概率论与数理统计第九章区间估计
概率论与数理统计公式总结(湖南大学)
概率论与数论统计第一部分 概率论※随机事件的运算定律交换律:A ∪B=B ∪A A ∩B=B ∩A结合律:A ∪(B ∪C)=(A ∪B)∪C A ∩(B ∩C)=(A ∩B)∩C分配率:A ∩(B ∪C)=(A ∩B)∪(A ∪C) A ∪(B ∩C)=(A ∩B)∪(A ∩C)对偶律:A ∪B=A ∩B A ∩B=A ∩B鄙人之愚见:如果碰到那种很难从正面理解的事件,试着从对立面翻译。
※条件概率与概率公式1. 条件概率公式:P (A |B )=P(AB)P(B)2. 乘法公式:P (A B C D …)=P (A )P (B |A )P (C |AB )P (D |ABC )3. 全概率公式:P (A )=∑P (B i )P(A|B i )∞i=14. 贝叶斯公式:P (B i |A )=P (B i )P(A|B i )∑P(A |B j )P(B j )∞i=1鄙人之愚见:除了第一个以外,其他的都太抽象,强烈建议不要去记他们,而是去做题,不然小心思维混乱。
我现在压根不明白他们是什么意思,但是如果做题的话就会无意中用到。
※离散型随机变量的常见分布1. 两点分布与二项分布X~B(n,p)2. 泊松分布若X~B(n,p),当n →∞,X~P(λ),λ=npP(λ)=λk e −λk!※连续型随机变量及其常见分布1. 概率密度函数是分布函数的导数,分布函数是概率密度函数的可变上限定积分。
2. 零概率事件并不都是不可能事件,几乎必然发生的事件也并不都是必然事件。
3.分布函数的定义域一定是从-∞→∞,值域一定是从0→1,右连续[P(X)=P(X+0)],且单调不减,自己做题要注意。
4.分布函数不仅仅只有离散型和连续型两种。
5.均匀分布:概率密度函数满足f (x )={1b−a (a ≤x ≤b )0 (其他)X~U(a,b)6. 指数分布:概率密度函数满足f(x){λe −λ(x ≥0)0(x <0)X~E(λ) λ>0 7. 正态分布:X~ N(μ,ϭ2)正态分布函数的标准化:一般的正态分布N(μ,ϭ2)的分布函数F(x)与标准正态分布N(0,1)的分布函数ϕ(x)之间有如下关系:F(x)=ϕ(x−μϭ)3ϭ原则:0.6826 0.9574 0.99738.对于一般的连续型随机变量,有如下定理设X 为连续型随机变量,f x (x )为X 的概率密度,若y=g(x)为严格单调的连续函数,且反函数x=h(y)有连续导数,则Y=g(x)为连续型随机变量,且概率密度为 f x (y)=f x [(h(y) ) * |h`(y)|]若g(x)分段严格单调,对应反函数h i (y) 则有f x (y)=∑f x i [(h i (y) ) * |h i `(y)|]※二维随机变量的联合分布与边缘分布1.二维随机变量的分布函数和概率密度函数依然拥有一维随机变量的那些性质,只是更麻烦些。
海南大学《概率论与数理统计》课件 第九章 点估计
令 X ,
则 ˆ x 1 (0 75 1 90 6 1) 1.22
250
二.极大似然估计法 特点:适用总体的分布类型已知的统计模型
极大似然估计法是求估计用的最多的方法, 它最早是由高斯在1821年提出,但一般将之归 功于费舍尔(R.A.Fisher),因为费舍尔在1922 年再次提出了这种想法,并证明它的一些性质, 从而使得极大似然法得到了广泛的应用。
18
第二节 估计方法
矩估计法 极大似然估计法
19
一.矩估计法 定义:用样本矩来代替总体矩,从而得到总体 分布中参数的一种估计.这种估计方法称为 矩估计法.它的思想实质是用样本的经验分 布和样本矩去替换总体的分布和总体矩.也 称之为替换原则.
特点:不需要假定总体分布有明确的分布类型。
20
设总体X具有已知类型的概率函数 f(x;θ), θ=(θ1,…,θk) ∈Θ是k个未知参数.(X1,X2,…,Xn)是 来自总体X的一个样本.
2
参数估计的分类:
参 点估计 估计未知参数的值
数
估 计
估计未知参数的取值范围,
区间估计 并使此范围包含未知参数的
真值的概率为给定的值
3
这里所指的参数是指如下三类未知参数:
1.分布中所含的未知参数 .
如:两点分布B(1,p)中的概率p;
正态分布 N (, 2 )中的,. 2、分布中所含的未知参数的函数. 如:服从正态分布N (, 2 )的变量X不超过给定值a的
Xi=1,反之记 Xi= 0 i 1,, n .则
X1, X2 , , Xn 就是样本.总体分布为二点分
布 B1, ,参数空间 0,1 ,容易得到统计
模型
n
xi
i1
概率论——区间估计
概率与 概率与统计
第十九讲 区间估计
主讲教师: 主讲教师: 于红香 e-mail:fishr2001@
概率论与数理统计
第四节
区间估计
学习要求
理解区间估计的概念 会求单个正态总体的均值和方差的置信区间 会求两个正态总体的均值差和方差比的置信区间
对于概念和理论方面的内容,从高到低分别用 “理解”、“了解”、“知道”三级来表述; 对于方法,运算和能力方面的内容,从高到低分别用 “熟练掌握”、“掌握”、“能”(或“会”)三级来 表述。
N( µ, σ2 )的情况 单个总体
2 2 N( µ1, σ1 ),N( µ2 , σ2 )的情况 两个总体
课堂练习 小结 布置作业
概率论与数理统计
一、单个总体 N( µ, σ ) 的情况
2
X
N( µ, σ2 ),并设 X1,K, Xn 为来自总体的
样本 , X, S2 分别为样本均值和样本方差 .
的置信水平( 则称区间 ( θ,θ ) 是 θ 的置信水平(置信度 )为1−α 为 置信区间 的置信区间.
θ 和 θ 分别称为置信下限和置信上限 分别称为置信下限 置信上限. 置信下限和
概率论与数理统计
1. 要求 θ 以很大的可能被包含在区间( θ,θ ) 内,就是说,概率 P{θ < θ < θ} 要尽可能大 . 就是说, 即要求估计尽量可靠. 即要求估计尽量可靠 2. 估计的精度要尽可能的高 如要求区间长度 估计的精度要尽可能的高. 尽可能短,或能体现该要求的其它准则. θ − θ 尽可能短,或能体现该要求的其它准则 可靠度与精度是一对矛盾, 可靠度与精度是一对矛盾,一般是 在保证可靠度的条件下尽可能提高 精度. 精度
区间估计与假设检验
"### 参数的区间估计与假设检验之间的区别
参数的区间估计和假设检验从不同的角度回答同一问 题, 它们的统计处理是相通的。 但是它们之间又有区别, 体现 以下三点: 第一, 参数估计解决的是多少 (或 范 围 ) 问题, 假设检验 则判断结论是否成立。前者解决的是定量问题, 后者解决的 是定性问题。 第二, 两者的要求各不相同。区间估计确定在一定概率 保证程度下给出未知参数的范围。 而假设检验确定在一定的 置信水平下, 未知参数能否接受已给定的值。 第三, 两者对问题的了解程度各不相同。进行区间估计 之前不了解未知参数的有关信息。 而假设检验对未知参数的 信息有所了解, 但作出某种判断无确切把握。 因而在实际应用中,究竟选择哪种方法进行统计推断, 需要根据实际问题的情况确定相应的处理方法。 否则将会产
" 拒 绝 域 为 +)J.)0!+#)(-- , 查表 %’#$#"4" 统计量 0’ ,)"" ’ & , %
得 0"$":’!$"(: , 计 算 得 0’)($A::A. 由 此 可 见 统 计 量 的 值 未 落 入 拒绝域中, 因而接受原假设, 认为符合设计要求。
(9!
统计与决策 !""# 年 # 月 (下)
上述关系虽就一特例而言, 但也有普遍意义。由区间估 计可以很容易构造检验函数。 下面来说明怎样由检验函数构 造区间估计。 设 # 是问题
生不同的结论, 做出错误的统计推断。 例 ! 测试某个品牌的汽车的百公里耗油量,假设在正 常的情况下汽车百公里耗油量服从正态分布, 路况以及驾驶 员的技术符合正常要求。现对该批汽车进行测试, 随机选取
+&".!-。
概率论区间估计
(n 1)S 2
2
当置信水平为1-时,由
P
2
1
(n 1)
2
(n 1)S 2
2
2
2
(n
1)
1
查2- 分布表,拟定双侧分位数 2 (n 1), 2 (n 1)
1 2
2
从而得2旳置信水平为1-旳置信区间为
(n 1)S 2
2 (n 1) 2
,
(n 1)S 2
2 1
2
(n
1)
例4 设某灯泡旳寿命X~N(,2), ,2未知,现 从中任取5个灯泡进行寿命试验,得数据10.5,11.0, 11.2,12.5,12.8(单位:千小时),求置信水平为 90%旳2旳区间估计。
小结
总体服从正态分布旳均值或方差旳区间估计 假设置信水平为1- (1)方差已知,对均值旳区间估计
构造U-统计量,反查原则正态分布表,
拟定U旳双侧分位数 u 2
得EX旳区间估计为
X
u
2
,
n
X
u 2
n
小结
总体服从正态分布旳均值或方差旳区间估计
假设置信水平为1-
(2)方差未知,对均值旳区间估计
构造T-统计量,查t-分布临界值表,
精确度降低 ——原因:样本容量降低
在实际应用中,方差未知旳均值旳区间估计 较有应用价值。
练习 假设某片居民每月对某种商品旳需求量X服从正态
分布,经调查100家住户,得出每户每月平均需求量为
10公斤,方差为9,假如某商店供给10000户,试就居民
对该种商品旳平均需求量进行区间估计(=0.01),并
依此考虑至少要准备多少这种商品才干以99%旳概率满
拟定T旳双侧分位数 t 2 (n 1)
(完整版)《概率论与数理统计》课程
《概率论与数理统计》课程标准一、课程概述第一部分前言《概率论与数理统计》(Probability Theory and Mathematical Statistics),由概率论和数理统计两部分组成。
它是研究随机现象并找出其统计规律的一门学科,是广泛应用于社会、经济、科学等各个领域的定量和定性分析的科学体系。
一、课程性质《概率论与数理统计》是理、工科有关专业的基础干课。
对高校的统计专业本科生它也是一门学科基础课程。
从学科性质讲,它是一门基础性学科,它为统计专业学生后继专业课程的学习提供方法论的指导。
学生对这门课程的掌握程度直接关系到统计学科培养目标—“经济和管理领域中善于在定性分析基础上从事定量分析的专门统计人才”的实现。
二、基本理念第一,着重基础,着重标准。
在我国,迄今为止,有关数理统计教材不少,这些教材和理论参考文献各自保持了自己的特色。
只有着重基础、着重标准,才能与国际先进的理论研究趋势保持一致。
第二,力求在简洁的基础上使学生能从整体上了解和掌握该课程的内容体系,使学生能够在实际工作中、其它学科的学习中能灵活、自如地应用这些理论。
三、课程标准的设计思路第一,浙江大学盛骤、谢式千、潘承毅主编的《概率论与数理统计》为蓝本,极力用较为通俗的语言阐释概率论的基本理论和数理统计思想方法;第二,紧密结合财经特色和计算机应用加以阐述和学习;第三,理论和方法相结合,以强调数理统计理论的应用价值.总之,强调理论与实际应用相结合的特点,力求在实际应用方面做些有益的探索,也为其它学科的进一步学习打下一个良好的基础。
第二部分课程目标一、总目标《概率论与数理统计》是一门几乎遍及所有的科学技术领域以及工农业生产和国民经济各部门之中.通过学习该课程使学生掌握概率、统计的基本概念,熟悉数据处理、数据分析、数据推断的各种基本方法,并能用所掌握的方法具体解决社会经济所遇到的各种问题。
二、分类目标为达到总目标,对该课程的具体内容制定内容标准,以分类目标保证总目标的实现.对统计学专业而言,要通过学习该课程,掌握该学科的基本理论、基本方法,了解该学科的发展趋势,能正确、熟练地运用本学科的理论和方法去解决各种社会经济问题。
概率论与数理统计-上海交通大学数学系
1. 二维随机变量及其概率分布 。 2. 二维离散型随机变量的联合概率分布、边缘分布和条件分布。 3. 二维连续型随机变量的联合概率密度、边缘密度和条件密度,常用二维随机变量的概
率分布。 4. 随机变量的独立性和相关性。 5. 两个随机变量函数的分布。 教学要求: 1. 理解二维随机变量的概念、理解二维随机变量的联合分布的概念、性质及两种基本形
Lindberg)定理。 教学要求:
1. 了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量的大 数定律)。
2. 了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定 理(独立同分布的中心极限定理)。
本章的重点是:会用契比雪夫不等式估计有关事件的概率。领会大数定律的实质。 掌握用中心极限定理计算概率的近似值的方法。
式: 2. 理解离散型联合概率分布,边缘分布和条件分布;连续型随机变量的联合概率密度、
边缘密度和条件密度。 3. 会利用二维概率分布求有关事件的概率。 4. 理解随机变量的独立性概念,掌握离散型和连续型随机变量独立的条件。 5. 掌握二维均匀分布,了解二维正态分布的联合概率密度,理解其中参数的意义。 6. 会求两个随机变量的简单函数的分布。
教学要求: 1. 理解随机变量及其概率分布的概念;理解分布函数的概念及性质;会计算与随机变量 相联系的事件的概率。 2. 理解离散型随机变量及其概率分布的概念,掌握 0-1 分布、二项分布、超几何分布、 泊松(Poisson)分布及其应用。 3. 了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布。
4. 理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布 N(μ,σ 2 )、
概率论与数理统计第九章区间估计
1, n2
1)
S12
2 1
S
2 2
2 2
F (n1 1, n2 1)} 2
即
P{ S12
1
2 1
S12
1
} 1
S
2 2
F1 2 (n1 1, n2
1)
2 2
S
2 2
F
(n1 1, n2 1)
2
因此方差比
2 1
2 2
的置信水平为1-a置信区间为
二、.方差比
2 1
2 2
的置信区间
例5 研究由机器A和机器B生产的钢管的内径,随机抽取
机地取Ⅰ型子弹10发,得到枪口速度的平均值为
x1 =500(m/s),标准差 s1 =1.10(m/s), 随机地取Ⅱ型
子弹20发, 得到枪口速度的平均值为x 2 =496(m/s),标
准差 s2 =1.20(m/s),假设两总体都可认为近似地服从正
态分布。且由生产过程可认为方差相等。求两总体均值
差-
机器A生产的管子18只,测得样本方差 s12=0.34( ); 抽取机器B生产的管子13只,测得样本方差 s2 2 =0.29(mm2), 设两样本相互独立,且设由机器A和机器B生产的管子内
径分别服从正态分布
N(1,
2)和
1
N(2, 22),这里
i
,
2 i
(i
1,2)
均未知,试求两个总体样本方差比
2 1
1 均值差
的置信区间
2
方差比
2 1
2 2
的置信区间
一、均值差
的置信区间
1 因为
所以
均为已知
X
Y~N (1
概率论与数理统计必考点
进一步可得:
标准差 的一个置信度为 1 的置信区间
是 2 的无偏估计 ,
( n 1) S
2
*2 n
~ 2 ( n 1),
P243
*2 n 1 S 2 n 2 由P /2 n 1 1- /2 n 1 1 2 *2 *2 n 1 S n 1 S n n 有P 2 2 2 1 /2 n 1 1- /2 n 1
2. 求置信区间的一般步骤(共3步) (1) 寻求一个样本 1 , 2 , , n 的函数: Z Z (1 , 2 , , n ; ) 其中仅包含待估参数 , 并且Z的分布已知 且不依赖于任何未知参数(包括 ). (2) 对于给定的置信度1 , 决定出两个常数a, b, 使P{a Z (1 , 2 ,, n ; ) b} 1 .
设给定置信度为1 , 并设 1 , 2 , , n 为
*2 总体 N ( , 2 )的样本, , S n 分别是样本均值和
修正样本方差.
(1) 2 已知,求
的置信区间
的一个置信度为 1 的置信区间 X u1- /2 . n
1. 要求 以很大的可能被包含在区间 ( , ) 内,就是说,概率 P{ } 要尽可能大. 即要求估计尽量可靠. 2. 估计的精度要尽可能的高. 如要求区间 ˆ ˆ 尽可能短,或能体现该要求的其 长度 2 1 它准则. 可靠度与精度是一对矛盾, 一般是在保证可靠度的条件下 尽可能提高精度.
( 3)
未知,求
2
的置信区间
概率论与数理统计_浙大四版_习题解_第9章_方差分析
概率论与数理统计(浙大四版)习题解 第9章 方差分析约定:以下各个习题所涉及的方差分析问题均满足方差分析模型所要求的条件。
【习题9.1】今有某种型号的电池三批,它们分别是C B A ,,三个工厂所生产的。
为评比其质量,各随机抽取5只电池为样品,经试验得其寿命(小时)如下表。
三批电池样品的寿命检测结果 A B C 40 42 26 28 39 50 48 45 34 32 40 50 383043(1)试在显著性水平0.05下检验电池的平均寿命有无显著的差异。
(2)若差异显著,试求B A μμ-、C A μμ-及C B μμ-的置信水平为0.95的置信区间。
〖解(1)〗设,,A B C μμμ分别表C B A ,,三厂所产电池的寿命均值,则问题(1)归结为检验下面的假设(单因素方差分析)01::,,不全相等A B CA B C H H μμμμμμ==设A 表因素(工厂),设,,,T R A CR 分别表样本和、样本平方和、因素A 计算数、矫正数,其值的计算过程和结果如下表。
样本数据预处理表A B C 预处理结果40 42 26 28 39 50 n=15 48 45 34 32 40 50 a=338 30 43 CR=22815 j T 213 150 222 T=585 2j j T n9073.8 4500 9856.8 A=23430.6 2ijx∑913745409970R=23647112221121158558522815152364723430.6jjj n aij j i n aijj i n a ij j j i T x T CR n R x A x n =============⎛⎫== ⎪ ⎪⎝⎭∑∑∑∑∑∑计算平方和及自由度如下23647228158321151142364723430.6216.41531223430.622815615.61312T E A SST R CR df n SSE R A df n a SSA A CR df a =-=-==-=-==-=-==-=-==-=-==-=-= 方差分析表方差来源 平方和 自由度 均方 F 值()0.052,12F因素A 615.6 2 307.8 17.07 3.89 误差 216.4 12 18.0333总和83214因17.07 3.89值F =>在拒绝域内,故在0.05水平上拒绝0H ,即认定各厂生产的电池寿命有显著的差异。
《概率论与数理统计》教案
《概率论与数理统计》教案第一章:概率的基本概念1.1 概率的定义与性质介绍概率的定义,理解概率是衡量随机事件发生可能性大小的数。
掌握概率的基本性质,如additivity(可加性)和symmetry(对称性)。
1.2 条件概率与独立性引入条件概率的概念,理解在给定一些信息的情况下,事件发生的概率。
学习独立事件的定义,掌握独立性原理,了解如何通过乘法规则计算联合概率。
第二章:随机变量及其分布2.1 随机变量的概念介绍随机变量的定义,理解随机变量是随机现象的数值化描述。
学习离散随机变量和连续随机变量的区别,以及如何列出随机变量的可能取值。
2.2 概率分布学习概率分布的概念,掌握如何计算随机变量取某个值的概率。
掌握期望值和方差的计算方法,了解它们在描述随机变量集中趋势和离散程度方面的作用。
第三章:多维随机变量及其分布3.1 联合随机变量引入多维随机变量的概念,理解多个随机变量共同作用的概率分布。
学习如何列出联合随机变量的可能取值,以及如何计算联合概率。
3.2 独立随机变量掌握独立多维随机变量的概念,了解独立性在概率论中的重要性。
学习如何计算两个独立随机变量的联合分布,以及如何推导条件概率。
第四章:大数定律与中心极限定理4.1 大数定律介绍大数定律的概念,理解在足够多次试验中,随机变量的样本平均将趋近于其期望值。
学习弱大数定律和强大数定律的表述,以及它们在实际应用中的意义。
4.2 中心极限定理掌握中心极限定理的内容,了解当样本量足够大时,样本均值的分布将趋近于正态分布。
学习如何应用中心极限定理进行近似计算,以及其在统计学中的重要性。
第五章:数理统计的基本概念5.1 统计量与样本介绍统计量的概念,理解统计量是用来描述样本特征的函数。
学习如何计算样本均值、样本方差等基本统计量。
5.2 抽样分布与估计掌握抽样分布的概念,了解不同统计量的抽样分布特性。
学习点估计和区间估计的定义,了解如何根据样本数据估计总体参数。
概率论与数理统计
《概率论与数理统计》模拟试卷一1、设A,B 是两个互不相容的事件,P (A )>0 ,P (B )>0,则( )一定成立。
[A] P (A)=1-P (B ) [B] P (A│B)=0 [C] P (A│B )=1 [D] P (A B )=02、设A,B 是两个事件,P (A )>0 , P (B )>0 ,当下面条件( )成立时,A 与B 一定相互独立。
[A] P(A B )=P (A )P (B ) [B] P (AB )=P (A )P (B ) [C] P (A│B )=P (B ) [D] P (A│B )=P(A ) 3、若A 、B 相互独立,则下列式子成立的为( )。
[A] )()()(B P A P B A P =[B] 0)(=AB P[C] )()(A B P B A P = [D] )()(B P B A P = 4、下面的函数中,( )可以是离散型随机变量的概率函数。
[A] {}11(0,1,2)!e P k k k ξ-=== [B] {}12(1,2)!e P k k k ξ-=== [C] {}31(0,1,2)2k P k k ξ===[D] {}41(1,2,3)2k P k k ξ===---5、设1()F x 与2()F x 分别为随机变量1X 与2X 的分布函数,为了使12()()()F x aF x bF x =-是某一随机变量的分布函数,则下列个组中应取( )。
[A]1,2a =-32b = [B] 2,3a =23b =[C] 3,5a =25b =- [D] 1,2a =32b =-二、【判断题】(本大题共5小题,每小题3分,共15分)正确的填T ,错误的填F ,填在答题卷相应题号处。
6、事件“掷一枚硬币,或者出现正面,或者出现反面”是必然事件。
( T )7、通过选取经验函数()12;,,...,k x a a a μ中的参数使得观察值i y 与相应的函数值()12;,,...,i k x a a a μ之差的平方和最小的方法称之为方差分析法。
概率论与数理统计 浙大四版 习题解 方差分析
概率论与数理统计(浙大四版)习题解 第9章 方差分析约定:以下各个习题所涉及的方差分析问题均满足方差分析模型所要求的条件。
【习题9.1】今有某种型号的电池三批,它们分别是C B A ,,三个工厂所生产的。
为评比其质量,各随机抽取5只电池为样品,经试验得其寿命(小时)如下表。
三批电池样品的寿命检测结果 A B C 40 42 26 28 39 50 48 45 34 32 40 50 383043(1)试在显著性水平0.05下检验电池的平均寿命有无显著的差异。
(2)若差异显著,试求B A μμ-、C A μμ-及C B μμ-的置信水平为0.95的置信区间。
〖解(1)〗设,,A B C μμμ分别表C B A ,,三厂所产电池的寿命均值,则问题(1)归结为检验下面的假设(单因素方差分析)01::,,不全相等A B CA B C H H μμμμμμ==设A 表因素(工厂),设,,,T R A CR 分别表样本和、样本平方和、因素A 计算数、矫正数,其值的计算过程和结果如下表。
样本数据预处理表A B C 预处理结果40 42 26 28 39 50 n=15 48 45 34 32 40 50 a=338 30 43 CR=22815 j T 213 150 222 T=585 2j j T n9073.8 4500 9856.8 A=23430.6 2ijx∑913745409970R=23647112221121158558522815152364723430.6jjj n aij j i n aijj i n a ij j j i T x T CR n R x A x n =============⎛⎫== ⎪ ⎪⎝⎭∑∑∑∑∑∑计算平方和及自由度如下23647228158321151142364723430.6216.41531223430.622815615.61312T E A SST R CR df n SSE R A df n a SSA A CR df a =-=-==-=-==-=-==-=-==-=-==-=-= 方差分析表方差来源 平方和 自由度 均方 F 值()0.052,12F因素A 615.6 2 307.8 17.07 3.89 误差 216.4 12 18.0333总和83214因17.07 3.89值F =>在拒绝域内,故在0.05水平上拒绝0H ,即认定各厂生产的电池寿命有显著的差异。
概率论与数理统计教案统计量和抽样分布
一、统计量和抽样分布的概念介绍1.1 统计量的定义讲解统计量的概念,即根据样本数据所定义的量,用来描述样本的某些特征。
例如,样本均值、样本方差等。
1.2 抽样分布的定义解释抽样分布是指在一定的抽样方法下,统计量的概率分布。
例如,正态分布、t分布等。
二、统计量的估计方法2.1 点估计介绍点估计的概念,即用一个具体的数值来估计总体参数。
例如,用样本均值来估计总体均值。
2.2 区间估计讲解区间估计的方法,即根据样本数据,给出总体参数估计的一个区间,该区间以一定的概率包含总体参数。
例如,置信区间。
三、抽样分布的性质及应用3.1 抽样分布的性质讲解抽样分布的一些基本性质,如独立性、对称性、无偏性等。
3.2 抽样分布的应用介绍抽样分布在实际问题中的应用,如利用抽样分布来判断总体均值的假设检验问题。
四、假设检验的基本概念和方法4.1 假设检验的定义解释假设检验是一种统计推断方法,通过观察样本数据,对总体参数的某个假设进行判断。
4.2 假设检验的方法讲解常见的假设检验方法,如单样本t检验、双样本t检验、卡方检验等。
4.3 假设检验的判断准则介绍假设检验的判断准则,如P值、显著性水平等,并解释其含义和作用。
六、正态分布及其应用6.1 正态分布的定义与性质详细介绍正态分布的概念、概率密度函数、累积分布函数以及其性质,如对称性、钟形曲线等。
6.2 标准正态分布解释标准正态分布的概念,即均值为0,标准差为1的正态分布。
讲解标准正态分布表的使用方法。
6.3 正态分布的应用介绍正态分布在实际问题中的应用,如利用正态分布来分析和估计总体均值、方差等参数。
七、t 分布及其应用7.1 t 分布的定义与性质讲解t 分布的概念、概率密度函数、累积分布函数以及其性质。
解释t 分布与正态分布的关系。
7.2 t 分布的自由度介绍t 分布的自由度概念,即样本量。
讲解自由度对t 分布形状的影响。
7.3 t 分布的应用介绍t 分布在实际问题中的应用,如利用t 分布进行小样本推断、假设检验等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( X Y ) ( 1 2 ) S 1 1 n1 n2
其中
2 2 ( n 1 ) S ( n 1 ) S 2 1 2 2 S 1 n1 n2 2
得
的置信水平为1-a置信区间为
( X - Y S 1 1 t (n1 n2 2) ) n 1 n2 2
一、均值差
例4
的置信区间
为比较Ⅰ,Ⅱ两种型号的步枪子弹的枪口速度,随
机地取Ⅰ型子弹10发,得到枪口速度的平均值为
x1 =500(m/s),标准差 s1 =1.10(m/s), 随机地取Ⅱ型
子弹20发, 得到枪口速度的平均值为 x 2 =496(m/s),标 准差 s2 =1.20(m/s),假设两总体都可认为近似地服从正 态分布。且由生产过程可认为方差相等。求两总体均值 差 的置信水平为0.95的置信区间。
2
1.
2已知Leabharlann 2n(, ) ,故 由于样本均值 X ~ N
X -
n
~ N (0,1)
根据标准正态分布上侧分位点的定义有
X z } 1
2
P{
n
(, ) 一、单个正态总体 N 均值 的置信区间
2
从而有
P{ X
n
z X
2
n
z } 1
2
所以, 的一个置信水平为1-a的置信区间为
(X
n
z ,
2
X
n
z )
2
(, ) 一、单个正态总体 N 均值 的置信区间
2
例1
(, 8),某 某灯泡厂生产的灯泡的寿命服从正态分布 N
天从生产的灯泡中抽取10只进行寿命试验,得数据如下: 1050,1100,1080,1120,1200, 1250,1040,1130,1300,1200。 求该天生产的灯泡平均寿命 的置信水平为99%的置信区间。
ˆ, ) b 等价变形为 4. 将 a g (
,
其中 和 只与
有关,则
就是 的1-a置信区间。
第二节 单个正态总体均值与方差 的置信区间
1
2 单个正态总体 单个正态总体 均值 N (, 2) 的置信区间 ( 未知)
N (, 2) 方差 2的置信区间
(, ) 一、单个正态总体 N 均值 的置信区间
设两样本相互独立,且设由机器A和机器B生产的管子内 径分别服从正态分布 N(1,12)和 N( 2, 2 2),这里
i , i2 (i 1,2)
2 2 均未知,试求两个总体样本方差比 1 2
的置信水平为0.90置信区间.
二、.方差比 的置信区间
2 1 2 2
解:
1 1 F1(n1 1, n2 1) F0.95 (17,12) 2 F0.05 (12,17) 2.38
2
2.1315 解: 1-a=0.95,a/2=0.025,n-1=15, t 2 (n 1) t 0.025 (15)
由给出的数据算得 x =503.75 ,s=6.2022,得到均值
的置信水平为0.95的置信区间为 (500.4,
507.1 )
这说明估计袋装糖果重量均值在500.4克与507.1克之间 的可信程度为95%,若以此区间内的任一值作为 的近似
6.2022 2.1315 2 6.61 (克) 16
值,其误差不大于
,这个误差
估计的可信程度为95%。
(, ) 二、单个正态总体 N 方差 的 置信区间( 未知)
2
2
因为 为
的无偏估计,且
(n - 1 )S 2
2
~ 2 (n 1)
2 由 分布的上侧分位点可得
P{12(n 1)
因此 2 的置信水平为1-a的置信区间为
(n 1) S 2 ( 2 , (n 1)
2
(n 1 )S 2 ) 2 1(n 1)
2
(, ) 二、单个正态总体 N 方差 的 置信区间( 未知)
2
2
例3 求例1中总体标准差 的置信水平为0.95的置信区
间。 解:由(3)得 2 的置信水平为0.95的置信区间为
概率论与数理统计
第九章 区间估计
第九章 区间估计
1 置信区间 2 单个正态总体均值与方差的置信区间
3 两个正态总体均值与方差的置信区间
第一节 置信区间
1
置信区间
2
置信区间求解步骤
一、置信区间概念
定义1 设总体X的分布函数 F (x; ) 含有一个未知参数
, ( 是 的可能取值范围),对于给定值 (0 1)
2
(n 1) S 2
2
2 (n 1 ) } 1 2
(, ) 二、单个正态总体 N 方差 的 置信区间( 未知)
2
2
即
(n 1) S 2 (n 1 )S 2 2 P{ 2 2 } 1 (n 1) 1(n 1)
2 2
(, ) 一、单个正态总体 N 均值 的置信区间
2
解:1-a=0.99,a=0.01
U ( ) 2.576 , 2
,
的置信水平为95%
而 x =1147,n=10, 8 的置信区间为
故
(1144.70,1149.30)。
(, ) 一、单个正态总体 N 均值 的置信区间
2
2. 未知
2
当 2 未知时,可以用其无偏估计量 S 2 代替 2 ,而 T= X ~ t (n 1)
S n
由t分布的上侧分位点可得
P{t (n 1)
2
X t (n 1)} 1 2 S/ n
(, ) 一、单个正态总体 N 均值 的置信区间
2 S S 1.1688
故所求的两个体样本均值差 信区间为
( x1 x2 S 1 1 t 0.025 (28)) 10 20
的置信水平为0.95置 即 (3.07, 4.93)
二、.方差比 的置信区间
2 1 2 2
由F=
2 S12 S 2 2 12 2
~ F(n 1 1, n2 1)
2
例2
有一大批糖果,现从中随机地抽取16袋,称得重量
(以克计)如下: 506 508 514 505 499 493 503 496 504 506 510 502 497 509 512 496
设袋装糖果的重量近似地服从正态分布,求总体均值 的
置信水平为0.95的置信区间。
(, ) 一、单个正态总体 N 均值 的置信区间
(X 1 , X 2 ,, X n ) 如果由样本 X 1 , X 2 ,, X n 确定的两个统计量
和 (X 1 , X 2 ,, X n ) ( ),对于任意 满足
(X 1 , X 2 ,, X n )} 1 P{ (X 1 , X 2 ,, X n )
由F分布上侧分位点,可得
P{F1 (n1 1, n2 1)
2 2 S12 S 2
2 1
2 2
F (n1 1, n2 1)}
2
即
S12 12 S12 1 1 P{ 2 2 2 } 1 S 2 F1 (n1 1, n2 1) 2 S 2 F (n1 1, n2 1)
于是得两个总体样本方差比 2 2 的置信水平为0.90 1 2 0.34 1 0.34 置信区间为 ( , 2.38) 0.29 2.59 0.29
即
(0.45 ,
2.79 )
Thank you
ˆ ˆ(X ,, X ) 1 n
ˆ, ) ,此函 2.通过 ˆ 的分布,构造一个随机变量函数 g (
数除了含有未知参数
外,不含有其它的未知参数,并
且它的分布是已知的或可确定的;
二、置信区间求解步骤
3.确定 a, b(a b) ,使得
ˆ, ) b} 1 P{a g (
2
即
P{ X t (n 1)
2
S S X t (n 1) } 1 2 n n
因此均值
的置信水平为1-a的置信区间为
(X S n t (n 1 ) ,
2
X
S n
t (n 1))
2
(, ) 一、单个正态总体 N 均值 的置信区间
2 2
2 因此方差比 12 2 的置信水平为1-a置信区间为
二、.方差比 的置信区间
2 1 2 2
例5
研究由机器A和机器B生产的钢管的内径,随机抽取
2
机器A生产的管子18只,测得样本方差 s1 =0.34(
2
);
抽取机器B生产的管子13只,测得样本方差 s 2 =0.29( m m2),
20.9764 , 4.58 ,
92.16
9.60
从而总体标准差 的置信水平为0.95的置信区间为
第三节 两个正态总体均值与方差 的置信区间
1
均值差
的置信区间
2
2 2 方差比 1 2 的置信区间
一、均值差
1 因为 均为已知
X Y~N ( 1 2, ) n1 n2
( X Y ) ( 1 2 )
的置信区间
2 2
12
所以
2 1
n1
2 2
~ N (0,1)
n2
从而可得
(X Y