2020沪教版八年级数学上册全册课件【完整版】

合集下载

最新沪教版八年级数学上册全册教学课件

最新沪教版八年级数学上册全册教学课件

第十六章 二次根式
最新沪教版八年级数学上册全册教 学课件
第一节 二次根式的概念和性质
最新沪教版八年级数学上册全册教 学课件
16.1 二次根式
最新沪教版八年级数学上册全册教 学课件
16.2 最录
0002页 0054页 0092页 0135页 0205页 0241页 0263页 0282页 0326页 0371页 0434页 0471页 0507页 0531页 0580页 0631页 0665页
第十六章 二次根式 16.1 二次根式 第二节 二次根式的运算 本章小结 第十七章 一元二次方程 17.1 一元二次方程的概念 17.2 一元二次方程的解法 第三节 一元二次方程的应用 阅读材料 关于一元二次方程的求根公式 第十八章 正比例函数和反比例函数 18.1 函数的概念 第二节 反比例函数 第三节 函数的表示法 本章小结 第十九章 几何证明 19.1 命题和证明 第二节 线段的垂直平分线与角的平分线
最新沪教版八年级数学上册全册教 学课件
第二节 二次根式的运算
最新沪教版八年级数学上册全册教 学课件
16.3 二次根式的运算
最新沪教版八年级数学上册全册教 学课件
本章小结
最新沪教版八年级数学上册全册教 学课件
阅读材料 二次不尽根与简单连 分数
最新沪教版八年级数学上册全册教 学课件

14.1 全等三角形-2020秋沪科版八年级数学上册课件(共16张PPT)

14.1  全等三角形-2020秋沪科版八年级数学上册课件(共16张PPT)

综合能力提升练
拓展探究突破练
-16-
16.如图,A,D,E三点在同一直线上,且△BAD≌△ACE. (1)证明:BD=DE+CE; (2)△ABD满足什么条件时,BD∥CE?
解:(1)∵△BAD≌△ACE,∴BD=AE,AD=CE, 又∵AE=AD+DE=CE+DE,∴BD=DE+CE. (2)∵△BAD≌△ACE,∴∠ADB=∠CEA. ∵BD∥CE,∴∠CEA=∠BDE,∴∠ADB=∠BDE. 又∵∠ADB+∠BDE=180°,∴∠ADB=90°, ∴△ABD是∠ADB=90°的直角三角形时,BD∥CE.
条边的长分别是5,3x-2,2y+1.若这两个三角形全等,则x+y的值

15或
2
7
.
14.1 全等三角形 知识要点基础练
综合能力提升练
拓展探究突破练
-13-
13.如图,已知△ABE≌△ACD.
(1)如果BE=6,DE=2,求BC的长;
(2)如果∠BAC=75°,∠BAD=30°,求∠DAE的度数.
解:∵△ABC≌△ADE,∴∠CAB=∠EAD. 又∵∠CAD=35°,∠EAB=105°,
∠EAD+∠DAC+∠CAB=∠EAB=105°,
∴∠EAD=∠DAC=∠CAB=35°, ∴∠BFD=∠DAB+∠B=70°+20°=90°,
∠BED=∠BFD-∠D=90°-20°=70°.
14.1 全等三角形 知识要点基础练
理由:∵△ABD≌△EBC,∴∠ABD=∠EBC.
又∵∠ABD+∠EBC=180°,
∴∠EBC=90°,∴AC⊥BD.
14.1 全等三角形 知识要点基础练

数学沪科版八年级(上册)14.1全等三角形(共32张PPT)

数学沪科版八年级(上册)14.1全等三角形(共32张PPT)

(全等三角形对应边相等).
5.如图,△ABC≌△AED,AB是△ABC的最大边,AE是 △AED的最大边, ∠BAC 与∠ EAD是对应角,且 ∠BAC=25°,∠B= 35°,AB=3cm,BC=1cm,求出∠E, ∠ ADE的度数和线段DE,AE 的长度.
解:∵ △ABC≌△AED,(已知)
A
∠A=∠F,∠B=∠D,∠C=∠E(全等三角形对应角相等)
例2 如图,已知△ABC≌△DCB,AB=3,DB=4, ∠A=60°. (1)写出△ABC和△DCB的对应边和对应角; (2)求AC,DC的长及∠D的度数. 解:(1)AB与DC,AC与DB,
BC与CB是对应边; ∠A与∠D,∠ABC与∠DCB, ∠ACB与∠DBC是对应角;
A
B
3.如图,已知△ABC≌△BAD 边 请指出图中的对应边和对应角. 边
AB= BA AC= BD
D
A
边 BC= AD
角 ∠BAC= ∠ABD
B
C
角 ∠ABC= ∠BAD
角 ∠C= ∠D
归纳 有公共边的,公共边一定是对应边.
变式:
D E
B
如图:平移后△ABC≌△ EFD, 若AB=6,AE=2.你能说出AF的 F 长吗?说说你的理由.
∴ ∠E=∠N. ∴ EF∥NM.
当堂练习
1.如图,△ABC≌△BAD,如果AB=5cm, BD=
4cm,AD=6cm,那么BC的长是 ( A )
A.6cm B.5cm C.4cm D.无法确定
2.在上题中,∠CAB的对应角是 ( B )
A.∠DAB B.∠DBA C.∠DBC D.∠CAD
C
D
O
∠A= ∠A ∠B= ∠E ∠ACB= ∠ADE

初中数学八年级上册课件+教案ppt(20份) 沪科版2

初中数学八年级上册课件+教案ppt(20份) 沪科版2


8、有些人,因为陪你走的时间长了,你便淡然了,其实是他们给你撑起了生命的天空;有些人,分开了,就忘了吧,残缺是一种大美。

9、照自己的意思去理解自己,不要小看自己,被别人的意见引入歧途。

10、没人能让我输,除非我不想赢!

11、花开不是为了花落,而是为了开的更加灿烂。

12、随随便便浪费的时间,再也不能赢回来。
∠BCD 的大小是【 B 】
A、150º B、300º
B
C、210º D、330º
F E
D C
欣赏
请欣赏下列一组图片,思考它们 的共同特点。
以上这些图片中的景物,可以看着
它们在一条直线的两旁,如果沿着这条 直线折叠,两个图形重合。
思考
如图,△ABC与△A′B′C′,
关于直线 l 对称,点 A′、B′、 A C′ 分别是点 A、B、C 的对应

3、在比夜更深的地方,一定有比夜更黑的眼睛。

4、一切伟大的行动和思想,都有一个微不足道的开始。

5、从来不跌倒不算光彩,每次跌倒后能再站起来,才是最大的荣耀。

6、这个世界到处充满着不公平,我们能做的不仅仅是接受,还要试着做一些反抗。

7、一个最困苦、最卑贱、最为命运所屈辱的人,只要还抱有希望,便无所怨惧。
M
A
A′
∠BOB″ =2α
E
B
B′
C C′
B″ A″
α O
C″
FN
谢谢

1、许多人企求着生活的完美结局,殊不知美根本不在结局,而在于追求的过程。

2、慢慢的才知道:坚持未必就是胜利,放弃未必就是认输,。给自己一个迂回的空间,学会思索,学会等待,学会调整。人生没有假设,当下即是全部。背不动的,放下了;伤不起的,看淡了;想不通的,不想了;恨不过的,抚平了。

【沪科版】八年级数学上册全册课件

【沪科版】八年级数学上册全册课件

【沪科版】八年级数学上册全册课件一、教学内容1. 实数与二次根式2. 一元二次方程3. 几何图形的密接与位似4. 数据的收集、整理与表示5. 概率初步6. 综合应用二、教学目标1. 理解实数的概念,掌握二次根式的性质与运算。

2. 学会解一元二次方程,了解其应用。

3. 理解几何图形的密接与位似,掌握其性质与判定。

4. 学会数据的收集、整理与表示,培养数据分析能力。

5. 理解概率的概念,掌握简单事件的概率计算。

6. 提高综合应用能力,培养解决问题的策略。

三、教学难点与重点1. 教学难点:实数的理解与二次根式的运算;一元二次方程的解法;概率的计算。

2. 教学重点:几何图形的密接与位似;数据的收集、整理与表示;综合应用能力的培养。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔、模型等。

2. 学具:练习本、铅笔、直尺、圆规等。

五、教学过程1. 导入:通过实际情景引入,激发学生学习兴趣。

2. 新课导入:讲解新课内容,结合例题进行讲解。

3. 随堂练习:设计针对性练习,巩固所学知识。

5. 课后作业:布置适量作业,巩固所学知识。

具体教学过程如下:(1)导入:以生活中常见的实际问题为例,引入新课。

(2)新课导入:1) 实数与二次根式:讲解实数的概念,通过例题讲解二次根式的性质与运算。

2) 一元二次方程:介绍一元二次方程的定义,讲解求解方法,如公式法、配方法等。

3) 几何图形的密接与位似:讲解密接与位似的定义,通过模型演示,让学生直观感受其性质。

4) 数据的收集、整理与表示:介绍数据的收集、整理与表示方法,如表格、图表等。

5) 概率初步:讲解概率的定义,通过实例计算简单事件的概率。

6) 综合应用:讲解如何运用所学知识解决实际问题。

(3)随堂练习:设计具有代表性的练习题,让学生在课堂上及时巩固所学知识。

(5)课后作业:布置适量作业,包括书面作业和思考题。

六、板书设计1. 章节2. 新课内容3. 例题及解答4. 课堂小结七、作业设计1. 书面作业:(1)实数与二次根式:计算题、应用题。

15.1 第1课时 轴对称图形-2020秋沪科版八年级数学上册课件(共12张PPT)

15.1  第1课时 轴对称图形-2020秋沪科版八年级数学上册课件(共12张PPT)

第1课时 轴对称图形
知识要点基础练
综合能力提升练
拓展探究突破练
-11-
8.(教材延伸)小强拿几张如图1所示的正方形纸,对折一次得
图2,再对折一次得图3,然后用剪刀沿图4中不同位置的虚线剪
去中心的一块,请参照例图,在后面的正方形中画出图4的纸片
打开后的形状.
第1课时 轴对称图形
知识要点基础练
综合能力提升练
拓展探究突破练
-12-
解:依次如图所示.
第1课时 轴对称图形
知识要点基础练
综合能力提升练
拓展探究突破练
-6-
知识点3 利用轴对称图形设计图案
4.在3×3的正方形格点图中,有格点△ABC和△DEF,且△ABC
和△DEF关于某直线成轴对称,请在图中画出4个这样的
△DEF.(每个3×3正方形格点图中限画一种,若两个图形中的
对称轴是平行的,则视为一种)
第15章 轴对称图形与等腰三角形
15.1 轴对称图形
第15章 轴对称图形与等腰三角形
第1课时 轴对称图形
第1课时 轴对称图形
知识要点基础练
综合能力提升练拓展探究来自破练-3-知识点1 轴对称图形 1.下列图形中,不是轴对称图形的是( A )
A.①⑤ B.②⑤ C.④⑤
D.①③
第1课时 轴对称图形
知识要点基础练
综合能力提升练
拓展探究突破练
-4-
知识点2 对称轴的确定 2.下列图形中,有且只有三条对称轴的是( A )
第1课时 轴对称图形
知识要点基础练
综合能力提升练
拓展探究突破练
-5-
3.试画出下列正多边形的所有对称轴,并完成表格.
正多边形的边数 对称轴的条数

初中数学八年级上册课件+教案ppt(20份) 沪科版1

初中数学八年级上册课件+教案ppt(20份) 沪科版1

D1(_1 ,-_3)
关于 y 轴对称 的点的坐标
A2(-_1,_1 ) B2-(_3 ,_1 ) C2-(_3,_3 )
D2-(_1,_3 )
思考
观察上表,指出已知点与它关于 x 轴对称的点的坐标有什么关系?与它关 于 y 轴对称的点的坐标又有什么关系呢?
一般地,已知点 P (a,b): ⑴ 点 P 关于x 轴对称的点的坐标为 P1(_a_,-_b_), ⑵ 点 P 关于 y 轴对称的点的坐标为
OABC 的各个点的纵坐标不变,将横坐标
都乘以-1,作出新的图形,观察它与原图
形有什么关系。
y
4
所得图形与
B
B1
原图形关于 y
A
2
A1
轴对称
C
-4
-2 O
C1
2
4x
谢谢

1、许多人企求着生活的完美结局,殊不知美根本不在结局,而在于追求的过程。

2、慢慢的才知道:坚持未必就是胜利,放弃未必就是认输,。给自己一个迂回的空间,学会思索,学会等待,学会调整。人生没有假设,当下即是全部。背不动的,放下了;伤不起的,看淡了;想不通的,不想了;恨不过的,抚平了。
B
2
C
-4
-2 O
B1 B2
C1
C2
2
4
6
x
习题
1、若点 P 在第三象限,则点 P 关于 y 轴 的对称点在第_四_象限,点 P 关于 x 轴的 对称点在第_二_象限。
2、点 P (-2,3) 关于 x 轴的对称点坐标 是_( -_2_,_-_3 _) 。
3、已知点 P (3,-1) 关于 y 轴的对称点 Q 的坐标是 ( a+b,1-b ) ,则 ab=_25_。

2020沪教版八年级数学上册(全套)精品课件

2020沪教版八年级数学上册(全套)精品课件
页 0077页 0079页 0098页 0118页 0136页 0175页 0191页 0251页 0287页 0316页 0329页 0362页 0395页 0397页 0399页
第十六章 二次根式 16.1 二次根式 第二节 二次根式的运算 本章小结 第十七章 一元二次方程 17.1 一元二次方程的概念 17.2 一元二次方程的解法 第三节 一元二次方程的应用 本章小结 探究活动 数字世界一个“平方和”等式宝塔的构建 第一节 正比例函数 18.2 正比例函数 18.3 反比例函数 18.4 函数的表示法 探究活动 生活中的函数 19.1 命题和证明 第二节 线段的垂直平分线与角的平分线
第十六章 二次根式
2020沪教版八年级数学上册(全套) 精品课件
第一节 二次根式的概念和性质
2020沪教版八年级数学上册(全套) 精品课件

【沪科版】八年级数学上册全册课件

【沪科版】八年级数学上册全册课件

【沪科版】八年级数学上册全册课件一、教学内容1. 函数及其性质函数的定义与表示方法函数的性质:单调性、奇偶性、周期性反函数的概念及求法2. 一次函数与二次函数一次函数的图像、性质与应用二次函数的图像、性质、顶点坐标与对称轴二次函数的解析式及其图像变换3. 三角形及其性质三角形的分类与性质三角形的重心、外心、内心、垂心全等三角形的判定与性质4. 四边形及其性质四边形的分类与性质矩形、菱形、正方形的性质与判定平行四边形的性质与判定二、教学目标1. 理解函数的概念,掌握函数的表示方法,了解函数的性质及其应用。

2. 掌握一次函数与二次函数的图像、性质、解析式及其应用。

3. 掌握三角形的分类、性质、重心、外心、内心、垂心等概念,以及全等三角形的判定与性质。

4. 掌握四边形的分类、性质、矩形、菱形、正方形的性质与判定,以及平行四边形的性质与判定。

三、教学难点与重点1. 教学难点:函数的性质及其应用二次函数的图像变换全等三角形的判定与性质矩形、菱形、正方形的性质与判定2. 教学重点:函数的定义与表示方法一次函数与二次函数的图像、性质与应用三角形的分类、性质与全等三角形的判定四边形的分类、性质与判定四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔、直尺、圆规、量角器等。

2. 学具:练习本、草稿纸、直尺、圆规、量角器等。

五、教学过程1. 实践情景引入:通过现实生活中的实例,引出函数、一次函数、二次函数、三角形、四边形等概念。

2. 例题讲解:讲解函数的定义、表示方法及其性质分析一次函数与二次函数的图像、性质与应用介绍三角形的分类、性质、全等三角形的判定讲解四边形的分类、性质、矩形、菱形、正方形的性质与判定3. 随堂练习:解答函数性质的应用题画一次函数与二次函数的图像,分析性质判断三角形的全等关系识别四边形类型,判定矩形、菱形、正方形4. 课堂小结:六、板书设计1. 左侧板书:函数及其性质一次函数与二次函数三角形及其性质四边形及其性质2. 右侧板书:实例、定义、性质、图像、判定等关键内容例题解析、解题步骤、注意事项七、作业设计1. 作业题目:函数性质的应用题一次函数与二次函数图像的绘制与分析判断全等三角形的题目四边形类型判定及性质应用题2. 答案:(1)函数性质的应用题答案:根据函数性质,解答应用题(2)一次函数与二次函数图像的绘制与分析答案:根据函数解析式,绘制图像,分析性质(3)判断全等三角形的题目答案:根据全等三角形的判定定理,判断三角形全等关系(4)四边形类型判定及性质应用题答案:根据四边形的性质与判定定理,解答应用题八、课后反思及拓展延伸1. 反思:分析学生掌握的知识点,为下一节课做好准备2. 拓展延伸:引导学生探讨函数在实际生活中的应用研究三角形、四边形在建筑、艺术等领域的应用引导学生自主学习相关数学竞赛题目,提高解题能力重点和难点解析一、教学难点与重点1. 教学难点:(1)函数的性质及其应用补充说明:函数的性质包括单调性、奇偶性、周期性等,这些性质对于解决实际问题具有重要意义。

沪科版八年级上册数学精品教学课件 第14章 全等三角形 两个直角三角形全等的判定

沪科版八年级上册数学精品教学课件 第14章 全等三角形 两个直角三角形全等的判定

B
∵ AE = CF,∴ AE + EF = CF + EF,
即 AF = CE.
在 Rt△ABF 和 Rt△CDE 中, A
E
F
C
AB = CD,
AF = CE,
D
∴ Rt△ABF≌Rt△CDE (HL). ∴ BF = DE.
变式训练1 如图,AB = CD,BF⊥AC,DE⊥AC,AE =
CF. 求证:BD 平分 EF.
【方法总结】判定三角形全等的关键是找对应边和 对应角,由于本题没有说明全等三角形的对应边和对 应角,因此要分类讨论,以免漏解.
课堂小结
内容
“斜边、 直角边”
前提 条件
使用 方法
斜边和一条直角边分别相 等的两个直角三角形全等
在直角三角形中
只须找除直角外的两个条件即可 (两个条件中至少有一个是一对边 相等)
求证:BC = AD. 证明:∵ AC⊥BC,BD⊥AD, ∴∠C 与∠D 都是直角.
在 Rt△ABC 和 Rt△BAD 中,
应用“HL”的前提条 件是在直角三角形中
D
C
AB = BA, 这是应用“HL”判
AC = BD . 定方法的书写格式 A
B
∴ Rt△ABC≌Rt△BAD (HL). ∴ BC = AD.
Rt△A′B′C′ ,使∠C′ = 90°,B′C′ = BC,A′B′ = AB,把
画好的 Rt△A′B′C′ 剪下来,放到 Rt△ABC 上,它们
能重合吗?
A
B
C
画图思路
N
A
B
CM
C′
(1)先画∠M C′ N = 90°
画图思路
N

13.1.2 三角形中角的关系-2020秋沪科版(安徽)八年级数学上册习题课件(共21张PPT)

13.1.2 三角形中角的关系-2020秋沪科版(安徽)八年级数学上册习题课件(共21张PPT)

根据三角形内角和等于 180°, 可得∠A+∠ADB+∠ABD=180°, 所以可以知道∠CDB+∠CBD=180°-140°=40°. 又因为∠DCB+∠CDB+∠CBD=180°, 所以∠DCB=180°-40°=140°. 这说明若零件合格,则∠DCB=140°,而李师傅量得∠DCB= 142°,所以可以断定这个零件不合格.
第13章 三角形中的边角关系、命题与证明
13.1 三角形中的边角关系 第2课时 三角形中角的关系
提示:点击 进入习题
答案显示
核心必知 1 直角三角形;钝角三角形 2 180°
1C
2C
3A
4 50° 5 见习题
6 见习题 7 C
8 见习题 9 见习题 10 见习题
11 见习题 12 见习题
1.三角形按角分类: 直角三角形
12.如图,请猜想∠A+∠B+∠C+∠D+∠E+∠F 的度数, 并说明你的理由.
解:猜想∠A+∠B+∠C+∠D+∠E+∠F=360°. 理由:因为∠A+∠B+∠AMB=180°,∠AMB+∠BMP=180°, 所以∠BMP=∠A+∠B. 同理得∠ENM=∠E+∠F,∠MPC=∠C+∠D. 又因为∠BMP+∠ENM+∠MPC =(180°-∠NMP)+(180°-∠MNP)+(180°-∠MPN) =540°-(∠NMP+∠MNP+∠MPN)=540°-180°=360°, 所以∠A+∠B+∠C+∠D+∠E+∠F=360°.
三角形斜三角形锐钝角角三三角角形形 2.三角形的内角和等于_1_8_0_°____,一个三角形中最多有一个直
角或一个钝角.
1.一个三角形三个内角的度数分别是 95°,25°,60°,则这个三 角形是( C ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.无法确定

沪科版数学八年级上册全册课件【完整版】

沪科版数学八年级上册全册课件【完整版】

3.点M在y轴的右侧、x轴下方,且点M到x轴的
距离为3个单位,到y轴的距离为5个单位,则点M的
y
坐标为( )
A.(3,-5) B.(-3,5) C.(-5,3) D.(5,-3)
2 1
-2 -1 0 -1
-2 -3
1 2 3 4 5x
M
4.若三点坐标分别为A(-2,0)、 B(3,0)、
C(1,-4),则三角形ABC的面积是( )
沪科版(HS)八年级数学上册
内含大量动画全真演绎教学内容 打造小学数学高效课堂的首选教学课件
可一想,动一动!
1.哪位同学能用一句简单的话描述出“班长”在教室里的 位置?
2.反过来,如果知道了某位同学在第5列,第6行,你能知
道是哪位同学吗?若这位同学用点P表示,在图中描出点P的位
小结2
1.怎样描点的坐标? 先定横坐标,再定纵坐标
2.点到两轴的距离与坐标有什么关系?
P(a,b)到x轴的距离是|b|, 到y轴的距离是|a|。
3.对称点的坐标特征:
关于x轴对称:横同纵反;关于 y轴对称:横反纵同。
课间安全提示语
1、不在楼梯、走廊间追逐打闹。 2、上下楼梯是要靠右走。 3、不能在楼梯上推挤、跑跳。 4、不爬窗户和阳台,不拉爬窗 户防护栏。
置。你是怎样做的?请你说一说。 y
班长
讲台
8
6 4
●P(5,4)
2
O 24 6 8
x
解:图中红色的部分我们称为平面直角坐标系。P的 位置可以用坐标来表示,即P点的坐标为(5,4)。
在x轴、y轴上找出表示点P的横坐标、纵坐标的点, 然后分别作x轴、y轴的垂线,交点即为所求。
新授
平面直角坐标系

沪科版初中数学八年级上册全册优质课件【全套】

沪科版初中数学八年级上册全册优质课件【全套】
O (-,-) (0,b) (+,-) (+,+)
(0,0)
x
巩固
3.已知在平面直角坐标系
中,P(-3,0)在( B )
A.x轴正半轴上
B.x轴负半轴上
C.y轴正半轴上
D.y轴负半轴上
4.指出下列各点所在的象限或坐标轴: 第四象限 点P(5,-3)在 ; 点P(-3,-1)在 点P(0,-3)在 点P(4,0)在 点P(0,0)在
y 4 3 2 1 -3 -2 -1
0
B (1,-3) -3 C (3,-3) A (-2,-3)
1 -1 -2
2
3
4
x
请你观察A、B、C三点的坐标的
变化,你能发现什么规律吗?
探究二
1.点A向上 平移5个单位长 度得到点B。 2.点A向上 平移7个单位长 度得到点C。 A (-2,-3) B (-2,2)
第三象限
y轴负半轴 x轴正半轴
; ; ; 。
原点
小结1
1.你眼中的坐标系是什么样的?坐标系有什么作 用? 两条在原点互相垂直的数轴 2.你还能想起各象限、两坐标轴的点的坐标有
什么特征吗?
图形记忆法 3.怎样找点的坐标?
分别做两轴的垂线段
y
点的坐标特征 (-,-) (+,+)
(a,0)
O (-,+)
(0,0)
x
(+,-) (0,b)
复习
1.若点P(a-2,a+3)在y轴上,则点P的
坐标是 。
2.若点P(a,b)在第三象限,则点Q(-a,
b)在
象限。
3.若点P(a,b)在第三象限,则点Q(-a,
b 2 )在

2020最新沪教版八年级数学上册电子课本课件【全册】

2020最新沪教版八年级数学上册电子课本课件【全册】
0最新沪教版八年级数学上册电 子课本课件【全册】
第一节 二次根式的概念和性质
2020最新沪教版八年级数学上册电 子课本课件【全册】
2020最新沪教版八年级数学上册 电子课本课件【全册】目录
0002页 0020页 0046页 0061页 0086页 0112页 0123页 0127页 0141页 0177页 0179页 0199页 0248页 0250页 0275页 0277页 0306页
第十六章 二次根式 16.1 二次根式 第二节 二次根式的运算 本章小结 第十七章 一元二次方程 17.1 一元二次方程的概念 17.2 一元二次方程的解法 第三节 一元二次方程的应用 本章小结 探究活动 数字世界一个“平方和”等式宝塔的构建 第一节 正比例函数 18.2 正比例函数 18.3 反比例函数 18.4 函数的表示法 探究活动 生活中的函数 第一节 几何证明 19.2 证明举例
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020沪教版八年级数学上册全册 课件【完整版】目录
0002页 0108页 0150页 0166页 0189页 0258页 0276页 0331页 0366页 0388页 0390页 0418页 0482页 0515页 0548页 0550页 0572页
第十六章 二次根式 16.1 二次根式 第二节 二次根式的运算 本章小结 第十七章 一元二次方程 17.1 一元二次方程的概念 17.2 一元二次方程的解法 第三节 一元二次方程的应用 本章小结 探究活动 数字世界一个“平方和”等式宝塔的构建 第一节 正比例函数 18.2 正比例函数 18.3 反比例函数 18.4 函数的表示法 探究活动 生活中的函数 19.2 证明举例 19.3 逆命题和逆定理
第十六章 二次根式
2020沪教版八年级数学上册全册课 件【完整版】
第一节 二次根式的概念和性质
2020沪教版八
相关文档
最新文档