幂的大小比较技巧
高考数学复习----《指、对、幂形数的大小比较问题》方法技巧与总结和真题练习
高考数学复习----《指、对、幂形数的大小比较问题》方法技巧与总结和真题练习方法技巧与总结(1)利用函数与方程的思想,构造函数,结合导数研究其单调性或极值,从而确定a ,b ,c 的大小.(2)指、对、幂大小比较的常用方法:①底数相同,指数不同时,如1x a 和2x a ,利用指数函数x y a =的单调性;②指数相同,底数不同,如1a x 和2ax 利用幂函数a y x =单调性比较大小;③底数相同,真数不同,如1log a x 和2log a x 利用指数函数log a x 单调性比较大小; ④底数、指数、真数都不同,寻找中间变量0,1或者其它能判断大小关系的中间量,借助中间量进行大小关系的判定.(3)转化为两函数图像交点的横坐标(4)特殊值法(5)估算法(6)放缩法、基本不等式法、作差法、作商法、平方法 真题练习1.(2022·天津·统考高考真题)已知0.72a =,0.713b ⎛⎫= ⎪⎝⎭,21log 3c =,则( ) A .a c b >>B .b c a >>C .a b c >>D .c a b >> 【答案】C 【解析】因为0.70.7221120log 1log 33⎛⎫>>=> ⎪⎝⎭,故a b c >>. 故答案为:C. 2.(2022·全国·统考高考真题)已知910,1011,89m m m a b ==−=−,则( ) A .0a b >>B .0a b >>C .0b a >>D .0b a >>【答案】A【解析】[方法一]:(指对数函数性质)由910m=可得9lg10log 101lg9m ==>,而()222lg9lg11lg99lg9lg111lg1022+⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,所以lg10lg11lg9lg10>,即lg11m >,所以lg11101110110m a =−>−=. 又()222lg8lg10lg80lg8lg10lg922+⎛⎫⎛⎫<=< ⎪ ⎪⎝⎭⎝⎭,所以lg9lg10lg8lg9>,即8log 9m >, 所以8log 989890m b =−<−=.综上,0a b >>.[方法二]:【最优解】(构造函数)由910m =,可得9log 10(1,1.5)m =∈.根据,a b 的形式构造函数()1(1)m f x x x x =−−> ,则1()1m f x mx −'=−,令()0f x '=,解得110m x m −= ,由9log 10(1,1.5)m =∈ 知0(0,1)x ∈ .()f x 在 (1,)+∞ 上单调递增,所以(10)(8)f f > ,即 a b > ,又因为9log 10(9)9100f =−= ,所以0a b >> .故选:A.【整体点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法;法二:利用,a b 的形式构造函数()1(1)m f x x x x =−−>,根据函数的单调性得出大小关系,简单明了,是该题的最优解.3.(2022·全国·统考高考真题)设0.110.1e ,ln 0.99a b c ===−,,则( ) A .a b c <<B .c b a <<C .c<a<bD .a c b <<【答案】C 【解析】方法一:构造法设()ln(1)(1)f x x x x =+−>−,因为1()111x f x x x'=−=−++, 当(1,0)x ∈−时,()0f x '>,当,()0x ∈+∞时()0f x '<,所以函数()ln(1)f x x x =+−在(0,)+∞单调递减,在(1,0)−上单调递增, 所以1()(0)09f f <=,所以101ln 099−<,故110ln ln 0.999>=−,即b c >, 所以1()(0)010f f −<=,所以91ln +01010<,故1109e 10−<,所以11011e 109<, 故a b <,设()e ln(1)(01)x g x x x x =+−<<,则()()21e 11()+1e 11x xx g x x x x −+'=+=−−, 令2()e (1)+1x h x x =−,2()e (21)x h x x x '=+−,当01x <时,()0h x '<,函数2()e (1)+1x h x x =−单调递减,11x <<时,()0h x '>,函数2()e (1)+1x h x x =−单调递增,又(0)0h =,所以当01x <<时,()0h x <,所以当01x <<时,()0g x '>,函数()e ln(1)x g x x x =+−单调递增,所以(0.1)(0)0g g >=,即0.10.1e ln 0.9>−,所以a c >故选:C.方法二:比较法0.10.1a e = , 0.110.1b =− , ln(10.1)c =−− , ①ln ln 0.1ln(10.1)a b −=+− , 令 ()ln(1),(0,0.1],f x x x x =+−∈则 1()1011x f x x x −'=−=<−− , 故 ()f x 在(0,0.1] 上单调递减, 可得 (0.1)(0)0f f <=,即 ln ln 0a b −< ,所以 a b < ; ② 0.10.1ln(10.1)a c e −=+− ,令 ()ln(1),(0,0.1],x g x xe x x =+−∈则 ()()()1111'11x x xx x e g x xe e x x +−−=+−=−− , 令 ()(1)(1)1x k x x x e =+−− ,所以 2()(12)0x k x x x e '=−−> ,所以 ()k x 在(0,0.1] 上单调递增,可得 ()(0)0k x k >> ,即 ()0g x '> , 所以 ()g x 在(0,0.1] 上单调递增,可得 (0.1)(0)0g g >= ,即 0a c −> ,所以 .a c >故 .c a b <<4.(2021·天津·统考高考真题)设0.3212log 0.3,log 0.4,0.4a b c ===,则a ,b ,c 的大小关系为( ) A .a b c <<B .c<a<bC .b<c<aD .a c b <<【答案】D【解析】22log 0.3log 10<=,<0a ∴, 122225log 0.4log 0.4log log 212=−=>=,1b ∴>, 0.3000.40.41<<=,01c ∴<<,a cb ∴<<.故选:D.5.(2022·全国·统考高考真题)已知3111,cos ,4sin 3244a b c ===,则( ) A .c b a >>B .b a c >>C .a b c >>D .a c b >>【答案】A【解析】[方法一]:构造函数 因为当π0,,tan 2x x x ⎛⎫∈< ⎪⎝⎭故14tan 14c b =>,故1c b >,所以c b >; 设21()cos 1,(0,)2f x x x x =+−∈+∞, ()sin 0f x x x '=−+>,所以()f x 在(0,)+∞单调递增,故1(0)=04f f ⎛⎫> ⎪⎝⎭,所以131cos 0432−>, 所以b a >,所以c b a >>,故选A[方法二]:不等式放缩 因为当π0,,sin 2x x x ⎛⎫∈< ⎪⎝⎭, 取18x =得:2211131cos 12sin 1248832⎛⎫=−>−= ⎪⎝⎭,故b a > 1114sin cos 444ϕ⎛⎫++ ⎪⎝⎭,其中0,2πϕ⎛⎫∈ ⎪⎝⎭,且sin ϕϕ==当114sin cos 44+=142πϕ+=,及124πϕ=−此时1sin cos 4ϕ=1cos sin 4ϕ==故1cos 4=11sin 4sin 44<=<,故b c < 所以b a >,所以c b a >>,故选A[方法三]:泰勒展开设0.25x =,则2310.251322a ==−,2410.250.25cos 1424!b =≈−+, 241sin 10.250.2544sin 1143!5!4c ==≈−+,计算得c b a >>,故选A. [方法四]:构造函数 因为14tan 4c b =,因为当π0,,sin tan 2x x x x ⎛⎫∈<< ⎪⎝⎭,所以11tan 44>,即1c b >,所以c b >;设21()cos 1,(0,)2f x x x x =+−∈+∞,()sin 0f x x x '=−+>,所以()f x 在(0,)+∞单调递增,则1(0)=04f f ⎛⎫> ⎪⎝⎭,所以131cos 0432−>,所以b a >,所以c b a >>, 故选:A .[方法五]:【最优解】不等式放缩 因为14tan 4c b =,因为当π0,,sin tan 2x x x x ⎛⎫∈<< ⎪⎝⎭,所以11tan 44>,即1c b >,所以c b >;因为当π0,,sin 2x x x ⎛⎫∈< ⎪⎝⎭,取18x =得2211131cos 12sin 1248832⎛⎫=−>−= ⎪⎝⎭,故b a >,所以c b a >>. 故选:A .【整体点评】方法4:利用函数的单调性比较大小,是常见思路,难点在于构造合适的函数,属于通性通法;方法5:利用二倍角公式以及不等式π0,,sin tan 2x x x x ⎛⎫∈<< ⎪⎝⎭放缩,即可得出大小关系,属于最优解.。
人教版八年级数学上册比较幂(含整式)的大小的八种常用技巧
解:∵x63=(x7)9=29=512,y63=(y9)7=37=2 187, 而 512<2 187, ∴x63<y63. ∴x<y.
பைடு நூலகம்
5.已知 P=999999,Q=191909,比较 P 与 Q 的大小.
【点拨】本题采用的是作商比较法.当 a>0,b>0 时,利用“若
ab>1,则 a>b;若ab=1,则 a=b;若ab<1,则 a<b”比较. 解:∵QP=999999×191909=(9×91991)9×191909=999×91919×191909=1, ∴P=Q.
6.设 M=(x-3)(x-5),N=(x-2)(x-6),试比较 M 与 N 的大小.
解:M=(x-3)(x-5)=x2-8x+15,N=(x-2)(x-6) =x2-8x+12. ∵M-N=(x2-8x+15)-(x2-8x+12)=x2-8x+15- x2+8x-12=3>0, ∴M>N.
解:设 123 456 788=a,则 x=(a+1)(a-2)=a2-a-2, y=a(a-1)=a2-a. ∵x-y=(a2-a-2)-(a2-a)=a2-a-2-a2+a=-2<0, ∴x<y.
7.若 m 为任意实数,试比较(m-5)(m+1)与-4m-5 的大小.
解:(m-5)(m+1)=m2-4m-5. ∵m2≥0, ∴m2-4m-5≥-4m-5, 即(m-5)(m+1)≥-4m-5.
8.若 x=123 456 789×123 456 786,y=123 456 788×123 456 787, 试比较 x,y 的大小.
人教版 八年级上
第十四章 整式的乘法与因式分解
十大方法玩转指对幂比较大小
十大方法玩转指对幂比较大小指数对幂比较大小是高中数学中一个非常重要的概念,在学习指数对幂比较大小时,学生可以使用以下十种方法来更好地理解和掌握这个概念。
1.化简幂的指数:使用指数的基本性质,将幂的指数化简为最简形式。
例如,将2^3与2^(2+1)比较时,将2^(2+1)化简为2^2*2^1,然后进行比较。
2.应用指数的运算法则:利用指数的运算法则,如乘法法则和乘方法则,对幂进行化简。
例如,将2^3与(2^2)^2比较时,可以利用乘法法则将(2^2)^2化简为2^4,然后进行比较。
3.求幂的值:计算出幂的具体数值,然后进行比较。
例如,将2^3与8比较时,可以计算出2^3=8,然后进行比较。
4.比较幂的指数:比较幂的指数大小,而不必计算具体数值。
例如,比较2^3与2^4时可以直接说2^4的指数更大。
5.利用幂的递增性质:利用幂的递增性质,即相同底数的幂,指数越大幂越大。
例如,比较2^3与2^4时可以直接说2^4更大。
6.利用幂的递减性质:利用幂的递减性质,即相同底数的幂,指数越小幂越小。
例如,比较2^3与2^2时可以直接说2^3更大。
7. 利用对数函数的性质:利用对数函数的性质,将幂转化为对数进行比较。
例如,比较2^3与2^4时可以利用对数函数将其转化为比较log₂(2^3)与log₂(2^4),然后进行比较。
8.通过图像比较大小:通过绘制幂函数的图像,比较不同指数下的幂函数在数轴上的位置,进而比较幂的大小。
例如,比较2^3与2^4可以通过绘制y=2^3和y=2^4的图像,并观察图像在数轴上的位置来比较大小。
9.利用数学推理和证明:根据指数的性质和规律,运用数学推理和证明方法来比较幂的大小。
例如,通过数学归纳法证明对于任意正整数n,2^n>n。
通过以上十种方法的学习和应用,学生可以更好地理解和掌握指数对幂比较大小的方法和技巧,从而在解决相关的问题时能够灵活运用这些方法,提高数学解题的效率和准确性。
对数指数幂函数比大小技巧
对数指数幂函数比大小技巧1. 定义对数指数幂函数是由幂函数、指数函数和对数函数组合而成的一类特殊函数。
它们在数学中具有重要的应用,尤其在比较大小时,可以通过一些技巧简化计算。
常见的对数指数幂函数包括:•幂函数y=ax b,其中a和b是常数,x是变量。
•指数函数y=a x,其中a是常数,x是变量。
•对数函数y=log a(x),其中a是底数,x是变量。
2. 用途对数指数幂函数比大小技巧主要用于比较各种复杂的函数关系。
通过转换为对数或指数形式,可以简化计算过程,并更容易理解和分析问题。
这些技巧在实际应用中具有广泛的应用场景,例如:•经济学中的边际效益分析:通过比较两个变量之间的增长率来确定最优决策。
•物理学中的衰减和增长模型:通过比较指数衰减或增长速度来预测系统行为。
•生物学中的生长模型:通过比较不同生物体的增长率来研究种群动态。
3. 工作方式对数指数幂函数比大小技巧的工作方式主要包括以下几个步骤:步骤1:转换为对数或指数形式首先,将需要比较的函数转换为对数或指数形式。
这可以通过以下公式实现:•对数形式:y=log a(f(x))•指数形式:y=a f(x)其中,f(x)是原始函数。
步骤2:确定底数和指数根据具体情况,确定底数和指数的取值。
通常情况下,选择底数和指数使得计算更加简单,并且能够满足问题的要求。
步骤3:比较大小通过比较转换后的对数或指数形式,确定原始函数之间的大小关系。
•对于两个对数形式y1=log a(f(x1))和y2=log a(f(x2)),若x1<x2,则y1<y2。
•对于两个指数形式y1=a f(x1)和y2=a f(x2),若x1<x2,则y1<y2。
步骤4:反向转换根据比较结果,可以将对数或指数形式重新转换为原始函数形式,得到最终的大小关系。
4. 示例以下是一些常见的对数指数幂函数比大小技巧的示例:示例1:比较幂函数和指数函数考虑两个函数y1=2x和y2=3x2,我们想要比较它们之间的大小关系。
与幂有关的比较大小问题
与幂有关的比较大小问题江苏 孙翠梅在幂的运算中,经常会遇到比较正整数指数幂的大小问题.对于一些幂的指数较小的问题,可以直接计算出幂进行比较;但当幂的指数较大时,若通过先计算出幂再比较大小,就会很繁琐甚至不可能,这时该如何比较呢?下面举例介绍几种常用的比较幂的大小的方法.一、比较幂的大小方法一:指数比较法利用乘方,将比较大小的各个幂的底数化为相同的底数,然后根据指数的大小关系确定出幂的大小.例1 已知3181a =,4127b =,619c =,则a 、b 、c 的大小关系是( )A a >b >cB a >c >bC a <b <cD b >c >a 解:因为3181a ==431(3)=1243,4127b ==341(3)=1233,619c ==261(3)=1223, 因为124>123>122,所以1243>1233>1223,即a >b >c ,故选A .方法二:底数比较法利用乘方,将比较大小的各个幂的指数化为相同的指数,然后根据底数的大小关系确定出幂的大小.例2 503、404、305的大小关系是( ) A 503<404<305 B 305<503<404 C 305<404<503 D 404<305<503解:因为503=510(3)=10243,404=410(4)=10256,305=310(5)=10125,而125<243<256,所以10125<10243<10256,即305<503<404,故选B .方法三:作商比较法当a >0,b >0时,利用“若a b >1,则a >b ;若a b =1,则a =b ;若a b<1,则a <b ”比较.例3 已知P =999999,Q =990119,那么P 、Q 的大小关系是( ) A P >Q B P =Q C P <Q D 无法比较 解:因为P Q =999999×909911=999(911)9⨯×909911=99999119⨯×909911=1, 所以P =Q ,故选B .二、比较指数大小例4 已知2a =3,2b =6,2c =12,那么a 、b 、c 间的大小关系是( )A a +b >cB 2b <a +cC 2b =a +cD 2a <b +c 解:因为2a =3,2b =6=2×3,2c =12=22×3,而2(23)⨯=23(23)⨯⨯,所以2(2)b =22a c ⋅,即22b =2a c +.所以2b =a +c ,故选C .三、比较底数大小例5 已知a 、b 、c 、d 均为正数,且2a =2,3b =3,4c =4,5d =5,那么a 、b 、c 、d 中最大的数是( )A aB bC cD d分析:直接比较四个数的大小较繁琐,可两个两个的比较确定最大的数.解:因为236()a a ==32=8,326()b b ==23=9, 所以6a <6b ,于是a <b .因为3412()b b ==43=81,4312()c c ==34=64, 所以12b >12c ,于是b >c .因为3515()b b ==53=243,5315()d d ==35=125, 所以15b >15d ,于是b >d .综合知,b 是最大的数,故选B .。
玩转指对幂比较大小(十一大题型)(解析版)
玩转指对幂比较大小目录01方法技巧与总结02题型归纳总结题型一:直接利用单调性题型二:引入媒介值题型三:含变量问题题型四:构造函数题型五:数形结合题型六:特殊值法、估算法题型七:放缩法题型八:不定方程题型九:泰勒展开题型十:同构法题型十一:帕德逼近估算法03过关测试(1)利用函数与方程的思想,构造函数,结合导数研究其单调性或极值,从而确定a,b,c的大小.(2)指、对、幂大小比较的常用方法:①底数相同,指数不同时,如a x1和a x2,利用指数函数y=a x的单调性;②指数相同,底数不同,如x a1和x a2利用幂函数y=x a单调性比较大小;③底数相同,真数不同,如log a x1和log a x2利用指数函数log a x单调性比较大小;④底数、指数、真数都不同,寻找中间变量0,1或者其它能判断大小关系的中间量,借助中间量进行大小关系的判定.(3)转化为两函数图象交点的横坐标(4)特殊值法(5)估算法(6)放缩法、基本不等式法、作差法、作商法、平方法(7)常见函数的麦克劳林展开式:①e x=1+x+x22!+⋯+x nn!+eθx(n+1)!x n+1②sin x=x-x33!+x55!-⋯+(-1)n x2n+1(2n+1)!+o(x2n+2)③cos x=1-x22!+x44!-x66!+⋯+(-1)n x2n(2n)!+o(x2n)④ln(1+x)=x-x22+x33-⋯+(-1)n x n+1n+1+o(x n+1)⑤11-x=1+x+x2+⋯+x n+o(x n)⑥(1+x)n=1+nx+n(n-1)2!x2+o(x2)题型一:直接利用单调性1记a=30.2,b=0.3-0.2,c=log0.20.3,则()A.a>b>cB.b>c>aC.c>b>aD.b>a>c 【答案】D【解析】因为b=0.3-0.2=1030.2,幂函数y=x0.2在0,+∞上单调递增,又103>3,所以1030.2>30.2>30=1,所以b>a>1,又对数函数y=log0.2x在0,+∞上单调递减,所以c=log0.20.3<log0.20.2=1,故b>a>1>c.故选:D.2(2024·全国·模拟预测)已知a=30.6,b=log25,c=log323,则实数a,b,c的大小关系是() A.b>a>c B.a>b>c C.b>c>a D.a>c>b【答案】A【解析】由y=3x在R上单调递增,可得30.6>30.5=3>32,又30.65=27<25=32,则32<a=30.6<2.由y=log2x在0,+∞上单调递增,可得b=log25>log24=2.由y=log3x在0,+∞上单调递增,可得c=log323<log333=3 2.所以b>a>c,故选:A.3设a =4712,b =3534,c =ln1.6,则()A.c <a <bB.b <a <cC.c <a <bD.c <b <a【答案】D 【解析】因为47124=472=1649=20006125,35 34 4=35 3=27125=13236125,所以47 12 4>35 34 4,则47 12>3534,即a >b ,因为e 0.6 5=e 35 5=e 3>2.53=15.625,1.65=85 5=327683125<11,所以e 0.6 5>1.65,所以e 0.6>1.6,则ln e 0.6>ln1.6,即ln1.6<0.6,又b =35 34>35 1=35,所以b >c ,所以a >b >c .故选:D4(2024·宁夏银川·三模)已知a =0.20.5,b =cos2,c =lg15,则()A.a <b <cB.c <a <bC.b <c <aD.b <a <c【答案】D【解析】由题知a =0.20.5,b =cos2,c =lg15,因为f x =lg x 在定义域内单调递增,所以f 15 >f 10 ,即c =lg15>lg10=1,因为g x =0.2x 在定义域内单调递减,所以g 12<g 0 ,即0<a =0.20.5<0.20=1,因为h x =cos x 在0,π 上单调递减,所以h 2 <h π2 ,即b =cos2<cos π2=0,综上:b <0<a <1<c .故选:D题型二:引入媒介值1(2024·甘肃兰州·二模)故a =57-57,b =7535,c =log 3145,则a ,b ,c 的大小顺序是()A.b <a <cB.c <a <bC.b <c <aD.c <b <a【答案】D【解析】a =57 -57=7557>b =7535>1=log 3155>c =log 3145,所以c <b <a ,故选:D2(2024·高三·广西·开学考试)已知a =sin π6,b =20.1,c =log 23,则()A.b >c >a B.b >a >cC.a >c >bD.a >b >c【答案】A 【解析】a =sinπ6=12,因为20<20.1<21,所以1<b <2,因为log22<log 23<log 22,所以12<c <1,所以b>c>a,故选:A.3(2024·全国·模拟预测)已知a=log0.30.6,b=0.50.6,c=2cos222.5°-1,那么a,b,c的大小关系为()A.b<c<aB.a<b<cC.a<c<bD.b<a<c【答案】B【解析】因为0.62>0.3,所以0.6>0.312,则a=log0.30.6<log0.30.312=12,即0<a<12,0.5<b=0.50.6<0.50.5=22,即12<b=22,c=2cos222.5°-1=cos45°=22,故a<b<c 故选:B4(2024·江西上饶·模拟预测)设13a=2,b=log1213,c=12-13,则有()A.a<b<cB.a<c<bC.b<c<aD.b<a<c 【答案】B【解析】由13a=2,得a=log132<log131=0,b=log1213=log23>log222=32,c=213<212<32,而c>0,所以a<c<b.故选:B题型三:含变量问题1(2024·陕西西安·统考一模)设a>b>0,a+b=1且x=-1ab,y=log1ba,z=log1a+1bab,则x,y,z的大小关系是()A.x<z<yB.z<y<xC.y<z<xD.x<y<z 【答案】A【解析】由a>b>0,a+b=1,可得0<b<12<a<1,则z=log1a +1bab=log a+babab=log1abab=-1因为0<b<1,所以log b a<log b b=1,则y=log1ba=-log b a>-log b b=-1,因为x=-1ab<-1,所以x<z<y.故选:A.2(多选题)若0<a<b<1,则()A.a b<b aB.ab+1<a+bC.a1-b<b1-aD.log a(1+b)>log b(1+a)【答案】AC【解析】A选项中,因为0<a<1,故y=a x在R上单调递减,故a b<a a,因为y=x a在0,+∞上单调递增,故a a<b a,综上,a b<a a<b a,A正确;B选项中,由于a+b-ab-1=(a-1)(1-b)<0,而已知0<a<b<1,所以B不正确;C 选项中,a 1-b <b 1-a ⇔(1-b )ln a <(1-a )ln b ⇔ln a 1-a <ln b1-b,设f (x )=ln x 1-x (0<x <1),则f(x )=1x -1+ln x (1-x )2(0<x <1),设g (x )=ln x +1x -1(0<x <1),则g (x )=x -1x2<0⇒g (x )>g (1)=0⇒f (x )>0,所以f (x )在0,1 上递增,这样f (a )<f (b ),故C 正确;D 选项中,取a =19,b =13,则log a (1+b )=log 1943=log 13233,log b (1+a )=log 13109,又233=639>109>1,故log a (1+b )=log 1943<log b (1+a )=log 13109,所以D 错误.故选:AC .3(多选题)(2024·海南海口·模拟预测)已知x ,y ,z 都为正数,且2x =3y=6z ,则()A.xy >4z 2B.1x +1y <1zC.x +y >4zD.x +y <5z【答案】ACD【解析】令2x =3y=6z =k >1,则x =log 2k ,y =log 3k ,z =log 6k ,所以1x +1y =log k 2+log k 3=log k 6=1z ,B 错误;z =xy x +y <xy 2xy =xy 2(注意x ≠y >0等号不成立),故4z 2<xy ,A 正确;z =xy x +y <(x +y )24(x +y )=x +y 4(注意x ≠y >0等号不成立),则4z <x +y ,C 正确,由x +y -5z =log 2k +log 3k -5log 6k ,令f (x )=log 2x +log 3x -5log 6x 且x ∈(1,+∞),则f(x )=1x 1ln2+1ln3-5ln6 =1x ⋅(ln6)2-5ln2ln3ln2ln3ln6,由(ln6)2-5ln2ln3=(ln2+ln3)2-5ln2ln3=ln 32 2-ln2ln3<(ln e )2-ln2ln3=14-ln2ln3,因为ln3>ln e =1,故14-ln2ln3<14-ln2=ln 4e2<0,综上,f (x )<0,即f (x )在x ∈(1,+∞)上单调递减,所以f (x )<f (1)=0,故log 2x +log 3x <5log 6x 恒成立,即x +y <5z ,D 正确.故选:ACD4(多选题)(2024·山西·模拟预测)已知当x >0时,11+x <ln 1+1x <1x,则()A.109<e 19<98 B.ln9<1+12+⋯+19<ln10C.10e9<9!D.C 09902+C 19912+⋯+C 99992<e【答案】ACD 【解析】因为11+x <ln 1+1x <1x ,令x =8,11+8=19<ln 1+18 =ln 98,则e 19<98,令x =9,ln 1+19 =ln 109<19,则109<e 19,A 正确;因为ln 1+1x =ln x +1x <1x ,则ln 21<1,ln 32<12,⋯,ln 109<19,以上各式相加有ln10<1+12+⋯+19,B 错误;由ln 1+1x =ln x +1x <1x得,x ln (x +1)-x ln x -1<0,即x ln (x +1)-(x -1)ln x -1<ln x ,于是ln2-1<ln1,2ln3-ln2-1<ln2,3ln4-2ln3-1<ln3,⋯,9ln10-8ln9-1<ln9,以上各式相加有9ln10-9<ln9!,即e ln109-9=109e9=10e 9<9!,C 正确;由ln 1+1x <1x 得,1+1x x <e ,因此C 0990+C 1991+⋯+C 9999=1+19 9<e ,设k ,n ∈N *,k ≤n ,C kn n k =n (n -1)(n -2)⋯(n -k +1)n k ⋅k !≤1,则C k n n k 2≤C knnk ,所以C 0990 2+C 19912+⋯+C 99992<C 0990+C 1991+⋯+C 9999<e ,D 正确.故选:ACD5(多选题)(2024·湖北·模拟预测)已知正实数a ,b ,c 满足c b <b a <1<log c a ,则一定有()A.a <1B.a <bC.b <cD.c <a【答案】AB【解析】由正实数a ,b ,c ,以及c b <1,b a <1可得c ,b ∈0,1 ,又log c a >1=log c c ,所以a <c <1.所以a b <c b ,又c b <b a ,所以a b <b a ,即b ln a <a ln b ,等价于ln a a <ln bb,构造函数f x =ln xx,x >0f x =1-ln xx 2,当x ∈0,1 时,f x =1-ln xx 2>0故f x =ln xx在0,1 上递增,从而a <b .又取b =c 时,原式为b b <b a <1<log b a 同样成立,故CD 不正确,故选:AB题型四:构造函数1设a =log 32,b =log 43,c =23,d =log 53,则()A.a <b <c <dB.a <c <d <bC.a <d <c <bD.c <a <b <d【答案】B【解析】构造函数f x =ln xx,f x 的定义域为0,+∞ ,f x =1-ln xx2,令f x >0可得:x ∈0,e ,令f x <0可得:x ∈e ,+∞ ,所以f x 在0,e 上单调递增,在e ,+∞ 上单调递减.故f3 >f4 =f2 ,即ln33>ln44=ln22,变形可得ln2ln3<23,即log32<23,所以a<c;又3ln3=ln27>ln25=2ln5,所以23<log53,又因为log53<log43,所以c<d<b,综上,a<c<d<b,故选:B.2(2024·湖北武汉·二模)设a=15,b=2ln sin110+cos110,c=65ln65,则a,b,c的大小关系是()A.a<b<cB.b<a<cC.b<c<aD.c<a<b 【答案】B【解析】由已知可得b=2ln sin 110+cos110=ln sin110+cos1102=ln1+sin15,设f(x)=x-sin x,x∈(0,1),则f (x)=1-cos x>0,所以f(x)=x-sin x在(0,1)上单调递增,所以f15>f(0)=0,即15>sin15,所以b=ln1+sin15<ln1+15,设g(x)=x-ln(x+1),x∈(0,1),则g (x)=1-1x+1=xx+1>0,所以g(x)=x-ln(x+1)在(0,1)上单调递增,所以g15>g(0)=0,即15>ln1+15>ln1+sin15,综上a>b,设h(x)=x-65ln(x+1),x∈(0,1),则h (x)=1-65x+5=5x-1x+1,当x∈0,1 5时,h (x)<0,当x∈15,1时,h (x)>0,所以h(x)=x-65ln(x+1)在0,15上单调递减,在15,1上单调递增,所以h15<h(0)=0,即15<65ln1+15=65ln65,所以a<c,所以b<a<c 故选:B.3设a=4105,b=ln1.04,c=e0.04-1,则下列关系正确的是()A.a>b>cB.b>a>cC.c>a>bD.c>b>a 【答案】D【解析】设f x =e x-x+1,g x =ln x-x-1,则f x =e x-1,g x =1-x x,易知x>0⇒f x >0,1>x>0⇒g x >0,且x<0⇒f x 0,x1⇒g x <0,所以f x 在-∞,0上单调递减,在0,+∞上单调递增;g x 在0,1上单调递增,在1,+∞上单调递减,即f x ≥f0 =0⇒e x-1≥x,在x=0时取得等号,且g x ≤g1 =0⇒ln x≤x-1,在x=1时取得等号,则ln 1x≤1x-1x>0⇒ln x≥1-1x,在x=1时取得等号,所以e 0.04-1>0.04=1.04-1>ln1.04>1-11.04=4104>4105,即c >b >a .故选:D4(2024·全国·模拟预测)已知a =5050,b =4951,c =5149,则()A.b <c <aB.c <a <bC.b <a <cD.a <b <c【答案】B【解析】因为a =5050,b =4951,所以ln a =50ln50,ln b =51ln49,令f (x )=ln x x +1x >e 2 ,则f(x )=1+1x -ln x x +12,令g x =1+1x -ln x x >e 2 ,则g x =-x +1x2<0恒成立,所以g x 在e 2,+∞ 上单调递减,则g x <g e 2 =1+1e2-2<0,所以f (x )<0在e 2,+∞ 上恒成立,则f (x )上单调递减,又e 2<49<50,所以f 50 <f 49 ,即ln5051<ln4950,即50ln50<51ln49,所以ln a <ln b ,则a <b ;因为c =5149,所以ln c =49ln51,而ln a =50ln50,令h (x )=ln x x -1x >e 2 ,则h(x )=1-1x -ln x x -12,令φx =1-1x -ln x x >e 2 ,则φ x =1-xx 2<0恒成立,所以φx 在e 2,+∞ 上单调递减,则φx <φe 2 =1-1e2-2<0,所以h (x )<0在e 2,+∞ 上恒成立,则h (x )上单调递减,又e 2<50<51,所以h 51 <h 50 ,即ln5150<ln5049,即49ln51<50ln50,所以ln c <ln a ,则c <a ;综上,c <a <b .故选:B .5已知a =log 2986-log 2985,b =1-cos 1986,c =1985,则()A.b >a >cB.b >c >aC.a >c >bD.c >b >a【答案】C【解析】设g x =log 2x +1 -x ,x ∈0,1 ,则g x =1x +1 ln2-1,当x ∈0,1ln2-1 时,g x >0,g x 单调递增;当x ∈1ln2-1,1 时,g x <0,g x 单调递增;又g 0 =g 1 =0,所以g x =log 2x +1 -x >0,x ∈0,1 ,所以a =log 2986-log 2985=log 21+1985 >1985=c ;0<b =1-cos 1986<1,0<1986<c =1985<1,设f x =1-cos x -x ,0<x <1,f x =sin x -1<0,所以函数f x 在区间0,1 上单调递减,所以f x =1-cos x -x <f 0 =0,所以1-cos x <x ,又0<1986<1,所以1-cos 1986<1986<1985,则b <c ,综上,a >c >b .故选:C .题型五:数形结合1(2024·高三·海南·期末)若a =ln1.1,b =1e 0.9,c =0.1,则()A.a <b <cB.c <b <aC.a <c <bD.c <a <b【答案】C【解析】设f x =ln x -x -1 ,f x =1x-1,当x ∈1,2 时,f x <0,f x 单减,故f 1.1 =ln1.1- 1.1-1 <f 1 =0,即ln1.1<0.1;设g x =e x -x +1 ,g x =e x -1,当x ∈-1,0 时,g x <0,所以g -0.9 >g 0 ,即e -0.9--0.9+1 >e 0-0+1 =0,即e -0.9>0.1;c =0.112>0.11=0.1,故a 最小,b =1e0.9,c =110=110,e 0.910<39=19683,10 10=105=100000,因为19683<100000,所以e 0.9 10<39<10 10,所以e 0.9<10,1e0.9>110,所以b >c >a 故选:C2(2024·陕西商洛·模拟预测)设a =sin0.2,b =0.16,c =12ln 32,则()A.a >c >bB.b >a >cC.c >b >aD.c >a >b【答案】D【解析】设f x =sin x -x -x 2 ,x ∈0,0.2 ,f x =cos x -1+2x ,设g x =f x ,g x =-sin x +2>0,所以g x ≥g 0 =0,所以函数f x 在0,0.2 上单调递增,所以f 0.2 =sin0.2-0.2-0.22 =sin0.2-0.16>f 0 =0,即a >b .根据已知得c =12ln 32=12ln 1.20.8=12ln 1+0.21-0.2,可设h x =12ln 1+x -ln 1-x -sin x ,x ∈ 0,0.2 ,则h x =1211+x +11-x -cos x =11-x 2-cos x >0,所以函数h x 在0,0.2 上单调递增,所以h 0.2 >h 0 =0,即c >a .综上,c >a >b .故选:D .3已知a =0.80.5+0.80.7+0.80.9,b =0.60.8+0.70.8+0.80.8,c =e -815+e-1235+e -15,则()A.a >b >cB.a >c >bC.c >a >bD.b >c >a【答案】A【解析】设f x =0.8x ,画出f x 的图象,故f x 为下凸函数,当x 1≠x 2时f x 1 +f x 2 2>f x 1+x22,所以0.80.5+0.80.9>2×0.80.7,a =0.80.5+0.80.7+0.80.9>3×0.80.7.设g x =x 0.8x >0 ,画出g x 图象,故g x 为上凸函数,当x 1≠x 2时g x 1 +g x 2 2<g x 1+x22,所以b =0.60.8+0.70.8+0.80.8<3×0.70.8,同一坐标系内画出f x =0.8x 和r x =0.7x 的图象,又y =0.7x 在R 上单调递减,故0.80.7>0.70.7>0.70.8,所以a >b .设h x =ln x -1+1x 0<x <1 ,则h x =1x -1x 2<0,h x 在0,1 上单调递减,所以0<x <1时h x >h 1 =0,所以ln x >1-1x ,0.8ln0.6>451-53 =-815,所以0.60.8>e-815,同理可得0.70.8>e-1235,0.80.8>e -15,相加得0.60.8+0.70.8+0.80.8>e -815+e-1235+e -15,b >c ,所以a >b >c .故选:A4(2024·四川广安·二模)已知a,b,c均为正数,a=1+4a-2a,b2=4+b2-3b,4-c2c=log4c+3,则a,b,c的大小关系为()A.b<c<aB.b<a<cC.a<c<bD.a<b<c 【答案】B【解析】a=1+4a-2a可变形为:a-4a=1-2a,b2=4+b2-3b可变形为:b-4b=2-3b,4-c2c=log4c+3可变形为:c-4c=-log4c+3,令f x =x-4x,g x =1-2x,h x =2-3x,q x =-log4x+3,且x>0,可知a,b,c分别为函数f x 与g x ,h x ,q x 的交点横坐标,当x>0时,f x 单调递增且f1 =-3,f2 =0,g x ,h x ,q x 这三个函数全部单调递减,且g1 =h1 =q1 =-1>-3,g2 =-3<0,h2 =-7< 0,q2 =-log45<-1<0,由零点存在性定理可知:a,b,c∈1,2,所以只需判断g x ,h x ,q x 这三个函数的单调性,在x∈1,2范围内下降速度快的,交点横坐标小,下降速度慢的交点横坐标大,由图象可知,q x =-log4x+3下降速度最慢,所以c最大,g x =-2x ln2,h x =-3x ln3,x>0时,g x >h x ,所以交点a>b,故选:B5(2024·黑龙江哈尔滨·三模)已知2a=log12a,12b=log12b,则下面正确的是()A.a>bB.a<14C.b>22D.a-b<12【答案】D【解析】令f x =2x-log12x=2x+log2x,由2a=log12a,故f a =0,由y=2x与y=log2x在0,+∞上单调递增,故f x 在0,+∞上单调递增,又f14=214+log214=214-2<0,f12 =212+log212=2-1>0,故a∈14,12,故B错误;令g x =12x-log12x=12x+log2x,由函数y=12x的图象及y=-log2x的图象可得g x 在0,+∞上只有一个零点,由12b=log12b ,故g b =0,又g 22 =12 22+log 222=12 22-12>12 1-12=0,g 12 =12 12+log 212=12 12-1<12 0-1=0,故b ∈12,22,故C 错误;有a <b ,故A 错误;a -b <22-14=22-14<3-14=12,故D 正确.故选:D .6雅各布·伯努利(Jakob Bernoulli ,1654-1705年)是伯努利家族代表人物之一,瑞士数学家,他酷爱数学,常常忘情地沉溺于数学之中.伯努利不等式就是由伯努利提出的在分析不等式中一种常见的不等式.伯努利不等式的一种形式为:∀x >-1,n ∈N *,则(1+x )n ≥1+nx .伯努利不等式是数学中的一种重要不等式,它的应用非常广泛,尤其在概率论、统计学等领域中有着重要的作用.已知a =log 22024-log 22023,b =1-cos 12024,c =12023,则()A.b >a >cB.a >c >bC.b >c >aD.c >b >a【答案】B【解析】a =log 22024-log 22023=log 220242023,c =12023=20242023-1,令f x =log 2x ,g x =x -1,两函数图象如图所示,因为f x 、g x 均单调递增,且f 1 =g 1 ,f 2 =g 2 ,结合图象可知当x ∈1,2 时,f x >g x ,即log 2x >x -1,故log 220242023>20242023-1,故a >c ;如图,单位圆A 中,BD ⊥AC 于D ,设∠BAC =θ,0<θ<π2,则BC的长度l =θ,AD =cos θ,CD =1-cos θ,则由图易得,l >BC >CD ,即θ>1-cos θ,所以12023>12024>1-cos 12024,故c >b ;综上,a >c >b .故选:B .7(2024·高三·江苏苏州·期中)设a =15cos 15,b =sin 15,c =e -45,则a ,b ,c 的大小关系为( ).A.b <a <c B.a <c <b C.b <c <a D.a <b <c【答案】D【解析】设∠AOB =α∈0,π2,作出单位圆,与x 轴交于A 点,则A 1,0 ,过点A 作AC 垂直于x 轴,交射线OB 于点C ,连接AB ,过点B 作BD ⊥x 轴于点D ,由三角函数定义可知AC =tan α,BD =sin α,AB=α,设扇形OAB 的面积为S 1,则S △OAC >S 1>S △ABO ,即12tan α>12α>12sin α,故tan α>α>sin α,因为15∈0,π2 ,所以tan 15>15>sin 15,又cos 15>0,由tan 15>15得sin 15>15cos 15,即b >a ,令f x =e x -x -1,x <0,则f x =e x -1,当x <0时,f x =e x -1<0,故f x 在-∞,0 上单调递减,所以f -45 >f 0 =0,所以e -45>15,故c >b ,综上,a <b <c .故选:D8(2024·江西南昌·三模)若12a=log2a,12 b=b2,c12=2-c,则正数a,b,c大小关系是()A.c<a<bB.c<b<aC.a<c<bD.a<b<c 【答案】B【解析】由12a=log2a,则a为y=12 x与y=log2x交点的横坐标,由12b=b2,则b为y=12 x与y=x2交点的横坐标,由c 12=2-c,即c12=12c,则c为y=12 x与y=x12交点的横坐标,作出y=12x,y=log2x,y=x2,y=x12的图象如下所示,由图可知,c<b<a.故选:B题型六:特殊值法、估算法1若都不为零的实数a,b满足a>b,则()A.1a <1bB.ba+ab>2 C.e a-b>1 D.ln a>ln b【答案】C【解析】取a=1,b=-1,满足a>b,但1a>1b,A错误;当a=1,b=-1,满足a>b,但ba+ab=-2<2,B错误;因为a>b,所以a-b>0,所以e a-b>1,C正确;当a<0或b<0时,ln a,ln b无意义,故D错误.故选:C2已知a=2x,b=ln x,c=x3,若x∈0,1,则a、b、c的大小关系是()A.a>b>cB.a>c>bC.c>b>aD.c>a>b 【答案】B【解析】取x=12,则a=212>1,b=ln12<0,c=123<1,所以a>c>b.故选:B.3已知a=3,b=214,c=log2e,则a,b,c的大小关系为()A.a>b>cB.a>c>bC.b>a>cD.b>c>a 【答案】B【解析】由a4=9,b4=2,可知a>b>1,又由e2<8,从而e<22=232,可得c=log2e<32<a,因为b4-654=2-1296625<0,所以1<b<65;因为e5-26>2.75-64>0,从而e5>26,即e>26 5,由对数函数单调性可知,c=log2e>log2265=65,综上所述,a>c>b.故选:B.4(2024·陕西安康·模拟预测)若a,b,c满足2a>2b,log3c<0,则()A.1b-ac>0 B.a c>b c C.ac>bc D.a+c>bc 【答案】C【解析】由2a>2b,log3c<0,得a>b,0<c<1,所以b-a<0,所以1b-ac<0,所以A错误;令a=-1,b=-2,c=12,此时ac与b c无意义,所以B错误;因为a>b,0<c<1,所以由不等式的性质可得ac>bc,所以C正确;令a=-2,b=-3,c=12,则a+c=-32=bc,所以D错误.故选:C.题型七:放缩法1(2024·全国·模拟预测)已知a=e π10,b=1+sin9π10,c=1.16,则a,b,c的大小关系为()A.a>b>cB.a>c>bC.c>a>bD.c>b>a 【答案】C【解析】令f x =e x-x-1x≥0,则f x =e x-1≥0恒成立,所以f x 在0,+∞单调递增,所以当x>0时,f x >f0 =0,即e x>x+1x>0;令g x =x-sin x x≥0,则g x =1-cos x≥0恒成立,所以g x 在0,+∞单调递增,所以当x>0时,g x >g0 =0,即sin x<x(x>0);由诱导公式得b=1+sin 9π10=1+sinπ10,所以b=1+sin π10<1+π10<eπ10,因此a>b;因为a=e π10<e410=e0.4,c=1.16= 1.1150.4,故只需比较e与1.115的大小,由二项式定理得,1.115=(1+0.1)15>1+C115×(0.1)1+C215×(0.1)2>3>e,所以c>a.综上,c>a>b.故选:C2(2024·全国·模拟预测)已知a =13log 512,b =sin π10,c =1734,则()A.a <b <c B.c <b <aC.b <c <aD.a <c <b【答案】B 【解析】因为a =13log 512=16log 5144>16log 5125=12,b =sin π10<sin π6=12,所以b <a .因为b =sin π10>sin π10cos π10=12sin π5>12sin π6=14,c =1734=1343 14<1256 14=14,所以c <b .综上可知,c <b <a .故选:B .3(2024·全国·模拟预测)已知a =lg2,b =lg5,则下列不等式中不成立的是()A.0<ab <1 B.2a -b >12C.a +b >2D.1a +1b>4【答案】C【解析】因为a =lg2,b =lg5,所以a +b =lg2+lg5=lg10=1,对于A ,易得0<a <1,0<b <1,所以0<ab <1,故A 成立.对于B ,因为a -b =lg 25>lg 110=-1,所以2a -b >2-1=12,故B 成立.对于C ,(a +b )2=1+2ab ≤1+a +b =2,当且仅当a =b =12时,等号成立,显然等号不成立,所以a +b <2,故C 不成立.对于D ,因为a +b =1且a ≠b ,所以1a +1b =(a +b )1a +1b =2+b a +ab >2+2b a ⋅a b=4,故D 成立.故选:C .4(2024·江西宜春·模拟预测)若a =e -310,b =0.3e 0.3,c =1310ln1.3,则()A.a >b >c B.a >c >b C.b >a >cD.c >b >a【答案】A【解析】显然a =e -310>0,b =0.3e 0.3>0,因为b a=0.3e 0.3e-310=0.3e 0.6<0.3e <0.9<1,所以a >b ;又因为b =0.3e 0.3=e 0.3ln e 0.3,c =1310ln1.3=1.3ln1.3,令g x =e x -x -1,x >0.则g x =e x -1>0,可知g (x )在0,+∞ 上单调递增,则g 0.3 >g 0 =0,可得e 0.3>1+0.3=1.3>1e,令f (x )=x ln x ,x >1e ,则f x =ln x +1>0在1e ,+∞ 内恒成立,可知f (x )在1e ,+∞ 内单调递增,则f e 0.3 >f 1.3 ,即e 0.3ln e 0.3>1.3ln1.3,所以b >c ;综上所述:a >b >c .故选:A .5(2024·内蒙古呼和浩特·二模)设a =log 615,b =log 820,c =log 20122024,则a 、b 、c 的大小关系为()A.a <b <cB.a <c <bC.b <a <cD.c <b <a【答案】D【解析】a =log 615=log 6156×6=log 652+1,b =log 820=log 8208×8 =log 852+1,c =log 20122024=log 201220242012×2012 =log 2012506503+1,因为log 652>log 852,所以a >b ,因为log 852>log 82=13,log 2012506503<log 201210=log 2012100013<log 2012201213=13,所以b >c ,所以c <b <a .故选:D .6下列大小关系正确的是()A.2ln2<ln2 B.22.2>2.22C.3.32>23.3D.3.34<43.3【答案】C【解析】对于A ,由于2>1,0<ln2<1,所以2>ln2>0,2 2>ln2 2,故2ln2>ln2,故A 错误;对于BCD ,设f x =ln x x ,则f x =1-ln xx 2,当x >e 时,f x <0,此时f x 单调递减,当0<x <e 时,f x >0,此时f x 单调递增,因此f 2.2 >f 2 ,f 3.3 >f 4 ,即ln2.22.2>ln22⇒2ln2.2>2.2ln2⇒22.2<2.22,故B 错误;ln3.33.3>ln44⇒4ln3.3>3.3ln4⇒2ln3.3>3.3ln2⇒3.32>23.3,故C 正确;ln3.33.3>ln44⇒4ln3.3>3.3ln4⇒3.34>43.3,故D 错误.故选:C题型八:不定方程1已知a 、b 、c 是正实数,且e 2a -2e a +b +e b +c =0,则a 、b 、c 的大小关系不可能为()A.a =b =cB.a >b >cC.b >c >aD.b >a >c【答案】D【解析】因为e2a-2e a+b+e b+c=0,a、b、c是正实数,所以e2a-e a+b+e b+c-e a+b=e a e a-e b+e b e c-e a=0,因为a,b,c>0,所以e a>1,e b>1,e c>1,对于A,若a=b=c,则e a-e b=e c-e a=0,满足题意;对于B,若a>b>c,则e a-e b>0,e c-e a<0,满足题意;对于C,若b>c>a,则e a-e b<0,e c-e a>0,满足题意;对于D,若b>a>c,则e a-e b<0,e c-e a<0,不满足题意.故选:D.2设实数a,b满足1001a+1010b=2023a,1014a+1016b=2024b,则a,b的大小关系为() A.a>b B.a=b C.a<b D.无法比较【答案】C【解析】假设a≥b,则1010a≥1010b,1014a≥1014b,由1001a+1010b=2023a得1001a+1010a≥2023a⇒10012023a+10102023a≥1,因函数f(x)=10012023x+10102023x在R上单调递减,又f(1)=10012023+10102023=20112023<1,则f(a)≥1>f(1),所以a<1;由1014a+1016b=2024b得1014b+1016b≤2024b⇒10142024b+10162024b≤1,因函数g(x)=10142024x+10162024x在R上单调递减,又g(1)=10142024+10162024=20302024>1,则g(b)≤1<g(1),所以b>1;即有a<1<b与假设a≥b矛盾,所以a<b,故选:C3已知实数a、b,满足a=log23+log64,3a+4a=5b,则关于a、b下列判断正确的是() A.a<b<2 B.b<a<2 C.2<a<b D.2<b<a【答案】D【解析】先比较a与2的大小,因为log23>1,所以(log23)2>log23,所以a-2=log23+log64-2=log23+21+log23-2=(log23)2-log231+log23>0,即a>2,故排除A,B,再比较b与2的大小,易得,当b=2时,由3a+4a=5b,得a=2与a>2矛盾,舍去,故a>2,则有3a+4a=5b,得b>2,令f(x)=3x+4x-5x,x>2,令t=x-2,则x=t+2,故g(t)=9×3t+16×4t-25×5t<25⋅4t-25⋅5t<0,故3a+4a=5b<5a,从而2<b<a.故选:D.4已知实数a,b满足a=log34+log129,5a+12a=13b,则下列判断正确的是() A.a>b>2 B.b>a>2 C.2>b>a D.a>2>b 【答案】A【解析】∵a=log34+log129=log34+log39log312=log34+21+log34,故a-2=log34+21+log34-2=(log34)2-log341+log34,∵log34>log33=1,∴(log34)2>log34,故a-2>0,即a>2,∵5a+12a=13b,且a>2,∴13b>52+122=132,∴b>2,令g(x)=5x+12x-13x(x>2),则g(x)=52⋅5x-2+122⋅12x-2-132⋅13x-2<(52+122)⋅12x-2-169⋅13x-2<0,故13b=5a+12a<13a,即a>b,故a>b>2,故选:A.5若a<4且4a=a4,b<5且5b=b5,c<6且6c=c6,则()A.a<b<cB.c<b<aC.b<c<aD.a<c<b 【答案】B【解析】令f(x)=ln xx(x>0),则f′(x)=1-ln xx2.由f′(x)>0得:0<x<e.∴函数f(x)在(0,e)上单调递增,在(e,+∞)上单调递减.∵4a=a4,5b=b5,6c=c6,∴a ln4=4ln a,b ln5=5ln b,c ln6=6ln c,∴f(4)=ln44=ln aa=f(a),f(5)=ln55=ln bb=f(b),f(6)=ln66=ln cc=f(c).∵6>5>4>e,∴f(6)<f(5)<f(4),∴f(c)<f(b)<f(a),又∵c<6,b<5,a<4,∴c,a,b都小于e,∴c<b<a.故选:B.题型九:泰勒展开1已知a=3132,b=cos14,c=4sin14,则()【答案】A【解析】设x=0.25,则a=3132=1-0.2522,b=cos14≈1-0.2522+0.2544!,c=4sin14=sin1414≈1-0.2523!+0.2545!,计算得c>b>a,故选A.2设a=e0.2-1,b=ln1.2,c=15,则a,b,c的大小关系为.(从小到大顺序排)【答案】b<c<a【解析】a=e0.2-1>1+0.2-1=0.2=c,由函数切线放缩ln(1+x)<x得b=ln1+0.2<0.2=c,因此a>c>b.故答案为:b <c <a3设a =0.1e 0.1,b =19,c =-ln0.9,则()A.a <b <cB.c <b <aC.c <a <bD.a <c <b【答案】C【解析】a =0.1e 0.1≈0.11+0.1+(0.01)22=0.1105,b =19≈0.1111c =-ln0.9=ln 109=ln 1+19 ≈19-1922=0.1049∴c <a <b 故选C4a =2ln1.01,b =ln1.02,c = 1.04-1,则()A.a <b <c B.b <c <aC.c <a <bD.a <c <b【答案】B【解析】a =2ln1.01=2ln (1+0.01)≈20.01-(0.01)22+(0.01)33=0.0199,b =ln (1+0.02)≈0.02-(0.02)22=0.0198,c = 1.04-1=(1+0.04)12-1≈1+12×0.04+12-12 (0.04)22-1=0.02-0.00002=0.0198∴b <c <a ,故选B5(2024·全国·模拟预测)已知a =0.99,b =0.9999,c =sin9则()A.a >b >cB.b >a >cC.c >a >bD.b >c >a【答案】C【解析】由已知,a =0.99=1-110 10-1,b =0.9999=1-1100 100-1,设f x =1-x 1x-1=eln 1-x 1x-1=e1x -1 ln 1-x,x ∈0,1 ,则fx =e 1x -1 ln 1-x ⋅1x -1ln 1-x,其中1x -1ln 1-x =-1x 2ln 1-x +1x -1 ⋅-11-x =-ln 1-x +x x2,令g x =ln 1-x +x ,则g x =-11-x +1=xx -1,当x ∈0,1 时,g x <0,∴g x 在0,1 上单调递减,g x <g 0 =0,∴当x ∈0,1 时,1x -1 ln 1-x>0,f x >0,f x 在0,1 上单调递增,∴f 110 >f 1100 ,即1-110 10-1>1-1100 100-1,∴有a >b .对于c 与a ,c =sin9=sin 3π-9 >sin 9.42-9 >sin0.4,将sin0.4泰勒展开,得sin0.4>0.4-0.433!>0.3893,a =1-0.1 9<C 09-0.1 0+C 19-0.1 1+C 29-0.1 2+C 39-0.1 3+C 49-0.1 4=1-0.9+0.36-0.084+0.0126=0.3886<0.3893<c ,∴a <c .综上所述,a ,b ,c 的大小关系为c >a >b .故选:C .题型十:同构法1(多选题)(2024·全国·模拟预测)已知实数a ,b 满足log 3a +log b 3=log 3b +log a 4,则下列关系式中可能正确的是()A.∃a ,b ∈(0,+∞),使|a -b |>1B.∃a ,b ∈(0,+∞),使ab =1C.∀a ,b ∈(1,+∞),有b <a <b 2D.∀a ,b ∈(0,1),有b <a <b【答案】ABC【解析】由log 3a +log b 3=log 3b +log a 4得log 3b -1log 3b=log 3a -1log 4a ,令f (x )=log 3x -1log 3x ,则f (x )分别在(0,1)和(1,+∞)上单调递增,令g (x )=log 3x -1log 4x,则g (x )分别在(0,1)和(1,+∞)上单调递增,当x ∈(0,1)时,f x 的值域为R ,当x ∈(2,+∞)时,g (x )的值域为log 32-2,+∞ ,所以存在b ∈(0,1),a ∈(2,+∞),使得f (b )=g (a );同理可得,存在b ∈(2,+∞),a ∈(0,1),使得f (b )=g (a ),因此∃a ,b ∈(0,+∞),使|a -b |>1,故选项A 正确.令ab =1,则方程log 3a +log b 3=log 3b +log a 4可化为log b 3+log b 4=2log 3b ,由换底公式可得(ln b )2=ln3×ln122>0,显然关于b 的方程在(0,+∞)上有解,所以∃a ,b ∈(0,+∞),使ab =1,故选项B 正确.当a ,b ∈(1,+∞)时,因为log 3b -1log 3b =log 3a -1log 4a <log 3a -1log 3a ,所以f (b )<f (a ).又f x 在(1,+∞)上单调递增,所以b <a .因为log 3b -1log 3b=log 3a -1log 4a >log 4a -1log 4a ,令h (x )=x -1x,则h (x )在(0,+∞)上单调递增.因为h log 3b >h log 4a ,所以log 3b >log 4a ,从而log 3b >log 4a =log 2a >log 3a ,所以b >a .综上所述,b <a <b 2,故选项C 正确.当a ,b ∈(0,1)时,因为log 3b -1log 3b =log 3a -1log 4a >log 3a -1log 3a ,所以f (b )>f (a ).又f x 在(0,1)上单调递增,所以b >a .因为log 3b -1log 3b=log 3a -1log 4a <log 4a -1log 4a .令h (x )=x -1x,则h (x )在(0,+∞)上单调递增,因为h log 3b <h log 4a ,所以log 3b <log 4a ,从而log 3b <log 4a =log 2a <log 3a ,所以b <a .综上所述,b 2<a <b ,故选项D 错误.故选:ABC .2(多选题)已知a>0,b>0且满足ab-2b+b ln ab=e,则下列结论一定正确的是() A.ab>e B.ab<e C.ab>e2 D.ab<e2【答案】AD【解析】等式ab-2b+b ln ab=e,等号两边同除以b,可得a-2+ln ab=e b,所以a+ln a=eb-ln b+2,所以a+ln a=eb+1-ln b+1,所以a+ln a=eb+ln eb+1,构造函数a+ln a=eb+ln eb+1,则f a =f eb+1,显然,函数f x =x+ln x在定义域0,+∞内是增函数,所以a>eb,即ab>e.而ab-e=b2-ln ab,而ab>e,故2-ln ab>0,故ab<e2,故D正确.故选:AD.3(2024·高三·浙江·开学考试)已知a>1,b>0,若a+log2a=b+log2b,则()A.a>2bB.a<2bC.a>b2D.a<b2【答案】D【解析】当a=4时,a+log2a=b+log2b=4⇒b+log2b-4=0,函数g x =x+log2x-4是正实数集的上的增函数,因为g2 g4 =-1×2<0,因此b∈2,4⇒2b∈4,8,显然a<2b,因此选项A不正确;当a=16时,a+log2a=b+log2b=8⇒b+log2b-8=0,函数h x =x+log2x-8是正实数集的上的增函数,因为h4 g8 =-2×3<0,因此b∈4,8⇒2b∈8,16,显然a>2b,因此选项B不正确;因为a>1,所以log2a>0由a+log2a=a+2log2a>a+log2a⇒b+log2b>a+log2a,构造函数f x =x+log2x x>0,显然该函数单调递增,由b+log2b>a+log2a⇒f b >f a⇒b>a⇒b2>a,因此选项C不正确,选项D正确,故选:D4(2024·重庆·模拟预测)已知正实数a,b满足2a=8b+log2ba,则()A.a=bB.a<3bC. a=3bD.a>3b 【答案】B【解析】由2a=8b+log2ba可得2a-23b=log2b-log2a=log2(3b)-log2a-log23,因log23>1,则有2a-23b<log2(3b)-log2a,即2a+log2a<23b+log2(3b),(*)设f(x)=2x+log2x,则(*)即f a <f3b,因f(x)在(0,+∞)上为增函数,故可得:a<3b.。
指数对数比较大小六方法
“六法”比较指数幂大小对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.1.转化法例1 比较12(3-+与231)的大小.解:∵2231)1)-+==,∴11222(31)]1---+==.又∵011<<,∴函数1)x y =在定义域R 上是减函数.2311)<,即2132(31)-+<. 评注:在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.2.图象法例2 比较0.7a 与0.8a的大小.解:设函数0.7x y =与0.8x y =,则这两个函数的图象关系如图.当x a =,且0a >时,0.80.7a a >;当x a =,且0a <时,0.80.7a a <;当0x a ==时,0.80.7a a =.评注:对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.3.媒介法例3 比较124.1-,345.6,1313⎛⎫- ⎪⎝⎭的大小. 解:∵1313004215.6 5.61 4.1 4.103-⎛⎫>==>>>- ⎪⎝⎭,∴13134215.6 4.13-⎛⎫>>- ⎪⎝⎭. 评注:当底数与指数都不相同时,选取适当的“媒介”数(通常以“0”或“1”为媒介),分别与要比较的数比较,从而可间接地比较出要比较的数的大小.4.作商法例4 比较a b a b 与b aa b (0a b >>)的大小. 解:∵a b a b a b a b b a a b a b a a a a b b a b b b --⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, 又∵0a b >>,∴1a b>,0a b ->. ∴1a b a b -⎛⎫> ⎪⎝⎭,即1a b b a a b a b>.∴a b b a a b a b >. 评注:当底数与指数都不同,中间量又不好找时,可采用作商比较法,即对两值作商,根据其值与1的大小关系,从而确定所比值的大小.当然一般情况下,这两个值最好都是正数.5.作差法例5 设0m n >>,0a >,且1a ≠,试比较m m a a-+与n n a a -+的大小. 解:()()m m n n m m n n a a a a a a a a ----+-+=+--()()m n m n a a a a --=-+-(1)(1)(1)()n m n m m n m n n m a a a a a a a -----=-+-=--.(1)当1a >时,∵0m n ->,∴10m n a-->. 又∵1n a >,1m a-<,从而0n m a a -->. ∴(1)()0m n n m a a a ---->.∴m m n n a a a a --+>+.(2)当01a <<时,∵1m n a-<,即10m n a --<. 又∵0m n >>,∴1n a <,1m a->,故0n m a a -<. ∴(1)()0m n n m a a a ---->.∴m m n n a a a a --+>+.综上所述,m m n n a a a a --+>+.评注:作差比较法是比较两个数值大小的最常用的方法,即对两值作差,看其值是正还是负,从而确定所比值的大小.6.分类讨论法例6 比较221x a +与22x a +(0a >,且1a ≠)的大小.分析:解答此题既要讨论幂指数221x +与22x +的大小关系,又要讨论底数a 与1的大小关系.解:(1)令22212x x +>+,得1x >,或1x <-.①当1a >时,由22212x x +>+,从而有22212x x a a ++>;②当01a <<时,22212x x aa ++<. (2)令22212x x +=+,得1x =±,22212x x aa ++=. (3)令22212x x +<+,得11x -<<.①当1a >时,由22212x x +<+,从而有22212x x a a ++<;②当01a <<时,22212x x a a ++>.评注:分类讨论是一种重要的数学方法,运用分类讨论法时,首先要确定分类的标准,涉及到指数函数问题时,通常将底数与1的大小关系作为分类标准.。
指数,对数,幂函数值的大小比较
在比较指数、对数、幂函数值的大小时,我们需要根据函数的特性来进行分析。
首先,指数函数的值随着自变量的增加而增加,对数函数的值随着自变量的增加而增加,幂函数的值则取决于幂的符号和自变量的值。
其次,对于两个自变量相同的函数值比较,一般来说,如果底数相同,那么指数函数值最大,对数函数次之,幂函数最小;如果底数不同,则需要通过计算来进行比较。
此外,对于两个自变量不同的函数值比较,一般来说,如果底数相同,那么自变量较大的函数值较大;如果底数不同,则需要通过计算来进行比较。
最后,需要注意的是,对于一些特殊的函数值,例如0或负数,需要根据具体情况来进行判断。
综上所述,在比较指数、对数、幂函数值的大小时,需要根据函数的特性、自变量的值以及底数等因素来进行综合考虑。
幂的运算性质
幂的运算性质
同底数幂的乘法:底数不变,指数相加幂的乘方;同底数幂的除法:底数不变,指数相减幂的乘方;幂的指数乘方:等于各因数分别乘方的积商的乘方;分式乘方:分子分母分别乘方,指数不变。
幂的大小比较方法
计算比较法
先通过幂的计算,然后根据结果的大小,来进行比较的。
底数比较法
在指数相同的情况下,通过比较底数的大小,来确定两个幂的大小。
指数比较法
在底数相同的情况下,通过比较指数的大小,来确定两个幂的大小。
求差比较法
将两个幂相减,根据其差与0的比较情况,来确定两个幂的大小。
求商比较法
将两个幂相除,然后通过商与1的大小关系,比较两个幂的大小。
乘方比较法
将两个幂乘方后化为同指数幂,通过进行比较结果,来确定两个幂的大小。
定值比较法
通过选一个与两个幂中一个幂相接近的幂作定值,然后用两个幂与所选取的定值相比较,由此来确定两个幂的大小。
幂的大小比较七法
幂的大小比较七法
冯忠
幂的大小比较是《整式的乘除》一章的一个难点,为了帮助同学们更好地进行学习,这里归纳出七种方法,供大家学习时参考。
一. 计算比较法
此法是先通过幂的计算,然后根据结果的大小,来进行比较的。
例1. 比较与的大小。
解:因为
所以
二. 底数比较法
此方法是在指数相同的情况下,通过比较底数的大小,来确定两个幂的大小。
例2. 比较和的大小。
解:因为,且
所以
三. 指数比较法
此方法是在底数相同的情况下,通过比较指数的大小,来确定两个幂的大小。
例3. 比较和的大小。
解:因为,且
所以
四. 求差比较法
此方法是将两个幂相减,根据其差与0的比较情况,来确定两个幂的大小。
例4. 比较和的大小。
解:因为
所以
五. 求商比较法
此方法是将两个幂相除,然后通过商与1的大小关系,比较两个幂的大小。
例5. 比较和的大小。
解:因为
所以
六. 乘方比较法
此方法是将两个幂乘方后化为同指数幂,通过进行比较结果,来确定两个幂的大小。
例6. 已知,比较a、b的大小。
解:因为
,即
所以
七. 定值比较法
此方法是通过选一个与两个幂中一个幂相接近的幂作定值,然后用两个幂与所选取的定值相比较,由此来确定两个幂的大小。
例7. 比较与的大小。
解:取与相接近的幂做定值
因为
又,所以。
指、对、幂的大小比较
指、对、幂的大小比较【考试提醒】指数与对数是高中一个重要的知识点,也是高考必考考点,其中指数、对数及幂的大小比较是近几年的高考热点和难点,主要考查指数、对数的互化、运算性质,以及指数函数、对数函数和幂函数的性质,一般以选择题或填空题的形式出现在压轴题的位置.【核心题型】题型一 直接法比较大小利用特殊值作“中间量”在指数、对数中通常可优先选择“-1,0,12,1”对所比较的数进行划分,然后再进行比较,有时可以简化比较的步骤,也有一些题目需要选择特殊的常数对所比较的数的值进行估计,例如log 23,可知1=log 22<log 23<log 24=2,进而可估计log 23是一个1~2之间的小数,从而便于比较.命题点1 利用函数的性质1(2024·全国·模拟预测)已知a =30.6,b =log 25,c =log 323,则实数a ,b ,c 的大小关系是()A.b >a >cB.a >b >cC.b >c >aD.a >c >b【答案】A【分析】利用指数函数单调性可得32<a =30.6<2、对数函数的单调性可得b =log 25>2,c =log 323<32,从而可得结果.【详解】由y =3x 在R 上单调递增,可得30.6>30.5=3>32,又30.6 5=27<25=32,则32<a =30.6<2.由y =log 2x 在0,+∞ 上单调递增,可得b =log 25>log 24=2.由y =log 3x 在0,+∞ 上单调递增,可得c =log 323<log 333=32.所以b >a >c ,故选:A 【变式训练】1(2024·四川德阳·二模)已知a =4ln3π,b =3π,c =4lnπ3,则a ,b ,c 的大小关系是()A.c <b <aB.b <c <aC.b <a <cD.a <b <c【答案】B【分析】观察a ,c 的式子结构,构造函数f x =ln xx,利用导数判断得f x 的单调性,从而判断得c <a ,再利用对数函数的单调性判断得b <c ,从而得解.【详解】因为a =4ln3π=4πln3,b =3π,c =4lnπ3=4×3lnπ,观察a ,c 的式子结构,构造函数f x =ln x x ,则f (x )=1-ln xx 2,当x ∈(0,e )时,f (x )>0,f (x )单调递增,当x ∈(e ,+∞)时,f (x )<0,f (x )单调递减,因为π>3>e ,所以f (π)<f (3),即lnππ<ln33,所以3lnπ<πln3,即4×3lnπ<4πln3,即c <a ;又lnπ>ln e =1,所以3π<3×4<4×3lnπ,即b <c ;综上,b <c <a .故选:B .2(2023·甘肃平凉·模拟预测)已知幂函数f x =mx n 的图象过点2,22 ,设a =f m ,b =f n ,c =f ln2 ,则a 、b 、c 的大小用小于号连接为.【答案】c <a <b【分析】首先求出幂函数的解析式,再利用其单调性即可比较大小.【详解】幂函数f x =mx n 的图象过点2,22 ,则m =1m (2n )=22⇒m =1,n =3,所以幂函数的解析式为f x =x 3,且函数f x 为单调递增函数,又ln2<1<3,所以f (ln2)<f (1)<f (3),即c <a <b .故答案为:c <a <b3(2023·黑龙江哈尔滨·三模)若a =log 23+log 32,b =log 2e +ln2,c =136,则实数a ,b ,c 由小到大排列为<<.【答案】 bca 【分析】根据给定条件,构造函数f (x )=log 2x +log x 2,x >2,再利用导数探讨单调性比较大小作答.【详解】依题意,c =32+23=log 222+log 222,而a =log 23+log 32,b =log 2e +ln2,令函数f x =log 2x +log x 2=ln x ln2+ln2ln x ,x >2,求导得f(x )=1x ln2-ln2x (ln x )2=(ln x )2-(ln2)2(x ln2)(ln x )2>0,因此函数f (x )在(2,+∞)上单调递增,而2<e <22<3,于是f (e )<f (22)<f (3),又a =f (3),b =f (e ),c =f (22),所以b <c <a .故答案为:b ;c ;a 命题点2 找中间值1(2024·陕西西安·模拟预测)已知a =ln5,b =log 35,c =5-0.3,则()A.b <c <aB.c <a <bC.c <b <aD.b <a <c【答案】C【分析】通过和1的比较可得答案.【详解】因为a =ln5=log 35log 3e >b =log 35>1,c =5-0.3<1,所以c <b <a .故选:C 【变式训练】1(2024·黑龙江双鸭山·模拟预测)已知a =log 53,b =log 43,c =0.4-0.3,则()A.a <b <cB.a <c <bC.b <c <aD.c <a <b【答案】A【分析】由log 35>log 34>1,利用换底公式可判断a <b <1,利用指数性质可判断c >1,进而得出结果.【详解】由题得a =log 53=1log 35,b =log 43=1log 34,而log 35>log 34>1,所以a <b <1,c =0.4-0.3>0.40=1,所以a <b <c .故选:A .2(2024·四川成都·三模)2-3,213,sin 32,log 213四个数中最大的数是()A.2-3B.213C.sin32D.log 213【答案】B【分析】引入0,1,分别比较这四个数和0,1的大小,即可得到结论.【详解】因为2-3=123=18<1,213>20=1,sin 32<1,log 213=-log 23<0.所以213最大.故选:B3(2024·北京石景山·一模)设a =20.3,b =sin π12,c =ln2,则()A.c <b <aB.b <c <aC.a <b <cD.b <a <c【答案】B【分析】根据给定的条件,利用指数、对数函数、正弦函数的性质,借助1,12进行比较判断选项.【详解】a =20.3>20=1,b =sin π12<sin π6=12,而e <2<e ,则12<ln2<1,即12<c <1,所以b <c <a .故选:B 命题点3 特殊值法1(2024·全国·模拟预测)若log a b >1,则下列不等式一定成立的是()A.a >b B.ab <a +b -1C.a +1b>b +1a D.a -1b<b -1a 【答案】D【分析】由log a b >1,分类讨论0<a <1和a >1可判断A ,B ;取特值可判断C ;根据y =x +1x的单调性可判断D .【详解】因为log a b >1,所以log a b >log a a ,当0<a <1时,解得0<b <a <1;当a >1时,解得1<a <b ,所以a -1 b -1 >0,即ab >a +b -1,A ,B 错误.当a =2,b =3时,a +1b<b +1a ,C 错误.因为y =x +1x 在0,1 上单调递减,在1,+∞ 上单调递增,所以a +1a <b +1b ,即a -1b<b -1a ,D 正确.故选:D 【变式训练】1(多选)(2024·福建龙岩·一模)下列命题正确的是()A.若a <b <0,则a 2>ab >b 2B.若a <b <0,则ac 2<bc 2C.若0<a <b <c ,则c a >cb D.若0<a <b ,则2a +b2>2ab【答案】AC【分析】对A 和C 利用不等式性质即可判断,对B 和D 举反例即可反驳.【详解】对A ,因为a <b <0,则两边同乘a 得a 2>ab ,两边同乘b 得ab >b 2,则a 2>ab >b 2,故A 正确;对B ,当c =0时,ac 2=bc 2,故B 错误;对C ,因为0<a <b ,则1a >1b ,又因为c >0,所以c a >cb,故C 正确;对D ,举例a =2,b =8,则2a +b 2=2×2+82=8,而2ab =22×8=8,此时两者相等,故D 错误.故选:AC .2(多选)(2023·全国·模拟预测)下列说法正确的有()A.若0<a <1,则ln a +1ln a≤-2 B.若lg a <lg b ,则a 2<b 2C.若a <b <c ,a +b +c =0,则c -a b 2>0D.若2a <2b a ,b ∈N * ,则a -b ≤-1【答案】ABD【分析】运用基本不等式,结合特例法、不等式的性质、指数函数的单调性逐一判断即可.【详解】选项A :当0<a <1时,ln a <0,-ln a +1-ln a≥2,所以ln a +1ln a ≤-2,当且仅当ln a =1ln a ,即a =1e时等号成立,故选项A 正确;选项B :由lg a <lg b 得0<a <b ,所以a 2<b 2,故选项B 正确;选项C :令a =-3,b =0,c =3,满足a <b <c ,a +b +c =0,但c -a b 2>0不成立,故选项C 错误;选项D :由2a <2b 得a <b ,因为a ,b ∈N *,所以a +1≤b ,所以a -b ≤-1,故选项D 正确.故选:ABD .3(2024·上海静安·二模)在下列关于实数a 、b 的四个不等式中,恒成立的是.(请填入全部正确的序号)①a +b ≥2ab ;②a +b 22≥ab ;③|a |-|b |≤|a -b |;④a 2+b 2≥2b -1.【答案】②③④【分析】取特值可判断①;作差法可判断②④;要证|a |-|b |≤|a -b |即证2a b ≥2ab 可判断③.【详解】对于①,取a =-1,b =1,故①错误;对于②,a +b 2 2-ab =a 2+b 2+2ab -4ab 4=a 2+b 2-2ab 4=a -b 2 2≥0,故②正确;对于③,当a ≥b ,要证|a |-|b |≤|a -b |,即证a -b 2≤a -b 2,即a |2+ b |2-2a b ≤a 2+b 2-2ab ,即证2a b ≥2ab ,而2a b ≥2ab 恒成立,当a <b 时,a -b 0,a -b 0,所以|a |-|b |≤|a -b |,故③正确.对于④,a 2+b 2-2b +1=a 2+b -1 2≥0,所以a 2+b 2≥2b -1,故④正确.故答案为:②③④.题型二 利用指数、对数及幂的运算性质化简比较大小求同存异法比较大小如果两个指数或对数的底数相同,则可通过真数的大小与指数、对数函数的单调性判断出指数或对数的大小关系,要熟练运用指数、对数公式、性质,尽量将比较的对象转化为某一部分相同的情况.1(2024·天津·一模)已知a=30.3,b=log43,c=12-0.3,则a,b,c的大小关系为()A.b<a<cB.b<c<aC.c<a<bD.a<c<b【答案】B【分析】由幂函数和对数函数的单调性即可得出答案.【详解】因为0=log41<b=log43<log44=1,c=12-0.3=20.3>1,a=30.3>1,因为y=x0.3在0,+∞上单调递增,所以20.3<30.3,所以b<c<a.故选:B【变式训练】1(2024·陕西西安·模拟预测)已知a=π-0.2,b=log3π,c=sin π5,则()A.a<b<cB.a<c<bC.c<a<bD.b<c<a【答案】C【分析】根据指数函数的性质判断a的范围,利用指数函数、幂函数以及正弦函数的单调性可比较a,c的大小关系,结合b的范围,即可判断出答案.【详解】由题意得a=π-0.2<π0=1,且a=π-0.2>4-0.2=2-0.4>2-0.5=22=sinπ4>sinπ5=c,又b=log3π>1,故c<a<b,故选:C2(2024·广东肇庆·模拟预测)已知a=1.013.2,b=0.523.2,c=log0.523.2,则() A.a>b>c B.c>b>a C.c>a>b D.b>a>c 【答案】A【分析】利用幂函数和对数函数的性质来判断即可.【详解】幂函数y=x3.2在0,+∞上单调递增,故a=1.013.2>0.523.2=b>0,又c=log0.523.2<log0.521=0,所以a>b>c.故选:A.3(2024·四川攀枝花·二模)若a=323,b=log3e,c=1e-13,则()A.a>c>bB.a>b>cC.c>a>bD.c>b>a 【答案】A【分析】利用幂函数、指数函数与对数函数的单调性比较大小即可.【详解】易知y =x 13在0,+∞ 上单调递增,则3 23=313>e 13=1e-13,即a >c ,而由y =a xa >1 单调递增,得313>30=1,e 13>e 0=1,即a >c >1,又y =log 3x 单调递增,故1=log 33>b =log 3e ,则a >c >1>b .故选:A题型三 构造函数比较大小某些数或式子的大小关系问题,看似与函数的单调性无关,细心挖掘问题的内在联系,抓住其本质,将各个值中的共同的量用变量替换,构造函数,利用导数研究相应函数的单调性,进而比较大小.1(2024高三·全国·专题练习)若a =1.1,b =ln1110e ,c =e 0.1,则a ,b ,c 的大小关系为()A.b <a <cB.a <b <cC.b <c <aD.a <c <b【答案】A【分析】构造函数m (x )=ln x -x +1,n (x )=e x -x -1,利用导数求证不等式ln x ≤x -1,和e x ≥x +1,即可求解.【详解】设m (x )=ln x -x +1,n (x )=e x -x -1,则当x >1时,m (x )=1x -1<0,m x 在1,+∞ 单调递减,当0<x <1时,m(x )>0,m x 在0,1 单调递增,故当m (x )≤m 1 =0,故ln x ≤x -1,当且仅当x =1时取等号,当x >0,n x =e x -1>0⇒x >0,n x 在0,+∞ 单调递增,当n x =e x -1<0⇒x <0,n x 在-∞,0 单调递减,所以n (x )≥n (0)=0,故e x ≥x +1,当且仅当x =0时取等号,所以b =ln 1110e =ln 1110+1<1.1,故b <a .e 0.1>1.1,故a <c 因此b <a <c ,故选:A【点睛】方法点睛:比较大小问题,常常根据:(1)结合函数性质进行比较;(2)利用特殊值进行估计,再进行间接比较;(3)根据结构特征构造函数,利用导数分析单调性,进而判断大小【变式训练】1(2024·辽宁·二模)若a =1.01+sin0.01,b =1+ln1.01,c =e 0.01,则()A.b >c >aB.a >c >bC.c >b >aD.c >a >b【答案】B【分析】通过构造函数f (x )=1+x +sin x -e x ,利用导数与函数单调性间的关系,得到f (x )=1+x +sin x-e x 在区间0,12上单调递增,从而得出c <a ,构造函数G (x )=e x -ln (x +1)-1,利用导数与函数单调性间的关系,得到G (x )=e x -ln (x +1)-1在区间0,1 上单调递增,从而得出b <c ,即可得出结果.【详解】令f (x )=1+x +sin x -e x ,则f (x )=1+cos x -e x ,令h (x )=1+cos x -e x ,则h (x )=-sin x -e x <0在区间0,12上恒成立,即f(x )在区间0,12 上单调递减,又f 12 =1+cos 12-e 12>1+cos π6-e 12=1+32-e 12,而1+32 2=1+34+3>e ,所以f 12 =1+32-e 12>0,即f (x )=1+x +sin x -e x 在区间0,12上单调递增,所以f (0)<f (0.01),得到0<1.01+sin0.01-e 0.01,即e 0.01<1.01+sin0.01,所以c <a ,令G (x )=e x -ln (x +1)-1,则G (x )=e x -1x +1,当x ∈(0,1)时,G (x )>0,即G (x )=e x -ln (x +1)-1在区间0,1 上单调递增,所以G (0)<G (0.01),得到0<e 0.01-ln1.01-1,即1+ln1.01<e 0.01,所以b <c ,综上所述,b <c <a ,故选:B .【点睛】关键点点晴:通过构造函数f (x )=1+x +sin x -e x 和G (x )=e x -ln (x +1)-1,将问题转化成比较函数值的大小,再利用导数与函数单调性间的关系,即可解决问题.2(2023·辽宁·模拟预测)已知a =1e1e,b =ln22 ln22,c =ln33ln33,试比较a ,b ,c 的大小关系()A.a <b <c B.b <a <cC.a <c <bD.c <b <a【答案】C【分析】根据三个指数的底数的形式,通过构造新函数,利用导数的性质判断其大小,再根据三个数的形式构造新函数,通过取对数法,结合导数的性质判断其单调性,最后利用单调性判断即可.【详解】设f x =ln x x x >0 ⇒fx =1-ln x x 2,当x >e 时,f x <0,f x 单调递减,所以有f e >f 3 >f 4 ,因为1e =ln e e ,ln22=2ln24=ln44,所以1e >ln33>ln44,设g x =x x (x >0)⇒ln g x =x ln x ,设y =x ln x ⇒y =ln x +1,当0<x <1e 时,y <0,函数y =x ln x 单调递减,因为1e >ln33>ln44>0,所以ln g 1e <ln g ln33 <ln g ln44,因为函数y =ln x 是正实数集上的增函数,故g 1e <g ln33 <g ln44,即1e 1e <ln33 ln33<ln44 ln44=ln22 ln22,所以a <c <b ,故选:C【点睛】关键点睛:根据所给指数的底数和指数的形式,构造函数,利用导数的性质是解题的关键3(2023·湖南·模拟预测)设a =52-ln5 e2,b =1e ,c =ln44,则a ,b ,c 的大小顺序为()A.a<c<bB.c<a<bC.a<b<cD.b<a<c 【答案】A【分析】根据a、b、c的结构,构造函数f x =ln xx,利用导数判断单调性,即可比较出a、b、c的大小,从而可得到正确答案.【详解】因为a=5(2-ln5)e2=ln e25e25,b=1e=ln ee,c=ln44故构造函数f x =ln xx,则fx =1-ln xx2,令f x =1-ln xx2=0,解得x=e,当x∈0,e时,f x >0,f x 在0,e上单调递增,当x∈e,+∞时,f x <0,f x 在e,+∞上单调递减,又因为a=fe25,b=f e ,c=f4所以a<b,c<b.因为c=f4 =ln44=ln22=f2 ,又e25<2<e,所以fe25<f2 ,即c>a,故a<c<b,故选:A.【课后强化】基础保分练一、单选题1(2024·天津·二模)若a=log131.9,b=log215.8,c=22.01,则a,b,c的大小关系为()A.c>a>bB.c>b>aC.a>b>cD.b>a>c【答案】B【分析】根据指数函数和对数函数的单调性结合中间量法求解即可.【详解】a=log131.9<log131=0,0=log21<b=log215.8<log216=4,c=22.01>22=4,所以c>b>a.故选:B.2(2024·北京顺义·二模)已知a=log42,b=12e,c=π12,则()A.a>b>cB.b>a>cC.c>b>aD.c>a>b 【答案】D【分析】利用换底公式计算a,利用指数函数单调性判断b,c即可得答案.【详解】因为a=log42=log22log24=12,b=12e<12 2=14,c=π12>π0=1,所以c>a>b.故选:D3(2024·全国·模拟预测)若a =2π2,b =π2 2,c =log π2cos π5,则()A.a >b >cB.b >a >cC.a >c >bD.b >c >a【答案】A【分析】根据指数函数,对数函数,幂函数的单调性比较大小.【详解】由0<cos π5<1,则c =log π2cos π5<0,又a =2π2>232=2 3=22>2.828,且0<b =π2 2< 3.22 2=1.62=2.56,所以a >b >c .故选:A .4(2024·全国·模拟预测)若a =log 83,b =0.132,c =ln cos 22023 ,则下列大小关系正确的是()A.b <a <cB.c <a <bC.a <b <cD.c <b <a【答案】D【分析】利用指数函数,对数函数及幂函数的单调性可比较a 与1和12,b 与0和12的大小,后利用0<cos 22023<1结合对数函数单调性,可比较c 与0的大小,即可得答案.【详解】因对数函数y =log 8x 在0,+∞ 上单调递增,则log 88=12<log 83<log 88=1,即12<a <1.因指数函数y =110x 在R 上单调递减,幂函数y =x 13在R 上单调递增,则0<0.132=110 32<110 13<18 13=12,即0<b <12<a <1.又注意到0<cos 22023<1,y =ln x 在0,+∞ 上单调递增,所以ln cos 22023 <0,即c <0,所以c <b <a .故选:D .二、多选题5(2024·贵州遵义·一模)已知正实数a ,b 满足sin a +ln a =b +ln b ,则()A.2a >bB.a -12>b-12C.log 1ea <log 1ebD.e 1a>e1b【答案】AC【分析】利用导数证明sin x <x ,x >0,利用不等式的性质,结合函数y =x +ln x 的单调性可得b <a ,再逐项判断即可得解.【详解】令函数f (x )=x -sin x ,x >0,求导得f x =1-cos x ≥0,函数f (x )在(0,+∞)上递增,f (x )>f (0)=0,即当x >0时,sin x <x ,则当a >0时,sin a <a ,于是b +ln b =sin a +ln a <a +ln a ,而函数y =x +ln x 在(0,+∞)上递增,因此a >b >0,对于A ,2a >a >b ,A 正确;对于B ,函数y =x-12在(0,+∞)上递减,则a -12<b -12,B 错误;对于C ,函数y =log 1ex 在(0,+∞)上递减,则log 1ea <log 1eb ,C 正确;对于D ,1a <1b,则e 1a<e 1b,D 错误.故选:AC6(2024·全国·模拟预测)已知a>0,b>0,且a+b=2,则()A.a2+b2≥2B.14<2a-b<4 C.log2a+log2b≥0 D.a2-b>0【答案】AB【分析】根据基本不等式可判定A,根据指数函数的单调性可判定B,根据基本不等式、对数运算及对数函数单调性可判断C,根据二次函数的性质可判断D.【详解】∵a>0,b>0,且a+b=2,∴a2+b2≥a+b22=2,当且仅当a=b=1时取等号,故A正确.∵a>0,b>0,且a+b=2,∴0<a<2,0<b<2,∴-2<a-b<2,∴14<2a-b<4,故B正确.由2=a+b≥2ab,得0<ab≤1,当且仅当a=b=1时取等号,∴log2a+log2b=log2ab≤log21=0,故C错误.∵a2-b=a2-2-a=a+1 22-94,又0<a<2,∴-2<a2-b<4,故D错误.故选:AB.三、填空题7(2023·吉林长春·模拟预测)已知a=log3322,b=22-33,c=ln1e,则a,b,c的大小关系为.【答案】c<a<b【分析】由对数函数及指数函数单调性得到a∈0,1,b>1,c=-12,从而得到大小关系.【详解】因为y=log33x在0,+∞上单调递减,1>22>33,故a=log3322<log3333=1且a=log3322>log331=0,所以a∈0,1,因为y=22x在R上单调递减,-33<0,所以b=22-33>22 0=1,c=ln1e=ln e-12=-12,故c<a<b.故答案为:c<a<b8(2023·全国·模拟预测)已知a=ln3,b=log113,现有如下说法:①a<2b;②a+b>3ab;③b-a<-ab.则正确的说法有.(横线上填写正确命题的序号)【答案】②③【分析】根据对数的运算法则及对数函数的性质判断即可.【详解】因为a=ln3>0,b=log113>0,所以a=ln3=log e3,2b=2log113=log113<log e3=a,所以a>2b,故①错误;1 a +1b=log3e+log311=log311e>log327=3,所以a+b>3ab,故②正确;1a -1b=log 3e -log 311=log 3e 11<log 313=-1,所以b -a <-ab ,故③正确.故答案为:②③四、解答题9(22-23高三·全国·对口高考)(1)比较a a b b 与b a a b (a >0,b >0)的大小;(2)已知a >2,比较log (a -1)a 与log a (a +1)大小【答案】(1)a a b b ≥b a a b ;(2)log (a -1)a >log a (a +1)【分析】(1)利用作商法,分类讨论即可;(2)利用做差法、换底公式以及不等式的性质分析即可.【详解】(1)因为a >0,b >0,所以a a b b b a ab =a b a -b,所以①当a =b >0时,a a b b b a ab =a b a -b=1,所以a a b b =b a a b ,②当a >b >0时,ab>1,a -b >0,即a ba -b>1,所以a a b b >b a a b ,③当b >a >0时,0<ab<1,a -b <0,即a ba -b>1,所以a a b b >b a a b ,综上所述:当a >0,b >0,a a b b ≥b a a b .(2)log (a -1)a -log a (a +1)=lg alg a -1-lg a +1 lg a =lg 2a -lg a +1 lg a -1 lg a lg a -1 ,因为a >2,所以lg a +1 >0,lg a -1 >0,lg a >0,所以lg a lg a -1 >0,由lg a +1 lg a -1 <lg a -1 +lg a +1 22=lg a 2-1 22<lg a 222=lg 2a ,所以lg 2a -lg a +1 lg a -1 >0,所以lg 2a -lg a +1 lg a -1 lg a lg a -1 >0,即log (a -1)a -log a (a +1)>0,故log (a -1)a >log a (a +1).10(2020高三·上海·专题练习)设a >5-12,且a ≠1,记x =log a 2 ,y =log a +12,z =log a +22,试比较x ,y ,z 的大小.【答案】x>y>z【分析】根据对数函数的性质,由1<5+12<a+1<a+2,先得到log a+12>log a+22;再分别讨论5-12<a<1,a>1两种情况,得到x>y,即可得出结果.【详解】因为a>5-12,所以1<5+12<a+1<a+2,根据对数函数的性质可得:log a+12>log a+22,即y>z;又a≠1,当5-12<a<1时,1a<25-1=5+12,所以x=log a2=-log a2=log1a 2>log5+122>log a+12,即x>y,因此x>y>z;当a>1时,由a<a+1,得x=log a2=log a2>log a+12,即x>y,因此x>y>z;综上,x>y>z.【点睛】本题主要考查比较对数式的大小,熟记对数函数的性质即可,属于常考题型.综合提升练一、单选题1(2024·天津河东·一模)设a=23,b=log23,c=log33,则a,b,c的大小关系为()A.b<c<aB.b<a<cC.c<b<aD.a<b<c【答案】A【分析】根据对数的单调性以及指数的单调性即可利用中间值求解.【详解】a=23>21=2,b=log23<log24=2,c=log33=2,故b<c<a,故选:A2(2024·河南·模拟预测)设a=log32,b=log333,c=log222,d=20.49,则()A.a<b=c<dB.d<c=b<aC.a<d<b=cD.c<a<d<b【答案】C【分析】根据指数幂与对数的运算性质,分别求得a,b,c,d的取值范围,即可求解.【详解】由a=log32<log33=1,b=log333=32,c=log222=32,1=20<d<20.5=2,即1<d<2<32,所以a<d<b=c.故选:C.3(2024·陕西安康·模拟预测)若a=11232,b=ln20232024,c=log2738,则()A.b<c<aB.a<c<bC.b<a<cD.c<b<a 【答案】C【分析】根据对数运算以及对数函数单调性可得c>16,b<0,结合分数指数幂运算分析可得0<a<c,即可得结果.【详解】因为c=log2738=13log32>13log33=16>0,a=11232=112 3=1243>0,因为16>1243>0,可知c>a>0,又因为b=ln 20232024<ln1=0,所以b<a<c.故选:C.4(2024·四川·模拟预测)已知a=ln 32,b=13,c=e-2,则a,b,c的大小关系为()A.a>b>cB.a>c>bC.b>a>cD.b>c>a 【答案】A【分析】利用当x>0时,ln x≤x-1判断a>b,通过函数y=1x在是减函数判断b>c.【详解】当x>0时,设f x =ln x-x+1,则f x =1x-1,当0<x<1时,f x >0,f x 单调递增,当x>1时,f x <0,f x 单调递减,所以f x ≤f1 =0,也就是说当x>0时,ln x≤x-1,用1x代替x,可得ln1x≤1x-1,即ln x≥1-1x,所以ln 32>1-23=13,即a>b.又知13>1e2=e-2,所以b>c,所以a>b>c.故选:A5(2023·天津河北·一模)若a=37-38,b=log1737,c=log1838,则a,b,c的大小关系为()A.b<a<cB.c<b<aC.c<a<bD.b<c<a 【答案】D【分析】首先化简a=37-38=73 38>1,b=log773=1-log73<1,c=log883=1-log83<1,再根据log73>log83即可得解.【详解】a=37-38=73 38>73 0=1,即a>1,b=log1737=log773=1-log73<1,c=log1838=log883=1-log83<1,又log73>log83,所以c>b,所以a>c>b,故选:D6(2024·全国·模拟预测)已知a>b>1,则下列各式一定成立的是()A.log a b>1B.ln a-b>0 C.2ab+1<2a+b D.b⋅a b<a⋅b a【答案】D【分析】根据对数函数的单调性即可判断AB;根据指数函数的单调性即可判断C;构造函数f x =ln x x-1x>1,利用导数判断出函数的单调性即可判断D.【详解】对于AB,因为a>b>1,所以log a b<log a a=1,故A错误;因为a>b>1,所以a-b>0,但a-b不一定大于1,故ln a-b不一定大于0,故B错误;对于C,因为ab+1-a+b=a-1b-1>0,则ab+1>a+b,所以2ab+1>2a+b,故C错误;对于D,不等式b⋅a b<a⋅b a等价于a b-1<b a-1,两边取自然对数得b-1ln a<a-1ln b,因为a>b>1,a-1>0,b-1>0,所以原不等式等价于ln aa-1<ln bb-1,设函数f x =ln xx-1x>1,则f x =1-1x-ln xx-12,令g x =1-1x-ln x x>1,则g x =1x2-1x=1-xx2,当x>1时,g x <0,所以g x 在1,+∞上单调递减,故当x>1时,g x <g1 =0,所以f x <0,故f x 在1,+∞上单调递减,所以f a <f b ,即ln aa-1<ln bb-1,故D正确.故选:D.7(2024·宁夏银川·二模)定义域为R的函数f(x)满足f(x+2)为偶函数,且当x1<x2<2时,[f(x2 )-f(x1)](x2-x1)>0恒成立,若a=f(1),b=f(ln10),c=f354,则a,b,c的大小关系为()A.a<b<cB.c<b<aC.b<a<cD.c<a<b【答案】D【分析】根据条件先得到函数的对称性和单调性,再根据单调性比较大小.【详解】当x1<x2<2时,[f(x2)-f(x1)](x2-x1)>0恒成立,即当x1<x2<2时,f(x2)>f(x1),函数f(x)在-∞,2上单调递增,又f(x+2)为偶函数,即f(x+2)=f(-x+2),所以函数f(x)关于x=2对称,则函数f(x)在2,+∞上单调递减,所以a=f(1)=f(3)因为10<523<e3,所以10<52 3<e3所以2<ln10<ln e3=3<35 4,所以f ln10>f3 >f35 4,即c<a<b,故选:D.8(2024·全国·模拟预测)已知a=e π10,b=1+sin9π10,c=1.16,则a,b,c的大小关系为()A.a>b>cB.a>c>bC.c>a>bD.c>b>a【答案】C【分析】先利用常见不等式放缩得到a,b的大小关系,再利用幂函数的单调性比较a,c的大小关系即可得到答案.【详解】令f x =e x-x-1x≥0,则f x =e x-1≥0恒成立,所以f x 在0,+∞单调递增,所以当x>0时,f x >f0 =0,即e x>x+1x>0;令g x =x-sin x x≥0,则g x =1-cos x≥0恒成立,所以g x 在0,+∞ 单调递增,所以当x >0时,g x >g 0 =0,即sin x <x (x >0);由诱导公式得b =1+sin 9π10=1+sin π10,所以b =1+sin π10<1+π10<e π10,因此a >b ;因为a =e π10<e 410=e 0.4,c =1.16= 1.115 0.4,故只需比较e 与1.115的大小,由二项式定理得,1.115=(1+0.1)15>1+C 115×(0.1)1+C 215×(0.1)2>3>e ,所以c >a .综上,c >a >b .故选:C【点睛】方法点睛:本题考查比较大小问题,此类问题常见的处理方法为:(1)中间值法:通过与特殊的中间值比较大小,进而判断两个数的大小关系;(2)构造函数法:通过观察两个数形式的相似之处,构造函数,利用导数研究函数单调性与极值等性质进而比较大小;(3)放缩法:利用常见的不等式进行数的放缩进而快速比较大小.二、多选题9(2023·广东广州·模拟预测)下列是a >b >c (a ,b ,c ≠0)的必要条件的是()A.ac >bcB.ac 2>bc 2C.2a -c >2a -bD.7a +b >7b +c【答案】CD【分析】AB 选项,可举出反例;CD 选项,利用指数函数单调性可进行判断.【详解】A 选项,若c <0,则A 错误,B 选项,等价为a 2>b 2,当a >0>-a >b 时不成立,故B 错误,C 选项,因为y =2x 在R 上单调递增,而a -c >a -b ,所以2a -c >2a -b ,C 正确;D 选项,因为y =7x 在R 上单调递增,而a +b >b +c ,所以7a +b >7b +c ,D 正确.故选:CD10(2024·全国·模拟预测)已知实数a ,b ,c ,其中a ,c c >a >0 是函数f x =e xx-m m >e 的两个零点.实数b 满足b =log 73a +22c b >1 ,则下列不等式一定成立的有()A.a +c <b +1 B.c -a >b -1C.ca>b D.ac <b【答案】BCD【分析】设g x =e x xx >0 ,利用导数研究其性质,画出大致图象,a ,c c >a >0 是直线y =m 与函数g x 的图象交点的横坐标,数形结合可得0<a <1<c ,又由条件得7b =3a +4c ,可推出7b -c <1,得b <c ,即可判断ABC ;由e a a =e c c 0<a <1<c ,取对数后可得c -aln c -ln a=1,设t =c a ,t >1,令h (t )=2ln t -t +1t ,t >1,利用导数可证得ln c -ln a <c -a ac,进而可判断D .【详解】设g x =e x x x >0 ,gx =e x x -1 x2,当x ∈0,1 时,gx <0,当x ∈1,+∞ 时,g x >0,所以g x 在0,1 上单调递减,在1,+∞ 上单调递增,所以,当x =1时,g x 取极小值g 1 =e.a ,c c >a >0 是函数f x =e xx-m m >e 的两个零点,即直线y =m 与函数g x 的图象交点的横坐标,如图,由图可知,0<a <1<c ,由b =log 73a +22c b >1 ,得7b =3a +4c ,所以7b -c=47 c +3a 7c <47 c +37 c <47+37=1,所以b <c ,所以0<a <1<b <c ,所以B ,C 正确,无法判断A 是否正确;对于D ,由e a a =e c c 0<a <1<c ,取对数后可得c -a =ln c -ln a ,即c -aln c -ln a =1,ln c -ln a -c -a ac=ln ca -c a +a c ,设t =c a ,t >1,令h (t )=2ln t -t +1t ,t >1,则h(t )=2t -1-1t 2=-(t -1)2t 2<0,所以h (t )在(1,+∞)上单调递减,则h (t )<h (1)=0,所以ln c -ln a -c -a ac=ln ca -c a +a c <0,即ln c -ln a <c -a ac,从而可得ac <c -aln c -ln a ,所以ac <1<b ,D 正确,故选:BCD .11(2024·重庆·一模)已知3a =5b =15,则下列结论正确的是()A.lg a >lg bB.a +b =abC.12a>12bD.a +b >4【答案】ABD【分析】根据指对互化与运算以及指数函数、对数函数单调性即可判断ABC ,利用基本不等式即可判断D .【详解】由题意得a =log 315>log 31>0,b =log 515>log 51=0,0<1a =log 153,0<1b =log 155,则0<1a <1b ,则a >b >0,对A ,根据对数函数y =lg x 在0,+∞ 上单调递增,则lg a >lg b ,故A 正确;对B ,因为1a +1b =log 153+log 155=1,即a +bab=1,则a +b =ab ,故B 正确;对C ,因为a >b >0,根据指数函数y =12 x 在R 上单调递减,则12 a <12b,故C 错误;对D ,因为a >b >0,1a +1b =1,a +b =a +b 1a +1b =2+b a +ab≥2+2b a ⋅a b =4,当且仅当a =b 时等号成立,而显然a ≠b ,则a +b >4,故D 正确;故选:ABD .三、填空题12(23-24高三上·北京昌平·阶段练习)①在△ABC 中,b =2,c =3,B =30°,则a =;②已知a =90.1,b =30.4,c =log 40.3,则a 、b 、c 的大小关系是【答案】 3+132c <a <b【分析】对于①:利用余弦定理运算求解即可;对于②:根据指、对数函数单调性分析判断.【详解】对于①:利用余弦定理b 2=a 2+c 2-2ac cos B ,即4=a 2+3-3a ,而a >0,解得a =3+132;对于②:因为a =90.1=30.2,且y =3x 在定义域内单调递增,可得30<30.2<30.4,即1<a <b ,又因为c =log 40.3<log 41=0,所以c <a <b .故答案为:3+132;c <a <b .13(22-23高三上·陕西咸阳·阶段练习)已知a =log 372,b =1413,c =log 135,则a ,b ,c 的大小关系为.【答案】c <b <a【分析】由题意根据对数函数、指数函数单调性比较大小即可.【详解】由题意c =log 135<log 131=0<b =14 13<14 0=1=log 33<a =log 372,故a ,b ,c 的大小关系为c <b <a .故答案为:c <b <a .14(2023高三上·全国·专题练习)若n ∈N *,n >1,则log n n +1 与log n +1n +2 的大小关系为.(用“<”连接)【答案】log n +1n +2 <log n n +1【分析】利用作商法以及基本不等式可得出两个对数式的大小关系.【详解】log n +1n +2 log n n +1=log n +1n ⋅log n +1n +2 <log n +1n +log n +1n +2 2 2=log n +1n 2+2n 2 2<log n +1n 2+2n +1 2 2=1,因为n ∈N *,n >1,则log n n +1 >log n 1=0,log n +1n +2 >log n +11=0,所以log n +1n +2 <log n n +1 .故答案为:log n +1n +2 <log n n +1 .四、解答题15(22-23高三上·甘肃兰州·阶段练习)比较下列两组数的大小(写出详细理由).(1)a =0.40.3,b =0.30.3,c =0.30.4(2)a =log 26,b =log 312,c =log 515【答案】(1)a >b >c (2)c <b <a【分析】(1)由题意,根据指数函数与幂函数的单调性,可得答案;(2)由题意,根据对数运算性质化简,结合中间值法,可得答案.【详解】(1)由函数y =x 0.3,且0.4>0.3,则0.40.3>0.30.3;由函数y =0.3x ,且0.4>0.3,则0.30.3>0.30.4;则0.40.3>0.30.3>0.30.4,即a >b >c .(2)a =log 22×3 =log 22+log 23=1+log 23,b =log 34×3 =log 34+log 33=1+log 34,c =log 55×3 =log 55+log 53=1+log 53,则log 53<1<log 34<32<log 23,故c <b <a .16(2020高三·全国·专题练习)比较大小:①5.25-1,5.26-1,5.26-2;②0.53,30.5,log 30.5;③log 0.76,0.76,60.7.【答案】①5.25-1>5.26-1>5.26-2;②log 30.5<0.53<30.5;③log 0.76<0.76<60.7.【解析】(1)构造相应的函数,依据其单调性比较函数值的大小,如:y =x -1在(0,+∞)上递减有5.25-1>5.26-1,y =5.26x 是增函数有5.26-1>5.26-2,即可得大小关系;(2)将0.53,30.5,log 30.5与0和1比较大小,即可确定它们的大小关系;(3)利用同底的指数、对数以0、1作为界值,比较log 0.76,0.76,60.7的大小【详解】①∵y =x -1在(0,+∞)上递减,5.25<5.26∴5.25-1>5.26-1,∵y =5.26x 是增函数,-1>-2∴5.26-1>5.26-2综上,5.25-1>5.26-1>5.26-2;②∵0<0.53<1,30.5>1,log 30.5<0∴log 30.5<0.53<30.5;③log 0.76<log 0.71<0,0<0.76<0.70=1,60.7>60=1,则log 0.76<0.76<60.7【点睛】本题考查了比较指数式、对数式的大小,结合相应的指数或对数函数,利用其单调性比较函数值的大小,或以0、1作为界值,结合同底的指数函数或对数函数的单调性比较大小17(2022高三·全国·专题练习)已知a ,b 均为正实数,且a ≠1.(1)比较a b 2+b a2与1a +1b 的大小;(2)比较log a b 3+1 和log a b 2+1 的大小.【答案】(1)a b 2+b a2≥1a +1b (2)答案见解析【分析】(1)利用作差法比较大小,即得答案;(2)结合指数函数以及对数函数的单调性,分类讨论a ,b 的取值范围,即可得答案.【详解】(1)a b 2+b a 2-1a +1b =a -b b 2+b -aa 2=a +b (a -b )2a 2b 2,a ,b 均为正实数,∴a +b >0,(a -b )2≥0,∴a +b (a -b )2a 2b 2≥0,∴a b 2+b a 2≥1a +1b ;(2)当a >1时,函数y =log a x 为增函数;当0<a <1时,函数y =log a x 为减函数.①当b >1时,b 3>b 2,则b 3+1>b 2+1,若a >1,则log a b 3+1 >log a b 2+1 ;若0<a <1,则log a b 3+1 <log a b 2+1 ;②当b =1时,log a b 3+1 =log a b 2+1 ;③当0<b <1时,b 3<b 2,则b 3+1<b 2+1,若a >1,则log a b 3+1 <log a b 2+1 ;若0<a <1,则log a b 3+1 >log a b 2+1 .综上所述,当a >1b >1 或0<a <10<b <1时,log a b 3+1 >log a b 2+1 ;当a ≠1b =1时,log a b 3+1 =log a b 2+1 ;当a >10<b <1 或0<a <1b >1时,log a b 3+1 <log a b 2+1 .18(22-23高三下·全国·开学考试)已知函数f x =e x -ax -1a ∈R 的最小值为0.(1)求实数a 的值;(2)设m 1=1.1+ln0.1,m 2=0.1e 0.1,m 3=19,判断m 1,m 2,m 3的大小.【答案】(1)a =1(2)m 1<m 2<m 3【分析】(1)求出函数的导函数,分a ≤0、a >0两种情况讨论,分别求出函数的单调区间,即可得到函数的最小值为f ln a =e ln a -a ln a -1,从而得到ln a +1a -1=0,再令φa =ln a +1a-1,利用导数说明函数的单调性,即可得到a 值,从而得解;(2)由(1)可得e x ≥x +1,当x >-1时两边取对数得到ln x ≤x -1,当x ∈0,1 时,设F x =xe x -1+x-ln x ,根据函数值的情况判断m 2>m 1,当x ∈0,1 时,设G x =x +ln x -ln x1-x,即可判断m 2<m 3,从而得解.【详解】(1)解:由题意得f x =e x -a .当a ≤0时,f x =e x -a >0,f x 单调递增,无最小值,不满足题意.当a >0时,令f x =0,得x =ln a .当x ∈-∞,ln a 时,f x <0;当x ∈ln a ,+∞ 时,f x >0.所以f x 在-∞,ln a 上单调递减,在ln a ,+∞ 上单调递增.所以f x 的最小值为f ln a =e ln a -a ln a -1=0,即ln a +1a-1=0.设φa =ln a +1a -1,则φ a =a -1a 2.令φ a =0,得a =1.当a ∈0,1 时,φ a <0;当a ∈1,+∞ 时,φ a >0,所以φa 在0,1 上单调递减,在1,+∞ 上单调递增,即φa min =φ1 =0.故ln a +1a-1=0的解只有a =1,综上所述,a =1.(2)解:由(1)可得f x =e x -x -1≥0,所以e x ≥x +1,当且仅当x =0时等号成立.当x >-1时,不等式两边取对数,得x ≥ln (x +1),所以ln x ≤x -1,当且仅当x =1时等号成立.当x ∈0,1 时,设F x =xe x -1+x -ln x ,则F x =e x +ln x -1+x -ln x ≥x +ln x +1-1+x -ln x =0,当且仅当x +ln x =0时,等号成立.因为0.1+ln0.1≠0,所以0.1e 0.1-1.1-ln0.1>0,所以m 2>m 1.当x ∈0,1 时,设G x =x +ln x -ln x1-x,因为0<1-x <1,所以G x =x +ln x -ln x +ln 1-x =x +ln 1-x <x +1-x -1=0,。
比较指数幂大小例题讲解
比较指数幂大小例题讲解指数幂大小比较,听上去好像是数学中的“高大上”话题,但其实也没那么难。
说白了,就是要弄清楚,像 ( 2^3 ) 和 ( 3^2 ) 这样看似复杂的数字,谁大谁小。
你是不是也常常在这类题目上晃来晃去,不知道该咋办?别急,今天就带你一起轻松搞定这些指数幂的大小比较,告诉你怎么在考试里把这些问题给玩转了。
咱们得搞清楚指数幂的概念。
你看啊,指数幂其实就是一种特殊的乘法。
比如( 2^3 ),你就把 2 自己乘 3 次,也就是 ( 2 times 2 times 2 = 8 )。
而 ( 3^2 ) 则是 ( 3 times 3 = 9 )。
你是不是觉得,“啊,原来是这样,挺简单的嘛!”但是!如果你遇到两个底数和指数都不一样的情况,问题就变得复杂了。
比如, ( 2^4 ) 和 ( 3^3 ) 比较,谁大谁小?这就不是那么直接能看出来了。
咱们来试试它们的数值。
先计算 ( 2^4 ),也就是 ( 2 times 2 times 2 times 2 = 16 )。
再来看 ( 3^3 ),就是 ( 3 times 3 times 3 = 27 )。
哇,发现没,虽然 2 和 3 看起来差不多,但 ( 3^3 ) 明显比 ( 2^4 ) 大。
通过这种方法,咱们能一步步明确到底哪个指数幂更大。
但是问题来了,万一遇到像 ( 5^2 ) 和 ( 4^3 ) 这样的组合,你该咋办?好嘛,咱们再来细细研究一下。
计算 ( 5^2 ),就是 ( 5 times 5 = 25 )。
然后算算 ( 4^3 ),也就是( 4 times 4 times 4 = 64 )。
你瞧, ( 4^3 ) 居然比 ( 5^2 ) 大得多。
这种情况,底数和指数的变化让人感觉眼花缭乱。
不过,只要你理清了这个逻辑,数值一算出来,答案就能非常明确。
但咱们得注意,这可不是说指数大的就一定会比指数小的结果大。
比如, ( 10^2 ) 和 ( 2^{10 ) 来比一下。
十大方法玩转指对幂比较大小(解析版)
“十大方法”,玩转指对幂比较大小目录一、重难点题型方法方法一:单调性法方法二:“媒介值”法方法三:作差法方法四:作商法方法五:构造函数法方法六:乘方法方法七:对数法方法八:零点法方法九:特殊值法方法十:放缩法二、针对性巩固练习重难点题型方法方法一:单调性法【典例分析】例1.(2023·全国·高三专题练习)设a=30.9,b=90.5,c=13-12,则( ).A.a>b>cB.c>b>aC.b>a>cD.b>c>a 【答案】C【分析】将三个指数幂化成同底指数幂,利用指数函数的单调性即可得解.【详解】因为a=30.8,b=90.5=(32)0.5=31,c=13-12=3-1 -12=312=30.5,又函数y=3x在R上单调递增,1>0.8>0.5,所以31>30.8>30.5所以b>a>c,故选:C例2.(2022秋·四川广安·高一统考期末)a=0.20.3,b=0.20.4,c=log0.20.1,则( )A.a>b>cB.b>c>aC.a>c>bD.c>a>b 【答案】D【分析】利用指数函数和对数函数的单调性来比较大小即可.【详解】根据函数y=0.2x在R上单调递减得1=0.20>a=0.20.3>0.20.4=b>0,根据函数y=log0.2x在0,+∞上单调递减得c=log0.20.1>log0.20.2=1,故c>a>b.故选:D.【方法技巧总结】1.指、对、幂大小比较的常用方法:①底数相同,指数不同时,如a x 1和a x 2,利用指数函数y =a x 的单调性;②指数相同,底数不同,如x a 1和x a 2利用幂函数y =x a单调性比较大小;③底数相同,真数不同,如log a x 1和log a x 2利用指数函数log a x 单调性比较大小;2.除了指对幂函数,其他函数(比如三角函数,对勾函数等)也都可以利用单调性比较大小。
幂的大小比较的方法 2
幂的大小比较比较幂的大小除了要灵活运用幂的运算性质外,还要掌握一定的技巧和方法,以下通过举例介绍几种常用的比较幂的大小的方法.一、差值比较法例1 比较621710与42173大小 此法的依据是:若0a b ->,则a b >;若0a b -<,则a b <.二、商值比较法例2 已知999999P =,990119Q =,那么P ,Q 的大小关系是( ) A .P >Q B .P =Q C .P <Q D .无法确定 此法的依据是:已知0a >,0b >,若1a b >,则a b >;若1a b=,则a b =;若1a b <,则a b <.三、底数比较法例3 数5553、4444、3335的大小关系是( )A .5553<4444<3335B .4444<5553<3335C .3335<4444<5553D .3335<5553<4444四、指数比较法:例4 若3181a =,4127b =,619c =,则a ,b ,c 的大小关系为( )A .a >b >cB .a >c >bC .a <b <cD .b >c >a在例3和例4中,都采取了逆用幂的乘方的方法,逆用公式常可以使问题得到巧妙的解决,望大家引起重视.五、乘方比较法例5 已知:44a =,33b =,比较a 和b 的大小.六、倒数比较法例6 比较10012与7513的大小 七、中间数比较法例7 比较212与163的大小通过上述列举方法可知,比较幂的大小方法较多,而且比较灵活,但只要在学习中善于探索,认真总结,比较幂的大小问题是不难解决的.八找出相同的质因数,再比较不同质因数的大小例8比较216 × 310与210 × 315的大小练习1比较218与1631的大小2比较2100与375的的大小3已知a=255,,b=3 44 ,,C=5 33 D= 622则a,b,C,D 的大小顺序是。
幂函数比较大小
幂函数比较大小
指数函数是数学中一种常见的函数,它非常容易被理解和计算,并且广泛应用于实际中。
指数函数中最常见的一种是幂函数。
幂函数是一种特殊的指数函数,它的概念很简单,它的形式可以表示为y = ax^k,其中x为自变量,a为系数,k为
指数。
幂函数有两个特性,一是它的函数图像是一条抛物线,二是它的函数可以用数学公式来表示。
因此,给定两个幂函数,可以用数学方法比较它们的大小。
首先,比较两个幂函数的系数a,如果a相等,则比较它
们的指数k,如果k大于另一个,则说明此函数大于另一个;
如果k小于另一个,则此函数小于另一个。
如果系数a不相等,则先将两个函数作比较,如果第一个大于第二个,则说明第一个函数大于第二个,反之亦然。
其次,可以用函数图像来比较两个幂函数的大小,函数图像可以很容易地比较出结果。
如果第一个函数的图像在第二个函数的图像上方,则表明第一个函数大于第二个函数,反之亦然。
最后,可以通过绘制两个幂函数的图形,由图形可以比较出两个函数的大小。
如果第一个函数的图形比第二个函数的图形高,则第一个函数大于第二个函数,反之亦然。
总的来说,比较两个幂函数的大小,可以使用数学公式、函数图像和图形来比较,这些方法都非常容易理解和使用,是比较幂函数大小的有效方法。
幂函数值比较大小的4种方法
幂函数值比较大小的4种方法幂函数是一种常见的函数形式,其一般表示为y = x^n,其中x为自变量,n为幂次。
在实际问题中,我们经常需要比较不同幂函数的大小关系。
下面将介绍四种比较不同幂函数大小的方法。
首先,我们可以通过观察幂函数的幂次来比较它们的大小关系。
当幂次n为正数时,随着自变量x的增大,幂函数y = x^n的值也会增大,因此幂次较大的幂函数通常比幂次较小的幂函数值更大。
当幂次n为负数时,随着自变量x的增大,幂函数y = x^n的值会减小,因此幂次较小的幂函数通常比幂次较大的幂函数值更大。
因此,通过观察幂次的大小关系,我们可以初步判断幂函数的大小关系。
其次,我们可以通过求导的方法比较幂函数的大小关系。
对幂函数y = x^n求导,可以得到导数dy/dx = nx^(n-1)。
通过求导后的导数值,我们可以判断幂函数在不同自变量取值下的增减情况,从而比较幂函数的大小关系。
一般来说,导数值大的幂函数在相同自变量取值下的函数值也会更大。
第三种方法是通过幂函数的极限值来比较大小关系。
对幂函数y = x^n,当x趋近于正无穷大时,幂函数的值也会趋近于无穷大。
因此,幂次较大的幂函数在正无穷大的情况下通常比幂次较小的幂函数值更大。
当x趋近于负无穷大时,幂函数的值则会趋近于0。
因此,幂次较小的幂函数在负无穷大的情况下通常比幂次较大的幂函数值更大。
通过比较幂函数的极限值,我们可以判断幂函数的大小关系。
最后,我们可以通过幂函数的函数图像来比较大小关系。
通过绘制幂函数的函数图像,我们可以直观地看出幂函数的增减情况,从而比较幂函数的大小关系。
一般来说,幂次较大的幂函数在同一自变量取值范围内的函数值更大,函数图像的增长幅度更大。
综上所述,我们可以通过观察幂函数的幂次、求导、极限值和函数图像来比较幂函数的大小关系。
不同的比较方法在不同情况下都有其适用的优势,可以根据具体问题的要求选择合适的比较方法。
通过这些方法,我们可以更准确地比较不同幂函数的大小关系,从而更好地解决实际问题。
指对幂比较大小6大题型(学生版+解析版)
指对幂比较大小6大题型命题趋势函数“比大小”是非常经典的题型,难度不以,方法无常,很受命题者的青睐。
高考命题中,常常在选择题或填空题中出现这类型的问题,往往将幂函数、指数函数、对数函数、三角函数等混在一起,进行排序。
这类问题的解法往往可以从代数和几何来那个方面加以探寻,即利用函数的性质与图象解答。
满分技巧比较大小的常见方法1.单调性法:当两个数都是指数幂或对数式时,可将其看成某个指数函数、对数函数或幂函数的函数值,然后利用该函数的单调性比较;2.作差法、作商法:(1)一般情况下,作差或者作商,可处理底数不一样的对数比大小;(2)作差或作商的难点在于后续变形处理,注意此处的常见技巧与方法;3.中间值法或1/0比较法:比较多个数的大小时,先利用“0”“1”作为分界点,然后再各部分内再利用函数的性质比较大小;4.估值法:(1)估算要比较大小的两个值所在的大致区间;(2)可以对区间使用二分法(或利用指对转化)寻找合适的中间值;5.构造函数,运用函数的单调性比较:构造函数,观察总结“同构”规律,很多时候三个数比较大小,可能某一个数会被可以的隐藏了“同构”规律,所以可能优先从结构最接近的的两个数规律(1)对于抽象函数,可以借助中心对称、轴对称、周期等性质来“去除f()外衣”比较大小;(2)有解析式函数,可以通过函数性质或者求导等,寻找函数的单调性、对称性,比较大小。
6.放缩法:(1)对数,利用单调性,放缩底数,或者放缩真数;(2)指数和幂函数结合来放缩;(3)利用均值不等式的不等关系进行放缩;(4)“数值逼近”是指一些无从下手的数据,如果分析会发现非常接近某些整数(主要是整数多一些),那么可以用该“整数”为变量,构造四舍五入函数关系。
热点题型解读【题型1利用单调性比较大小】【例1】(2022秋·福建宁德·高三统考期中)设a =0.30.3,b =0.30.5,c =0.50.3,d =0.50.5,则a ,b ,c ,d 的大小关系为()A.b >d >a >cB.b >a >d >cC.c >a >d >bD.c >d >a >b【变式1-1】(2022秋·四川眉山·高三校考阶段练习)若a =0.40.5,b =0.50.4,c =log 324,则a ,b ,c 的大小关系是()A.a <b <cB.b <c <aC.c <b <aD.c <a <b【变式1-2】(2022·陕西宝鸡·统考一模)已知实数a ,b ,c 满足e 2a 2=e 3b 3=e 5c 5=2,则()A.a >b >cB.a <b <cC.b >a >cD.c >a >b【变式1-3】(2023·全国·高三专题练习)已知a =0.30.5,b =0.30.6,c =2512,则a 、b 、c 的大小关系为()A.a <b <cB.c <a <bC.b <a <cD.c <b <a【变式1-4】(2023·江苏苏州·苏州中学校考模拟预测)已知f x =-x 2-cos x ,若a =f e -34,b =f ln45,c =f -14 ,则a ,b ,c 的大小关系为()A.c <b <aB.c <a <bC.b <c <aD.a <c <b【变式1-5】(2022·全国·高三专题练习)(多选)下列大小关系中正确的是()A.91.5>32.7B.3747<4737C.log 1213<log 312D.1.70.2>0.92.1【题型2作差作商法比较大小】【例2】(2022·云南昆明·昆明一中校考模拟预测)已知a =e 13,b =ln2,c =log 32,则a ,b ,c 的大小关系为()A.a>c>bB.a>b>cC.b>c>aD.c>b>a【变式2-1】(2022秋·陕西咸阳·高三校考阶段练习)若a=sin4,b=log53,c=lg6,d=e0.01,则().A.a<b<c<dB.a<c<b<dC.b<c<d<aD.a<d<b<c【变式2-2】(2022·全国·高三专题练习)已知m5=4,n8=9,0.9p=0.8,则正数m,n,p的大小关系为( )A.p>m>nB.m>n>pC.m>p>nD.p>n>m【变式2-3】(2022·贵州贵阳·校联考模拟预测)已知a=log45,b=54,c=log56,则a、b、c这三个数的大小关系为()A.c<b<aB.a<c<bC.c<a<bD.b<c<a【变式2-4】(2022秋·四川内江·高三校考阶段练习)已知a=30.2,b=log67,c=log56,则()A.a>b>cB.b>c>aC.a>c>bD.c>a>b【题型3中间值/估值法比较大小】【例3】(2023·全国·模拟预测)已知a=0.54,b=log50.4,c=log0.50.4,则a,b,c的大小关系是()A.b>a>cB.a>c>bC.c>a>bD.a>b>c【变式3-1】(2022秋·天津南开·高三南开中学校考阶段练习)已知a=log23,b=20.4,c=13-13,则a,b,c的大小关系是()A.b<a<cB.a<c<bC.a<b<cD.b<c<a【变式3-2】(2023秋·福建泉州·高三校考阶段练习)已知a=4e,b=log34lnπ,c=131.7,则a,b,c的大小关系为()A.a<b<cB.b<a<cC.c<a<bD.b<c<a【变式3-3】(2022秋·河南郑州·高三安阳一中校联考阶段练习)设a=20.2,b=0.50.5,c=log0.50.2,则( )A.a<b<cB.b<c<aC.c<a<bD.b<a<c【变式3-4】(2022秋·江西·高三校联考阶段练习)已知a=22,b=e,c=22.5,则a,b,c的大小关系是()(参考数据:ln2≈0.693)A.a>b>cB.b>a>cC.c>b>aD.c>a>b【变式3-5】(2022·全国·高三专题练习)已知a=ln40.25,b=4ln0.25,c=0.250.25,则()A.a>c>bB.b>c>aC.c>a>bD.b>a>c【变式3-6】(2023·全国·高三专题练习)(多选)已知a=log2x,b=2x,c=3x,其中x∈1,2,则下列结论正确的是()A.a>log b cB.a b>b cC.a b<b cD.log a b<log b c【题型4含变量比较大小】【例4】(2022秋·河南·高三上蔡第一高级中学阶段练习)已知x∈π4,π2,a=12 sin-x ,b=2cos-x ,c=2tan x,则()A.a>b>cB.c>b>aC.a>c>bD.c>a>b【变式4-1】(2022·全国·高三专题练习)设0<θ<π2,a=sin2θ,b=2sinθ,c=log2sinθ,则a,b,c的大小关系为()A.a<b<cB.b<a<cC.a<c<bD.c<a<b【变式4-2】(2022秋·黑龙江哈尔滨·高三哈尔滨三中校考阶段练习)已知f x =2022x-2022-x-ln x2+1-x,当0<x<π2,a=cos x,b=lncos x,c=e cos x,试比较f a ,f b ,f c 的大小关系()A.f a <f c <f bB.f b <f c <f aC.f c <f a <f bD.f b <f a <f c【变式4-3】(2023·全国·高三专题练习)已知x∈π4,π2且a=2sin2x+1e2sin2x,b=cos x+1e cos x,c=sin x+1e sin x,则a,b,c的大小关系为()A.a<b<cB.b<c<aC.a<c<bD.c<a<b【题型5构造函数比较大小】【例5】(2023·广西桂林·统考一模)已知a、b、c∈1,+∞,2e a ln3=9a,3e b ln2=8b,2e c-2=c,则()A.a>b>cB.a>c>bC.b>c>aD.c>a>b【变式5-1】(2022秋·广东广州·高三校考期中)函数f(x)是定义在R上的偶函数,当x<0时f(x)+xf(x)>0(其中f (x)是f(x)的导函数),若a=30.3⋅f(30.3),b=logπ3⋅f(logπ3),c=ln19⋅f ln19,则( )A.a<b<cB.c<b<aC.c<a<bD.b<a<c【变式5-2】(2022秋·四川成都·高三校考阶段练习)已知a=2022,b=2121,c=2220,则()A.c>b>aB.b>a>cC.a>b>cD.a>c>b【变式5-3】(2022·全国·高三专题练习)已知a=0.7e0.4,b=e ln1.4,c=0.98,则a,b,c的大小关系是( )A.a>c>bB.b>a>cC.b>c>aD.c>a>b【变式5-4】(2022秋·广东河源·高三河源市河源中学阶段练习)设a=12×106+1102,b=e0.01-1,c=ln1.02,则a,b,c的大小关系为()A.c<a<bB.b<c<aC.a<b<cD.b<a<c【变式5-5】(2022·全国·高三专题)设a=110,b=e111-1,c=1110ln1110,则a,b,c大小关系是_____.【题型6数形结合法比较大小】【例6】(2022·全国·高三专题练习)已知y=x-mx-n+2022(m<n),且α,β(α<β)是方程y=0的两根,则α,β,m,n的大小关系是()A.α<m<n<βB.m<α<n<βC.m<α<β<nD.α<m<β<n【变式6-1】(2023秋·陕西西安·高三统考期末)已知a=log32,b=log43,c=log54,则a,b,c的大小关系为()A.c<a<bB.a<b<cC.b<a<cD.c<b<a【变式6-2】(2022秋·江苏扬州·高三期末)已知正实数a,b,c满足e c+e-2a=e a+e-c,b=log23+ log86,c+log2c=2,则a,b,c的大小关系为()A.a<b<cB.a<c<bC.c<a<bD.c<b<a【变式6-3】(2023·全国·高三专题)已知a=eπ,b=πe,c=2eπ,则这三个数的大小关系为()A.c<b<aB.b<c<aC.b<a<cD.c<a<b限时检测(建议用时:60分钟)1.(2022·全国·高三专题练习)log 23,log 812,lg15的大小关系为()A.log 23<log 812<lg15B.log 812<lg15<log 23C.log 23>log 812>lg15D.log 812<log 23<lg152.(2022·四川资阳·统考二模)设a =1.02,b =e 0.025,c =0.9+20.06sin ,则a ,b ,c 的大小关系是()A.c <b <aB.a <b <cC.b <c <aD.c <a <b3.(2022·全国·高三专题练习)已知a =log 32,b =52log ,c =3a ,则a ,b ,c 的大小关系为()A.a <b <cB.b <a <cC.c <a <bD.c <b <a4.(2022·全国·高三专题练习)设a =log 23,b =0.50.2log ,c =0.50.2,则a ,b ,c 的大小关系为()A.b >c >aB.b >a >cC.a >c >bD.a >b >c5.(2022·全国·高三专题练习)已知a =0.50.6,b =0.60.5,c =log 65,则a ,b ,c 的大小关系为()A.a <b <cB.a <c <bC.b <a <cD.b <c <a6.(2022·全国·高三)已知定义在R 上的函数f x =x ⋅2x ,a =f 53log ,b =f 72ln,c =-f 512log,则a ,b ,c 的大小关系为()A.a >b >cB.b >c >aC.b >a >cD.c >b >a7.(2022秋·山东潍坊·高三统考阶段练习)已知a =1012,b =1111,c =1210,则a ,b ,c 的大小关系为()A.b >c >aB.b >a >cC.a >c >bD.a >b >c8.(2022秋·山东·高三校联考阶段练习)若a =e 0.1,b = 1.2,c =-0.9ln ,则a ,b ,c 的大小关系为().A.a >b >cB.a >c >bC.b >a >cD.c >b >a9.(2022·四川南充·统考一模)设定义R 在上的函数y =f x ,满足任意x ∈R ,都有f x +4 =f x ,且x ∈0,4 时,xf x >f x ,则f 2021 ,f 2022 2,f 2023 3的大小关系是()A.f 2021 <f 2022 2<f 20233B.f 2022 2<f 2021 <f 20233C.f 2023 3<f 20222<f 2021 D.f 2023 3<f 2021 <f 2022210.(2022秋·江西宜春·高三江西省丰城中学校考阶段练习)若a =2 1.01ln ln ,b =3πln2ln ,c =232ln ,则a ,b ,c 的大小关系为()A.a <c <bB.a <b <cC.c <b <aD.b <c <a11.(2022秋·江苏徐州·高三学业考试)设a =0.23,b =30.2,c =22log ,则a ,b ,c 的大小关系是()A.a <b <cB.a <c <bC.c <a <bD.b <a <c12.(2022秋·江苏常州·高三统考阶段练习)已知x =0.52log ,y =0.90.5log ,z =0.50.9,则x ,y ,z 的大小关系是()A.z >y >xB.x >z >yC.y >x >zD.y >z >x13.(2022秋·广东·高三校联考阶段练习)已知实数a =23log ,b =π4cos ,c =32log ,则这三个数的大小关系正确的是()A.a >b >cB.b >a >cC.b >c >aD.a >c >b14.(2022秋·天津东丽·高三校考阶段练习)设a =38log ,b =21.1,c =0.81.1,则a ,b ,c 的大小关系是()A.b <a <cB.c <b <aC.c <a <bD.a <c <b15.(2022·陕西渭南·统考一模)已知a =22,b =πln ,c =1360sin ,则a ,b ,c 的大小关系为()A.a <b <cB.a <c <bC.c <a <bD.c <b <a16.(2022秋·江西·高三校联考阶段练习)已知a =312,b =23log ,c =23,则a ,b ,c 的大小关系为()A.a >c >bB.c >b >aC.b >a >cD.a >b >c17.(2022·云南昆明·高三昆明一中校考阶段练习)已知a =1.11.2,b =1.21.1,c = 1.21.1log ,则a ,b ,c 的大小关系为()A.a >b >cB.b >a >cC.b >c >aD.c >b >a18.(2022秋·四川成都·高三校考期中)已知函数f x =e -x -e x 2,且a =-f 1π1πln ,b =f 1e ,c =f πe x,则a ,b ,c 的大小关系为()A.a<b<cB.b<c<aC.a<c<bD.b<a<c19.(2022·四川宜宾·统考模拟预测)已知a=2.525,b=75 57,c=313,则a,b,c的大小关系为()A.a<b<cB.b<a<cC.c<b<aD.b<c<a20.(2022秋·天津河东·高三天津市第七中学校考期中)若a=26ln4,b=2ln3ln,c=22πln4,则a,b,c的大小关系是()A.a>b>cB.c>b>aC.c>a>bD.b>a>c指对幂比较大小6大题型命题趋势函数“比大小”是非常经典的题型,难度不以,方法无常,很受命题者的青睐。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
幂的大小比较技巧
在幂的运算中,我们经常会遇到幂的大小比较问题,其常用的方法有如下几种:
一、化为指数相同的幂后比较
例1 、、的大小关系是( ).
A .<< B. C. D.
析解:因为,,, 又因为125<243<256,所以,故选B.
二、化为底数相同的幂后比较
例2 已知,则的大小关系是( ).
A. B. C. D.
析解:因为,,. 显然,有,故选A.
三、利用中间量作比较
例3 与的大小关系是:_____.(填“>”、“<”或“=”)(2002年希望杯赛题)
析解:因为,而,即<. 故填“<”.
四、乘方后作比较
例4 设,则的大小关系是( ). A. B. C. D.
析解:因为,所以,此时; 又因为,所以,此时. 503404305503404305305040534<<504030543<<403050453<<()105051033243==()104041044256==()10
3031055125==305040534<<31416181,27,9a b c ===,,a b c a b c >>a c b >>c b a >>b c a >>()31314124813
3a ===()414131232733b ===()61
612122933c ===a b c >>1615133316151333()1313135656433322
22>==>()166441616221615==>16151333111534
111,,345m n p ⎛⎫
⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,m n p m n p <<m p n <<n p m <<p n m <<45
20201111,38153125m p ⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭2020m p >m p >34
12121111,51254256
p n ⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭1212p n >p n >
综上可知,,故选C.
五、求商后作比较
例5 已知,则的大小关系是( ). A. B. C. D. 析解:因为,即; ,即; ,即. 综上可得,,故选A.
n p m <<5544332222,33,55,66a b c d ====,,,a b c d a b c d >>>a b d c >>>b a c d >>>a d b c >>>()()()()11115551155
544444421121122211352133381311311a b ⎡⎤⨯⨯⎛⎫⨯⎛⎫=====>⎢⎥ ⎪ ⎪⎝⎭⨯⨯⎢⎥⎝⎭⎣⎦a b >()()()()11114441144433
33333113113331138911555125511511b c ⎡⎤⨯⨯⎛⎫⨯⎛⎫=====>⎢⎥ ⎪ ⎪⎝⎭⨯⨯⎢⎥⎝⎭⎣⎦b c >()()()()11
1133311333222222511511555111375166636611611c d ⎡⎤⨯⨯⎛⎫⨯⎛⎫=====>⎢⎥ ⎪ ⎪⎝⎭⨯⨯⎢⎥⎝⎭⎣⎦c d >a b c d >>>。