数列极限的解法(15种)
数列极限常见题型及其解法
数列极限常见题型及其解法01 什么是数列?(掌握难度:★)从字面意思就可以看出来:数列数列,就是将数排成队列。
详细点来说,就是将一堆数按照某种规律排成一排,p.s.类似军训,教官让我们按照从矮到高(某种规律)排成一排。
排成队列的数这时,有个数在开小差,教官就开始点名了。
还记得我们当时军训时教官是怎么点名的么?“第m排第n列,请出列”——这耳熟能详的语句。
由于我们的数只有一列,所以我们就变成了,“第n个数请出列”。
为了描述方便我们用符号 xn 表示,含义为第n个数,于是就有 x1=12 , x4=116 , x5=132 。
如果可以用某个含n的式子来表示 xn ,那么这个式子就叫做这个数列的通项公式,例如本文举例的数列,它的通项公式就是: xn=12n 。
有了它,我们就可以快速get 这一列数中的每一个数,是不是很方便。
但是,人总是贪心的。
所以一定会有人问:“你不是说每一项你都知道么?那么第无穷项是多少呢?”这个时候就涉及到了数列的极限。
02 数列的极限(掌握难度:★★)针对刚刚的问题——数列{ xn }的“无穷项”是多少?即当 n→∞时, xn 趋近于多少。
可见这是一个极限问题,用数学式来表示:limn→∞xn=?上式的结果,有些是可预测的(可计算出结果),有些是不可预测的(结果不确定),如下:例如:(1){ (−1)n }:−1,1,−1,1,−1,1……(2){ ln(n) } : ,ln1,ln2,ln3,……(3){12n } :,,,12,14,18,116……数列(1),在-1和1间摇摆不定,"第无穷项"鬼知道是1还是-1,因此极限不存在;数列(2),随n增大, xn 也无限制地增大,增大到无穷时,无法用一个具体的数来表示,其极限也不存在。
对于数列(1)和(2),我们称其为发散数列,或称这个数列是发散的。
数列(3),随n增大,每一项的分母都会无限制的增大,进而每一项会越来越小,最终 n→∞,xn→0(1∞) ,所以此时我们可以预测在“第无穷项”处,数列的值趋近于0,这个时候我们也称数列(3)收敛。
高考数学冲刺数列极限的求解方法
高考数学冲刺数列极限的求解方法在高考数学中,数列极限是一个重要的考点,也是许多同学感到棘手的问题。
在最后的冲刺阶段,掌握有效的求解方法对于提高成绩至关重要。
接下来,让我们一起深入探讨数列极限的求解方法。
一、数列极限的基本概念首先,我们要明确数列极限的定义。
如果当项数 n 无限增大时,数列的通项 an 无限趋近于一个常数 A,那么就称 A 是数列{an}的极限,记作lim(n→∞) an = A。
理解这个定义是求解数列极限的基础。
二、常见的数列极限类型1、简单数列的极限对于一些简单的数列,如常数数列{an = C},其极限就是这个常数C;对于等差数列{an = a1 +(n 1)d},当 n 趋向于无穷大时,如果公差 d = 0,则极限为 a1;如果d ≠ 0,则数列没有极限。
2、等比数列的极限对于等比数列{an = a1 q^(n 1)},当|q| < 1 时,极限为 0;当 q = 1 时,极限为 a1;当|q| > 1 时,数列没有极限。
三、数列极限的求解方法1、利用定义求解直接根据数列极限的定义来进行求解。
通过分析数列通项与极限值之间的差距,随着 n 的增大,这个差距趋向于零,从而证明极限的存在并求出极限值。
例如,对于数列{an = 1 / n},要证明其极限为 0。
对于任意给定的正数ε,要找到一个正整数 N,使得当 n > N 时,|1 / n 0| <ε 成立。
因为|1 / n 0| = 1 / n,所以只要取 N = 1 /ε + 1(x表示不超过 x 的最大整数),当 n > N 时,就有 1 / n < 1 / N <ε,从而证明了lim(n→∞) 1 / n = 0。
2、四则运算法则若lim(n→∞) an = A,lim(n→∞) bn = B,则有:(1)lim(n→∞)(an ± bn) = A ± B(2)lim(n→∞)(an bn) = A B(3)lim(n→∞)(an / bn) = A / B (当B ≠ 0 时)例如,求lim(n→∞)(2n + 1) /(3n 1),可以将分子分母同时除以 n,得到lim(n→∞)(2 + 1 / n) /(3 1 / n) = 2 / 3。
数列极限的几种求解方法
数列极限的几种求解方法张宇(渤海大学数学系辽宁锦州121000 中国)摘要在髙等数学中极限是一个重要的基本概念。
高等数学中其他的一些重要概念,如微分、积分、级数等都是用极限来定义的。
本文主要研究了求极限问题的若干种方法。
在纷繁众多的求极限方法中,同学们往往在求解极限时不知如何下手。
文章内容包括对求解简单极限问题的各种常用方法的总结:利用迫敛性:利用单调有界定理;利用柯西准则证明数列极限:这些方法对解决一般数列极限问题都很适用。
还包括在此基础上探索出来的解决各种复杂极限问题的特姝方法,例如:利用数列的构造和性质求数列的极限:利用定积分定义求数列极限以及利用压缩映射原理等特殊方法求数列极限,这些特殊方法对解决复杂极限有很重要的意义,而且还比较方便。
在实际求解过程中,要灵活运用以上各种方法。
关键词:数列,极限,槪念,泄理。
Solution of the limitAbstract : In the higher mathematics limit is an important basic concepts・ In the higher mathematics, some important concepts of other, such as the differential and integration. series are used to define the limit. This paper mainly studies the problem of several limit .In the numerous and numerous limit method. students often in solving limit doesn't know how to start. Tlie contents include the limit for solving all kinds of simple method using the summary: popularizes forced convergence property. Monotone have defined Daniel, Using the proof of cauchy criterion sequence limit. These methods of solving problems are generally sequence limit. Also included on the basis of exploring the problem solving complex limit methods, such as special stnictures and properties of invariable; the sequence limit, Using the integral definition for sequence limit and use the banach cotraction principle as a special method. these special method sequence limit to solve complex limit is important, but also more convenient. In the actual solving process, using various above methods・Key words: Series, limit, the concept, the theorem.引言极限的概念与运算贯穿了高等数学的始终。
高数中求极限的16种方法
高数中求极限的16种方法——好东西首先对极限的总结如下:极限的保号性很重要,就是说在一定区间内,函数的正负与极限一致一、极限分为一般极限,还有数列极限,(区别在于数列极限发散,是一般极限的一种)二、求极限的方法如下:1 .等价无穷小的转化,(一般只能在乘除时候使用,在加减时候用必须证明拆分后极限依然存在) e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。
全部熟记(x趋近无穷的时候还原成无穷小)2.罗比达法则(大题目有时候会有暗示,要你使用这个方法)首先他的使用有严格的使用前提,必须是 X趋近而不是N趋近!所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!必须是函数的导数要存在!必须是 0比0 无穷大比无穷大!当然还要注意分母不能为0注意:罗比达法则分为3种情况0比0,无穷比无穷的时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成1中的形式了;0的0次方,1的无穷次方,无穷的0次方;对于(指数幂数)方程,方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近于0)3.泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特别注意!!!!)E的x展开,sina 展开,cos 展开,ln1+x展开,对题目简化有很好帮助4.面对无穷大比上无穷大形式的解决办法取大头原则,最大项除分子分母!!!!!!!!!!!5.无穷小于有界函数的处理办法面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。
面对非常复杂的函数可能只需要知道它的范围结果就出来了!!!6.夹逼定理(主要对付数列极限!)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。
高等数学数列极限收敛60道典型例题分步骤详解
高等数学数列极限收敛60道典型例题分步骤详解数列收敛,换言之就是数列极限存在,此类问题历来都是高数考试的重点和难点,也是倍受命题老师青睐的“宠儿”。
数列收敛题型大致可分为两大类:第一类,数列的一般项(也称“通项”)已知;第二类,数列的一般项(通项)未知,尤其是由递推公式60道数列收敛典型例题,每道题都给出了详细的解题步骤。
网友们请注意,本文60个例题中如果用方括号标明年份的,均为当年考研真题。
第一类数列的一般项(通项)已知1.【2008真题】设解:原式. 具体求解过程如下(运用“两边夹”定理):2.✧解法(一)原式✧解法(二)原式=3.✧解法(一)分子有理化(分母视为“1”)原式✧解法(二)利用等价无穷小替换原式【注:】4.✧解法(一)✧解法(二)原式【注:, 】5.解:本题求极限,推荐“两边夹定理”。
解题过程如下:令显然可知,当因此,根据“两边夹定理”得到6.解:本题求极限推荐“两边夹定理”.令7.解原式=8.解原式=】9.解法(一)利用公式原式】==1✧.原式=】==110.解:原式。
正确的解法如下:原式==【注:】==11.✧解法(一)利用等价无穷小替换原式=】==✧解法(二)利用中值定理,注意求导公式原式【注:】=12.【2002真题】,✧解法(一)利用等无穷小替换✧原式===✧解法(二)利用“两边夹定理”,【注意:】原式=13.✧原式=【注:】=✧解法(二)利用等价无穷小替换原式=】14.解:此数列求极限推荐等价无穷小替换。
解法如下:原式==】=】15.✧解法(一)利用等价无穷小替换原式【注:】=【注:归结原则】✧【注:】16.解:本题求极限,“两边夹”定理、单调有界准则、定积分定义等方法似乎均不太“给力”,需将变量连续化,也就是将离散变量n替换为连续变量x,再运用包括洛必达法则在内的求解函数极限的方法.详细过程如下:17.✧解法(一)利用导数定义原式===【注:的指数部分,正是按定义所求的函数在处的导数.】【】=✧解法(二)拉格郎日中值定理,注意求导公式原式=====【注:=【注:本题推荐中值定理。
数列极限求解技巧
数列极限求解技巧数列是数学中一种重要的概念,对于数列的极限求解是数学中的一项基本技能。
在求解数列的极限过程中,往往需要借助各种技巧和方法来优化计算过程,本文将介绍一些常用的数列极限求解技巧。
一、数列的收敛性判断:在进行数列的极限求解之前,首先需要判断数列是否收敛。
一般来说,数列如果满足以下条件,那么该数列就是收敛的:1. 数列具有界性:即存在正实数M,使得对于数列的所有项a[n],都有|a[n]|<=M。
2. 数列具有单调性:数列可以是递增的(即a[n]<=a[n+1])或递减的(即a[n]>=a[n+1])。
二、数列极限的基本性质:在数列极限的求解过程中,有一些基本性质可以帮助我们更好地理解和计算,这些性质包括:1. 数列唯一:每个数列只有唯一一个极限。
2. 数列极限的传递性:如果数列a[n]有极限L,而数列b[n]是从a[n]中选取的一些项,那么b[n]也有极限,并且极限值与a[n]的极限值相同。
3. 数列极限的加法和乘法:如果两个数列a[n]和b[n]都有极限L1和L2,那么a[n]+b[n]和a[n]*b[n]也都有极限,并且分别为L1+L2和L1*L2。
三、常见数列的极限求解技巧:1. 等差数列和等比数列的极限求解:对于等差数列an=a1+(n-1)d和等比数列an=a1*r^(n-1),可以利用数列的极限计算公式进行求解。
对于等差数列an,其极限为a1,而等比数列an如果|r|<1,则其极限为0。
2. 公式替代和分母有理化:对于一些较复杂的数列,可以通过公式替代来简化计算过程。
例如,对于数列an=(n^k)/(k^n),如果取ln(an),则该数列可以转化为等差数列。
此外,对于一些出现分母的数列,可以利用有理化的方法进行极限求解,通过乘以适当的分子因子,使得分母变为多项式形式。
3. 夹逼定理:夹逼定理是一种常用的判断数列极限的方法。
如果数列an和bn都趋向于同一个极限L,并且存在另一个数列cn,使得对于所有的n,都有an<=cn<=bn,那么cn也趋向于L。
求数列极限的若干方法
求数列极限的若干方法摘要:本文主要探讨了求数列极限的六种方法:极限定义法,迫敛性,单调有界定理,定积分的定义,施笃茨定理,以及利用函数极限求数列极限的方法,并对每一类方法进行了总结,这将有利于我们更好的学习后续课程。
关键词:极限;迫敛性;定积分数列极限是数学分析中最重要的概念之一,以极限作为工具去解决和处理数学问题是一种极其重要的方法。
许多学生在学习数列极限时感觉很困难,原因在于数列极限概念很抽象,而且计算也有一定的难度。
论文总结出了求数列极限的一些常用方法,为并结合实例进行了说明。
1. 数列极限概述对于数列{}n a ,若当n 无限增大时,{}n a 能无限地接近某一个常数a ,就称此数列为收敛数列,a 是此数列的极限。
例如,对于数列⎭⎬⎫⎩⎨⎧n 1,当∞→n 时,n 1能无限地接近于0,则称数列⎭⎬⎫⎩⎨⎧n 1为收敛数列。
就是说,当n 充分大时,数列的通项n a 与常数a 之差的绝对值可以任意小。
因此有下列数列极限的精确定义。
1.1数列极限的N -ε定义定义1 设{}n a 为数列,a 为定数.若对任给的正数ε,总存在正整数N ,使得当n >N 时有ε<-a a n ,则称数列{}n a 收敛于a ,定数a 称为数列{}n a 的极限。
定理1 (唯一性) 若数列{}n a 收敛,则它只有一个极限。
一个收敛数列一般含有无穷多个数,而它的极限只有一个数。
定理 2 (有界性)若数列{}n a 收敛,则{}n a 为有界数列,即存在正数M ,使得对一切正整数n 有M a n <.定理3 (保号性)若)0(0lim <>=∞→a a n n ,则对任何)0,)(,0('')(或a a a a ∈∈,存在正数N ,使得当N n >时有)(''a a a a n n <>或。
定理 4 (保不等式性)设{}n a 与{}n b 均为收敛数列.若存在正数0N ,使得当0N n >时有n n b a ≤,则n n n n b a ∞→∞→≤lim lim 。
数列极限的几种求法
数列极限的几种求法一、定义法:数列极限的定义如下:设{n a }是一个数列,若存在确定的数a,对ε∀>0 ∃N>0使当n>N 时,都有a a n -<ε则称数列{n a }收敛于a ,记为n n a ∞→lim =a ,否则称数列{n a }不收敛(或称数列{n a }发散)。
故可从最原始的定义出发计算数列极限。
例1、 用ε-N 方法求 nn n 1lim +∞→解:令 n n 1+=t+1 则 t>0∴ n+1=nt )1(+2)1(2)1(122t n n t n n nt -≥+-++≥ΛΛ ∴ 12)1(4)1()1(211-≤-≤-+≤=-+n n n n n n n t n n ∴ε∀>0 取 ⎥⎦⎤⎢⎣⎡+=142εN 则当N n >时,有 ε<-≤-+1211n n n∴n n n 1lim +∞→=1二、单调有界法: 首先我们介绍单调有界定理,其内容如下:在实数系中,有界的单调数列必有极限。
证明:不妨设{n a }为有上界的递增数列。
由确界原理,数列{n a }有上界,记为sup =a {n a }。
以下证明a 就是{n a }的极限。
事实上,ε∀>0,按上确界的定义,存在数列{n a }中某一项N a ,使得N a a <-ε 又由{n a }的递增性,当N n ≥时有εε+<<-a a a n ,这就证得 a a n n =∞→lim 。
同理可证有下界的递减数列必有极限,且其极限即为它的下确界。
例2、证明数列ΛΛΛ,222,22,2+++ 收敛,并求其极限。
证:222Λ++=n a ,易见数列{n a }是递增的。
现用数学归纳法来证明{n a }有上界。
显然 221<=a 。
假设2<n a ,则有22221=+<+=+n n a a ,从而对一切n 有2<n a ,∑=∞→n k n k n 141lim ε即{n a }有上界。
求极限的13种方法
求极限的13种方法(简叙)龘龖龍极限概念与求极限的运算贯穿了高等数学课程的始终,极限思想亦是高等数学的核心与基础,因此,全面掌握求极限的方法与技巧是高等数学的基本要求。
本篇较为全面地介绍了求数列极限与函数极限的各种方法,供同学参考。
一、利用恒等变形求极限利用恒等变形求极限是最基础的一种方法,但恒等变形灵活多变,令人难以琢磨。
常用的的恒等变形有:分式的分解、分子或分母有理化、三角函数的恒等变形、某些求和公式与求积公式的利用等。
例1、求极限 )1...()1)(1(22lim na a a n +++∞→ ,其中1<a分析 由于积的极限等于极限的积这一法则只对有限个因子成立,因此,应先对其进行恒等变形。
解 因为)1...()1)(1(22na a a +++ =)1...()1)(1)(1(1122na a a a a +++-- =)1...()1)(1(11222na a a a ++-- =)1(1112+--n a a当∞→n 时,,21∞→+n 而1<a ,故从而,012→+n a)1...()1)(1(22lim naa a n +++∞→=a-11 二、利用变量代换求极限利用变量代换求极限的主要目的是化简原表达式,从而减少运算量,提高运算效率。
常用的变量代换有倒代换、整体代换、三角代换等。
例2、求极限11lim 1--→nmx x x ,其中m,n 为正整数。
分析 这是含根式的(00)型未定式,应先将其利用变量代换进行化简,再进一步计算极限。
解 令11,1→→=t x x t mn时,则当原式=mnt t t t t t t t t t t t m m n n m m n n t m n t =++++++=+++-+++-=----------→→1...1...)1...)(1()1...)(1(lim 11lim 2121212111 三、利用对数转换求极限利用对数转换求极限主要是通过公式,ln v u v e u ⋅=进行恒等变形,特别的情形,在(∞1)型未定式时可直接运用v u v e u ⋅-=)1( 例3、求极限ox →lim xx 2csc )(cos解 原式=ox →lim 21sin sin 21lim csc )1(cos 2202---==→ee e xx xx x四、利用夹逼准则求极限利用夹逼准则求极限主要应用于表达式易于放缩的情形。
(整理)求极限的多种方法
求极限的多种方法一,根据迫敛性求极限1,求数列极限定理2.6:设收敛数列{a n },{b n }都以a 为极限,数列{c n }满足:存在正数N 0,当n>N 0,时有a n ≤c n ≤ bn,则数列{c n }收敛,且a n c n =∞-lim 。
例lim ∞-n (nnnn++++++2221 (2)111)nnn+2≤nn nn++++++2221 (2)111≤nn2≡1lim∞-n nnn+2=lim∞-n nn2=1所以lim ∞-n (nnnn++++++2221 (2)111)=12,求函数极限定理3.6:设,)()(lim lim 0A x g x f x x x x ==--且在某);(00δx u 内有则A x h x x =-)(lim 0例 求]1[lim 0x x x -当x.>0时,1-x <]1[x x ≤1而lim 0+-x (1-x )=1故由迫敛性可知,]1[lim 0x x x -=1另一方面,当x<0时,有1<]1[x x ≤1-x ,故由迫敛性又可得,]1[lim 0x x x -=1综上求得]1[lim 0x x x -=1二,利用四则运算求极限定理3.7:若极限lim 0x x -f(x)与lim 0x x -g(x)都存在,则函数f+g,f-g,f.g,,当x x 0→的极限也存在,且 1)lim 0x x -[f(x)±g(x)]=lim 0x x -f(x)±lim 0x x -g(x)2) lim 0x x -[f(x)g(x)] =lim 0x x -f(x).lim 0x x -g(x)3)limx x -)()(x g x f =lim 0x x -f(x)/lim 0x x -g(x) 例2lim 4π-x (xtanx-1) 解 由xtanx=xx xcos sin lim 4π-x sinx=22= lim 4π-x cosx 按四则运算法则有lim 4π-x (xtanx-1)=lim 4π-x x.x x x x cos sin lim lim 44ππ---lim 4π-x 1=14-π三,两个重要极限1sin lim 0=-x x x )11(lim xxx +∞-=e例2 求lim-x xx2cos 1-lim-x xx2cos 1- =2121]22sin[lim 22=-ππx例3 求lim 0-x )21(1x x+lim 0-x )21(1x x +=lim 0-x [⋅+)21(21x x ⋅+)21(21x x]=lim 0-x ⋅+)21(21x xlim 0-x ⋅+)21(21x x=e 2四,运用洛比达法则求极限1,0型不定式极限定理6.6若函数f 和g 满足 1)lim 0x x -f(x)=lim 0x x -g(x)=02)在点x0的某空心领域)(00x u 内两者可导且)(,x g ≠03)lim 0x x -)()(,,x x g f =A 则lim 0x x -)()(x g x f =lim 0x x -)()(,,x x g f =A例2 求xxx tanlim2cos 1+-π解容易检验f(x)=1+cosx 与g(x)=x tan 2在点x0=π的领域内满足的条件1)和2)212,,sec tan 2sin lim )()(lim ==---x tx x x g x f x x ππ故洛比达法则得)()(lim x g x f x π-=212,,sec tan 2sin lim )()(lim ==---x tx x x g x f x x ππ2,∞∞型不定极限 定理6.7若函数f 和g 满足 1)lim 0x x +-f(x)= lim 0x x +-g(x)=∞2)在x0的某右领域)(0x u +为两者可导,且)(,x g ≠0 3)lim 0x x +-)(,,)(x g x f =A 则lim 0x x +-)()(x g x f =lim 0x x +-)(,,)(x g x f =A例2x xx ln lim +∞- 解;由定理6.7有x x x ln lim +∞-=01lim )(ln lim ,,==+∞-+-xx x xx 3,其他类型不定式极限 例7 求xinx x lim 0+-解:这是一个0.∞型不定式极限,用恒等变形xlnx=xx 1ln 将它转化为∞∞型的不定式极限,并应用洛比达则xinx x lim 0+-=lim 0+-x xx1ln =lim 0+-x (-x)=0 例8 求lim 0-x x x cos 21解;这是一个1∞型不定式极限,做恒等变换e x x x x 2211cos ln cos =其指数部分的极限lim-x xx2cos ln 是00型不定式极限,可先求的lim 0-x xx 2cos ln =-1/2 从而得到lim 0-x x x cos 21=e 21-例10 求lim +∞-x )1(2ln 1x x x++这是一个∞0型不定式极限,类似先求对数极限lim+∞-x xx x ln 1ln(2++=lim+∞-x xx1112+=1 于是有lim +∞-x )1(2ln 1x x x++=e五,利用泰勒公式求极限例3 求极限lim-x xexx 422cos --首先考虑到极限式的分母为x 4,我们用麦克劳林公式表示极限分子(取n=4) Cosx=1-22x +)(05442x x +ex22-=1-22x +)(0854x x+ Cosx-ex22-=-)(01254x x+因而求得例4lim-x xexx 422cos --=lim-x xx x 454)(0121+-= -121 六,利用定义求极限例5根据定义的N -ε 语言,数列 {}n a 收敛N n R a >∀∈∃⇔,,有ε<-a a n 。
数列极限各类解法探究
数列极限各类解法探究目录一、数列极限的基本概念与性质 (2)1. 数列极限的定义 (3)2. 极限的性质 (4)3. 极限的存在性定理 (4)二、数列极限的常见求解方法 (5)1. 直接法 (6)2.1 逐项相加或相乘 (7)2.2 单调有界准则 (8)2. 间接法 (10)2.1 等价无穷小替换 (11)2.2 导数与微分 (12)2.3 函数连续性的利用 (13)3. 定积分定义法 (14)4. 夹逼准则 (15)5. 单调有界定理 (16)6. 柯西收敛准则 (18)7. 实数的完备性 (19)三、特殊数列的极限求解 (20)1. 无穷数列 (21)3.1 单调有界数列 (23)3.2 发散数列 (23)2. 振荡数列 (23)3. 交错级数 (24)4. 幂级数 (26)四、数列极限的应用 (27)1. 求极限值 (28)2. 证明不等式 (29)3. 求解常微分方程 (30)五、数列极限的计算机求解方法 (31)1. 计算机模拟 (31)2. 数值分析软件 (33)3. 算法设计与实现 (34)六、数列极限的讨论与展望 (36)1. 数列极限理论的局限性 (37)2. 新的求解方法的探索 (38)3. 数列极限与其他数学领域的联系 (40)一、数列极限的基本概念与性质数列极限是数学分析中的一个重要概念,它描述了数列在无限接近某个值时的趋势和行为。
数列极限的基本概念包括:极限的定义:对于一个数列{a_n},如果存在一个实数 L,使得当 n 趋于无穷大时,a_n 趋于 L,即 lim(n) a_n L,则称 L 为数列{a_n}的极限。
有界性:如果数列{a_n}的极限存在且为 L,那么 L 必须同时属于数列{a_n}的所有项的范围。
柯西收敛准则:对于任意给定的正数0,存在正整数 N,使得当n, m N 时,a_n a_m 。
单调有界原理:如果数列{a_n}单调递增(或递减)且有上界(或下界),则该数列必有极限。
数列极限常见题型及解法
数列极限常见题型及解法汤原县鹤立高级中学 乔春华 数列极限是描述数列当项数n 无限增大时的变化趋势,是高考考点之一,多以选择题、填空题出现。
对于常见类型,应熟悉其解法和变形技巧。
注意向三个重要极限C C n =∞→lim (C 为常数),0lim =∞→n c n (c 为常数),0lim =∞→n n q (1<q )转化,数列极限常见题型及解法如下: 一、分式型数列的极限1.若分子、分母上n 的最高次数相同,则极限等于它们的系数比。
例1.求极限243132lim 22+++-∞→n n n n n 解:原式=22243132lim nn n n n +++-∞→ =32 2.若分子上n 的最高次数低于分母的最高次数,则极限一般等于零。
例2.求极限nn n n n 3243lim 423++-∞→ 解:原式=34231243lim nn n n n ++-∞→ =03.若分子上n 的最高次数高于分母的最高次数,则极限不存在。
例3.2lim 223-+-∞→n n n n n 极限不存在综上:⎪⎪⎪⎩⎪⎪⎪⎨⎧><==++++++++----∞→)(极限不存在q p q p q p b a b n b n b n b a n a n a n a q q q q p p p p n )(0)(lim 0011101110二、无限项形式变为有限项形式再求极限因为极限的运算法则,只适用于有限个数列之和求极限,所以求项数不定的积式、和式的极限分两步①将积式、和式化为有限项的积或和;②求极限例4.求极限nn n n n n n n -+++-+-∞→2221374lim解:原式=nn n n n -++∞→22)134(lim 232253lim =-+=∞→n n n 例5.求极限)211()411()311(lim +--⨯-∞→n n n 解:原式=⎥⎦⎤⎢⎣⎡++⨯⨯⨯⨯⨯∞→21544332lim n n n n 222lim =+=∞→n n n 三、无理式求极限通常是将分子或分母有理化,使式子中的减号变为加号。
16种求极限的方法总结
16种求极限的方法总结说起考研数学,你觉得最难的是哪个?据调查,数学中求极限的问题一直困扰着广大考生,2015年的考研马上就要到了,海文考研专门为大家梳理了16种求极限的方法,相信肯定对你有帮助。
解决极限的方法如下:1、等价无穷小的转化只能在乘除时候使用,但是不是说一定在加减时候不能用,前提是必须证明拆分后极限依然存在,e的X次方-1或者(1+x)的a次方-1等价于Ax等等。
全部熟记(x趋近无穷的时候还原成无穷小2、洛必达法则(大题目有时候会有暗示要你使用这个方法)。
首先他的使用有严格的使用前提!必须是X趋近而不是N趋近!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的,不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用,无疑于找死!!)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。
洛必达法则分为3种情况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成第一种的形式了;0的0次方,1的无穷次方,无穷的0次方。
对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候,LNX趋近于0)。
3、泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特变注意!)E的x 展开sina,展开cosa,展开ln1+x,对题目简化有很好帮助。
4、无穷大比上无穷大面对无穷大比上无穷大形式的解决办法,取大头原则最大项除分子分母看上去复杂,处理很简单!5、无穷小于有界函数无穷小于有界函数的处理办法,面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。
高中数学极限问题解题思路与例题
高中数学极限问题解题思路与例题在高中数学中,极限问题是一个重要的概念,它在微积分和数学分析等领域中发挥着重要的作用。
解决极限问题需要良好的数学思维和方法,本文将介绍一些常见的解题思路,并通过例题来说明。
一、数列极限问题的解题思路1. 递推法:对于递推数列,通过递推关系式来确定极限。
例如,对于等差数列an=2n+1,可以通过推导和观察得出其极限为无穷大。
2. 逼近法:对于数列an,通过构造逼近数列bn,使得bn与an的差趋近于零,然后求出bn的极限,进而得到an的极限。
例如,在求解数列an=√n的极限时,可以构造逼近数列bn=n,通过求bn的极限等于无穷大,得出an的极限也等于无穷大。
3. 按定义法:对于给定的数列an,根据极限的定义进行证明。
例如,证明数列an=1/n的极限为零,可以通过定义极限的方式来进行推导。
二、函数极限问题的解题思路1. 代入法:当函数在某一点不存在或无法求极限时,可以尝试代入近似值进行计算。
例如,求f(x)=sinx/x在x=0处的极限时,可以通过代入x的近似值0.001、0.0001等进行计算。
2. 夹逼法:对于函数f(x),如果在某一区间内存在两个函数g(x)和h(x),且g(x)≤f(x)≤h(x),并且g(x)和h(x)的极限均为L,则可以推导出f(x)的极限也为L。
例如,在证明函数f(x)=xsin(1/x)在x=0处的极限为零时,可以构造函数g(x)=-|x|和h(x)=|x|,并证明f(x)被夹在g(x)和h(x)之间。
3. 导数法:对于某些特殊的函数,可以通过求导数来求极限。
例如,对于函数f(x)=e^x/x,在x趋近于正无穷时,可以通过求导数得到f'(x)=e^x/x^2,在取极限时,可以得到极限为无穷大。
三、综合例题例题1:求极限lim(n→∞) (√n+1-√n)。
解:对于这个极限问题,我们可以利用有理化的方法进行求解。
首先,我们将式子进行分子有理化,得到(√n+1-√n)×(√n+1+√n)/(√n+1+√n)。
求数列极限的24种方法及例题分析
18 幂级数
50
18.1 例题分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
19 微分中值定理
52
19.1 知识讲解 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
10.2 例题分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
目录
– 2/65 –
11 Toeplitz 定理
32
11.1 知识讲解 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
19.2 例题分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
20 Taylor 公式
54
20.1 知识讲解 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
12.2 例题分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
13 Stirling 公式
36
13.1 知识讲解 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
16种求极限的方法总结
说起考研数学,你觉得最难的是哪个?据调查,数学中求极限的问题一直困扰着广大考生,2015年的考研马上就要到了,海文考研专门为大家梳理了16种求极限的方法,相信肯定对你有帮助。
解决极限的方法如下:1、等价无穷小的转化只能在乘除时候使用,但是不是说一定在加减时候不能用,前提是必须证明拆分后极限依然存在,e的X次方-1或者(1+x)的a次方-1等价于Ax等等。
全部熟记(x趋近无穷的时候还原成无穷小2、洛必达法则(大题目有时候会有暗示要你使用这个方法)。
首先他的使用有严格的使用前提!必须是X趋近而不是N趋近!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的,不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用,无疑于找死!!)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。
洛必达法则分为3种情况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成第一种的形式了;0的0次方,1的无穷次方,无穷的0次方。
对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候,LNX趋近于0)。
3、泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特变注意!)E的x 展开sina,展开cosa,展开ln1+x,对题目简化有很好帮助。
4、无穷大比上无穷大面对无穷大比上无穷大形式的解决办法,取大头原则最大项除分子分母!!!看上去复杂,处理很简单!5、无穷小于有界函数无穷小于有界函数的处理办法,面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。
数列极限的几种计算方.
3n 2 n 2-3-3数列极限的几种计算方法1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1数学的应用,在我们的生活中随处可见,而数学分析中的数列极限是高等数学的重 要内容,是贯穿于整个微积分教学的主线,它描述了变量在运动过程中的变化趋势,是 从有限认识无限,从近似认识精确,从量变认识质变的必备推理工具.同时,数列极限又 是极限的基础,它的计算是微积分教学中的重点和难点,所以本文通过典型实例,对数 列极限的计算方法做了一些规律性的分析和总结.二计算方法 1定义法设为数列,a 为任一常数,若对任给的;7,总存在N>0,使得当n>N 时,有a. - a c s 则称数列牯,收敛于a ,或称数列以为极限a.注1 一般来说,用定义求数列极限局限性很大,它更多地被应用于有关极限值 的相关证明,对于如何用数列极限定义证明数列极限问题, 常用的基本方法有:适当 放大法,条件放大法.3n 2例题1用定义法证明数列极限冋厂弋 分析由于 9n 一3 .n因此,对任给的;0,只要9 :::;,便有n3n 2 n 2-33即当?:::;时,左边的式子成立•又由于(1)式是在n —3的条件下成立的,故应取n9N 二 max{3, —}.z9 证明 任给;0,取N = max{3, -}. z根据分析,当n • N 时3n 2n 2-3于是此题得证.2利用数列极限的四则运算法则计算数列极限设极限lim a n 与lim b n 均存在,则nn _po(1) lim a n士b n= lim a n士 lim b n;n — %f n —sc n _咨(2) lim a nb n=lima nlimb n;n — * * n —sc(3) lim ca n= clim a n;n ^^ n _iClim a n--limb n";注2数列极限的四则运算只能推广到有限个数列的情况, 而不能推广到无限个数列 或不定个数的数列上去.1 1 c2 2 5 6 = 2n 5n -n n 解 lim 2limn------- -- n「n 3n 4 n「3 ]4 q n n 2( 1 1 )lim2 5 - -6 飞 n1 n n 2( 1 1 \ lim 13 4 2nn n 23利用数列的一些特征计算数列极限a nb nlimb n n/n _ac2n 25n - 6例题2求极限lim 2nTc n +3n +4分析由于n r ",,所以有-r 0, n数列极限四则运算法计算即可.4 > 0.于是给分子分母同时除以n 2,再利用 n4利用夹逼准则计算数列极限设 lim a n ,lim g 均存在,且 lim a “ 二 A,lim g 二 A ,若数列{c n}满足 a n_c n — b n,则有n ^^ n ^^ n _^c11 111111lim c n = A.n _j :注4利用夹逼准则求极限的关键是:将原数列适当地放大和缩小,使得放大后和缩小后的两个新数列的极限值相等,贝U 原数列的极限值存在且等于新数列的极限值 .111 1例题 4 计算数歹U 极限 lim —^=2+ / 2+ /2 = +,''十 』2 :f &n 2 +1 J n 2+2 J n 2+3 J n 2+n 丿分析 括号里的数列极限不能用上面的方法,但是,数列可以放大和缩小,所以关 键是找到极限值相等的数列{a n}与{b n},进而可以用夹逼准则来计算数列极限注3此种方法也就是直接将数列进行化简,从而计算出数列极限 •方法只适用于些特殊的数列,不具有一般性.例题 f 1 1 13计算极限lim + ++' ■■+J X 2 2x3 3x41(n —1" n 』 f n 1 、 1分析 观察数列,可以看出数列极限为lim = —1—,通项a 」=―1—,由(i —1)如, (n — 1)x n- --,所以括号中的式子可用裂项相消法计算,以此可以解出数列极限(n -1) n n -1 nlimn L :(n 一1)汉 n y-•丄2 2解5利用“单调有界数列必有极限”准则求解数列极限(a) 如果数列{a n}单调增加且有上界,即存在数M,使得a^M n = 1,2….那么lim a n* * n^ic存在且不大于M.(b) 如果数列{a n}单调递减且下界,即存在数m,使得a n_ m n =1,2…,那么lim a.存在且不小于m.注5递推数列极限的计算是数列极限计算中的一大类问题.而“单调有界准则”是判别递推数列极限是否存在最常用的一种方法,它不用借助其它数列而是直接利用所给数列自身的单调性和有界性来判别极限的存在性.例题5计算数列极限人-2, x2 - • 2 • . 2 ,…,x n = 2 x n,求lim x n分析(1)通过观察可以看出x, :::x2…x^即数列{x n}单调增加;(2)X1 :::2,X2「WE —W2 =2,…,X n 二-.2 •X n',厂2 =2,即数列{x n}有上界. 所以,由单调有界准则知,数列极限存在,设lim = a,然后计算出常数a即为数列极限.解由单调有界准则知,数列极限存在,设lim焉二a,V X n =逗:x 4所以给等式两边取极限得]叫& jm广2也,也即a二庞―a,解出a =2或a =T.又由于X n 0,所以取a =2.例题6设捲=丄,y i =1,X n =族川」,丄J 丄+丄,证明数列{焉} , { y .}收敛, 2 y n 2Mn 」 y n 」丿 且有相同的极限•分析 因数列{X n }与数列{y n }之间有大小关系,所以只要明确两者之间的关系,利 用夹逼准则,就可证明两个数列极限均存在,进而证明两个极限相等又:X n 二JX^i y nd j X n-i X n 」二X n" 数列仇}单调递减,且有0 ::::::为=1且有1二力”:y n ,于是1二力疳y 2疳…”:y n 疳x .:::…:::捲=1.2所以 数列{X n }单调递减有下界,数列{Y n }单调增加有上界; 由单调有界准则知两个数列的极限均存在设 lim x n = a,lim y n 二 b. n ^^ n ^c 于是有a= ab,^ - 1 1 , 求出a = b. b 2 (a b 丿 即两个数列有相等的极限.6利用多项式型极限性质求得数列极限多项式型极限:0,k clk亠k -1 I Ii..a°n +dn + …+ azn+ak a 。
(完整版)极限法求数列通项
(完整版)极限法求数列通项问题描述给定一个数列,我们希望能够找到它的通项公式,使得我们可以方便地计算数列中的任意项。
本文将介绍一种求解数列通项的方法——极限法。
极限法原理极限法是一种通过观察数列中项与项之间的关系,并利用极限的性质求解数列通项的方法。
常用的极限法包括:1. 根式极限法:如果数列中的项可以转化为一个根式,并且当$n$趋于无穷时,根式的操作数趋于固定的值,则可以利用根式极限法求解数列通项。
2. 比值极限法:如果数列中的相邻两项的比值存在极限,则可以利用比值极限法求解数列通项。
根据数列的不同特点,我们可以选择适合的极限法进行求解。
极限法求解步骤下面将介绍一般的极限法求解步骤:1. 观察数列中相邻两项的关系,尝试找出规律。
可以考虑求解两项的比值或多项之间的差值。
2. 判断数列是否满足根式极限条件或比值极限条件。
如果满足,则可以尝试表示数列项的通项公式。
3. 根据数列的特点,利用极限运算的性质,将数列项的通项公式进行推导和简化。
4. 验证推导得到的通项公式是否符合数列中的所有项。
可以通过计算数列的前几项进行验证。
5. 如果通项公式得到验证,那么我们可以使用该通项公式方便地计算数列中的任意项。
实例分析假设我们已知数列 ${a_n}$ 满足 $a_1 = 1$,$a_{n+1} = 3a_n + 2$,我们希望求解数列的通项公式。
1. 观察数列相邻两项之间的关系:根据给定的递推关系式,$a_{n+1}$ 是 $a_n$ 的 $3$ 倍再加 $2$。
可以得出 $a_2 = 5$,$a_3 = 17$ 等。
2. 判断数列是否满足根式极限条件或比值极限条件。
根据递推关系式,我们可以尝试使用比值极限法求解。
3. 利用比值极限法,我们得到 $\lim_{n\to\infty}\frac{a_{n+1}}{a_n} = \lim_{n\to\infty} \frac{3a_n + 2}{a_n} = 3$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.定义法
N ε-定义:设{}n a 为数列,a 为定数,若对任给的正数ε,总存在正数N ,使得当n N >时,有n a a ε-<,则称数列{}n a 收敛于a .记作:lim n n a a →∞
=.否则称{}
n a 为发散数列.
例1.求证1
lim 1,n
n a →∞
=其中0a >.
证:当1a =时,结论显然成立.
当1a >时,记11n
a α=-,则0α>,由()1111(1)n
n
a n n ααα=+≥+=+-
得1
11n
a a n --≤,任给0ε>,则当1
a n N ε
->=时,就有1
1n a ε-<,即
11n a ε-<即1lim 1,n
n a →∞
=
当
11
1
1
101,1,lim 1,lim 1
lim n n n n n
n a b b b a a
b
→∞→∞→∞
<<=>=∴=
=时,令则由上易知
综上,1lim 1,n
n a →∞
=0a >
例2.求7lim
!
n
n n →∞
解:77777777777771
!1278917!6!n n n n n n
=⋅⋅⋅⋅⋅⋅⋅⋅≤=-
77777171771
00,,0!6!6!!6!n n N n N n n n n εε⎡⎤∴-≤∴∀>∃=>-≤⎢⎥⎣⎦
则当时,有<ε 7lim 0!
n
n n →∞∴= 2.利用柯西收敛准则
柯西收敛准则:数列{}n a 收敛的充要条件是:0,ε∀>∃正整数N ,使得当,n m N
>时,有n m a a ε-<. 例3.证明:数列1sin (1,2,3,)2
n
n k
k k
x n ===⋅⋅⋅∑
为收敛数列.
证
11111sin(1)sin 111112()122222212
n m
n m m n m n m m m n x x m
-+++-+-=+⋅⋅⋅+≤+⋅⋅⋅+<<<-0ε∀>,取1N ε⎡⎤
=⎢⎥⎣⎦
,当n m N >>时,有n m x x ε-<
由柯西收敛准则,数列{}n x 收敛.
例4.(有界变差数列收敛定理)若数列{}n x 满足条件 11221n n n n x x x x x x M ----+-+⋅⋅⋅-≤,(1,2,)n =⋅⋅⋅ 则称{}n x 为有界变差数列,试证:有界变差数列一定收敛 证:令1112210,n n n n n y y x x x x x x ---==-+-+⋅⋅⋅-
那么{}n y 单调递增,由已知知{}n y 有界,故{}n y 收敛,从而0,ε∀>∃正整数
N ,使得当n m N >>时,有 n m y y ε-<
此即1121n m n n n n m m x x x x x x x x ε---+-≤-+-+⋅⋅⋅-< 由柯西收敛准则,数列{}n x 收敛.
注:柯西收敛准则把N ε-定义中的n a 与a 的关系换成了n a 与m a 的关系,其优点在于无需借用数列以外的数a 只需根据数列本身的特征就可鉴别其敛散性. 3.运用单调有界定理
单调有界定理:在实数系中,有界的单调数列必有极[]1
限.
例5.
证明数列n x =n 个根式,a>0,n=1,2,⋅⋅⋅)极限存在,并求
lim n n x →∞
.
证:由假设知n x = ⋅⋅⋅(1) 用数学归纳法易证:1,n n x x k N +>∈ ⋅⋅⋅ ()2 此即证{}n x 单调递增. 用数学归纳法可证1n n x x +>,。