλωωωωμλ--=-≥==-04 顾客在系统中的等待时间分布及平均等待时间q W 为()()()()()19.10.118.10,0,1λμρλμμλμωρωωλμ-=-=-=≥-=--s q q W W e F//1N M M 四、系统容量有限制(设为)的模型(1)系统在稳态下处于状态n 的概率01系统空闲的概率为()24.10.1,11;1,1110⎪⎪⎩⎪⎪⎨⎧=+≠--=+ρρρρN p N02 系统中有n 个客户的概率为()()01,1,1,1110.251,1;1nnn n N N p p N ρρρρρρ⎧-≠≤≤⎪⎪-+==⎨⎪=⎪+⎩其中1,/<=p 此处μλρ的条件可以取消。
第九章 排队论 (1)PPT课件
9.1排队论的基本概念
排队论是通过对服务对象到来及服务时 间的统计研究,得出这些数量指标(等 待时间、排队长度、忙期长短等)的统 计规律,然后根据这些规律来改进服务 系统的结构或重新组织被服务对象,使 得服务系统既能满足服务对象的需要, 又能使服务机构的费用最经济或某些指 标最优。
4
9.1.1排队过程的一般表示
第9章 排队论
1
整体概述
概况一
点击此处输入相关文本内容 点击此处输入相关文本内容
概况二
点击此处输入相关文本内容 点击此处输入相关文本内容
概况三
点击此处输入相关文本内容 点击此处输入相关文本内容
2
排队是我们在日常生活中经常遇到的现象,例如 病人到医院看病、客户到银行汇款、城市拥堵 路段的汽车排队、电话占线等。排队现象产生 的原因之一是要求服务的数量超过了服务机构 的容量,也就是有部分的服务对象不能立即得 到服务;原因之二是系统服务对象到达和服务 时间均存在随机性。前者可以通过增加服务机 构的容量来解决排队现象,但无休止地增加服 务机构的容量会导致追加投资并可能发生系统 资源长时间闲置。后者,也就是系统服务对象 到达和服务时间均存在随机性,致使无法准确 预测估算排队拥堵的具体情况。所以,在服务 系统中3 的排队现象几乎不可避免。
当k=1时爱尔朗分布就是负指数分布;当 k增加时,爱尔朗分布逐渐变为对称的。 当k>30时,爱尔朗分布近似于正态分布。
18
G:一般随机分布。 例如M/M/l表示到达的间隔时间服从负指数 分布,服务时间也服从负指数分布的单服务 台排队系统模型。M/D/2表示到达间隔时间 服从负指数分布,而服务时间为定长分布的 双服务台排队系统模型。
D1
L
E
排队论详解及案例
服务顾客总数 到达顾客总数 平均到达率 =
总时间 平均服务率 = 服务顾客总数
服务时间总和
cmLiu@shufe
Operations Research
9.2.2 泊松分布
泊松分布也称为泊松流,在排队论中称为最简单流。
设 N (t )表示在时间区间 [t0,t0 + ∆t) 内到达的顾客数,是随机变量。
其常用的主要衡量指标如下: 1)队长(Ls):排队系统中顾客的平均数(期望值),它是正在服务的
顾客和等待接受服务的顾客总数的期望值。 2)队列长(Lq):排队系统中平均等待服务顾客数的期望值。显然有
队长=排队长+正被服务的顾客数 3)逗留时间(Ws):一个顾客从到达排队系统到服务完毕离去的总停留
时间的期望值。
cmliushufeoperationsresearch913排队论研究的基本问题2统计推断问题的研究在建立实际问题的排队系统模型时首先要对现实数据进行收集处理然后分析顾客相继到达的间隔时间是否相互独立确定其分布的类型和相关参数研究服务时间的独立性以及服务时间的分布等在此基础上选择适合该系统的排队模型再用排队模型进行分析和研究
用F (t ) 表示 t 的概率分布函数,则有
∫ ∫ F
(t)
=P {T
≤
t}
t
= 0
µe−µt dt
=−
t 0
d
e − µt
=1 −
e−µt
cmLiu@shufe
Operations Research
9.2.3 负指数分布
负指数分布具有下列性质:
cmLiu@shufe
Operations Research
• 队长有限,即系统的等待空间是有限的; • 等待时间有限,即顾客在系统中的等待时间不超过某一给定的长度T,
排队论(讲义)ppt课件
概率关系着对时间的数量分配。一个事件A的概率 P(A)是对应事件A要发生可能性 的数量分配。概率有很多不同的定义,常用的有三种:
(1)古个典数定。义:P(A)=NA/N 其中N是可能结果的总个数,NA是事件A在其中发生的结果的
例1. 求抛两个骰子并且决定和为7的概率p。
总共有36种可能的结果,所以N= 36
排队论 Queueing Theory
主讲:周在莹
;.
1
CONTENUNIT 1 排队模型
UNIT 2 排队网络模型
UNIT 3 应用之:QUICK PASS系统
结束语
;.
PREPARATION 概率论和随机过程
Part 1.概率论基础
1。 概率的定义
独立性: 如果P(AB)=P(A)P(B),事件A和B叫做相互独立的事件 独立性的概念可以推广到三个或多个事件。
;.
3 全概率公式和贝叶斯定理 全概率公式:给定一组互斥事件E1,E2,,…,En,这些事件的并集包括所有可能的
结果,同时给任一个任意事件A,那么全概率公式可以表示为: n
P(A)=∑P(A|Ei)P(Ei) i=1
在离散型随机变量中,只有几何分布具有无后效性。这两种分布可以分别用来描 绘离散等待时间和连续等待时间。
在排队理论中,指数分布是很重要的。
;.
6 k-爱尔朗分布 概率密度: f(x)= (λkx)n-1λke-λkx /(n-1)! x≥0,λ>0.
0 x<0 数字特征: E[X]=1/λ; Var[X]=1/(kλ2 )
;.
5 (负)指数分布
它是一种连续型的概率分布,它的概率密度为
f(x)= λe-λx x≥0
0
(完整版)排队论公式1
M/M/1/∞/∞标准模型M/M/1/N/∞
系统容量有限模型
N=队伍容量+1
M/M/1/∞/m
顾客源有限模型
m=系统只有m+1种状态
M/M/C/∞/m
多服务台模型
单队,并列C个服务台
系统空闲的概率
ρ
系统有n个顾客的概率(顾
客损失率)
系统至少有1个顾客的概率1-
顾客的有效到达率
系统(每小时)顾客平均数
(每小时)等待服务的平均
顾客数
=
(每位)顾客在店内的平均
逗留时间
(每位)顾客平均修理时间
λ:每小时到达店内人数λ:每小时到达店内人数
µ:每小时可以服务的人数,1/每名客户服务时间的分钟数µ:每小时可以服务的人数,1/每名客户服务时间的分钟数
排队论公式一
排队论公式二
ρ:系统忙着的概率,ρ:系统忙着的概率,
M/G/1/∞/∞M/D/1/N/∞M//1/∞/m 系统(每小时)顾客平均数
(每小时)等待服务的平均
顾客数
(每位)顾客在店内的平均
逗留时间
(每位)顾客平均修理时间
λ:每小时到达店内人数
µ:每小时可以服务的人数,1/每名客户服务时间的分钟数E(v):服务时间v的期望
D(v):方差
ρ:系统忙着的概率,λ:每小时到达店内人数
µ:每小时可以服务的人数,1/每名客户服务时间的分钟数
:服务时间v的期望
D(v):方差
ρ:系统忙着的概率,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
③ 服务机构 排队系统的服务机构主要包含:
服务员(服务设施)数量及其连接 形式(并联或串联) 顾客是单个接受服务还是成批接受 服务 服务时间的分布
各类型排队系统
E E D1 L E E 单队列单服务台 . . D1 D2 Dn . . L L L E D1 D2 … Dn L L L
多队列多服务台(并列) D1
e t b(t ) 0
t 0 t 0
负指数分布描述的随机现象对于过去的事件具有无记忆性,
即Markov性,因此用Markov开头字母M表示; D:定长分布,表示每个顾客接受服务的时间是一个确定 的常数;
Ek:k阶爱尔朗分布〔Erlang),表示每个 顾客接受服务的时间服从k阶爱尔朗分布, 其密度函数为
排队论的系统输入还要关注顾客源是有限集还是无 限集。如工厂内待修的机器数显然是有限集,而到某 航空售票处购票的顾客源则可以认为是无限的。 顾客的到达可以是相互独立的,也就是说,以前的 到达情况对以后顾客的到达没有影响,否则就是有关 联的。如工厂内的机器在一个短的时间区间内出现故 障(顾客到达)的概率就受已经待修或被修理机器数 目的影响。我们主要讨论的是相互独立的情形。 输入过程可以是平稳的,或称为对时间是齐次的, 是指描述相继到达的时间间隔分布和所含参数(如期 望、方差)都是与时间无关的,否则成为非平稳的。 我们主要讨论的是平稳的情形。
(2)排队规则
最常见的等待制排队规则是:
先到先服务FCFS:即按到达次序接受服务,这是最常见的
情形。 后到先服务LCFS:如仓库中存放的货物常常是后放入的先 被出库使用。 具有优先权的服务PS:如医院对病情严重的病人予以优先 治疗,公交车上对老年人予以优先上车就坐等。 随机服务SIRO:指服务员从等待的顾客中随机地选取其中 一个进行服务而不管到达的先后。如电话交换台接通呼唤的 电话。
单队列多服务台(并列) D’1 D’2 多服务台混合形式 L L
E
D1
D2
...
Dn
L
E
D2 D3
单队列多服务台(串列)
服务台的服务时间一般也分成确定型和随机型 两种。例如,自动冲洗汽车的装置对每辆汽车 冲洗(服务)时间是相同的,因而是确定型的。 但大多数情况下服务时间是随机型的,对于随 机型的服务时间,我们需要知道服务时间V的概 率分布。如果服务时间V服从负指数分布,则其 分布函数是
当k=1时爱尔朗分布就是负指数分布;当 k增加时,爱尔朗分布逐渐变为对称的。 当k>30时,爱尔朗分布近似于正态分布。
G:一般随机分布。 例如M/M/l表示到达的间隔时间服从负指数 分布,服务时间也服从负指数分布的单服务 台排队系统模型。M/D/2表示到达间隔时间 服从负指数分布,而服务时间为定长分布的 双服务台排队系统模型。
如服从泊松分布,则在时间t内到达n个顾 客的概率为:
e t ( t ) n Pn (t ) (n 0,1, N ) n!
或相继到达的顾客的间隔时间T服从负指 数分布,即:
P(T t ) 1 et
式中λ为单位时间顾客期望到达数量,称 为平均到达率;1/λ为平均间隔时间。
式中μ 为平均服务率,1/μ 为平均服务时间。
9.1.2排队系统的分类
Kendall符号的形式X/Y/Z。各符号的含 义如下:
X指顾客相继到达间隔时间的分布 Y为服务时间的分布 Z为并列的服务台数目
表示相继到达的间隔时间和服务时间分布符号常用以下符 号表示 M:负指数分布,表示每个顾客接受服务的时间相互独立, 具有相同的负指数分布;
第9章 排队论
南京航空航天大学
排队是我们在日常生活中经常遇到的现象,例如 病人到医院看病、客户到银行汇款、城市拥堵 路段的汽车排队、电话占线等。排队现象产生 的原因之一是要求服务的数量超过了服务机构 的容量,也就是有部分的服务对象不能立即得 到服务;原因之二是系统服务对象到达和服务 时间均存在随机性。前者可以通过增加服务机 构的容量来解决排队现象,但无休止地增加服 务机构的容量会导致追加投资并可能发生系统 资源长时间闲置。后者,也就是系统服务对象 到达和服务时间均存在随机性,致使无法准确 预测估算排队拥堵的具体情况。所以,在服务 系统中的排队现象几乎不可避免。
9.1排队论的基本概念
排队论是通过对服务对象到来及服务时 间的统计研究,得出这些数量指标(等 待时间、排队长度、忙期长短等)的统 计规律,然后根据这些规律来改进服务 系统的结构或重新组织被服务对象,使 得服务系统既能满足服务对象的需要, 又能使服务机构的费用最经济或某些指 标最优。
9.1.1排队过程的一般表示
排队系统示意图
一般的排队系统有三个基本组成 部分: ①输入过程 ②排队及排队规则
③服务机构
① 输入过程 主要包括:
Байду номын сангаас
顾客相继到达系统的时间间隔 顾客到达系统的方式(顾客可能单个 到达,也可能成批到达) 顾客源情况
输入过程说明顾客按怎样的规律到达服务系统 的。它可用一定时间内顾客到达的数量或前后两 个顾客相继到达的间隔时间来描述。按照一定时 间内顾客到达数量或前后两个顾客相继到达的间 隔时间类型的不同,输入过程可以划分为确定型 和随机型两种:如在自动装配线上装配的各部件 就必须是按确定时间间隔到达装配点,定期的航 班、长途客车等都是确定型的;顾客到商店购买 商品、到医院就诊的病人等都是随机型的。在排 队论中,讨论的输入过程主要是随机型的。 随机型的输入是指在时间 t内顾客到达数量 n(t) 服从一定的概率分布。
② 排队及排队规则
(1)排队
排队规则是指顾客来到排队系统后如何排队等候服务的 规则,一般有即时制、等待制和混合制三大类。其中即 时制(损失制)是指当顾客到达时,如果所有服务台都已 被占用,顾客可以随即离开系统。等待制指顾客到达系 统时,所有服务台被占用,顾客就加入排队队列等待服 务。而混合制是即时制和等待制相结合的一种排队服务 规则。混合制主要分为两种情况:一是队长有限制的情 况,即当顾客排队等侯服务的人数超过规定数量(等待 空间有限)时,后来的顾客就自动离开,另求服务;二 是排队等侯时间有限制的情况,即当顾客排队等候超过 一定时间就会自动离开,不能再等。