第四章凸轮典型例题
凸轮例题
例1 图示偏置直动滚子从动件盘形 凸轮机构中,凸轮以角速度ω 逆时 针方向转动。 试在图上画出:
(1)画出理论轮廓曲线、基圆与偏 距圆;
(2)标出凸轮图示位置压力角α1和 位移s1以及转过150°时的压力角α2 和位移 s2 。
本题目主要考察对凸轮廓线、基圆、偏距 圆、压力角及位移等基本概念的理解和对反转 法原理的灵活运用。 解
解
本题目主要考察对摆动从动件凸轮机构的 基圆、行程运动角、压力角及角位移等基本概 念的理解。
O
(1)图示位置的r0 、s 和α如图。 (2)r0 、s 与α之间的关系式为:
v tan lOP e r0 e s
2 2
1
பைடு நூலகம்
e
s r02 e 2
例3 图示为摆动滚子从动件盘形凸轮机构,凸轮为偏心圆盘, 且以角速度ω逆时针方向回转。
试在图上标出:
1. 凸轮基圆; 2. 升程运动角和回程运动角; 3. 图示位置时从动件的初始位置 角0和角位移 ; 4. 图示位置从动件的压力角α; 5. 从动件的最大角位移max 。
例2 已知图示凸轮机构标出基圆半径r0,图示位置从动件位移s 和机构的压力角,并求出它们之间的关系式。。 试求: 1.标出基圆半径r0? 2.标出图示位置从动件位移s 和机构 的压力角α ?
3.求出r0 、s 和α之间的关系式?
本题目主要考察对基圆、压力角及位移等 基本概念的理解和压力角的计算方法。 解
凸轮机构习题及答案
凸轮机构习题及答案凸轮机构习题及答案凸轮机构是机械工程中常见的一种机构,广泛应用于各种机械设备中。
它通过凸轮的运动来驱动其他机构实现特定的功能。
在学习凸轮机构的过程中,习题是一个很好的辅助工具,可以帮助我们更好地理解和掌握凸轮机构的原理和应用。
下面,我们将介绍一些凸轮机构的习题及其答案,希望对大家有所帮助。
习题一:一个凸轮的基圆半径为30mm,凸轮半径为40mm,凸轮的转角为60°,求凸轮的凸度。
解答:凸度是指凸轮上凸起部分的最大高度。
根据凸度的定义,我们可以得到凸度与凸轮的基圆半径、凸轮半径和凸轮的转角之间的关系式:凸度 = 凸轮半径 - 基圆半径代入已知条件,可得:凸度 = 40mm - 30mm = 10mm所以,凸轮的凸度为10mm。
习题二:一个凸轮的基圆半径为25mm,凸轮半径为40mm,凸轮的转角为90°,求凸轮的凸度。
解答:同样地,我们可以利用凸度的定义来求解这个问题。
代入已知条件,可得:凸度 = 40mm - 25mm = 15mm所以,凸轮的凸度为15mm。
习题三:一个凸轮的基圆半径为20mm,凸轮半径为50mm,凸轮的转角为120°,求凸轮的凸度。
解答:按照前面的方法,我们可以得到:凸度 = 50mm - 20mm = 30mm所以,凸轮的凸度为30mm。
通过以上几个习题,我们可以看到凸度与凸轮的基圆半径、凸轮半径和凸轮的转角之间的关系。
凸度越大,凸轮上的凸起部分越高,相应地,凸轮的运动也会更加剧烈。
除了凸度,凸轮机构还有其他一些重要的参数,比如凸轮的轴心偏距、凸轮的转速等。
在实际应用中,我们需要综合考虑这些参数,以确保凸轮机构的正常运行。
此外,凸轮机构还有一些常见的应用,比如在汽车发动机中,凸轮机构用于控制气门的开闭;在纺织机械中,凸轮机构用于控制织机的工作节奏等等。
凸轮机构的应用非常广泛,对机械工程师来说是一项重要的技术。
综上所述,凸轮机构是机械工程中一种常见的机构,通过凸轮的运动来驱动其他机构实现特定的功能。
机械原理凸轮机构习题与答案(五篇材料)
机械原理凸轮机构习题与答案(五篇材料)第一篇:机械原理凸轮机构习题与答案解:曲柄的存在的必要条件是1)最短杆与追长杆的杆长之和应小于或等于其余两杆的长度之和;2)连架杆与机架必有最短杆1).杆件1为曲柄2).在各杆长度不变的情况下,选取c杆做为机架就可以实现双摇杆机构试以作图法设计一偏置尖底推杆盘形凸轮的轮廓曲线。
已知凸轮以等角速度顺时针回转,正偏距e=10,基园半径r0=30mm.推杆运动规律为:凸轮转角δ=0~150时,推杆00.凸轮转角δ=180~300时推杆等速上升16mm;.凸轮转角δ=150~180时推杆远休;等加速回程16mm;.凸轮转角δ=300~360时推杆近休。
解:解题步骤1)首先绘制位移S与转角δ的关系曲线S-δ曲线。
2)根据S-δ曲线、凸轮基园半径和正偏距,绘制凸轮的轮廓曲线。
000000凸轮仅用了0度,90度,150度,180度,300度几个点绘制轮廓曲线,同学们绘制时英多用些点(一般取12个点,再勾画轮廓曲线)第二篇:机械原理_凸轮机构设计机械原理课程设计——凸轮机构设计(一)目录 (1)_________________________(一)、题目及原始数据 (2)(二)、推杆运动规律及凸轮廓线方程 (3)(三)、(四)、(五)、(六)、(七)、(八)、计算程序方框图..........................5 计算源程序..............................6 程序计算结果及分析......................10 凸轮机构图..............................15 心得体会................................16 参考书. (16)(一)、题目及原始数据试用计算机辅助设计完成偏置直动滚子推杆盘形凸轮机构的设计,凸轮以1rad/s的角速度沿逆时针方向转动。
要求:(1)、推程运动规律为等加速等减速运动,回程运动规律为五次多项式运动规律;(2)、打印出原始数据;(3)、打印出理论轮廓和实际轮廓的坐标值;(4)、打印出推程和回程的最大压力角,以及出现最大压力角时凸轮的相应转角;(5)、打印出凸轮实际轮廓曲线的最小曲率半径,以及相应的凸轮转角;(6)、打印出凸轮运动的位移;(7)、打印最后所确定的凸轮的基圆半径。
第4章_凸轮机构及其设计习题解答2
4.1如图4.3(a)所示的凸轮机构推杆的速度曲线由五段直线组成。
要求:在题图上画出推杆的位移曲线、加速度曲线;判断哪几个位置有冲击存在,是刚性冲击还是柔性冲击;在图示的F 位置,凸轮与推杆之间有无惯性力作用,有无冲击存在?图4.3【分析】要正确地根据位移曲线、速度曲线和加速度曲线中的一个画出其余的两个,必须对常见四推杆的运动规律熟悉。
至于判断有无冲击以及冲击的类型,关键要看速度和加速度有无突变。
若速度突变处加速度无穷大,则有刚性冲击;若加速度的突变为有限值,则为柔性冲击。
解:由图4.3(a)可知,在OA段内(0≤δ≤π/2),因推杆的速度v=0,故此段为推杆的近休段,推杆的位移及加速度均为零。
在AB段内(π/2≤δ≤3π/2),因v>0,故为推杆的推程段。
且在AB段内,因速度线图为上升的斜直线,故推杆先等加速上升,位移曲线为抛物线运动曲线,而加速度曲线为正的水平直线段;在BC段内,因速度曲线为水平直线段,故推杆继续等速上升,位移曲线为上升的斜直线,而加速度曲线为与δ轴重合的线段;在CD段内,因速度线为下降的斜直线,故推杆继续等减速上升,位移曲线为抛物线,而加速度曲线为负的水平线段。
在DE段内(3π/2≤δ≤2π),因v<0,故为推杆的回程段,因速度曲线为水平线段,故推杆做等速下降运动。
其位移曲线为下降的斜直线,而加速度曲线为与δ轴重合的线段,且在D和E处其加速度分别为负无穷大和正无穷大。
综上所述作出推杆的速度v及加速度a线图如图4.3(b)及(c)所示。
由推杆速度曲线和加速度曲线知,在D及E处,有速度突变,且相应的加速度分别为负无穷大和正无穷大。
故凸轮机构在D和E处有刚性冲击。
而在A,B,C及D处加速度存在有限突变,故在这几处凸轮机构有柔性冲击。
在F处有正的加速度值,故有惯性力,但既无速度突变,也无加速度突变,因此,F处无冲击存在。
【评注】本例是针对推杆常用的四种运动规律的典型题。
机械原理习题课-凸轮(完整资料).doc
此文档下载后即可编辑五、(12分)图示为一偏心圆盘凸轮机构,凸轮的回转方向如图所示。
要求:(1)说明该机构的详细名称;(2)在图上画出凸轮的基圆,并标明图示位置的凸轮机构压力角和从动件2的位移;(3)在图上标出从动件的行程h及该机构的最小压力角的位置。
五、总分12分。
(1)2 分;(2)6 分;(3)4 分(1) 偏置直动滚子从动件盘形凸轮机构。
(2) r0,α,s如图所示。
(3) h及αmin发生位置如图示。
五、(10分)试在图示凸轮机构中,(1)标出从动件与凸轮从接触点C到接触点D时,该凸轮转过的转角ϕ;(2)标出从动件与凸轮在D点接触的压力角α;(3)标出在D点接触时的从动件的位移s。
五、总分10分。
(1)4 分;(2)3 分;(3)3 分(1)ϕ如图示。
(2)α如图示。
(3) s如图示。
-5、图示为一偏置直动滚子从动件盘形凸轮机构。
试在图上:(1)画出并标明基圆r0;(2)作出并标明凸轮按ω方向转过60︒后,从动件与凸轮廓线接触处的压力角α;(3)作出并标明滚子从图示位置反转到B处与凸轮接触时,对应的凸轮转角ϕ。
1.在图示的凸轮机构中,画出凸轮从图示位置转过60 时从动件的位置及从动件的位移s。
1.总分5分。
(1)3 分;(2)2 分(1) 找出转过60 的位置。
(2) 标出位移s。
1.四、(10分)在图示凸轮机构中,已知:20AO mm,ο60=BO=∠AOB,=且A B(为圆弧;CO=DO=40mm,ο60∠COD,CD(为圆弧;滚子半径=r r=10mm,从动件的推程和回程运动规律均为等速运动规律。
(1)求凸轮的基圆半径;(2)画出从动件的位移线图。
四、总分10分。
(1)2分;(2)8分(1) r0=AO+r r=20+10=30 mm(2) s-ϕ线图如图示。
五、(10分)在图示直动平底从动件盘形凸轮机构中,请指出:(1 )图示位置时凸轮机构的压力角 。
(2 )图示位置从动件的位移。
凸轮机构及其设计习题以及答案
凸轮机构及其设计习题
以及答案
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
第四章习题以及答案
1 、试在图示凸轮机构中,
(1)标出从动件与凸轮从接触点C到接触点D时,该凸轮转过的转角ϕ;(2)标出从动件与凸轮在D点接触的压力角α;
(3)标出在D点接触时的从动件的位移s。
(4)画出理论轮廓线,并标出基圆半径r0
(5)找出出现最大压力角的位置,并标出最大压力角αmax
-
2、图示为一摆动平底从动件盘形凸轮机构,凸轮轮廓为一圆,圆心为O ,凸轮回转中心为A。
试用作图法在图中画出:
(1)该机构在图示位置的压力角αB;
(2)轮廓上D点与平底接触时的压力角αD;
(3)凸轮与平底从B点接触转到D点接触时,凸轮的转角ϕ(保留作图线)。
B
3、图示为一凸轮机构。
试用图解法求出(在图上注明):
(1)从C点接触到D点接触过程中,凸轮转角和从动件摆角;
(2)在D点接触时的压力角α。
4、图示偏置直动滚子从动件盘形凸轮机构中,凸轮以角速度ω逆时针方向转动。
试在图上:(1)画出理论轮廓曲线、基圆与偏距圆;
(2)标出凸轮从图示位置转过90︒时的压力角α和位移s。
凸轮机构例题
凸轮机构例题1、已知题4图所示的直动平底推杆盘形凸轮机构,凸轮为R= 30mm的偏心圆盘,20mm,试求:(1)基圆半径和升程;(2)推程运动角、回程运动角、远休止角和近休止角;(3)凸轮机构的最大压力角和最小压力角;(4)推杆的位移s、速度v和加速度a方程;(5)若凸轮以W = IOrad/s回转,当AO成水平位置时推杆的速度。
7匕题」图题4图解1、解:⑴ x0 = 10 = 2AO= 40mnit⑺ 推程J药角心=lS(r ,回程运动角<5;=180° 1近休止角九=0° ,远休止角玄a才-⑶由于平底垂盲于导路的平底推杆凸轮机构的圧力甫恒等于零,所以弧二%0U)如團所示,取旦唯钱与水平线的夹角肯凸轮的转角G M:推杆的位務右程再5 = x3+x3sh^-20(145b^推杆的速度方程対V =20&JCOS^推杆的加速度肓程为口一2%%航<5)当也=1[|曲创池碇于水平位貫时,5M}°或顷° ,所以推杆的速度为v= (20X LOcasS) mm.?«±20Uiiitn/82、10图所示对心直动尖顶推杆盘形凸轮机构中,凸轮为一偏心圆,O为凸轮的几何中心,O i为凸轮的回转中心。
直线AC与BD垂直,且Q试计算:=30tnnb(1)该凸轮机构中B、D两点的压力角;(2)该凸轮机构推杆的行程h。
⑴由區可加.氷口两掠的巫和闻次)母沖== arct吕[OQ# OB =arctgO. 5 = 25.565°(2) IT S h = = (2 > 30)mir = GG ITJTI3.如题13图所示的凸轮机构,设凸轮逆时针转动。
要求:画出凸轮的基圆半径,在图示位置时推杆的位移推杆开始上升时总=0°,以及传动角y题H團解s,凸轮转角厲(设。
考研机械凸轮典型计算例题
图示凸轮机构中,凸轮为一半径R=20 mm的偏心圆盘,圆盘的几何中心A到转动中心O的距离为e= 10 mm,滚子半径r g= 5 mm,凸轮角速度。
试求:(14分)①凸轮的理论廓线和基圆;②图示位置时机构的压力角;③凸轮从图示位置转过时的位移S;④图示位置时从动件2的速度v。
①凸轮的理论廓线和基圆理论廓线。
对于滚子推杆的凸轮机构而言,理论廓线是过滚子中心的一条封闭廓线。
题目中给出的是工作廓线,要得到理论廓线,只需要把工作廓线往外偏移一个滚子的半径即可。
由于这里工作廓线就是一个以C为圆心,半径为20mm的圆;而滚子的半径是5mm,所以理论廓线就是以C为圆心,半径为20+5=25mm的圆.如下图所示。
基圆。
首先我们知道,基圆是在理论廓线上定义的;其次我们懂得,它是以转动中心O 为圆心的,与理论廓线内切的一个半径最小的圆。
按照该定义,我们以O为圆心做一个与理论廓线内切的最小的圆如下图,显然,它的半径是10+5=15mm.②图示位置时机构的压力角;对于该机构而言,压力角是滚子的中心B点的受力方向与运动方向的夹角。
B点的速度方向。
由于B点是推杆与滚子的连接点,所以它也就是推杆上的B点。
由于推杆在上下平移,推杆上任何一点的轨迹都是沿着推杆的直线,所以任何一点的速度方向都是推杆直线的方向,因此推杆上的B点速度方向也在该直线上。
B点的受力方向。
推杆上的B点与理论廓线接触,在忽略摩擦的前提下,其受力方向其实就是理论力学中的光滑接触面中的反力方向。
光滑接触面的反力是公法线方向。
由于推杆的B点是尖点,无所谓法线,所以公法线方向就是理论廓线在该点的法线方向。
而理论廓线是一个圆,圆上任何一点的法线方向都是从从该点指向圆心的。
所以BC的方向就是公法线方向。
显然,速度方向与力的方向重合,所以压力角是0度。
这是我们最希望的压力角。
压力角越小,则凸轮机构的传力性能越好。
③凸轮从图示位置转过时的位移S;对于这种问题,总是用反转法通过作图测量出来的。
第4章凸轮习题答案(部分).docx
第6题:解:如下图所示:1)以O为圆心,以O点到推杆导路间的距离OD为半径作圆得推杆的偏距圆。
2)以A为圆心,AB为半径作圆,得凸轮的理论廓线(圆)。
3)连接A与凸轮的转动中心O并延长,交于凸轮的理论廓线于C点,以OC为半径作圆得凸轮的基圆(O为圆心)。
4)以O为圆心,以O点到推杆导路间的距离OD为半径作圆得推杆的偏距圆。
5)用直线连接圆盘凸轮圆心A和滚子中心B,则直线AB (力的作用线)(圆的法线通过圆心)与推杆导路(速度方向)之间所夹的锐角为图示位置时凸轮机构的压力角。
6)以OD为基准线(OD与DB垂直),沿着一3方向转90。
,与偏距圆相交于H点, 过点H作偏距圆的切线HEF,与基圆相交于E,与理论廓线相交于F,则线段EF的长即为凸轮从图示位置转过90。
后推杆的位移s。
7)延长COA与基圆相交于I、与理论廓线相交于J,两交点(IJ)之间的距离即为行程h。
8)分别过C点、J点作偏距圆的切线(导路位置),与偏距圆分别相交于M、N点(垂足点),OM、ON所夹的角即为推程运动角8 o, 360减去推程运动角8 o即为回程运动角。
9-9试以作图法设计一偏置直动滚子推杆盘形凸轮机构凸轮的轮廓曲 线•已知凸轮以等角速度顺时针回转,正偏距e=:0mm,基圆半径r° = 30 mm, 滚子半径= 10 mm 。
推杆运动规律为,凸轮转角$=0°〜15甘时.推杆等速上 升16 mm 渣==15。
°〜180°时推杆远休沦=180°〜300°时推杆等加速等减速 回程16 mm;5 = 30C°〜360°时推杆近休。
推杆在椎程及回程段运动规律的位移方程为, 推程:5 =肋7& 回程:等加速段s =等减速段s = 2h(X ―孵庭计算各分点的位移值如表9.3;豪 9.3,总转角 甘15° 30' 45° 60° 75°105° 位移/mm0 1.6 3, 2 4. 8 6.48 9.6 11.2 总转角 120* 135° 150* 165*】195° 210* 225° 位移/ mm 12.814.416161615.514 1L5 总转角 240° 255° 270" 285° 300° 315°330° 345° 位移mm 8 4.5 20. 5 0(J根据表9. 3可作所求图如图9. 3所示。
凸轮机构习题解
在图示旳凸轮机构中,圆弧底摆动推杆与凸轮在B点接触。当 凸轮从图示位置逆时针转过900时,试用图解法标出:1)推杆 在凸轮上旳接触点;2)摆杆位移角旳大小;3)凸轮机构旳压 力角。
解:1)接触点:
2)摆杆位移角:
y
3)压力角:
r
v
B
o’
B’
a
o
例已知图示偏心圆盘凸轮机构旳各部分尺寸,试在图上用 作图法求: (1)凸轮机构在图示位置时旳压力角 ; (2)凸轮旳基圆;
解:
例 在图示凸轮机构中,画出凸轮从图示位置转 过90°时凸轮机构旳压力角。
解:
例 图示偏置直动滚子从动件盘形凸轮机构中,凸轮以角速度 逆时针方向转动。试在图上:
(1)画出理论轮廓曲线、基圆与偏距圆; (2)标出凸轮从图示位置转过90°时旳压力角 和位移 s。
解:
例 偏心圆盘凸轮机构,凸轮旳回转方向如图所示。 要求(1)阐明该机构旳详细名称;
凸轮机构
例 用作图法求出图 示两凸轮机构从图 示位置转过45°时旳 压力角。
解:
例 画出图示凸轮机构旳基圆半径r0及示凸轮机构中标出凸轮转过90°时凸轮 机构旳压力角
解:
例 在图示旳凸轮机构中,画出凸轮从图示位 置转过60°时从动件旳位置及从动件旳 位移s。
(3)从动件从最下位置摆到图示位置时所摆过旳角度y;
(4)凸轮相应转过旳角度。
解:
试以作图法设计一偏置直动滚子推杆盘形凸轮机构凸轮旳轮廓曲线。 已知凸轮以等角速度顺时针回转,正偏距e=10mm,基圆半径ro=30mm,滚 子半径rr=10mm:推杆运动规律为:凸轮转角d=00~1500时,推杆等速上升 16mm;d=1500一1800时推杆远休;d=1800~3000时推杆等加速等减速回程 16mm;d=3000~3600时推杆近休。
机械原理凸轮机构习题与答案
解:曲柄的存在的必要条件是 1)最短杆与追长杆的杆长之和应小于或等于其余两杆的长度之和;2)连架杆与机架必有最短杆
1). 杆件1为曲柄
2).在各杆长度不变的情况下,选取c 杆做为机架就可以实现双摇杆机构
2 试以作图法设计一偏置尖底推杆盘形凸轮的轮廓曲线。
已知凸轮以等角速度顺时针回转,正偏距10e =,基园半径030r mm =0
.~150δ0推杆运动规律为:凸轮转角=0时,推杆等速上升16mm; 0.~180δ0凸轮转角=150时推杆远休;
.~300δ0凸轮转角=180时推杆等加速回程16mm; 0.~360δ0凸轮转角=300时推杆近休。
解:解题步骤1)首先绘制位移S 与转角δ的关系曲线S δ-曲线。
2)根据S δ-曲线、凸轮基园半径和正偏距,绘制凸轮的轮廓曲线。
凸轮仅用了0度,90度,150度,180度,300度几个点绘制轮廓曲线,同学们绘制时英多用些点(一般取12个点,再勾画轮廓曲线)。
机械原理总复习题及解答第四章
机械原理总复习题及解答第四章第4章凸轮机构及其设计4.1填空题4.1.1.设计滚⼦从动件盘形凸轮机构时,滚⼦中⼼的轨迹称为凸轮的廓线;与滚⼦相包络的凸轮廓线称为廓线。
4.1.2.盘形凸轮的基圆半径是上距凸轮转动中⼼的最⼩向径。
4.1.3.根据图4.1的??22d d s 运动线图,可判断从动件的推程运动是_____________,从动件的回程运动是______________。
图4.1题4.1.9图4.1.4.在设计滚⼦从动件盘形凸轮轮廓曲线中,若出现时,会发⽣从动件运动失真现象。
此时,可采⽤⽅法避免从动件的运动失真。
4.2判断题4.2.1..偏置直动尖顶从动件盘形凸轮机构中,其推程运动⾓等于凸轮对应推程廓线所对中⼼⾓;其回程运动⾓等于凸轮对应回程廓线所对中⼼⾓。
( )4.2.2.在直动从动件盘形凸轮机构中进⾏合理的偏置,是为了同时减⼩推程压⼒⾓和回程压⼒⾓。
( )4.2.3.当凸轮机构的压⼒⾓的最⼤值超过许⽤值时,就必然出现⾃琐现象。
()4.2.4.凸轮机构中,滚⼦从动件使⽤最多,因为它是三种从动件中的最基本形式。
()4.2.5.直动平底从动件盘形凸轮机构⼯作中,其压⼒⾓始终不变。
()4.2.6.滚⼦从动件盘形凸轮机构中,基圆半径和压⼒⾓应在凸轮的实际廓线上来度量。
()4.2.7.滚⼦从动件盘形凸轮的实际轮廓曲线是理论轮廓曲线的等距曲线。
因此,只要将理论廓线上各点的向径减去滚⼦半径,便可得到实际轮廓曲线上相应点的向径。
()4.2.8.从动件按等加速等减速运动规律运动时,推程的始点、中点及终点存在柔性冲击。
因此,这种运动规律只适⽤于中速重载的凸轮机构中。
()4.2.9.从动件按等加速等减速运动规律运动是指从动件在推程中按等加速运动,⽽在回程中则按等减速运动,且它们的绝对值相等。
()4.2.10.从动件按等速运动规律运动时,推程起始点存在刚性冲击,因此常⽤于低速的凸轮机构中。
()4.2.11.在对⼼直动尖顶从动件盘形凸轮机构中,当从动件按等速运动规律运动时,对应的凸轮廓线是⼀条阿⽶德螺旋线。
第四章凸轮典型例题
e
F
Oθ
φ
r0
A
αmax
R
hF
A
5
ω αmax
αE
E
e
O
φ
F
r0
A
R
hE hF
A
6
例5 在图(a)示的凸轮机构中,从动件的起始上升 点为C点。
(1)试在图上标出从C点接触到D点接触时,凸轮转 过的转角φ,及从动件走过的位移;
(2)标出在D点接触时凸轮机构的压力角α。
A
7ቤተ መጻሕፍቲ ባይዱ
解: 具体解法如图(b)所示。
(3)凸轮转过90°时,从动件的位移 为h K。
(4)从动件在F点接触时为最大位移,
即行程为h,此时αF=0。
A
2
例2 图(a)所示对心直动尖底从动件偏心圆盘凸轮机构,O为凸轮几何中心, O1为凸轮转动中心,直线AC⊥BD,O1O=OA/2,圆盘半径R=OA=60mm。(1) 根据图(a)及上述条件确定基圆半径r0,行程h, C点压力角αC和D点接触时的 压力角αD,位移hD;(2)若偏心圆盘凸轮几何尺寸不变,仅将从动件由尖底改 为滚子,见图(b),滚子半径rr=10mm。试问,上述参数r0,h,αc,和hD,αD是 否改变?对于有改变的参数试分析其增大还是减小?
触时的压力角αC;比较αB,αC大小,说明题意中的偏置是否合理。 (3)如果偏距e= -5mm,此时的偏置是否合理?
αB αC αD
B C D
e O
A r0
hB R
解:
αC> αB。该偏置有利 减小压力角,改善受力,
故偏置合理。
α D> α C> αB,故偏 置不合理。
A
凸轮试题(卷)(带答案解析)
凸轮一、单项选择题(从给出的A、B、C、D中选一个答案)1 与连杆机构相比,凸轮机构最大的缺点是。
A.惯性力难以平衡B.点、线接触,易磨损C.设计较为复杂D.不能实现间歇运动2 与其他机构相比,凸轮机构最大的优点是。
A.可实现各种预期的运动规律B.便于润滑C.制造方便,易获得较高的精度D.从动件的行程可较大3 盘形凸轮机构的压力角恒等于常数。
A.摆动尖顶推杆B.直动滚子推杆C.摆动平底推杆D.摆动滚子推杆4 对于直动推杆盘形凸轮机构来讲,在其他条件相同的情况下,偏置直动推杆与对心直动推杆相比,两者在推程段最大压力角的关系为关系。
A.偏置比对心大B.对心比偏置大C.一样大D.不一定5 下述几种运动规律中,既不会产生柔性冲击也不会产生刚性冲击,可用于高速场合。
A.等速运动规律B.摆线运动规律(正弦加速度运动规律)C.等加速等减速运动规律D.简谐运动规律(余弦加速度运动规律)6 对心直动尖顶推杆盘形凸轮机构的推程压力角超过许用值时,可采用措施来解决。
A.增大基圆半径B.改用滚子推杆C.改变凸轮转向D.改为偏置直动尖顶推杆7.()从动杆的行程不能太大。
A. 盘形凸轮机构B. 移动凸轮机构C. 圆柱凸轮机构8.()对于较复杂的凸轮轮廓曲线,也能准确地获得所需要的运动规律。
A 尖顶式从动杆 B.滚子式从动杆 C. 平底式从动杆9.()可使从动杆得到较大的行程。
A. 盘形凸轮机构 B 移动凸轮机构 C. 圆柱凸轮机构10.()的摩擦阻力较小,传力能力大。
A 尖顶式从动杆 B. 滚子式从动杆 C 平底式从动杆11.()的磨损较小,适用于没有内凹槽凸轮轮廓曲线的高速凸轮机构。
A. 尖顶式从动杆B.滚子式从动杆C. 平底式从动杆12.计算凸轮机构从动杆行程的基础是()。
A 基圆 B. 转角 C 轮廓曲线13.凸轮轮廓曲线上各点的压力角是()。
A. 不变的B. 变化的14.凸轮压力角的大小与基圆半径的关系是()。
A 基圆半径越小,压力角偏小 B. 基圆半径越大,压力角偏小15.压力角增大时,对()。
第4章 凸轮机构(教学例题)2009春季
例1 如图1(a)所示的直动滚子从动件盘形凸轮机构中,已知从动件在推程的运动规律为等加速等减速运动,推程运动角0φ=1200,凸轮工作轮廓的最小半径为m in r =30mm,滚子半径rr =12mm ,偏距e=14mm ,从动件的行程h=25mm 。
试求:(1) 凸轮的基圆半径0r 的值;(2) 当凸轮转角为900时,从动件的位移s 和类速度ϕd /ds ;(3) 取比例尺l μ=1mm/mm,用作图法求当凸轮转角为900时,所对应的以下各项: 1) 凸轮理论廓线曲线的对应点; 2) 凸轮工作廓线曲线的对应点; 3) 凸轮与从动件的速度瞬心位置; 4) 画出该位置所对应的压力角。
(4) 用解析法求上述1)、2)、3)、4)各项。
图 1(a) 图 1(b )y解:(1)凸轮的基圆半径为r min r r r +=0=30+12=42mm 。
(2)从动件在推程的运动规律为等加速等减速运动,当ϕ=900时,从动件在推程的等减速段,对应的从动件的位移和速度为:()222ϕφφ--=hh s =25-2⨯25(120-90)2/1202=21.875mm()ϕφφϕ-=0204h d ds=4⨯25⨯(120-90)/1202=11.936mm/(4) 作原凸轮机构的位置图,然后求当凸轮转过ϕ=900时对应的以下各项:1) 以O 为圆心,分别以偏距e 和基圆半径0r 为半径作出偏距圆和基圆,0B 为从动件滚子中心的初始位置。
根据反转法原理,从动件由0K B 位置沿ω-方向反转ϕ=900角,即得从动件在此位置的导路位置线CK,在KC 的延长线上取CB=S=21.875mm,求得B 点,即为凸轮转过900时的理论轮廓上所求的对应点。
2) 过B 点作凸轮理论廓线的法线nn,其与滚子的交点B ',即为该凸轮实际廓线上的对应点。
3) 凸轮理论廓线的法线nn 与OK 的交点即为凸轮与推杆的相对速度瞬心位置P 。
凸轮机构及其设计PPT课件
产生非常大的惯性力。 柔性冲击——由于加速度发生有限值的突变,导致从动件产生有限值的惯性
力突变而产生有限的冲击。
压力角、许用压力角 ——从动件在高副接触点所受的法向力与从动件该 点的速度方向所夹锐角α 。压力角过大时,会使机 构的传力性能恶化。工程上规定其临界值为许用压 力角[α]。不同的机器的许用压力角要求不同,凸轮 机构设计时要求 α ≤ [α]。
2) 摆动从动件的压力角
如下图所示, ω1和ω2同向,P点是瞬心点,过 P作垂直于AB延长线得D。由ΔBDP得
tanα =BD/PD
(2)
由ΔADP得
BD =AD-AB= APcos(ψ0 +ψ)-l
P
PD= APsin(ψ0 +ψ)
n
由瞬心性质有 AP ω2 =OP ω1 = (AP-a) ω1
解得
s=h[1-φ/Φ’ +sin(2πφ/Φ’)/2π] v=hω[cos(2πφ/Φ’)-1]/Φ’ a=-2πhω2 sin(2πφ/Φ’)/Φ’2
特点:无冲击,适于高速凸轮。
s
Φ v a
.
h φ
Φ’
φ
φ
21
改进型运动规律
单一基本运动规律不能满足工程要求时,
分别取一、二、五次项,就得到相应幂次的运动规律。
基本边界条件
凸轮转过推程运动角Φ ——从动件上升h 凸轮转过回程运动角Φ’——从动件下降h
将不同的边界条件代入以上方程组,可.求得待定系数Cபைடு நூலகம் 。
16
1) 一次多项式(等速运动)运动规律 边界条件
在推程起始点: φ =0, s=0 在推程终止点: φ =δ0 ,s=h 代入得:C0=0, C1=h/Φ
凸轮试卷(带答案)
凸轮一、单项选择题(从给出的A、B、C、D中选一个答案)1 与连杆机构相比,凸轮机构最大的缺点是。
A.惯性力难以平衡 B.点、线接触,易磨损C.设计较为复杂 D.不能实现间歇运动2 与其他机构相比,凸轮机构最大的优点是。
A.可实现各种预期的运动规律 B.便于润滑C.制造方便,易获得较高的精度 D.从动件的行程可较大3 盘形凸轮机构的压力角恒等于常数。
A.摆动尖顶推杆 B.直动滚子推杆C.摆动平底推杆 D.摆动滚子推杆4 对于直动推杆盘形凸轮机构来讲,在其他条件相同的情况下,偏置直动推杆与对心直动推杆相比,两者在推程段最大压力角的关系为关系。
A.偏置比对心大 B.对心比偏置大C.一样大 D.不一定5 下述几种运动规律中,既不会产生柔性冲击也不会产生刚性冲击,可用于高速场合。
A.等速运动规律 B.摆线运动规律(正弦加速度运动规律)C.等加速等减速运动规律 D.简谐运动规律(余弦加速度运动规律)6 对心直动尖顶推杆盘形凸轮机构的推程压力角超过许用值时,可采用措施来解决。
A.增大基圆半径 B.改用滚子推杆C.改变凸轮转向 D.改为偏置直动尖顶推杆7.()从动杆的行程不能太大。
A. 盘形凸轮机构B. 移动凸轮机构C. 圆柱凸轮机构8.()对于较复杂的凸轮轮廓曲线,也能准确地获得所需要的运动规律。
A 尖顶式从动杆 B.滚子式从动杆 C. 平底式从动杆9.()可使从动杆得到较大的行程。
A. 盘形凸轮机构 B 移动凸轮机构 C. 圆柱凸轮机构10.()的摩擦阻力较小,传力能力大。
A 尖顶式从动杆 B. 滚子式从动杆 C 平底式从动杆11.()的磨损较小,适用于没有内凹槽凸轮轮廓曲线的高速凸轮机构。
A. 尖顶式从动杆B.滚子式从动杆C. 平底式从动杆12.计算凸轮机构从动杆行程的基础是()。
A 基圆 B. 转角 C 轮廓曲线13.凸轮轮廓曲线上各点的压力角是()。
A. 不变的B. 变化的14.凸轮压力角的大小与基圆半径的关系是()。
凸轮机构及其设计习题及答案.
05凸轮机构及其设计1.凸轮机构中的压力角是和所夹的锐角。
2.凸轮机构中�使凸轮与从动件保持接触的方法有和两种。
3.在回程过程中�对凸轮机构的压力角加以限制的原因是。
4.在推程过程中�对凸轮机构的压力角加以限制的原因是。
5.在直动滚子从动件盘形凸轮机构中�凸轮的理论廓线与实际廓线间的关系是。
6.凸轮机构中�从动件根据其端部结构型式�一般有、、等三种型式。
7.设计滚子从动件盘形凸轮机构时�滚子中心的轨迹称为凸轮的廓线�与滚子相包络的凸轮廓线称为廓线。
8.盘形凸轮的基圆半径是上距凸轮转动中心的最小向径。
9.根据图示的dd 2 s��2�运动线图�可判断从动件的推程运动是_________________________________�从动件的回程运动是____________________________________________。
10.从动件作等速运动的凸轮机构中�其位移线图是线�速度线图是线。
11.当初步设计直动尖顶从动件盘形凸轮机构中发现有自锁现象时�可采用、、等办法来解决。
12.在设计滚子从动件盘形凸轮轮廓曲线中�若出现时�会发生从动件运动失真现象。
此时�可采用方法避免从动件的运动失真。
13.用图解法设计滚子从动件盘形凸轮轮廓时�在由理论轮廓曲线求实际轮廓曲线的过程中�若实际轮廓曲线出现尖点或交叉现象�则与的选择有关。
14.在设计滚子从动件盘形凸轮机构时�选择滚子半径的条件是。
15.在偏置直动从动件盘形凸轮机构中�当凸轮逆时针方向转动时�为减小机构压力角�应使从动件导路位置偏置于凸轮回转中心的侧。
16.平底从动件盘形凸轮机构中�凸轮基圆半径应由来决定。
17.凸轮的基圆半径越小�则凸轮机构的压力角越�而凸轮机构的尺寸越。
18.凸轮基圆半径的选择�需考虑到、�以及凸轮的实际廓线是否出现变尖和失真等因素。
19.当发现直动从动件盘形凸轮机构的压力角过大时�可采取��等措施加以改进�当采用滚子从动件时�如发现凸轮实际廓线造成从动件运动规律失真�则应采取�等措施加以避免。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解: 具体解法如图(b)所示。
例6 :图示为一直动推杆盘形凸轮机构。若一直凸轮 基圆半径r0,推杆的运动规律s=S(δ),为使设计出的 凸轮机构受力状态良好,试结合凸轮机构压力角的计 算公式说明应采用哪些措施?
S,V, a 是确定的
推程
r0
O
ω
B
B
SБайду номын сангаас
B
α
S0 δ
S δ
S
S0
α1
O’ e O ω
O
机械原理典型例题(第四章) ——凸轮机构
例1 图示偏心圆盘凸轮机构中,已知圆盘凸轮以ω=2rad/s转动,转向为顺时针 方向,圆盘半径R=50mm;当凸轮由图示位置转过90°时,从动件的速度为 ν=50mm/s。试求:(1)偏心圆盘凸轮的偏心距e;(2)凸轮转过90°时,凸 轮机构的压力角αk ;(3)凸轮转过90°时,从动件的位移hk;(4)从动件的 行程h。
2.正误判断题
(1)对于偏置直动从动件盘形凸轮机构,从动件推程对应的凸轮转角就 是凸轮推程轮廓对应的轮廓角。 X (2)当从动件推程按二次多项式规律运动时,仅在推程开始和结束位置 存在柔性冲击。 X (3)滚子从动件盘形凸轮机构的基圆半径是指凸轮理论轮廓曲线的最小 半径。 √
(4)凸轮理论轮廓曲线与实际轮廓曲线之间是法向等距曲线关系。 √
α2
δ ω e O’
S0
O
ω
P
tan OP / OB (ds / d ) / (r0 s)
P
P
tan (OP e) / O ' B ((ds / d ) e) / ( r02 e 2 s)
2 2
tan (OP e) / O ' B ((ds / d ) e) / ( r0 e s) 假设凸轮轮廓已经做出,要求在凸轮转过δ角时, 位移为S,速度为V, V=ω×Lop ,压力角为α。 适当偏距e(左移),使凸轮转过δ角,此时应有 可知:采用适当的偏距且使推杆偏向凸轮轴心 的左侧,可使推程压力角减小,从而改善凸轮 相同位移S,相同速度V。此时压力角为α1; 的受力情况,但使回程的压力角增大,由于回 P为瞬心位置,相同的速度即瞬心P位置是固定的。程的许用压力角很大,故对机构的受力情况影 响不大。 右移,使凸轮转过δ角,此时压力角为α2;
S=hF-hE sin α =(e - lOAcos θ)/(R+rr) θ =180时,α为 αmax
ω r0 O
αE E e θ A φ F hE
αmax
R
hF
αE E e ω r0 αmax O A R hF φ F hE
例5 在图(a)示的凸轮机构中,从动件的起始上升 点为C点。 (1)试在图上标出从C点接触到D点接触时,凸轮转 过的转角φ,及从动件走过的位移; (2)标出在D点接触时凸轮机构的压力角α。
基本概念题
1.选择题
(1)对于远、近休止角均不为零的凸轮机构,当从动件推程按简谐运动 C 规律运动时,在推程开始和结束位置______ 。 A.不存在冲击 B.存在刚性冲击 C.存在柔性冲击 (2)已知一滚子接触摆动从动件盘形凸轮机构,因滚子损坏,更换了一 个外径与原滚子不同的新滚子,则更换滚子后________ 。 D A. 从动件运动规律发生变化,而从动件最大摆角不变 B. 从动件最大摆角发生变化,而从动件运动规律不变 C. 从动件最大摆角和从动件运动规律均不变 D. 从动件最大摆角和从动件运动规律均发生变化 (3)已知一滚子接触偏置直动从动件盘形凸轮机构,若将凸轮转向由顺 时针改为逆时针,则_________ 。 D A. 从动件运动规律发生变化,而从动件最大行程不变 B. 从动件最大行程发生变化,而从动件运动规律不变 C. 从动件最大行程和从动件运动规律均不变 D. 从动件最大行程和从动件运动规律均发生变化
1.选择题
(4) 若直动从动件盘形凸轮机构采用正配置,可_______ 压力角。 A A. 降低推程 B. 降低回程 C. 同时降低推程和回程 (5) 对于滚子从动件盘形凸轮机构,滚子半径______ 理论轮廓曲线 A 外凸部分的最小曲率半径。 A. 必须小于 B. 必须大于 C. 可以等于 (6) 在设计几何锁合式凸轮机构时,_______ 。 B A. 只要控制推程最大压力角 B. 要同时控制推程和回程最大压力角 C. 只要控制回程最大压力角 (7)对于平底从动件盘形凸轮机构,若出现运动失真,则其原因是 ____ C 。 A. 基圆半径太小 B. 凸轮轮廓外凸 C. 凸轮轮廓内凹或平底宽度不够
1.选择题
(8)凸轮机构若发生自锁,则其原因是______ 。 B A. 驱动力矩不够 B. 压力角太大 C. 基圆半径太小 (9)对于平底直动从动件盘形凸轮机构,移动导路的平移_____ C 。 A. 会改变从动件运动规律 B. 会影响机构压力角的大小 C. 不会影响从动件运动规律和机构压力角的大小
解: (1)凸轮偏心距。利用速度瞬心 ,几何 中心O即为速度瞬心p,可得ν=eω,求 得e=25mm。 90° k V ( 2 )凸轮转过 90°时,从动件在 K 点 接触,其压力角为αk。 e/sinαk =R/sinθ;
hk
αk
α max
θ
(P) h F
当θ=90°时,αk达到最大值。
αk=arcsin(e/R)=30°
(5)力锁合式凸轮机构回程绝对不会发生自锁。 √ (6)为减小凸轮机构的压力角可增大凸轮基圆半径。 √ (7)凸轮机构的压力角就是凸轮的压力角。
X
2.正误判断题
(8)本章介绍的圆柱凸轮轮廓曲线按展开在平面上进行设计的
方法,无论对于摆动从动件还是直动从动件,这种设计方法 均是近似的。 X
(9)滚子从动件盘形凸轮机构和平底从动件盘形凸轮机构均不
(3)凸轮转过90°时,从动件的位移 为 h K。
( 4 )从动件在 F 点接触时为最大位移, 即行程为h,此时αF=0。
αF=0
例2 图(a)所示对心直动尖底从动件偏心圆盘凸轮机构,O为凸轮几何中心, O1为凸轮转动中心,直线AC⊥BD,O1O=OA/2,圆盘半径R=OA=60mm。(1) 根据图(a)及上述条件确定基圆半径r0,行程h, C点压力角αC和D点接触时的 压力角αD,位移hD;(2)若偏心圆盘凸轮几何尺寸不变,仅将从动件由尖底改 为滚子,见图(b),滚子半径rr=10mm。试问,上述参数r0,h,αc,和hD,αD是 否改变?对于有改变的参数试分析其增大还是减小?
C D e R
αB
解:
B hB
O r0
αC> αB。该偏置有利 减小压力角,改善受力, 故偏置合理。 α D> α C> αB,故偏 置不合理。
A
例4 凸轮为偏心轮如图,已知参数R=30mm,lOA=10mm,e=15mm,rr=5mm, E,F为凸轮与滚子的两个接触点。求 (1)画出凸轮轮廓线(理论轮廓线),求基圆r0;(2)E点接触时从动件的 压力角αE; (3) 从E到F接触凸轮所转过的角度φ; (4)由E点接触到F点接触 从动件的位移S;(5)找出最大αmax的位置。
允许凸轮轮廓曲线内凹。 X (10)滚子接触凸轮副的最大接触应力出现在凸轮实际轮廓曲线
最小曲率半径处。 X
习题评讲
5-8:标出在图a位置时凸轮的压力角,凸轮从图示位置转过90°后推杆的位移; 标出图b中推杆从图示位置升高位移s时,凸轮的转角和凸轮机构的压力角。
α α
s
φ s
a
b
h
h
αc=0
α c=0
基圆r0增大; 行程h不变; 压力角α C不变; hD减小; α D减小。
hD
a
αD
hD
b
αD
例3 尖底偏置直动从动件盘形凸轮机构中,已知凸轮轮廓线为一偏心圆,其 半径R=25mm,偏心距lOA=10mm,偏距e=5mm。求: (1)从动件与凸轮轮廓线在B点接触时的位移hB,压力角αB; (2)将偏置从动件2向左移5mm后,变为对心从动件,此时与轮廓线C点接 触时的压力角αC;比较αB,αC大小,说明题意中的偏置是否合理。 (3)如果偏距e= -5mm,此时的偏置是否合理? αC αD