函数图象的平移与对称变换.doc

合集下载

高中趣味课——函数图象的变换

高中趣味课——函数图象的变换
f(x)→f(-x):两函数图象关于y轴对称.
f(x)→-f(x):两函数图象关于x轴对称.
f(x)→f(|x|):两函数图象在x正半轴相同,f(|x|)为偶函数.
f(x)→|f(x)|:将f(x)中x轴下方的图象对称折向x轴上方,既得|f(x)|图象
就是要钻“牛角尖”,就是这么任性!!!
THANK YOU
所以,只需将y=x2的图象向左平移3个单位,再向下平移4
个单位即可! 方法二:向量
二、伸缩变换
y=f(ωx)(ω>0)的图象可将函数y=f(x)的图象上所有点的
1 横坐标变为原来的 ,纵坐标不变得到. w
y=kf(x)(k>0)的图象可将函数y=f(x)的图象上所有点 的纵坐标变为原来的 k 倍,横坐标不变而得到.
三、对称变换
y=f(x)与y=f(-x)的图象关于Leabharlann y轴 对称; x轴 对称;
y=f(x)与y=-f(x)的图象关于
y=f(x)与y=-f(-x)的图象关于
原点 对称;
y=|f(x)|的图象可将函数y=f(x)的图象在x轴下方的部分以
x轴 为对称轴翻折到 x轴 上方,其余部分不变;

一句话:左加右减,上加下减!
下面我们以f(x)=x2为例来说明平移变换:
例:函数y=x2+6x+5 的图象可由函数y=x2 的图象如何平移得到 ?
方法一:逆向思维--待定系数法:
令y=(x+k)2+b展开得:y=x2+2kx+k2+b,易得k=3,b=-4;
所以:y=x2+6x+5=(x+3)2-4
函数图像的变换
高中数学

函数图像变换(整理)

函数图像变换(整理)

函数的图象变换函数图象的基本变换:(1)平移;(2)对称;(3)伸缩。

由函数y = f (x)可得到如下函数的图象1. 平移:(1)y = f (x + m) (m>0):把函数y =f (x)的图象向左平移m 的单位(如m<0则向右平移-m 个单位)。

(2)y = f (x) + m (m>0):把函数y =f (x)的图象向上平移m 的单位(如m<0则向下平移-m 个单位)。

2. 对称:✧ 关于直线对称(Ⅰ) (1)函数y = f (-x)与y = f (x)的图象关于y 轴对称。

(2)函数y = -f (x)与y = f (x)的图象关于x 轴对称。

(3)函数y = f (2a -x)与y = f (x)的图象关于直线x = a 对称。

(4)函数y = 2b -f (x)与y = f (x)的图象关于直线y = b 对称。

(5)函数)x (f y 1-=与y = f (x)的图象关于直线y = x 对称。

(6)函数)x (f y 1--=-与y = f (x)的图象关于直线y = -x 对称。

(Ⅱ)(7)函数y = f (|x|)的图象则是将y = f (x)的y 轴右侧的图象保留,并将y =f (x)右侧的图象沿y 轴翻折至左侧。

(留正去负,正左翻(关于y 轴对称));(8)函数y = |f (x)|的图象则是将y = f (x)在x 轴上侧的图象保留,并将y = f (x)在x 轴下侧的图象沿x 轴翻折至上侧。

(留正去负,负上翻;)一般地:函数y = f (a+mx)与y = f (b -mx)的图象关于直线m2a b x -=对称。

✧ 关于点对称(1) 函数y = - f (-x)与y = f (x)的图象关于原点对称。

(2) 函数y = 2b -f (2a -x)与y = f (x)的图象关于点(a,b)对称。

3. 伸缩(1) 函数y = f (mx) (m>0)的图象可将y = f (x)图象上各点的纵坐标不变,横坐标缩小到原来的m 1倍得到。

函数图象的四大变换

函数图象的四大变换
高三数学总复习
你会利用图象的直观性来解决问题吗?
函数图象的四大变换
平移
翻折
对称 伸缩
一、知识点及基本方法
1、画函数图象的依据:⑴解析式及定义域;⑵图象变换
2、图象变换类型:常用变换方法有四种,即平移变换、 伸缩变换、对称变换 和翻折变换
(1)平移变换:分为水平平移与竖直平移
y=f(x)
x
x-h ( h > 0 )
练习2:
已知 f(x)=log2|x|, g(x)=-x2+2,则f(x)g(x)的图象
只能是下图中的( )
y
y
y
y
x
x
x
x
A
B
C
D
解析:由f(x)g(x)是偶函数否定A、D,
当x→±∞时,f(x)g(x) →-∞,故选C.
2、画函数图象,由图象求解析式
例2 已知函数y=f (x)是在R上以2为周期的奇函数,在区 间[0,1)上的图象如下图所示,并已知该区间上图象是 一个二次函数的图象的一部分,点(1,1)是其顶点.试作出 y=f (x)在区间[-2,2]上的图象,并求该区间上的解析式.
(3)伸缩变换:
y=f(x)
x
ωx (ω>1)
纵坐标不变,横坐标缩短为原来的 1 倍 ω
y=f(x)
x
ωx ( 0 < ω < 1)
纵坐标不变,横坐标伸长到原来的 1倍 ω
y=f(x)
纵坐标伸长(A>1)或缩短(0<A<1) 到原来的A倍,横坐标不变
y=f(ω x) y=f(ω x)
y= A f( x)
y
y
y
O
1x -1
-1 O

三种图象变换:平移变换、对称变换和伸缩变换

三种图象变换:平移变换、对称变换和伸缩变换

三种图象变换:平移变换、对称变换和伸缩变换①平移变换:(h>0)Ⅰ、水平平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向左(0)a >或向右(0)a <平移||a 个单位即可得到;1)y=f(x)h 左移→y=f(x+h);2)y=f(x) h 右移→y=f(x -h);Ⅱ、竖直平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向上(0)a >或向下(0)a <平移||a 个单位即可得到;1)y=f(x) h 上移→y=f(x)+h ;2)y=f(x) h下移→y=f(x)-h 。

②对称变换:Ⅰ、函数()y f x =-的图像可以将函数()y f x =的图像关于y 轴对称即可得到; y=f(x) 轴y →y=f(-x)Ⅱ、函数()y f x =-的图像可以将函数()y f x =的图像关于x 轴对称即可得到;y=f(x) 轴x →y= -f(x)Ⅲ、函数()y f x =--的图像可以将函数()y f x =的图像关于原点对称即可得到;y=f(x) 原点→y= -f(-x)Ⅳ、函数)(y f x =的图像可以将函数()y f x =的图像关于直线y x =对称得到。

y=f(x) x y =→直线x=f(y)Ⅴ、函数)2(x a f y -=的图像可以将函数()y f x =的图像关于直线a x =对称即可得到;y=f(x) a x =→直线y=f(2a -x)。

③翻折变换:Ⅰ、函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到;Ⅱ、函数(||)y f x =的图像可以将函数()y f x =的图像右边沿y 轴翻折到y 轴左边替代原y 轴左边部分并保留()y f x =在y 轴右边部分即可得到④伸缩变换:Ⅰ、函数()y af x =(0)a >的图像可以将函数()y f x =的图像中的每一点横坐标不变纵坐标伸长(1)a >或压缩(01a <<)为原来的a 倍得到;y=f(x)ay ⨯→y=af(x)Ⅱ、函数()y f ax =(0)a >的图像可以将函数()y f x =的图像中的每一点纵坐标不变横坐标压缩(1)a >或伸长(01a <<)为原来的1a倍得到。

函数图象的三种变换

函数图象的三种变换

(2)如图数图象的三种变换函数的图象变换是高考中的考查热点之一,常见变换有以下3种:一、平移变换例1设fx)=X2,在同一坐标系中画出:(1)y=fx),y=fx+1)和y=f(x-1)的图象,并观察三个函数图象的关系;(2)y=fx),y=fx)+1和y=f(x)-1的图象,并观察三个函数图象的关系.解(1)如图点评观察图象得:y二fx+1)的图象可由y二fx)的图象向左平移1个单位长度得到;y二fx-1)的图象可由y二fx)的图象向右平移1个单位长度得到;y二fx)+1的图象可由y二fx)的图象向上平移1个单位长度得到;y二fx)-1的图象可由y二fx)的图象向下平移1个单位长度得到.二、对称变换_例2设fx)=x+1,在同一坐标系中画出y=fx)和y=f(—x)的图象,并观察两个函数图象的关系.解画出y二fx)二x+1与y二f(-x)二-x+1的图象如图所示.由图象可得函数y二x+1与y二-x+1的图象关于y轴对称.小点评函数y二fx)的图象与y二f(-x)的图象关于y轴对称;函数y二fx)的图象与y二-fx)的图象关于x轴对称;函数y二fx)的图象与y二-f(-x)的图象关于原点对称.三、翻折变换例3设fx )=x +l ,在不同的坐标系中画出y =fx )和y =|fx )1的图象,并观察两个函数图象的关系.解y 二fx )的图象如图1所示,y 二|fx )l 的图象如图2所示.点评要得到y 二fx )l 的图象,把y 二fx )的图象中x 轴下方图象翻折到x 轴上方,其余部分不变.例4设fx )=x +1,在不同的坐标系中画出y =fx )和y =f(\x\)的图象,并观察两个函数图象的关系.解如下图所示.点评要得到y 二f (\x \)的图象,先把y 二fx )图象在y 轴左方的部分去掉,然后把y 轴右边的对称图象补到左方即可.小结:y €f(x)——,y =f x )\将x 轴下方图象翻折上去y €f(x)——留y 轴右侧图象,y =f (\x \).并作其关于y 轴对称的图象—如图:y+y=f(x)四函数图象自身的对称性 1•函数y =f(x)的图象关于直x =a 2b对称…f (a +x )€f (b -x )…f (a +b -x)=f(x)2•函数y =f(x)的图象关于点(a,b)对称…2b -f(x)=f(2a -x)…f (x )€2b —f (2a —x )…f(a +x)+f(a -x)=2b3.若f(x)€-f (-x),则f(x)的图象关于原点对称,若f(x)=f(-x),则f(x)的图象关于y 轴对称。

图像平移与的对称

图像平移与的对称
例1:利用描点法作函数的图象:
(1) (3)
f ( x) | x 2 | | x 5 |
2 g ( x) x 4 x 3
(2)
h( x )
3x 1 2x 2
(4)
1 x2 y( ) 2
二.图象的平移变换 ①y=f(x-a)( a>0 )的图象可由y=f(x)的图象沿x轴 向右平移a个单位得到; y=f(x+a)(a>0 )的图象可由y=f(x)的图象沿 x轴 向左平移a个单位得到. ②y=f(x)+h(h>0)的图象可由y=f(x)的图象沿y轴向 上平移h个单位得到; y=f(x)-h(h>0)的图象可由y=f(x)的图象沿y轴向 下平移h个单位得到; 注意:(1)平移变换口诀:左加右减,上加下减; (2)谁向谁变换:是 y f ( x) y f ( x a) 还是 y f ( x a) y f ( x)
思 考
答案: ① ③ ④
三.图象的对称变换
①y=f(x)与y=f(-x)的图象关于y轴对称: ( x, y ) ( x, y )
②y=f(x)与y=-f(x)的图象关于x轴对称:
( x, y) ( x, y)
, y ) ( x, y )
图象的对称变换图象的对称变换图象是保留yfx的图象中位于上半平面内的部分及与x轴的交点将yfx的图象中位于下半平面内的部分以x轴为对称翻折到上半面中去而得到
一.用描点法作函数的图象的基本步骤:
①确定函数的定义域; ②简化函数的解析式; ③讨论函数的性质(奇偶性、单调性、最值等); ④画出函数的图象.
答案:(1)C (2)2
x 2
).
思 考
1.由直线y=2x如何得到直线y=2x+4? 2.函数y=f(x)图象进行平移变换得到曲线C,这时 y=f(x)图象上一点A(2,1)变为曲线C上点B(3,3), 则曲线的函数解析式为( ) A. y f ( x 1) 2 B. y f ( x 1) 2 C. y f ( x 1) 2 D. y f ( x 1) 2 答案(2):A

函数图像的变换法则

函数图像的变换法则

( 0,1 )和( 0,1 ) ( 2,0 )和( 2, 2 )
三﹑对称变换
y
(-x,y) .
(-x,-y) .
(y,x) . .(x,y)
x
.(x,-y)
函数图象对称变换的规律:
1. y f ( x) y f ( x)
关于x轴对称
2. y f ( x) y f ( x)
函数图象变换的应用:
①作图﹑② 识图﹑ ③用图
(2)方程 f(x)-a=x 的根的个数等价于 y=f(x)与 y=x-a 的交点的个数,所以可以借助图像进行分析.
规范解答 解
2 x-2 -1, x∈-∞,1]∪[3,+∞ f(x)= 2 -x-2 +1, x∈1,3
作出图像如图所示.
[2 分]
(1)递增区间为[1,2],[3,+∞), 递减区间为(-∞,1],[2,3]. [4 分] (2)原方程变形为 |x2-4x+3|=x+a, 于是,设 y=x+a,在同一坐标系下再作出 y=x+a 的图 像.如图. 则当直线 y=x+a 过点(1,0)时,a=-1; [6 分]
a a
1 x
a

a ax a a a
x

ax a ax
1 y 1
a a a
x

a
x
x
a a
f (1 x)
所以,函数y=f(x)的图象关于点(1/2,1/2)对称
(2)由对称性知f(1-x)+f(x)=1,所以 f(-2)+ f(-1)+ f(0)+ f(1)+ f(2)+ f(3)=3。
对称变换是指两个函数图象之间的对称关系,而”满足 f(x)= f(2a-x)或f(a+x)= f(a-x)有y=f(x)关于直线x=a对称”是 指一个函数自身的性质属性,两者不可混为一谈.

二次函数图象的平移和对称变换

二次函数图象的平移和对称变换

二次函数图象的平移、旋转、轴对称专题有关图象的变换一般可采用两种基本的方法,其一是利用特殊点进行变换,其二是利用坐标变换的规律进行变换。

所谓利用特殊点进行变换,即选取原图象上一些特殊的点,把这些点按指定的要求进行变换,再把变换后的点代入到新的解析式中,从而求出变换后的解析式,利用特殊点进行变换,又可以从一般形式入手,选取图象上的三个特殊的点进行变换,也可以把一般形式化为顶点式,选取顶点作为特殊点,然后进行变换。

利用坐标变换的方法,根据题目的要求,利用坐标变换的规律,从而进行变换。

下面由具体的例子进行说明。

一、平移。

例1、把抛物线y=x2-4x+6向左平移3个单位,再向下平移4个单位后,求其图象的解析式。

法(一)选取图象上三个特殊的点,如(0,6),(1,3),(2,2)【选取使运算最简单的点】,然后把这三个点按要求向左平移3个单位,再向下平移4个单位后得到三个新点(-3,2),(-2,-1),(-1,-2),把这三个新点代入到新的函数关系式的一般形式y=ax2+bx+c中,求出各项系数即可。

例2、已知抛物线y=2x2-8x+5,求其向上平移4个单位,再向右平移3个单位,求其解析式。

法(二)先利用配方法把二次函数化成2()=-+的形式,确定其顶点(2,-3),然y a x h k后把顶点(2,-3)向上平移4个单位,再向右平移3个单位后得到新抛物线的顶点为(5,1),因为是抛物线的平移,因此平移前后a的值应该相等,这样我们就得到新的抛物线的解析式中a=2,且顶点为(5,1),就可以求出其解析式了。

【平移规律:在原有函数的基础上“左加右减、上加下减”】.法(三)根据平移规律进行平移,不论哪种抛物线的形式,平移规律为“左右平移即把解析式中自变量x改为x加上或减去一个常数,左加右减,上下平移即把整个解析式加上或减去一个常数,上加下减。

”例3、已知抛物线y=2x2-8x+5,求其向上平移4个单位,再向右平移3个单位,求其解析式。

函数图像的变换(周期,平移,对称)

函数图像的变换(周期,平移,对称)

函数的变换(平移,对称,翻折,周期)【自主梳理】1.() (0)y f x a a =+>的图象可由()y f x =的图象向 平移单位而得到.() (0)y f x a a =->的图象可由()y f x =的图象向 平移单位而得到. 2.() (0)y f x b b =+>的图象可由()y f x =的图象向 平移单位而得到.() (0)y f x b b =->的图象可由()y f x =的图象向 平移单位而得到. 3.() (0)y Af x A =>的图象可由()y f x =图象上所有点的纵坐标变为 ,不变而得到.4.() (0)y f ax a =>的图象可由()y f x =图象上所有点的横坐标变为 ,不变而得到. 【自我检测】1.若()f x 的图象过(0,1)点,则(1)f x +的图象过点 . 2.函数2xy =的图象向右平移2个单位所得函数解析式为 . 3.将函数lg()y x =-的图象 可得函数lg(1)y x =-+的图象.4.函数xy x a =-+的图象的对称中心为(1,1)--,则a = . 5.将函数1cos 2y x =图象的横坐标缩短到原来的21倍,纵坐标扩大为原来的2倍,所得函数解析式为 . 6.为了得到函数3lg10x y +=的图象,只需把函数lg y x =的图象上所有的点向左平移 个单位长度,再向 平移个单位长度. 二、课堂活动: 【例1】填空题:(1)设函数()y f x =图象进行平移变换得到曲线C ,这时()y f x =图象上一点(2,1)A -变为曲线C 上点(3,3)A '-,则曲线C 的函数解析式为.(2)如果直线l 沿x 轴负方向平移3个单位,再沿y 轴正方向平移1个单位后,又回到原来的位置,那么直线l 的斜率是.(3)要得到函数sin(2)3y x π=-的图象,只需将函数cos2y x =的图象. (4)若函数()2sin y x θ=+的图象按向量(,2)6π平移后,它的一条对称轴是4x π=,则θ的一个可能的值是.【例2】作出下列函数的图象.(1)12x y -= (2)211x y x +=-【例3】(1)函数()24log 12y x x =-+的图象经过怎样的变换可得到函数2log y x =的图象?(2)函数21cos cos 12y x x x =+⋅+的图象可由sin y x =的图象经过怎样的平移和伸缩变换得到?【自主梳理】1.(1)函数()y f x =-与()y f x =的图像关于 对称; (2)函数()y f x =-与()y f x =的图像关于对称;(3)函数()y f x =--与()y f x =的图像关于 对称. 2.奇函数的图像关于对称,偶函数图像关于对称.3.若对于函数()y f x =定义域内的任意x 都有()()f a x f b x +=-,则()y f x =的图像关于直线 对称. 4.对0a >且1a ≠,函数xy a =和函数log a y x =的图象关于直线对称.5.要得到()y f x =的图像,可将()y f x =的图像在x 轴下方的部分以为轴翻折到x 轴上方,其余部分不变.6.要得到()y f x =的图像,可将()y f x =,[)0,x ∈+∞的部分作出,再利用偶函数的图像关于的对称性,作出(),0x ∈-∞时的图像.3.函数y e =-的图象与函数 的图象关于坐标原点对称.4.将函数1()2x f x +=的图象向右平移一个单位得曲线C ,曲线C '与曲线C 关于直线y x =对称,则C '的解析式为 .5.设函数()y f x =的定义域为R ,则函数(1)y f x =-与(1)y f x =-的图像的关系为关 于 对称. 6.若函数()f x 对一切实数x 都有(2)(2)f x f x +=-,且方程()0f x =恰好有四个不同实根,求这些实根之和为 . 二、课堂活动:(1(2)对于定义在R 上的函数()f x ,有下列命题,其中正确的序号为.①若函数()f x 是奇函数,则(1)f x -的图象关于点(1,0)A 对称;②若对x R ∈,有(1)(1)f x f x +=-,则()y f x =的图象关于直线1x =对称;③若函数(1)f x -的图象关于直线1x =对称,则函数()f x 是偶函数;④函数(1)y f x =+与函数(1)y f x =-的图象关于直线1x =对称.(3)将曲线lg y x =向左平移1个单位,再向下平移2个单位得到曲线C .如果曲线C '与C 关于原点对称,则曲线C '所对应的函数式是.【例2】作出下列函数的图象:(1)12log ()y x =-;(2)12xy ⎛⎫=- ⎪⎝⎭;(3)2log y x =;(4)21y x =-.【例3】(1)将函数12log y x =的图象沿x 轴向右平移1个单位,得图象C ,图象C '与C 关于原点对称,图象C ''与C '关于直线y x =对称,求C ''对应的函数解析式; (2)已知函数()y f x =的定义域为R ,并且满足(2)(2)f x f x +=-.①证明函数()y f x =的图象关于直线2x =对称;②若()f x 又是偶函数,且[]0,2x ∈时,()21f x x =-,求[]4,0x ∈-时()f x 的表达式.一.周期函数的定义:设函数y=f(x)的定义域为D ,若存在常数T ≠0,使得对一切x ∈D ,且x+T ∈D 时都有f(x+T)=f(x),则称y=f(x)为D 上的周期函数,非零常数T 叫这个函数的周期。

函数的图像及其变换

函数的图像及其变换

的图像可由y=f(x)的图像向上平移b个单位 而得到.总之, 对于平移变换,记忆口诀为:左加右减,上加下减.
(2)对称变换 y=f(-x)与y=f(x)的图像关于 y轴 y=-f(x)与y=f(x)的图像关于 x轴 对称; 对称; 对称;
y=-f(-x)与y=f(x)的图像关于 原点
y=|f(x)|的图像可将y=f(x)的图像在x轴下方的部分
AD,当点C落在X轴上时,h′=CF,显然AD=CF,即 当“中心点”M位于最高处时,“最高点”与X轴的距离 相等,选项B不符,故选A.
【答案】 A
·高中总复习(第1轮)·理科数学 ·全国版
立足教育 开创未来
► 探究点3 判断、证明函数的单调性 题型三:函数图象的应用及对称问题 3. 已知f(x)=| x2 -4x+3|. (1)求f(x)的单调区间; (2)求m的取值范围, 使方程f(x)=mx有4个不同实根.
方法二 y=f(x-1)与y=f(1-x)的图像分别由y=f(x) 与y=f(-x)的图像同时向右平移一个单位而得,又y=f(x) 与y=f(-x)的图像关于y轴对称. ∴y=f(x-1)与y=f(1-x)的图像关于直线x=1对 称.
【答案】 (1)g(x)=-ln(x-1) (2)D
变式
(1)已知函数 f(2x+1)是奇函数, 则函数 y=f(2x) )
【解析】 如图所示,不妨设正三角形ABC的边长 为a,记“中心点”M与X轴的距离为h,记“最高点”与 X轴的距离为h′.由图可知,当三段弧的中点落在X轴上 时,h最小,此时h=MD;当点A、B、C落在X轴上时, h最大,h=MC,故“中心点”M的位置先低后高,呈周 期性变化,排除选项C与D.当点D落在X轴上时,h′=

函数图像的变换

函数图像的变换

函数图像的变换函数图像的变换1、平移变换函数y = f(x)的图像向右平移a个单位得到函数y = f(x - a)的图像;向上平移b个单位得到函数y =f(x)+ b 的图像 ;左平移a个单位得到函数y = f(x + a)的图像;向下平移b个单位得到函数y =f(x)- b 的图像(a ,b&gt;0)。

2、伸缩变换函数 y = f(x)的图像上的点保持横坐标不变纵坐标变为原来的k倍(01时,伸)得到函数 y = k f(x)的图像;函数 y = f(x)的图像上的点保持纵坐标不变横坐标变为原来的1/k倍(01时,缩)得到函数y = f(k x)的图像(k&gt;0,且 k &ne;1)。

3、对称变换(1)函数y = f(x)的图象关于y轴对称的图像为 y =f(-x);关于x轴对称的图像为y =-f(x);关于原点对称的图像为y =-f(-x)。

(2)函数y = f(x)的图象关于x=a对称的图像为y =f(2a-x);关于y=b对称的图像为y =2b-f(x);关于点(a,b)中心对称的图像为y =2b-f(2a-x)。

(3)绝对值问题①函数 y =f(x)x轴及其上方的图像保持不变,把下f(bx)=f(2a -bx)成立,则函数 f(x)的图像关于x=a对称;(b&ne;0)(3)若函数 f(x)满足:对任意的实数x,都有f(a + x)=-f(a -x)成立,则函数 f(x)的图像关于点(a,0)对称;(4)若函数 f(x)满足:对任意的实数x,都有f(bx)=-f(2a -bx)成立,则函数 f(x)的图像关于(a,0)对称;(b&ne;0)(5)若函数 f(x)满足:对任意的实数x,都有f(a + x)=2b -f(a -x)成立,则函数 f(x)的图像关于点(a,b)对称;(6)若函数 f(x)满足:对任意的实数x,都有f(x)=2b -f(2a -x)成立,则函数 f(x)的图像关于(a,b)对称。

函数图象的几种常见变换

函数图象的几种常见变换

函数图象的几种常见变换⑪ 平移变换:左右平移---“左加右减”(注意是针对x 而言);上下平移----“上加下减”(注意是针对()f x 而言).⑫翻折变换:()|()|→f x f x ;“下沿X 轴翻折到上面”()(||)→f x f x .“右往左翻折—沿Y 轴”⑬对称变换:①证明函数图像的对称性,即证图像上任意点关于对称中心(轴)的对称点仍在图像上.②证明图像1C 与2C 的对称性,即证1C 上任意点关于对称中心(轴)的对称点仍在2C 上,反之亦然.③函数()y f x =与()y f x =-的图像关于直线0x =(y 轴)对称;函数()y f x =与函数()y f x =-的图像关于直线0y =(x 轴)对称;④若函数()y f x =对x R ∈时,()()f a x f a x +=-或()(2)f x f a x =-恒成立,则()y f x =图像关 于直线x a =对称;⑤若()y f x =对x R ∈时,()()f a x f b x +=-恒成立,则()y f x =图像关于直线2a b x +=对称;⑥函数()y f a x =+,()y f b x =-的图像关于直线2b a x -=对称(由a x b x +=-确定);⑦函数()y f x a =-与()y f b x =-的图像关于直线2a b x +=对称;⑧函数()y f x =,()y A f x =-的图像关于直线2A y =对称(由()()2f x A f x y +-=确定);⑨函数()y f x =与()y f x =--的图像关于原点成中心对称;函数()y f x =,()y n f m x =--的图像关于点22(,)m n对称;⑩函数()y f x =与函数1()y f x -=的图像关于直线y x =对称;曲线1C :(,)0f x y =,关于y x a =+,y x a =-+的对称曲线2C 的方程为(,)0f y a x a -+=(或(,)0f y a x a -+-+=;曲线1C :(,)0f x y =关于点(,)a b 的对称曲线2C 方程为:(2,2)0f a x b y --=. 9.函数的周期性:⑪若()y f x =对x R ∈时()()f x a f x a +=-恒成立,则 ()f x 的周期为2||a ;⑫若()y f x =是偶函数,其图像又关于直线x a =对称,则()f x 的周期为2||a ;⑬若()y f x =奇函数,其图像又关于直线x a =对称,则()f x 的周期为4||a ;⑭若()y f x =关于点(,0)a ,(,0)b 对称,则()f x 的周期为2||a b -;⑮()y f x =的图象关于直线x a =,()x b a b =≠对称,则函数()y f x =的周期为2||a b -;⑯()y f x =对x R ∈时,()()f x a f x +=-或1()()f x f x a +=-,则()y f x =的周期为2||a ;。

一次函数图像的平移对称旋转问题

一次函数图像的平移对称旋转问题

一次函数图象的平移变换问题的探究求一次函数图象平移后的解析式是一类重要题型,在各省市中考试题频繁亮相.在一次函数y kx b =+中常数k 决定着直线的倾斜程度:直线111y k x b =+与直线222y k x b =+平行⇔12k k =.一、一次函数平移的三种方式:⑴上下平移:在这种平移中,横坐标不变,改变的是纵坐标也就是函数值y .平移规律是上加下减.⑵左右平移:在这种平移中,纵坐标不变,改变的是横坐标也就是自变量x .平移规律是左加右减.⑶沿某条直线平移:这类题目稍有难度.“沿”的含义是一次函数图象在平移的过程中与沿着的那条直线的夹角不变.解题时抓住平移前后关键点坐标的变化. 二、典型例题:(1)点(0,1)向下平移2个单位后的坐标是 ___,直线21y x =+向下平移2个单位后的解析式是所谓平移变换就是在平面内,.经过平移后的图形与原来的图形相比大小、形状不变,只是位置发生了变化.简单的点P (x ,y )平移规律如下:(1)将点P (x ,y )向左平移a 个单位,得到P 1(x -a ,y ) (2)将点P (x ,y )向右平移a 个单位,得到P 2(x+a ,y ) (3)将点P (x ,y )向下平移a 个单位,得到P 3(x ,y -a )(4)将点P (x ,y )向上平移a 个单位,得到P 4(x ,y+a )反之也成立.下面我们来探索直线的平移问题.【引例1】探究一次函数l :y=32x 与1l :y=32x+2,2l :y=32x -2的关系. .【拓广】:一般地,一次函数y=kx+b 的图象是由正比例函数y=kx 的图象沿y 轴向上(b>0)或向下(b<0)平移b 个单位长度得到的一条直线.【应用】:例1、(08上海市)在图2中,将直线OA 向上平移1个单位,得到一个一次函数的图像,那么这个一次函数的解析式是 .2lx练习1. 直线y=2x+1向上平移4个单位得到直线 2. 直线y=-3x+5向下平移6个单位得到直线 3. 过点(2,-3)且平行于直线y=2x 的直线是____ _____。

二次函数中的平移、翻折、对称、旋转、折叠问题

二次函数中的平移、翻折、对称、旋转、折叠问题

二次函数中的平移、翻折、对称、旋转、折叠问题目录题型01二次函数平移问题题型02二次函数翻折问题题型03二次函数对称问题题型04二次函数旋转问题题型05二次函数折叠问题题型01二次函数平移问题1. 二次函数的平移变换平移方式(n>0)一般式y=ax2+bx+c顶点式y=a(x-h)2+k平移口诀向左平移n个单位y=a(x+n)2+b(x+n)+c y=a(x-h+n)2+k左加向右平移n个单位y=a(x-n)2+b(x-n)+c y=a(x-h-n)2+k右减向上平移n个单位y=ax2+bx+c+n y=a(x-h)2+k+n上加向下平移n个单位y=ax2+bx+c-n y=a(x-h)2+k-n下减2.平移与增加性变化如果平移后对称轴不发生变化,则不影响增减性,但会改变函数最大(小)值.只对二次函数上下平移,不改变增减性,改变最值.只对二次函数左右平移,改变增减性,不改变最值.1(2023·上海杨浦·统考一模)已知在平面直角坐标系xOy中,抛物线y=ax2-2ax-3a≠0与x轴交于点A、点B(点A在点B的左侧),与y轴交于点C,抛物线的顶点为D,且AB=4.(1)求抛物线的表达式;(2)点P 是线段BC 上一点,如果∠PAC =45°,求点P 的坐标;(3)在第(2)小题的条件下,将该抛物线向左平移,点D 平移至点E 处,过点E 作EF ⊥直线AP ,垂足为点F ,如果tan ∠PEF =12,求平移后抛物线的表达式.【答案】(1)y =x 2-2x -3(2)P 53,-43(3)y =x +1792-4【分析】(1)设点A 的横坐标为x A ,点B 的横坐标为x B ,根据对称轴,AB =4,列式x A +x B2=1,x B -x A =4,利用根与系数关系计算确定a 值即可.(2)过点C 作AC ⊥MN 于点C ,交AC 右侧的AP 的延长线于点M ,交AC 左侧的AP 的延长线于点N ,利用三角形全等,确定坐标,后根据解析式交点确定所求坐标即可.(3)设抛物线向左平移了t 个单位,则点E 1-t ,-4 ,过点F 作x 轴的平行线交过点P 和y 轴的平行线于点H ,交过点E 和y 轴的平行线于点G ,证明Rt △FGE ∽Rt △PHF ,根据相似三角形的性质得出GEHF=GF HP =EF FP =1tan ∠PEF =2即可求解.【详解】(1)解:∵抛物线y =ax 2-2ax -3a ≠0 与x 轴交于点A 、点B (点A 在点B 的左侧),与y 轴交于点C ,抛物线的顶点为D ,且AB =4,∴x A +x B 2=1,x B -x A =4,解得x B =3,x A =-1,∴-3a=3×-1 ,解得a=1,故抛物线的解析式为y =x 2-2x -3.(2)过点C 作AC ⊥MN 于点C ,交AC 右侧的AP 的延长线于点M ,∵∠PAC =45°,∴AC =CM ,过点M 作MT ⊥y 轴于点T ,∴∠ACO =90°-∠ECM =∠CMT ∵∠ACO =∠CMT ∠AOC =∠CTM AC =CM,∴△AOC ≌△CTM AAS ,∴AO =CT ,OC =EM ,∵抛物线的解析式为y =x 2-2x -3,x B =3,x A =-1,∴AO =CT =1,OC =TM =3,A -1,0 ,C 0,-3 ,B 3,0 ,∴OE =2,TM =3∴M 3,-2 ,设AM 的解析式为y =kx +b ,BC 的解析式为y =px +q ∴-k +b =03k +b =-2 ,3p +q =0q =-3 ,解得k =-12b =-12,p =1q =-3 ∴AM 的解析式为y =-12x -12,BC 的解析式为y =x -3,∴y =x -3y =-12x -12 ,解得x =53y =-43,故P 53,-43;(3)∵y =x 2-2x -3=x -1 2-4,点D 1,-4 ,设抛物线向左平移了t 个单位,则点E 1-t ,-4 ,过点F 作x 轴的平行线交过点P 和y 轴的平行线于点H ,交过点E 和y 轴的平行线于点G ,由(2)知,直线AP 的表达式为:y =-12x -12,P 53,-43设F m ,-12m -12 ∵∠EFP =90°,∴∠GFE +∠HFP =90°,∵∠GFE +∠GEF =90°,∴∠GEF =∠HFP ,∴Rt △FGE ∽Rt △PHF ,∴GE HF =GF HP =EF FP =1tan ∠PEF=2,∵GE =y F -y E =-12m -12+4,HF =x P -x F =53-m ,GF =x F -x G =m -1-t ,HP=y F -y P =-12m-12+43,∴-12m -12+453-m =m -1-t -12m -12+43=2,解得:t =269,∴y =x -1+269 2-4=x +179 2-4.【点睛】本题为考查了二次函数综合运用,三角形全等和相似、解直角三角形、图象平移等,正确作辅助线是解题的关键.2(2023·广东湛江·校考一模)如图1,抛物线y =36x 2+433x +23与x 轴交于点A ,B (A 在B 左边),与y 轴交于点C ,连AC ,点D 与点C 关于抛物线的对称轴对称,过点D 作DE ∥AC 交抛物线于点E ,交y 轴于点P.(1)点F 是直线AC 下方抛物线上点一动点,连DF 交AC 于点G ,连EG ,当△EFG 的面积的最大值时,直线DE 上有一动点M ,直线AC 上有一动点N ,满足MN ⊥AC ,连GM ,NO ,求GM +MN +NO 的最小值;(2)如图2,在(1)的条件下,过点F 作FH ⊥x 轴于点H 交AC 于点L ,将△AHL 沿着射线AC 平移到点A 与点C 重合,从而得到△A H L (点A ,H ,L 分别对应点A ,H ,L ),再将△A H L 绕点H 逆时针旋转α(0°<α<180°),旋转过程中,边A L 所在直线交直线DE 于Q ,交y 轴于点R ,求当△PQR 为等腰三角形时,直接写出PR 的长.【答案】(1)4+23975(2)1733-3或833【分析】(1)作FH ∥y 轴交DE 于H .设F m ,36m 2+433m +23 ,求出直线DE 的解析式,联立方程得到x =-3时,FH 的值最大,求出答案;作点G 关于DE 的对称点T ,TG 交DE 于R ,连接OR 交AC 于N ,作NM ⊥DE 于M ,连接TM ,GM ,此时GM +MN +NO 的值最小,求出答案即可;(2)当△PQR 是等腰三角形时,易知∠QPR =120°,易知直线RQ 与x 轴的夹角为60°,得到直线RQ 的解析式为y =3x +3-3,进而求出答案,当△QPR 是等腰三角形,同理求出答案.【详解】(1)如图1中,作FH ∥y 轴交DE 于H .设F m ,36m 2+433m +23 .由题意可知A (-6,0),B (-2,0),C (0,23),∵抛物线的对称轴x =-4,C ,D 关于直线x =-4对称,∴D (-8,23),∴直线AC 的解析式为y =33x +23,∵DE ∥AC ,∴直线DE 的解析式为y =33x +1433,由y =33x +23y =33x +1433,解得x =8y=23 或x =2y =1633,∴E 2,1633 ,H m ,33m +1433,∵S △DEF =S △DEG +S △EFG ,△DEG 的面积为定值,∴△DEG 的面积最大时,△EFG 的面积最大,∵FH 的值最大时,△DEF 的面积最大,∵FH 的值最大时,△EFG 的面积最大,∵FH =-36m 2-3m +833,∵a <0.开口向下,∴x =-3时,FH 的值最大,此时F -3,-32.如图2中,作点G 关于DE 的对称点T ,TG 交DE 于R ,连接OR 交AC 于N ,作NM ⊥DE 于M ,连接TM ,GM ,此时GM +MN +NO 的值最小.∵直线DF 的解析式为:y =-32x -23,由y =-32x -23y =33x +23,解得x =-245y =235,∴G -245,232 ,∵TG ⊥AC ,∴直线GR 的解析式为y =-3x -2235,由y =33x +1433y =-3x -2235 ,解得x =-345y =1235,∴R -345,1235,∴RG =4,OR =23975,∵GM =TM =RN ,∴GM +MN +ON =RN +ON +RG =RG +ON =4+23975.∴GM +MN +NO 的最小值为4+23975.(2)如图3中,如图当△PQR 是等腰三角形时,易知∠QPR =120°,PQ =PR易知直线RQ 与x 轴的夹角为60°,L 3-32,23+32,直线RQ 的解析式为y =3x +3-3,∴R (0,3-3),∴PR =1433-(3-3)=1733-3.如图4中,当△QPR 是等腰三角形,∵∠QPR =60°,∴△QPR 是等边三角形,同法可得R (0,23),∴PR =OP -OC =1433-23=833综上所述,满足条件的PR 的值为1733-3或833.【点睛】本题属于二次函数证明题,考查了二次函数的性质,一次函数的应用,解题的关键是学会构建二次函数解决最值问题,学会分类讨论的思想思考问题.3(2023·广东潮州·校考一模)如图,在平面直角坐标系中,抛物线y =-12x 2+bx +c 与x 轴交于A (-2,0),B (4,0)两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC 、BC ,点P 为直线BC 上方抛物线上一动点,连接OP 交BC 于点Q .(1)求抛物线的函数表达式;(2)当PQ OQ 的值最大时,求点P 的坐标和PQ OQ的最大值;(3)把抛物线y =-12x 2+bx +c 沿射线AC 方向平移5个单位得新抛物线y ,M 是新抛物线上一点,N 是新抛物线对称轴上一点,当以M 、N 、B 、C 为顶点的四边形是平行四边形时,直接写出N 点的坐标,并把求其中一个N 点坐标的过程写出来.【答案】(1)抛物线的函数表达式为y =-12x 2+x +4(2)当m =2时,PQ OQ取得最大值12,此时,P (2,4)(3)N 点的坐标为N 12,52 ,N 22,-112 ,N 32,-52.其中一个N 点坐标的解答过程见解析【分析】(1)运用待定系数法即可求得答案;(2)运用待定系数法求得直线BC 的解析式为y =-x +4,如图1,过点P 作PD ∥y 轴交BC 于点D ,设P m ,-12m 2+m +4 ,则D (m ,-m +4),证明△PDQ ∽△OCQ ,得出:PQ OQ =PD OC=-12m 2+2m 4=-18(m -2)2+12,运用求二次函数最值方法即可得出答案;(3)设M t -12t 2+2t +92,N (2,s ),分三种情况:当BC 为▱BCN 1M 1的边时;当BC 为▱BCM 2N 2的边时;当BC 为▱BM 3CN 3的对角线时,运用平行四边形性质即可求得答案.【详解】(1)∵抛物线y =-12x 2+bx +c 与x 轴交于A (-2,0),B (4,0)两点(点A 在点B 的左侧),∴-12×(-2)2-2b +c =0-12×42+4b +c =0,解得:b =1c =4 ,∴抛物线的函数表达式为y =-12x 2+x +4;(2)∵抛物线y =-12x 2+x +4与y 轴交于点C ,∴C (0,4),∴OC =4,设直线BC 的解析式为y =kx +d ,把B (4,0),C (0,4)代入,得:4k +d =0,d =4 解得:k =-1d =4 ,∴直线BC 的解析式为y =-x +4,如图1,过点P 作PD ∥y 轴交BC 于点D ,设P m ,-12m 2+m +4 ,则D (m ,-m +4),∴PD =-12m 2+2m ,∵PD ∥OC ,∴△PDQ ∽△OCQ ,∴PQ OQ =PD OC=-12m 2+2m 4=-18(m -2)2+12,∴当m =2时,PQ OQ取得最大值12,此时,P (2,4).(3)如图2,沿射线AC 方向平移5个单位,即向右平移1个单位,向上平移2个单位,∴新的物线解析式为y =-12(x -2)2+132=-12x 2+2x +92,对称轴为直线x =2,设M t ,-12t 2+2t +92,N (2,s ),当BC 为▱BCN 1M 1的边时,则BC ∥MN ,BC =MN ,∴t -2=4s =-12t 2+2t +92+4解得:t =6s =52,∴N 12,52;当BC 为▱BCM 2N 2的边时,则BC ∥MN ,BC =MN ,∴t -2=-4s =-12t 2+2t +92-4 ,解得:t =-2s =-112,∴N 22,-112;当BC 为▱BM 3CN 3的对角线时,则t +2=4-12t 2+2t +92+s =4,解得:t =2s =-52,∴N 32,-52;综上所述,N 点的坐标为:N 12,52 ,N 22,-112 ,N 32,-52.【点睛】本题是二次函数综合题,考查了待定系数法,二次函数的图象和性质,抛物线的平移,平行四边形的性质,相似三角形的判定和性质,熟练掌握铅锤法、中点坐标公式,运用数形结合思想、分类讨论思想是解题关键.4(2023·湖北襄阳·校联考模拟预测)坐标综合:(1)平面直角坐标系中,抛物线C 1:y 1=x 2+bx +c 的对称轴为直线x =3,且经过点6,3 ,求抛物线C 1的解析式,并写出其顶点坐标;(2)将抛物线C 1在平面直角坐标系内作某种平移,得到一条新的抛物线C 2:y 2=x 2-2mx +m 2-1,①如图1,设自变量x 在1≤x ≤2的范围内取值时,函数y 2的最小值始终等于-1.此时,若y 2的最大值比最小值大12m ,求m 的值;②如图2,直线l :y =-12x +n n >0 与x 轴、y 轴分别交于A 、C 两点.过点A 、点C 分别作两坐标轴的平行线,两平行线在第一象限内交于点B .设抛物线C 2与x 轴交于E 、F 两点(点E 在左边).现将图中的△CBA 沿直线l 折叠,折叠后的BC 边与x 轴交于点M .当8≤n ≤12时,若要使点M 始终能够落在线段EF (包括两端点)上,请通过计算加以说明:抛物线C 1在向抛物线C 2平移时,沿x 轴的方向上需要向左还是向右平移?最少要平移几个单位?最多能平移几个单位?【答案】(1)抛物线C 1的解析式为y 1=x 2-6x +3,抛物线C 1的顶点坐标为3,-6(2)①m 的值为2或9-154;②抛物线C 1在向抛物线C 2平移时,沿x 轴的方向上需要向右平移,最少平移2个单位,最多平移7个单位【分析】(1)根据对称轴为直线x =3,可得b =-6,再把把6,3 代入,即可求解;(2)①根据配方可得当x =m 时,函数有最小值-1,再由自变量x 在1≤x ≤2的范围内取值时,函数y 2的最小值始终等于-1,可得1≤m ≤2,然后两种情况讨论,即可求解;②先求出点A ,C 的坐标,可得点B 的坐标,再根据图形折叠的性质可得CM =AM ,在Rt △COM 中,根据勾股定理可得CM =54n ,从而得到点M 的坐标,继而得到n 的取值范围,然后根据点M 始终能够落在线段EF (包括两端点)上,可得m 取值范围,即可求解.【详解】(1)解:∵y 1=x 2+bx +c 的对称轴为直线x =3,∴-b2=3,解得:b =-6,把6,3 代入y 1=x 2-6x +c ,得3=62-6×6+c ,解得:c =3,∴抛物线C 1的解析式为y 1=x 2-6x +3,当x =3时,y 1=32-6×3+3=-6,∴抛物线C 1的顶点坐标为3,-6 ;(2)解:①∵y 2=x 2-2mx +m 2-1=x -m 2-1,∴抛物线C 2的对称轴为直线x =m ,当x =m 时,函数有最小值-1,∵在1≤x ≤2的范围内取值时,函数y 2的最小值始终等于-1,∴1≤m ≤2,当1≤m ≤32时,x =2时y 2有最大值为m 2-4m +3,∴m 2-4m +3+1=12m ,解得m =9±154,∴m =9-154;当32≤m ≤2时,x =1时y 2有最大值为m 2-2m ,∴m 2-2m +1=12m ,解得m =2或m =12(舍),综上所述:m 的值为2或9-154;②直线l :y =-12x +n 与x 轴的交点A 2n ,0 ,与y 轴的交点C 0,n ,∴B 2n ,n ,∵△CBA 沿直线l 折叠,∴∠BCA =∠ACM ,∵∠BCA =∠CAM ,∴∠ACM =∠MAC ,∴CM =AM ,在Rt △COM 中,CM 2=CO 2+OM 2,即CM 2=n 2+2n -CM 2,解得CM =54n ,∴OM =34n ,∴M 34n ,0 ,∵8≤n ≤12,∴6≤34n ≤9,当x 2-2mx +m 2-1=0时,解得:x =m +1或x =m -1,∴E m -1,0 ,F m +1,0 ,∵点M 始终能够落在线段EF 上,∴m +1≥6,m -1≤9,∴5≤m ≤10,∵y 1=x 2-6x +3=x -3 2-6,y 2=x -m 2-1,当m =5时,抛物线C 1沿x 轴向右平移2个单位,向上平移5个单位,当m =10时,抛物线C 1沿x 轴向右平移7个单位,向上平移5个单位,∴抛物线C 1在向抛物线C 2平移时,沿x 轴的方向上需要向右平移,最少平移2个单位,最多平移7个单位.【点睛】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,函数图象平移的性质,轴对称图形的性质,勾股定理的应用是解题的关键.5(2023·浙江湖州·统考中考真题)如图1,在平面直角坐标系xOy 中,二次函数y =x 2-4x +c 的图象与y 轴的交点坐标为0,5 ,图象的顶点为M .矩形ABCD 的顶点D 与原点O 重合,顶点A ,C 分别在x 轴,y 轴上,顶点B 的坐标为1,5 .(1)求c 的值及顶点M 的坐标,(2)如图2,将矩形ABCD 沿x 轴正方向平移t 个单位0<t <3 得到对应的矩形A B C D .已知边C D ,A B 分别与函数y =x 2-4x +c 的图象交于点P ,Q ,连接PQ ,过点P 作PG ⊥A B 于点G .①当t =2时,求QG 的长;②当点G 与点Q 不重合时,是否存在这样的t ,使得△PGQ 的面积为1?若存在,求出此时t 的值;若不存在,请说明理由.【答案】(1)c =5,顶点M 的坐标是2,1(2)①1;②存在,t =12或52【分析】(1)把0,5 代入抛物线的解析式即可求出c ,把抛物线转化为顶点式即可求出顶点坐标;(2)①先判断当t =2时,D ,A 的坐标分别是2,0 ,3,0 ,再求出x =3,x =2时点Q 的纵坐标与点P 的纵坐标,进而求解;②先求出QG =2,易得P ,Q 的坐标分别是t ,t 2-4t +5 ,t +1,t 2-2t +2 ,然后分点G 在点Q 的上方与点G 在点Q 的下方两种情况,结合函数图象求解即可.【详解】(1)∵二次函数y =x 2-4x +c 的图象与y 轴的交点坐标为0,5 ,∴c =5, ∴y =x 2-4x +5=x -2 2+1,∴顶点M 的坐标是2,1 .(2)①∵A 在x 轴上,B 的坐标为1,5 ,∴点A 的坐标是1,0 .当t =2时,D ,A 的坐标分别是2,0 ,3,0 .当x =3时,y =3-2 2+1=2,即点Q 的纵坐标是2,当x =2时,y =2-2 2+1=1,即点P 的纵坐标是1.∵PG ⊥A B ,∴点G 的纵坐标是1, ∴QG =2-1=1. ②存在.理由如下:∵△PGQ 的面积为1,PG =1,∴QG =2.根据题意,得P ,Q 的坐标分别是t ,t 2-4t +5 ,t +1,t 2-2t +2 .如图1,当点G 在点Q 的上方时,QG =t 2-4t +5-t 2-2t +2 =3-2t =2,此时t =12(在0<t <3的范围内),如图2,当点G 在点Q 的下方时,QG =t 2-2t +2-t 2-4t +5 =2t -3=2,此时t =52(在0<t <3的范围内).∴t =12或52.【点睛】本题考查了二次函数图象上点的坐标特点、矩形的性质以及三角形的面积等知识,熟练掌握二次函数的图象与性质、灵活应用数形结合思想是解题的关键.6(2023·江苏·统考中考真题)如图,二次函数y =12x 2+bx -4的图像与x 轴相交于点A (-2,0)、B ,其顶点是C .(1)b =;(2)D 是第三象限抛物线上的一点,连接OD ,tan ∠AOD =52;将原抛物线向左平移,使得平移后的抛物线经过点D ,过点(k ,0)作x 轴的垂线l .已知在l 的左侧,平移前后的两条抛物线都下降,求k 的取值范围;(3)将原抛物线平移,平移后的抛物线与原抛物线的对称轴相交于点Q ,且其顶点P 落在原抛物线上,连接PC 、QC 、PQ .已知△PCQ 是直角三角形,求点P 的坐标.【答案】(1)-1;(2)k ≤-3;(3)3,-52 或-1,-52 .【分析】(1)把A (-2,0)代入y =12x 2+bx -4即可求解;(2)过点D 作DM ⊥OA 于点M ,设D m ,12m 2-m -4 ,由tan ∠AOD =DM OM=-12m 2+m +4-m =52,解得D -1,-52,进而求得平移后得抛物线,平移后得抛物线为y =12x +3 2-92,根据二次函数得性质即可得解;(3)先设出平移后顶点为P p ,12p 2-p -4 ,根据原抛物线y =12x -1 2-92,求得原抛物线的顶点C 1,-92 ,对称轴为x =1,进而得Q 1,p 2-2p -72,再根据勾股定理构造方程即可得解.【详解】(1)解:把A (-2,0)代入y =12x 2+bx -4得,0=12×-2 2+b ×-2 -4,解得b =-1,故答案为-1;(2)解:过点D 作DM ⊥OA 于点M ,∵b =-1,∴二次函数的解析式为y =12x 2-x -4设D m ,12m 2-m -4 ,∵D 是第三象限抛物线上的一点,连接OD ,tan ∠AOD =52,∴tan ∠AOD =DM OM=-12m 2+m +4-m =52,解得m =-1或m =8(舍去),当m =-1时,12m 2-m -4=12+1-4=-52,∴D -1,-52,∵y =12x 2-x -4=12x -1 2-92,∴设将原抛物线向左平移后的抛物线为y =12x +a 2-92,把D -1,-52 代入y =12x +a 2-92得-52=12-1+a 2-92,解得a =3或a =-1(舍去),∴平移后得抛物线为y =12x +3 2-92∵过点(k ,0)作x 轴的垂线l .已知在l 的左侧,平移前后的两条抛物线都下降,在y =12x +3 2-92的对称轴x =-3的左侧,y 随x 的增大而减小,此时原抛物线也是y 随x 的增大而减小,∴k ≤-3;(3)解:由y =12x -1 2-92,设平移后的抛物线为y =12x -p 2+q ,则顶点为P p ,q ,∵顶点为P p ,q 在y =12x -1 2-92上,∴q =12p -1 2-92=12p 2-p -4,∴平移后的抛物线为y =12x -p 2+12p 2-p -4,顶点为P p ,12p 2-p -4 ,∵原抛物线y =12x -1 2-92,∴原抛物线的顶点C 1,-92,对称轴为x =1,∵平移后的抛物线与原抛物线的对称轴相交于点Q ,∴Q 1,p 2-2p -72,∵点Q 、C 在直线x =1上,平移后的抛物线顶点P 在原抛物线顶点C 的上方,两抛物线的交点Q 在顶点P 的上方,∴∠PCQ 与∠CQP 都是锐角,∵△PCQ 是直角三角形,∴∠CPQ =90°,∴QC 2=PC 2+PQ 2,∴p 2-2p -72+92 2=p -1 2+12p 2-p -4+922+p -1 2+12p 2-p -4-p 2+2p +722化简得p -1 2p -3 p +1 =0,∴p =1(舍去),或p =3或p =-1,当p =3时,12p 2-p -4=12×32-3-4=-52,当p =-1时,12×-1 2+1-4=-52,∴点P 坐标为3,-52 或-1,-52.【点睛】本题考查了二次函数的图像及性质,勾股定理,解直角三角形以及待定系数法求二次函数的解析式,熟练掌握二次函数的图像及性质是解题的关键.7(2023·湖北宜昌·统考模拟预测)如图,过原点的抛物线y 1=ax (x -2n )(a ≠0,a ,n 为常数)与x 轴交于另一点A ,B 是线段OA 的中点,B -4,0 ,点M (-3,3)在抛物线y 1上.(1)点A 的坐标为;(2)C 为x 轴正半轴上一点,且CM =CB .①求线段BC 的长;②线段CM 与抛物线y 1相交于另一点D ,求点D 的坐标;(3)将抛物线y 1向右平移(4-t )个单位长度,再向下平移165个单位长度得到抛物线y 2,P ,Q 是抛物线y 2上两点,T 是抛物线y 2的顶点.对于每一个确定的t 值,求证:矩形TPNQ 的对角线PQ 必过一定点R ,并求出此时线段TR 的长.【答案】(1)-8,0(2)①BC =5;②D -54,2716 (3)证明见解析,RT =5【分析】(1)根据中点公式求C 点坐标即可;(2)①设C x ,0 ,根据CM =CB ,建立方程(x +3)2+9=x +4,求出C 点坐标即可求BC ;②求出直线CM 的解析式为y =-34x +34,将A -8,0 代入y 1=ax (x -2n ),求出n =-4,将M 点代入y 1=ax (x +8),求出a =-15,从而求出抛物线y 1=-15x (x +8),直线CM 与抛物线的交点即为点D -54,2716;(3)根据平移的性质可求y 2=-15(x +t )2,则T (-t ,0),设直线PQ 的解析式为y =kx +b ,P m ,-15(m +t )2 ,Q n ,15(n +t )2 当kx +b =-15(x +t )2时,整理得x 2+(2t +5k )x +5b +t 2=0,由根与系数的关系可得m +n =-2t -5k ,mn =5b +t 2,过点P 作PF ⊥x 轴交于F 点,过Q 点作QE ⊥x 轴交于E 点,证明△FPT ∽△ETQ ,则PF TE =FT EQ ,即15(m +t )2n +t =-t -m 15(n +t )2,整理得,(m +t )(n +t )=-25,求出b =kt -5,所以直线PQ 的解析式为y =kx +kt -5=k (x +t )-5,对于每一个确定的t 值,直线PQ 必经过定点R (-t ,-5),RT =5.【详解】(1)∵B 是线段OA 的中点,B -4,0 ,∴OA =8,∴A -8,0 ,故答案为:-8,0 ;(2)①设C x ,0 ,∵CM =CB ,∴(x +3)2+9=x +4,解得x =1,∴BC =5;②设直线CM 的解析式为y =k 'x +b ',∴k '+b '=0-3k '+b '=3 ,解得k '=-34b '=34,∴直线CM 的解析式为y =-34x +34,将A -8,0 代入y 1=ax (x -2n ),∴-8a (-8-2n )=0,∵a ≠0,∴-8-2n =0,解得n =-4,∴y 1=ax (x +8),将M 点代入y 1=ax (x +8),∴-3a (-3+8)=3,解得a =-15,∴抛物线y 1=-15x (x +8),当-34x +34=-15x (x +8)时,解得x =-3或x =-54,∴D -54,2716;(3)证明:∵y 1=-15x (x +8)=-15(x +4)2+165,∴y 2=-15(x +t )2,∴T (-t ,0),设直线PQ 的解析式为y =kx +b ,P m ,-15(m +t )2 ,Q n ,15(n +t )2 ,当kx +b =-15(x +t )2时,整理得x 2+(2t +5k )x +5b +t 2=0,∴m +n =-2t -5k ,mn =5b +t 2,过点P 作PF ⊥x 轴交于F 点,过Q 点作QE ⊥x 轴交于E 点,∵四边形TPNQ 是矩形,∴∠PTQ =90°,∴∠FTP +∠ETQ =90°,∵∠FTP +∠TPF =90°,∴∠ETQ =∠TPF ,∴△FPT ∽△ETQ ,∴PF TE =FTEQ,即15(m +t )2n +t=-t -m15(n +t )2,整理得,(m +t )(n +t )=-25,∴mn +t (m +n )+t 2=-25,∴b -kt =-5,即b =kt -5,∴直线PQ 的解析式为y =kx +kt -5=k (x +t )-5,∴对于每一个确定的t 值,直线PQ 必经过定点R (-t ,-5),∴RT =5.【点睛】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,三角形相似的判定及性质,一元二次方程根与系数的关系,题型02二次函数翻折问题二次函数的翻转问题的解题思路:①根据二次函数上特殊点的坐标值求得二次函数的表达式;②根据翻转后抛物线与原抛物线的图像关系,确定新抛物线的表达式;③在直角坐标系中画出原抛物线及翻转后抛物线的简易图,根据图像来判断题目中需要求解的量的各种可能性;④根据图像及相关函数表达式进行计算,求得题目中需要求解的值。

高中数学函数图象的变换

高中数学函数图象的变换

函数图象的变换资料编号:20190725一、函数图象的平移变换在平面直角坐标系中,函数图象的平移变换分为上下平移变换和左右平移变换两种.图象变换后,函数的解析式也发生了有规律的变化. (1)上下平移变换将函数的图象沿轴方向向上或向下平移个单位长度,得到函)(x f y =y ()0>b ()0<b b 数的图象,即遵循“上加下减”的原则. b x f y +=)((2)左右平移将函数的图象沿轴方向向左或向右平移个单位长度,得到函)(x f y =x ()0>a ()0<a a 数的图象,即遵循“左加右减”的原则.)(a x f y +=例1. 将函数的图象向上和向下平移2个单位长度,画出平移后的函数的图象.x y =解:函数,即函数.x y =()()⎩⎨⎧<-≥=00x x x x y 将函数的图象向上平移2个单位长度,得到函数的图象,如图(1)所示;将x y =2+=x y 函数的图象向下平移2个单位长度,得到函数的图象,如图(2)所示.x y =2-=x y图图1图图图2图例2. 将函数的图象向左平移1个单位长度,画出平移后的函数的图象. x y 1=解:将函数的图象向左平移1个单位长度,得到函数的图象,如图(3)所示.x y 1=11+=x y图图3图说明:在图(3)中,反比例函数的图象无限趋近于轴和轴,但不相交.因此把轴和xy 1=x y x 轴叫做双曲线的两条渐近线.所以,函数的图象的两条渐近线分别是轴y x y 1=11+=x y x 和直线.1-=x 例3. 将函数的图象向右平移1个单位长度,画出平移后的函数的图象. 221)(x x f =解:将函数的图象向右平移1个单位长度,得到函数的图象,如图221)(x x f =()2121)(-=x x f (4)所示.图图4图1)2二、函数图象的对称变换在同一平面直角坐标系中,下列函数图象的对称关系为: (1)函数与函数的图象关于轴对称; )(x f y =)(x f y -=x (2)函数与函数的图象关于轴对称;)(x f y =)(x f y -=y(3)函数与函数的图象关于原点对称(即关于原点成中心对称). )(x f y =)(x f y --=根据以上两个函数图象的对称关系,作出其中一个函数的图象,可以作出相应的另一个函数的图象.例4. 已知函数的图象如图(5)所示,画出函数的大致图象.)(x f y =)1(x f y -=图图5图解:∵ ,∴先作出函数的图象关于轴对称的函数()[]1)1(--=-=x f x f y )(x f y =y 的图象,如图(6)所示,再把函数的图象向右平移1个单位长度,即可得)(x f y -=)(x f y -=到函数的图象,如图(7)所示.)1(x f y -=图图6图图图7图三、函数图象的翻折变换在同一平面直角坐标系中,通过对函数图象的翻折变换,可以得到函数)(x f y =)(x f y =和的图象.)(x f y =(1)要作出函数的图象,可先作出函数的图象,然后保留轴上及其上方)(x f y =)(x f y =x的图象,把轴下方的图象翻折到轴上方即可;x x (2)要作出函数的图象,可先作出函数的图象,然后保留轴上及其右侧)(x f y =)(x f y =y 的图象,把轴右侧的图象翻折到轴左侧即可.y y 例5. 画出函数的大致图象. 132+-=x x y 解: ()1521512132+-=+-+=+-=x x x x x y 先作出函数然后把函数向左平移1个单位长度,得到函数,5的图象x y -=的图象xy 5-=的图象,再把函数的图象向上平移2个单位长度,即可得到函数15+-=x y 15+-=x y 的大致图象,如图(8)所示.132+-=x x y图图8图说明:在图(8)中,直线和直线是函数的图象的两条渐近线. 1-=x 2=y 132+-=x x y 例6. 作出函数的大致图象.322--=x x y 解:先作出函数的图象,然后把轴下方的图象翻折到轴上方即可得到函数322--=x x y x x 的图象,如图(9)所示.322--=x x y图图9图3说明:事实上,函数为绝对值函数,可化为分段函数:322--=x x y . ()()⎩⎨⎧<<-++-≥-≤--=--=3132313232222x x x x x x x x x y 或例7. 作出函数的大致图象.322--=x x y 解:先作出函数的图象,然后保留其在轴上及其右侧的图象,把轴右侧的图322--=x x y y y 象翻折到轴左侧即可得到函数的图象,如图(10)所示.y 322--=x x y x 3图图9图说明:事实上,.()()⎩⎨⎧<-+≥--=--=03203232222x x x x x x x x y 习题1. 若方程有四个互不相等的实数根,则实数的取值范围是________. m x x =+-342m 提示:根据数形结合思想,构造两个函数:和常数函数,将方程的根的个342+-=x x y m y =数转化为两个函数图象的交点个数问题.习题2. 将函数的图象向右平移1个单位长度,再向上平移3个单位长度,所()3122-+=x y 得的图象对应的函数解析式为________________.习题3. 画出函数的图象,并根据图象指出函数的值域.1322--+=x x x y。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题:函数图象的平移与对称变换
一.知识结构
1.利用描点法作函数的图象的基本步骤:
①确定函数的定义域 ②简化函数的解析式
③讨论函数的性质(奇偶性、单调性、最值等) ④画出函数的图象
2.图象的平移变换
①)(a x f y -=( 0>a )的图象可由)(x f y =的图象沿x 轴向右平移a 个单位得到;)(a x f y +=( 0>a )的图象可由)(x f y =的图象沿x 轴向左平移a 个单位得到 ②h x f y ±=)()0(>h 的图象可由)(x f y =的图象沿y 轴向上或向下平移h 个单位得到
注意:
(1)可以将平移变换化简成口诀:左加右减,上加下减
(2)谁向谁变换是)()(a x f y x f y -=→=还是)()(x f y a x f y =→-=
3.图象的对称变换
①)(x f y =与)(x f y -=的图象关于y 轴对称
②)(x f y =与)(x f y -=的图象关于x 轴对称
③)(x f y =与)(x f y --=的图象关于原点对称 ④)(x f y =的图象是保留)(x f y =的图象中位于上半平面内的部分,及与x 轴的交点,将的)(x f y =图象中位于下半平面内的部分以x 轴为对称翻折到上半面中去而得到。

⑤)(x f y =图象是保留中位于右半面内的部分及与y 轴的交点,去掉左半平面内的部分,而利用偶函数的性质,将右半平面内的部分以y 轴为对称轴翻转到左半平面中去而得到。

⑥奇函数的图象关于原点成中心对称图形,偶函数的图象关于y 轴成轴对称图形
二.题型选编
题组一:利用描点法作函数的图象
1.作出函数|5||2|)(--+=x x x f 的图象;
2.作出函数2
213)(-+=x x x f 的图象; 3.作出函数34)(2+-=x x x f 的图象;
题组二:利用图象的变换解决相应的问题
1.设函数)(x f y =图象进行平移变换得到曲线C ,这时)(x f y =图象上一点)1,2(-A 变
为曲线C 上点)3,3('-A ,则曲线C 的函数解析式为( )
A. 2)1(+-=x f y
B. 2)1(++=x f y
C. 2)1(--=x f y
D. 2)1(-+=x f y 2.对于定义在R 上的函数)(x f 有下列命题,其中正确的序号为
①若函数)(x f 是奇函数,则)1(-x f 的图象关于点)0,1(A 对称;
②若对R x ∈,有)1()1(-=+x f x f ,)(x f y =的图象关于直线1=x 对称; ③若函数)1(-x f 的图象关于直线1=x 对称,则函数)(x f 是偶函数;
④函数)1(+=x f y 与函数)1(x f y -=的图象关于直线1=x 对称;
3.若函数y = f (x ) (x ∈R )满足f (x + 2) = f (x ),且x ∈(–1, 1]时,f (x ) = |x |,则函数y = f (x )的图象与函数y = log 3| x |的图象的交点的个数是 .
题组三:有关图象问题的综合应用
1.若函数)10(1≠>-+=a a b a y x 且的图象经过第二、三、四象限,则一定有 .
2.函数b x a x f -=)(的图象如图,其中a 、b 为常数,则下列结论正确的是( )
A .0,1<>b a
B .0,1>>b a
C .0,10><<b a
D .0,10<<<b a
3.关于x 的方程x a x x =-+-342有三个不相等的实数根,则实数a 的值是多少?
题组四:温故知新,可以为师
1.画出下列函数的图象
①2)21
(-=x y ②322-+=x x y
2.如图,在函数x y lg =的图象上有C B A ,,三点,它们的横坐标分别为m ,m +2,m +4(m >1). ①若△ABC 面积为S ,求S =f (m );
②判断S =f (m )的增减性.
1 m 2+m 4+m
x
y A
B C。

相关文档
最新文档